1
|
Wan B, Liu Y, Ge Y, Liu F, Zhao R, Li T, Zhang Y, Zhang W, Huan F, Yang X, Hui Z. Enhancing positioning accuracy in adjuvant radiotherapy for left breast cancer using cervical-thoracic integrated bracket combined with deep inspiration breath holding. Thorac Cancer 2024; 15:2540-2550. [PMID: 39520201 DOI: 10.1111/1759-7714.15484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/15/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
PURPOSE This study aimed to investigate the accuracy of three fixation methods in patients with left breast cancer receiving whole breast radiotherapy: conventional breast bracket (BB), breast bracket combined with deep inspiration breath holding (DIBH), and cervical-thoracic integrated bracket (CTIB) combined with DIBH. METHODS From January 2023 to September 2023, 84 patients who underwent left breast cancer radiotherapy with supraclavicular radiation after conservative surgery were included in this study, of which 25 patients were fixed by conventional BB, 34 patients by BB & DIBH, and 25 patients by CTIB & DIBH. Image registration was conducted around the treatment area, using the sternoclavicular joint and acromioclavicular joint as landmarks. Systematic and random errors were calculated to assess the accuracy of these fixation methods. RESULTS Compared to the conventional BB group, the CTIB & DIBH group demonstrated significant improvements in accuracy across multiple dimensions, including left-right, superior-posterior, and anterior-posterior directions, as well as rotational errors in the sagittal and coronal planes. The CTIB & DIBH group showed a significant reduction of setup error in the anterior-posterior direction compared to the BB & DIBH group. The displacement of the acromioclavicular joint varied, with the CTIB & DIBH method showing more favorable outcomes. CONCLUSION DIBH method exhibited lower setup errors and more effective fixation of the acromioclavicular joint, especially when combined with CTIB, making it a recommended fixation method in adjuvant radiotherapy following breast-conserving surgery.
Collapse
Affiliation(s)
- Bao Wan
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yunsong Liu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yandong Ge
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fan Liu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ruiao Zhao
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tantan Li
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanxin Zhang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Zhang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fukui Huan
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xu Yang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhouguang Hui
- Department of VIP Medical Services, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
2
|
Chan AW, Hoang A, Chen H, McGuffin M, Vesprini D, Zhang L, Wronski M, Karam I. Prospective Trial on the Impact of Weekly Cone Beam Computed Tomography-Guided Correction on Mean Heart Dose in Breast Cancer Breath-Hold Radiation Therapy. Adv Radiat Oncol 2024; 9:101651. [PMID: 39524526 PMCID: PMC11550350 DOI: 10.1016/j.adro.2024.101651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/23/2024] [Indexed: 11/16/2024] Open
Abstract
Purpose Surface guided radiation therapy (SGRT) in breast cancer radiation therapy (RT) may decrease the need for image guidance such as cone beam computed tomography (CBCT). The goal of this study was to evaluate the impact of CBCT image guidance on the cumulative and interfractional variation of mean heart dose (MHD) during breath-hold RT in patients with breast cancer. We hypothesized that weekly CBCT is not necessary for SGRT-assisted breath-hold but is still needed in patients treated with voluntary deep inspiration breath-hold (vDIBH) and active breathing control (ABC) to maintain a stable MHD. Methods and Materials This was a prospective, single-center trial that sequentially assigned breast cancer patients to adjuvant RT 40 to 50 Gy in 15 to 25 fractions using vDIBH, ABC, or SGRT to reproduce the breath-hold. The MHD was estimated on each of the weekly CBCT images before and after online correction. The cumulative and interfractional variation of MHD, which were represented by the average and SD of MHD in each patient, were compared in the series of CBCT before and after online correction to evaluate whether online CBCT-guided correction could lead to a more reproducible MHD. Results Fifty-five patients were included (vDIBH = 16, ABC = 19, and SGRT = 20). The CBCT-guided online correction was associated with a significant decrease in the interfractional variation of MHD in vDIBH (SD difference, 22.6 cGy; p = .0389) and ABC (SD difference, 9.9 cGy; p = .0262), but not in SGRT (p = .2272). The CBCT-guided online correction had no impact on the cumulative MHD in all 3 groups. Conclusions This study demonstrated that CBCT-guided online correction could reduce the interfractional variation of MHD in ABC or vDIBH. When SGRT was available, CBCT-guided correction had no impact on the stability of MHD across the treatment fractions. Future studies may explore whether the CBCT frequency could be reduced to less than weekly in SGRT to decrease treatment time and the radiation dose associated with CBCT.
Collapse
Affiliation(s)
- Adrian Wai Chan
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Anh Hoang
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Hanbo Chen
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Merrylee McGuffin
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Danny Vesprini
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Liying Zhang
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Matt Wronski
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Irene Karam
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Wu J, Yang F, Li J, Wang X, Yuan K, Xu L, Wu F, Tang B, Orlandini LC. Reproducibility and stability of voluntary deep inspiration breath hold and free breath in breast radiotherapy based on real-time 3-dimensional optical surface imaging system. Radiat Oncol 2024; 19:158. [PMID: 39529112 PMCID: PMC11556127 DOI: 10.1186/s13014-024-02549-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND The aim of this study was to evaluate the inter-fraction reproducibility and intra-fraction stability of breast radiotherapy using voluntary deep-inspiration breath hold (DIBH) and free breathing (FB) based on an optical surface imaging system (OSIS). METHODS Seventeen patients (510 breath-hold sessions) treated using a field-in-field (FiF) technique and twenty patients (600 breath-free sessions) treated with a volume-modulated arc therapy (VMAT) technique were included in this retrospective study. All the patients were positioned with the guidance of CBCT and OSIS, and also monitored with OSIS throughout the whole treatment session. Eight setup variations in three directions were extracted from the treatment reports of OSIS for all sessions and were subsequently manually introduced to treatment plans, resulting in a total of 296 perturbed plans. All perturbed plans were recalculated, and the dose volume histograms (DVH) for the target and organs at risk (OAR) were analyzed. RESULTS The OSIS and CBCT for both DIBH and FB treatments showed a good agreement of less than 0.30 cm in each direction. The intra-fraction respiratory motion data during DIBH were -0.06 ± 0.07 cm, 0.12 ± 0.15 cm, and 0.12 ± 0.12 cm in the lateral, longitudinal, and vertical directions, respectively; for FB, the respiratory motion data were -0.02 ± 0.12 cm, 0.08 ± 0.18 cm, and 0.14 ± 0.20 cm, respectively. For the target, DIBH plans were more sensitive to setup errors; the mean deviations in D95 for CTV were 39.78 Gy-40.17 Gy for DIBH and 38.46 Gy-40.52 Gy for FB, respectively. For the OARs, the mean deviations of V10, V20, and Dmean to the heart; V5, V20, and Dmean to the ipsilateral lung; and Dmean to the breast were lower for the FB plan compared with the DIBH plan. CONCLUSION Based on OSIS, our results indicate that both DIBH and FB can provide good reproducibility in the inter-fractions and stability in the intra-fractions. When the patient respiratory motion is large, the FB technology has greater possibility for the undercoverage of the target volume, while DIBH technology is more likely to result in increases in dose to OARs (the lung, heart, and contralateral breast).
Collapse
Affiliation(s)
- Junxiang Wu
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, No.55, Section 4, South Renmin Road, Chengdu, China
| | - Feng Yang
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, No.55, Section 4, South Renmin Road, Chengdu, China
| | - Jie Li
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, No.55, Section 4, South Renmin Road, Chengdu, China
| | - Xianliang Wang
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, No.55, Section 4, South Renmin Road, Chengdu, China
| | - Ke Yuan
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, No.55, Section 4, South Renmin Road, Chengdu, China
| | - Lipeng Xu
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, No.55, Section 4, South Renmin Road, Chengdu, China
| | - Fan Wu
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, No.55, Section 4, South Renmin Road, Chengdu, China.
| | - Bin Tang
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, No.55, Section 4, South Renmin Road, Chengdu, China.
| | - Lucia Clara Orlandini
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, No.55, Section 4, South Renmin Road, Chengdu, China
| |
Collapse
|
4
|
Wang SJ, Zhai YR, Zhang WW, Chen SY, Qin SR, Fang H, Tang Y, Song YW, Liu YP, Chen B, Qi SN, Tang Y, Lu NN, Li YX, Jing H, Wang SL. Dosimetric benefit and clinical feasibility of deep inspiration breath-hold and volumetric modulated arc therapy-based postmastectomy radiotherapy for left-sided breast cancer. Sci Rep 2024; 14:24638. [PMID: 39428424 PMCID: PMC11491445 DOI: 10.1038/s41598-024-75560-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024] Open
Abstract
To evaluate the dosimetric benefits and clinical feasibility of deep inspiratory breath-hold (DIBH) combined with volumetric modulated arc therapy (VMAT) in left-sided postmastectomy radiotherapy (PMRT). Eligible patients with left-sided breast cancer undergoing DIBH-based PMRT were prospectively included. Chest wall, supra/infraclavicular fossa, and/or internal mammary node irradiation (IMNI) were planned with a prescription dose of 43.5 Gy in 15 fractions. VMAT plans were designed on free breathing (FB)-and DIBH-CT to compare dosimetric parameters in heart, left anterior descending artery (LAD) and lung. Cone-beam computed tomography (CBCT) was performed before and after treatment to evaluate inter- and intra-fractional setup errors. Heart position and dose variations during treatment were estimated by fusing CBCT with DIBH-CT scans.Twenty patients were included with 10 receiving IMNI. In total, 193 pre-treatment and 39 pairs pre- and post-treatment CBCT scans were analyzed. The Dmean, Dmax, and V5-40 of the heart, LAD, and left lung were significantly lower in DIBH than FB (p < 0.05 for all), except for V5 of LAD (p = 0.167). The cardiopulmonary dosimetric benefits were maintained regardless of IMNI. The inter- and intra-fractional setup errors were < 0.3 cm; and the overall estimated PTV margins were < 1.0 cm. During treatment, the mean dice similarity coefficient of heart position and the mean ratio of heart Dmean between CBCT and DIBH-CT plans was 0.95 (0.88-1.00) and 100% (70.6-119.5%), respectively. DIBH-VMAT could effectively reduce the cardiopulmonary doses with acceptable reproducibility and stability in left-sided PMRT regardless of IMNI.
Collapse
Affiliation(s)
- Shi-Jia Wang
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yi-Rui Zhai
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Wen-Wen Zhang
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Si-Ye Chen
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shi-Rui Qin
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Hui Fang
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yu Tang
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yong-Wen Song
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yue-Ping Liu
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Bo Chen
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shu-Nan Qi
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yuan Tang
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ning-Ning Lu
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ye-Xiong Li
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Hao Jing
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Shu-Lian Wang
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
5
|
Tison T, Dechambre D, Pierrard J, Everard L, Geets X. Online Adaptive Radiotherapy for Planning Target Volume (PTV) Reduction in Gastric Mucosa-Associated Lymphoid Tissue (MALT) Lymphoma. Cureus 2024; 16:e68919. [PMID: 39381477 PMCID: PMC11461035 DOI: 10.7759/cureus.68919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2024] [Indexed: 10/10/2024] Open
Abstract
Online adaptive radiotherapy (oART) uses daily imaging to identify changes in the patient's anatomy and generate a new treatment plan adapted to these changes, and it can be used for treating gastric mucosa-associated lymphoid tissue (MALT) lymphomas. This study aimed to determine the intrafraction motion and planning target volume (PTV) margins required for an oART workflow on a cone beam computed tomography (CBCT)-based dedicated system (Ethos®, Varian Medical Systems, Palo Alto, California, United States) and investigate the potential benefits for patients compared with a non-adaptive workflow. Involving three patients treated for gastric MALT lymphoma with the oART under breath-hold (BH) technique, the study determined a PTV margin for adaptive treatment using CBCT scans performed at the beginning and just before treating the patients for 34 fractions. Different PTVs were made by isotropically extending the clinical target volume (CTV) contoured on the first CBCT (CTV1) at intervals of 1 mm to evaluate intrafraction gastric motion, with the expansion covering the contoured CTV on the second CBCT (CTV2) quantifying the intrafraction motion (adaptive treatment) and the expansion from the CTV delineated on the planning scanner (CTVplanning) that could cover both CTV1 and CTV2 defining the interfraction motion (non-adaptive treatment). PTV margins were then determined as the extension of the CTV allowing coverage of 95% of its volume in 90% of fractions, and the dosimetric impact on dose constraints between an adaptive plan and a non-adaptive plan based on the predetermined margins was evaluated. A total of 68 CBCTs were analyzed, revealing that the PTV margin for oART was 4 mm, while for non-adaptive treatment it was 12 mm, with an average time elapsed between CBCT1 and CBCT2 of 11.62 minutes and no correlation between inter-CBCT timing and PTV margins (Pearson R-coefficient=0.10). All dosimetric constraints were met in both adaptive and non-adaptive plans, but the adaptive plan allowed for reduced organ-at-risk (OAR) doses in each patient. The study concluded that oART could reduce PTV margins in the treatment of gastric MALT lymphoma, especially with a BH strategy, impacting OAR dosimetry, though more prospective studies are required to validate these findings and determine their clinical impact on patients.
Collapse
Affiliation(s)
- Thaïs Tison
- Radiation Oncology, Cliniques Universitaires Saint-Luc, Brussels, BEL
| | - David Dechambre
- Medical Physics, Cliniques Universitaires Saint-Luc, Brussels, BEL
| | - Julien Pierrard
- Radiation Oncology, Cliniques Universitaires Saint-Luc, Brussels, BEL
| | - Louise Everard
- Medical Physics, Center of Molecular Imaging, Radiotherapy and Oncology (MIRO) Institut de Recherche Experimentale et Clinique (IREC) Université Catholique de Louvain (UCLouvain), Brussels, BEL
| | - Xavier Geets
- Radiation Oncology, Cliniques Universitaires Saint-Luc, Brussels, BEL
| |
Collapse
|
6
|
Huijskens S, Granton P, Fremeijer K, van Wanrooij C, Offereins-van Harten K, Schouwenaars-van den Beemd S, Hoogeman MS, Sattler MGA, Penninkhof J. Clinical practicality and patient performance for surface-guided automated VMAT gating for DIBH breast cancer radiotherapy. Radiother Oncol 2024; 195:110229. [PMID: 38492672 DOI: 10.1016/j.radonc.2024.110229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND AND PURPOSE To evaluate the performance of automated surface-guided gating for left-sided breast cancer with DIBH and VMAT. MATERIALS AND METHODS Patients treated in the first year after introduction of DIBH with VMAT were retrospectively considered for analysis. With automated surface-guided gating the beam automatically switches on/off, if the surface region of interest moved in/out the gating tolerance (±3 mm, ±3°). Patients were coached to hold their breath as long as comfortably possible. Depending on the patient's preference, patients received audio instructions during treatment delivery. Real-time positional variations of the breast/chest wall surface with respect to the reference surface were collected, for all three orthogonal directions. The durations and number of DIBHs needed to complete dose delivery, and DIBH position variations were determined. To evaluate an optimal gating window threshold, smaller tolerances of ±2.5 mm, ±2.0 mm, and ±1.5 mm were simulated. RESULTS 525 fractions from 33 patients showed that median DIBH duration was 51 s (range: 30-121 s), and median 4 DIBHs per fraction were needed to complete VMAT dose delivery. Median intra-DIBH stability and intrafractional DIBH reproducibility approximated 1.0 mm in each direction. No large differences were found between patients who preferred to perform the DIBH procedure with (n = 21) and without audio-coaching (n = 12). Simulations demonstrated that gating window tolerances could be reduced from ±3.0 mm to ±2.0 mm, without affecting beam-on status. CONCLUSION Independent of the use of audio-coaching, this study demonstrates that automated surface-guided gating with DIBH and VMAT proved highly efficient. Patients' DIBH performance far exceeded our expectations compared to earlier experiences and literature. Furthermore, gating window tolerances could be reduced.
Collapse
Affiliation(s)
- Sophie Huijskens
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, Rotterdam, the Netherlands.
| | - Patrick Granton
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, Rotterdam, the Netherlands
| | - Kimm Fremeijer
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, Rotterdam, the Netherlands
| | - Cynthia van Wanrooij
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, Rotterdam, the Netherlands
| | - Kirsten Offereins-van Harten
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, Rotterdam, the Netherlands
| | | | - Mischa S Hoogeman
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, Rotterdam, the Netherlands
| | - Margriet G A Sattler
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, Rotterdam, the Netherlands
| | - Joan Penninkhof
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, Rotterdam, the Netherlands
| |
Collapse
|
7
|
Rudat V, Shi Y, Zhao R, Yu W. Setup margins based on the inter- and intrafractional setup error of left-sided breast cancer radiotherapy using deep inspiration breath-hold technique (DIBH) and surface guided radiotherapy (SGRT). J Appl Clin Med Phys 2024; 25:e14271. [PMID: 38273673 PMCID: PMC11163505 DOI: 10.1002/acm2.14271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/27/2023] [Accepted: 12/29/2023] [Indexed: 01/27/2024] Open
Abstract
PURPOSE The use of volumetric modulated arc therapy (VMAT), simultaneous integrated boost (SIB), and hypofractionated regimen requires adequate patient setup accuracy to achieve an optimal outcome. The purpose of this study was to assess the setup accuracy of patients receiving left-sided breast cancer radiotherapy using deep inspiration breath-hold technique (DIBH) and surface guided radiotherapy (SGRT) and to calculate the corresponding setup margins. METHODS The patient setup accuracy between and within radiotherapy fractions was measured by comparing the 6DOF shifts made by the SGRT system AlignRT with the shifts made by kV-CBCT. Three hundred and three radiotherapy fractions of 23 left-sided breast cancer patients using DIBH and SGRT were used for the analysis. All patients received pre-treatment DIBH training and visual feedback during DIBH. An analysis of variance (ANOVA) was used to test patient setup differences for statistical significance. The corresponding setup margins were calculated using the van Herk's formula. RESULTS The intrafractional patient setup accuracy was significantly better than the interfractional setup accuracy (p < 0.001). The setup margin for the combined inter- and intrafractional setup error was 4, 6, and 4 mm in the lateral, longitudinal, and vertical directions if based on SGRT alone. The intrafractional error contributed ≤1 mm to the calculated setup margins. CONCLUSION With SGRT, excellent intrafractional and acceptable interfractional patient setup accuracy can be achieved for the radiotherapy of left-sided breast cancer using DIBH and modern radiation techniques. This allows for reducing the frequency of kV-CBCTs, thereby saving treatment time and radiation exposure.
Collapse
Affiliation(s)
- Volker Rudat
- Department of Radiation OncologyJiahui International Cancer Center Shanghai, Jiahui HealthShanghaiChina
| | - Yanyan Shi
- Department of Radiation OncologyJiahui International Cancer Center Shanghai, Jiahui HealthShanghaiChina
| | - Ruping Zhao
- Department of Radiation OncologyJiahui International Cancer Center Shanghai, Jiahui HealthShanghaiChina
| | - Wei Yu
- Department of Radiation OncologyJiahui International Cancer Center Shanghai, Jiahui HealthShanghaiChina
| |
Collapse
|
8
|
Gnerucci A, Esposito M, Ghirelli A, Pini S, Paoletti L, Barca R, Fondelli S, Alpi P, Grilli B, Rossi F, Scoccianti S, Russo S. Robustness analysis of surface-guided DIBH left breast radiotherapy: personalized dosimetric effect of real intrafractional motion within the beam gating thresholds. Strahlenther Onkol 2024; 200:71-82. [PMID: 37380796 DOI: 10.1007/s00066-023-02102-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 05/16/2023] [Indexed: 06/30/2023]
Abstract
PURPOSE The robustness of surface-guided (SG) deep-inspiration breath-hold (DIBH) radiotherapy (RT) for left breast cancer was evaluated by investigating any potential dosimetric effects due to the residual intrafractional motion allowed by the selected beam gating thresholds. The potential reduction of DIBH benefits in terms of organs at risk (OARs) sparing and target coverage was evaluated for conformational (3DCRT) and intensity-modulated radiation therapy (IMRT) techniques. METHODS A total of 192 fractions of SGRT DIBH left breast 3DCRT treatment for 12 patients were analyzed. For each fraction, the average of the real-time displacement between the isocenter on the daily reference surface and on the live surface ("SGRT shift") during beam-on was evaluated and applied to the original plan isocenter. The dose distribution for the treatment beams with the new isocenter point was then calculated and the total plan dose distribution was obtained by summing the estimated perturbed dose for each fraction. Then, for each patient, the original plan and the perturbed one were compared by means of Wilcoxon test for target coverage and OAR dose-volume histogram (DVH) metrics. A global plan quality score was calculated to assess the overall plan robustness against intrafractional motion of both 3DCRT and IMRT techniques. RESULTS Target coverage and OAR DVH metrics did not show significant variations between the original and the perturbed plan for the IMRT techniques. 3DCRT plans showed significant variations for the left descending coronary artery (LAD) and the humerus only. However, none of the dose metrics exceeded the mandatory dose constraints for any of the analyzed plans. The global plan quality analysis indicated that both 3DCRT and IMRT techniques were affected by the isocenter shifts in the same way and, generally, the residual isocenter shifts more likely tend to worsen the plan in all cases. CONCLUSION The DIBH technique proved to be robust against residual intrafractional isocenter shifts allowed by the selected SGRT beam-hold thresholds. Small-volume OARs located near high dose gradients showed significant marginal deteriorations in the perturbed plans with the 3DCRT technique only. Global plan quality was mainly influenced by patient anatomy and treatment beam geometry rather than the technique adopted.
Collapse
Affiliation(s)
- A Gnerucci
- Department of Physics and Astronomy, University of Florence, Florence, Italy.
| | - M Esposito
- Medical Physics Unit, Azienda USL Toscana Centro, Florence, Italy
| | - A Ghirelli
- Medical Physics Unit, Azienda USL Toscana Centro, Florence, Italy
| | - S Pini
- Medical Physics Unit, Azienda USL Toscana Centro, Florence, Italy
| | - L Paoletti
- Radiotherapy Unit, Azienda USL Toscana Centro, Florence, Italy
| | - R Barca
- Radiotherapy Unit, Azienda USL Toscana Centro, Florence, Italy
| | - S Fondelli
- Radiotherapy Unit, Azienda USL Toscana Centro, Florence, Italy
| | - P Alpi
- Radiotherapy Unit, Azienda USL Toscana Centro, Florence, Italy
| | - B Grilli
- Radiotherapy Unit, Azienda USL Toscana Centro, Florence, Italy
| | - F Rossi
- Radiotherapy Unit, Azienda USL Toscana Sud Est, Grosseto, Italy
| | - S Scoccianti
- Radiotherapy Unit, Azienda USL Toscana Centro, Florence, Italy
| | - S Russo
- Medical Physics Unit, Azienda USL Toscana Centro, Florence, Italy
| |
Collapse
|
9
|
Yuan K, Yao X, Liao X, Diao P, Xin X, Ma J, Li J, Orlandini LC. Comparing breath hold versus free breathing irradiation for left-sided breast radiotherapy by PlanIQ™. Radiat Oncol 2023; 18:200. [PMID: 38098106 PMCID: PMC10722777 DOI: 10.1186/s13014-023-02386-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Breast cancer is the most widespread cancer in women and young women worldwide. Moving towards customised radiotherapy, balancing the use of the available technology with the best treatment modality may not be an easy task in the daily routine. This study aims to evaluate the effectiveness of introducing IQ-feasibility into clinical practice to support the decision of free-breathing (FB) versus breath-hold (BH) left-sided breast irradiations, in order to optimise the technology available and the effectiveness of the treatment. METHODS Thirty-five patients who received 3D radiotherapy treatment of the left breast in deep-inspiration BH were included in this retrospective study. Computed tomography scans in FB and BH were acquired for each patient; targets contoured in both imaging datasets by an experienced radiation oncologist, and organs at risk delineated using automatic segmentation software were exported to PlanIQ™ (Sun Nuclear Corp.) to generate feasibility dose volume histogram (FDVHs). The dosimetric parameter of BH versus FB FDVH, and BH clinical dataset versus BH FDVH were compared. RESULTS A total of 30 patients out of 35 patients analysed, presented for the BH treatments a significant reduction (p < 0.05) in the heart mean dose ([Formula: see text]), volume receiving 5 Gy ([Formula: see text]) and 20 Gy ([Formula: see text]), of 35.7%, 54.5%, and 2.1%, respectively; for the left lung, a lower reduction was registered and significant only for [Formula: see text] (21.4%, p = 0.046). For the remaining five patients, the FDVH cut-off points of heart and lung were superimposable with differences of less than 1%. Heart and left lung dosimetric parameters of the BH clinical plans are located in the difficult zone of the FDVH and differ significantly (p < 0.05) from the corresponding parameters of the FDVH curves delimiting this buffer area between the impossible and feasible zones, respectively. CONCLUSION The use of PlanIQTM as a decision-support tool for the FB versus BH treatment delivery modality allows customisation of the treatment technique using the most appropriate technology for each patient enabling accurate management of available technologies.
Collapse
Affiliation(s)
- Ke Yuan
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University and Electronic Science and Technology of China, Chengdu, China
- Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Chengdu, China
| | - Xinghong Yao
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University and Electronic Science and Technology of China, Chengdu, China
- Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Chengdu, China
| | - Xiongfei Liao
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University and Electronic Science and Technology of China, Chengdu, China.
- Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Chengdu, China.
| | - Pen Diao
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University and Electronic Science and Technology of China, Chengdu, China
- Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Chengdu, China
| | - Xin Xin
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University and Electronic Science and Technology of China, Chengdu, China
- Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Chengdu, China
| | - Jiabao Ma
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University and Electronic Science and Technology of China, Chengdu, China
- Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Chengdu, China
| | - Jie Li
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University and Electronic Science and Technology of China, Chengdu, China
- Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Chengdu, China
| | - Lucia Clara Orlandini
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University and Electronic Science and Technology of China, Chengdu, China
- Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Chengdu, China
| |
Collapse
|
10
|
Lu W, Hong LX, Yamada N, Berry SL, Song Y, Choi W, Cerviño LI, Tang X, Mechalakos JG, Romesser PB, Powell S, Li G. Comparison of setup accuracy of optical surface image versus orthogonal x-ray images for VMAT of the left breast using deep-inspiration breath-hold. J Appl Clin Med Phys 2023; 24:e14117. [PMID: 37535396 PMCID: PMC10691624 DOI: 10.1002/acm2.14117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/25/2023] [Accepted: 07/18/2023] [Indexed: 08/04/2023] Open
Abstract
To compare the setup accuracy of optical surface image (OSI) versus orthogonal x-ray images (2DkV) using cone beam computed tomography (CBCT) as ground truth for radiotherapy of left breast cancer in deep-inspiration breath-hold (DIBH). Ten left breast DIBH patients treated with volumetric modulated arc therapy (VMAT) were studied retrospectively. OSI, 2DkV, and CBCT were acquired weekly at treatment setup. OSI, 2DkV, and CBCT were registered to planning CT or planning DRR based on a breast surface region of interest (ROI), bony anatomy (chestwall and sternum), and both bony anatomy and breast surface, respectively. These registrations provided couch shifts for each imaging system. The setup errors, or the difference in couch shifts between OSI and CBCT were compared to those between 2DkV and CBCT. A second OSI was acquired during last beam delivery to evaluate intrafraction motion. The median absolute setup errors were (0.21, 0.27, 0.23 cm, 0.6°, 1.3°, 1.0°) for OSI, and (0.26, 0.24, 0.18 cm, 0.9°, 1.0°, 0.6°) for 2DkV in vertical, longitudinal and lateral translations, and in rotation, roll and pitch, respectively. None of the setup errors was significantly different between OSI and 2DkV. For both systems, the systematic and random setup errors were ≤0.6 cm and ≤1.5° in all directions. Nevertheless, larger setup errors were observed in some sessions in both systems. There was no correlation between OSI and CBCT whereas there was modest correlation between 2DkV and CBCT. The intrafraction motion in DIBH detected by OSI was small with median absolute translations <0.2 cm, and rotations ≤0.4°. Though OSI showed comparable and small setup errors as 2DkV, it showed no correlation with CBCT. We concluded that to achieve accurate setup for both bony anatomy and breast surface, daily 2DkV can't be omitted following OSI for left breast patients treated with DIBH VMAT.
Collapse
Affiliation(s)
- Wei Lu
- Department of Medical PhysicsMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Linda X. Hong
- Department of Medical PhysicsMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Nelson Yamada
- Department of Medical PhysicsMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Sean L. Berry
- Department of Medical PhysicsMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Yulin Song
- Department of Medical PhysicsMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Wookjin Choi
- Department of Medical PhysicsMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Laura I. Cerviño
- Department of Medical PhysicsMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Xiaoli Tang
- Department of Medical PhysicsMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - James G. Mechalakos
- Department of Medical PhysicsMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Paul B. Romesser
- Department of Radiation OncologyMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Simon Powell
- Department of Radiation OncologyMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Guang Li
- Department of Medical PhysicsMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| |
Collapse
|
11
|
Chen K, Sun W, Han T, Yan L, Sun M, Xia W, Wang L, Shi Y, Ge C, Yang X, Li Y, Wang H. Robustness of hypofractionated breast radiotherapy after breast-conserving surgery with free breathing. Front Oncol 2023; 13:1259851. [PMID: 38023210 PMCID: PMC10644368 DOI: 10.3389/fonc.2023.1259851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose This study aimed to evaluate the robustness with respect to the positional variations of five planning strategies in free-breathing breast hypofractionated radiotherapy (HFRT) for patients after breast-conserving surgery. Methods Twenty patients who received breast HFRT with 42.72 Gy in 16 fractions were retrospectively analyzed. Five treatment planning strategies were utilized for each patient, including 1) intensity-modulated radiation therapy (IMRT) planning (IMRTpure); 2) IMRT planning with skin flash tool extending and filling the fluence outside the skin by 2 cm (IMRTflash); 3) IMRT planning with planning target volume (PTV) extended outside the skin by 2 cm in the computed tomography dataset (IMRTePTV); 4) hybrid planning, i.e., 2 Gy/fraction three-dimensional conformal radiation therapy combined with 0.67 Gy/fraction IMRT (IMRThybrid); and 5) hybrid planning with skin flash (IMRThybrid-flash). All plans were normalized to 95% PTV receiving 100% of the prescription dose. Six additional plans were created with different isocenter shifts for each plan, which were 1 mm, 2 mm, 3 mm, 5 mm, 7 mm, and 10 mm distally in the X (left-right) and Y (anterior-posterior) directions, namely, (X,Y), to assess their robustness, and the corresponding doses were recalculated. Variation of dosimetric parameters with increasing isocenter shift was evaluated. Results All plans were clinically acceptable. In terms of robustness to isocenter shifts, the five planning strategies followed the pattern IMRTePTV, IMRThybrid-flash, IMRTflash, IMRThybrid, and IMRTpure in descending order. V 95% of IMRTePTV maintained at 99.6% ± 0.3% with a (5,5) shift, which further reduced to 98.2% ± 2.0% with a (10,10) shift. IMRThybrid-flash yielded the robustness second to IMRTePTV with less risk from dose hotspots, and the corresponding V 95% maintained >95% up until (5,5). Conclusion Considering the dosimetric distribution and robustness in breast radiotherapy, IMRTePTV performed best at maintaining high target coverage with increasing isocenter shift, while IMRThybrid-flash would be adequate with positional uncertainty<5 mm.
Collapse
Affiliation(s)
- Kunzhi Chen
- Department of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China
| | - Wuji Sun
- Department of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China
| | - Tao Han
- Department of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China
| | - Lei Yan
- Department of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China
| | - Minghui Sun
- Department of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China
| | - Wenming Xia
- Department of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China
| | - Libo Wang
- Department of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China
| | - Yinghua Shi
- Department of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China
| | - Chao Ge
- Department of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China
| | - Xu Yang
- Department of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China
| | - Yu Li
- Department of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China
| | - Huidong Wang
- Department of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, Department of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| |
Collapse
|
12
|
Mohamed Yoosuf AB, Alhadab S, Alshehri S, Alhadab A, Alqathami M. Investigation of Intra-fraction Stability and Inter-fraction Consistency of Active Breathing Coordinator (ABC)-Based Deep Inspiration Breath Holds in Left-Sided Breast Cancer. Cureus 2023; 15:e47047. [PMID: 38021774 PMCID: PMC10646616 DOI: 10.7759/cureus.47047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2023] [Indexed: 12/01/2023] Open
Abstract
Background Deep inspiration breath-hold (DIBH) has been established as a standard technique to reduce cardiac dose. The part of the heart exposed to radiation can be significantly decreased using the DIBH technique during tangential left-sided breast cancer (LSBC) irradiation. Aim The objective of this study was to investigate the intra-fraction breath-hold stability and inter-fraction consistency of patient breath-hold against the threshold as a function of air volumes in the setting of active breathing coordinator (ABC)-based DIBH (ABC-DIBH) treatment to LSBC. Methods A total of 34 patients treated with external beam radiation therapy (EBRT) to the left breast using the ABC-DIBH device were included. The frequency of breath-holds per fraction and the entire course of treatment along with the total treatment time was evaluated for all patients. A prescription dose of either 200 cGy (conventional) or 267 cGy (hypofractionation) was administered during 649 fractions, resulting in a total of 4,601 breath-hold measurements being evaluated. The amplitude of deviation in terms of air volumes between the baseline threshold and the patient-specific measurement (during each breath-hold) per fraction was used to define the DIBH stability. Likewise, the consistency of the breathing amplitudes was used to define the compliance of patient breath-holds throughout the entire treatment period. Positional accuracy was evaluated using orthogonal (portal) images. Results The average number of breath-holds measured over the entire course of treatment for each patient was 144 inspirations (58-351). Similarly, the average number of breath-holds for each fraction during the course of treatment was 11 inspirations (7-21), which included setup imaging and treatment. The total number of breath-holds reduced significantly (p-value < 0.05) with hypofractionation (104 inspirations; range 58-170) as compared to conventional fractionation (145 inspirations; 58-351). The average breath-hold threshold in terms of air volume was 1.41 L (0.6-2.1 L) for all patients. The total treatment time reduced significantly after the third fraction (p-value < 0.05). The average deviation between the measured and baseline threshold breath-holds during the course of treatment was 0.5 L/sec (0.12-1.32 L/sec). The consistency of the breathing amplitudes were maintained within ±0.05 L during the entire treatment for all patients. The average translational shifts measured during setup were 0.28 cm ± 0.3 cm, 0.38 cm ± 0.4 cm, and 0.21 cm ± 0.3 cm in the lateral, longitudinal, and vertical directions, respectively. Conclusion The study has demonstrated the variations in intra-fraction breath-hold stability and inter-fraction breath-hold consistency in terms of air volumes for patients who were treated for LSBC. The frequency of breath-holds was observed to be higher with increased total treatment time for the first few fractions and reduced over the course of treatment.
Collapse
Affiliation(s)
- Ahamed Badusha Mohamed Yoosuf
- Department of Oncology, King Abdulaziz Medical City/Ministry of National Guard Health Affairs, Riyadh, SAU
- Clinical Research, King Abdullah International Medical Research Center, Riyadh, SAU
| | - Saad Alhadab
- Medicine, King Saud Bin Abdulaziz University for Health Sciences College of Medicine, Riyadh, SAU
| | - Salem Alshehri
- Department of Oncology, King Abdulaziz Medical City/Ministry of National Guard Health Affairs, Riyadh, SAU
- Clinical Research, King Abdullah International Medical Research Center, Riyadh, SAU
| | - Abdulrahman Alhadab
- Department of Oncology, King Abdulaziz Medical City/Ministry of National Guard Health Affairs, Riyadh, SAU
- Clinical Research, King Abdullah International Medical Research Center, Riyadh, SAU
| | - Mamdouh Alqathami
- Department of Oncology, King Abdulaziz Medical City/Ministry of National Guard Health Affairs, Riyadh, SAU
- Clinical Research, King Abdullah International Medical Research Center, Riyadh, SAU
- Radiological Sciences, King Saud Bin Abdulaziz University, Riyadh, SAU
| |
Collapse
|
13
|
Sasaki M, Matsushita N, Fujimoto T, Nakata M, Ono Y, Yoshimura M, Mizowaki T. New patient setup procedure using surface-guided imaging to reduce body touch and skin marks in whole-breast irradiation during the COVID-19 pandemic. Radiol Phys Technol 2023; 16:422-429. [PMID: 37474738 DOI: 10.1007/s12194-023-00735-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 07/22/2023]
Abstract
This study aimed to assess the effectiveness of a new patient-setup procedure using surface-guided imaging during the coronavirus disease 2019 (COVID-19) pandemic for left-sided whole-breast irradiation with deep inspiration breath-hold. Two setup procedures were compared regarding patient positioning accuracy for the first 22 patients. The first was a traditional setup (T-setup) procedure that used a surface-guided system after patient setup with traditional skin marks and lasers. The second procedure involved a new setup (N-setup) that used only a surface-guided system. The positioning accuracy of the remaining 23 patients was assessed using a setup that combined marker reduction and the N-setup procedure. No significant difference was observed in positioning accuracy between the two setups. The positioning accuracy of the marker-reduction setup was within 3 mm in all directions. The N-setup procedure may be a useful strategy for preventing infection during or after the COVID-19 pandemic.
Collapse
Affiliation(s)
- Makoto Sasaki
- Division of Clinical Radiology Service, Kyoto University Hospital, 54 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, Kyoto, 606-8507, Japan.
| | - Norimasa Matsushita
- Division of Clinical Radiology Service, Kyoto University Hospital, 54 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, Kyoto, 606-8507, Japan
| | - Takahiro Fujimoto
- Division of Clinical Radiology Service, Kyoto University Hospital, 54 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, Kyoto, 606-8507, Japan
| | - Manabu Nakata
- Division of Clinical Radiology Service, Kyoto University Hospital, 54 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, Kyoto, 606-8507, Japan
| | - Yuka Ono
- Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Michio Yoshimura
- Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takashi Mizowaki
- Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
14
|
Aznar MC, Carrasco de Fez P, Corradini S, Mast M, McNair H, Meattini I, Persson G, van Haaren P. ESTRO-ACROP guideline: Recommendations on implementation of breath-hold techniques in radiotherapy. Radiother Oncol 2023; 185:109734. [PMID: 37301263 DOI: 10.1016/j.radonc.2023.109734] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
The use of breath-hold techniques in radiotherapy, such as deep-inspiration breath hold, is increasing although guidelines for clinical implementation are lacking. In these recommendations, we aim to provide an overview of available technical solutions and guidance for best practice in the implementation phase. We will discuss specific challenges in different tumour sites including factors such as staff training and patient coaching, accuracy, and reproducibility. In addition, we aim to highlight the need for further research in specific patient groups. This report also reviews considerations for equipment, staff training and patient coaching, as well as image guidance for breath-hold treatments. Dedicated sections for specific indications, namely breast cancer, thoracic and abdominal tumours are also included.
Collapse
Affiliation(s)
- Marianne Camille Aznar
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom.
| | - Pablo Carrasco de Fez
- Servei de Radiofísica i Radioprotecció, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Stefanie Corradini
- Department of Radiation Oncology, University Hospital, LMU Munich, Germany
| | - Mirjam Mast
- Department of Radiotherapy, Haaglanden Medical Center, Leidschendam, The Netherlands
| | - Helen McNair
- Royal Marsden NHS Foundation Trust and Institute of Cancer Research, UK
| | - Icro Meattini
- Radiation Oncology Unit, Oncology Department, Azienda Ospedaliero Universitaria Careggi, Florence, Italy; Department of Clinical and Experimental Biomedical Sciences "M. Serio", University of Florence, Florence, Italy
| | - Gitte Persson
- Department of Oncology, Herlev-Gentofte Hospital, University of Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health Science, University of Copenhagen, Denmark
| | - Paul van Haaren
- Department of Radiotherapy, Catharina Hospital, Eindhoven, The Netherlands
| |
Collapse
|
15
|
Dekker J, Essers M, Verheij M, Kusters M, de Kruijf W. Dose coverage and breath-hold analysis of breast cancer patients treated with surface-guided radiotherapy. Radiat Oncol 2023; 18:72. [PMID: 37081477 PMCID: PMC10116713 DOI: 10.1186/s13014-023-02261-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 04/10/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND Surface-guided radiotherapy (SGRT) is used to ensure a reproducible patient set-up and for intra-fraction motion monitoring. The arm position of breast cancer patients is important, since this is related to the position of the surrounding lymph nodes. The aim of the study was to investigate the set-up accuracy of the arm of patients positioned using SGRT. Moreover, the actual delivered dose was investigated and an extensive breath-hold analysis was performed. METHODS 84 patients who received local or locoregional breast radiation therapy were positioned and monitored using SGRT. The accuracy of the arm position, represented by the clavicle position, was studied on the anterior-posterior kV-image. To investigate the effect of changes in anatomy and patient set-up, the actual delivered dose was calculated on cone-beam CT-scans (CBCT). A deformable registration of the CT to the CBCT was applied to deform the structures of the CT onto the CBCT. The minimum dose in percentage of the prescribed dose that was received by 98% of different CTV volumes (D98) was determined. An extensive breath-hold analysis was performed and definitions for relevant parameters were given. RESULTS The arm position of 77 out of 84 patients in total was successful, based on the clavicle rotation. The mean clavicle rotation was 0.4° (± 2.0°). For 89.8% of the patients who were irradiated on the whole-breast D98 was larger than 95% of the prescribed dose (D98 > 95%). D98 > 95% applied for 70.8% of the patients irradiated on the chest wall. Concerning the lymph node CTVs, D98 > 95% for at least 95% of the patients. The breath-hold analysis showed a mean residual setup error of - 0.015 (± 0.90), - 0.18 (± 0.82), - 0.58 (± 1.1) mm in vertical, lateral, and longitudinal direction, respectively. The reproducibility and stability of the breath-hold was good, with median 0.60 mm (95% confidence interval (CI) [0.66-0.71] mm) and 0.20 mm (95% CI 0.21-0.23] mm), respectively. CONCLUSIONS Using SGRT we were able to position breast cancer patients successfully, with focus on the arm position. The actual delivered dose calculated on the CBCT was adequate and no relation between clavicle rotation and actual delivered dose was found. Moreover, breath-hold analysis showed a good reproducibility and stability of the breath-hold. Trial registration CCMO register NL69214.028.19.
Collapse
Affiliation(s)
- Janita Dekker
- Instituut Verbeeten, Klinische fysica & instrumentatie, Postbus 90120, 5000 LA, Tilburg, The Netherlands.
| | - Marion Essers
- Instituut Verbeeten, Klinische fysica & instrumentatie, Postbus 90120, 5000 LA, Tilburg, The Netherlands
| | - Marcel Verheij
- Department of Radiation Oncology, Radboud University Medical Center, Geert Grooteplein 32, 6525 GA, Nijmegen, The Netherlands
| | - Martijn Kusters
- Department of Radiation Oncology, Radboud University Medical Center, Geert Grooteplein 32, 6525 GA, Nijmegen, The Netherlands
| | - Willy de Kruijf
- Instituut Verbeeten, Klinische fysica & instrumentatie, Postbus 90120, 5000 LA, Tilburg, The Netherlands
| |
Collapse
|
16
|
Abubakar A, Shaukat SI, Karim NKA, Kassim MZ, Lim SY, Appalanaido GK, Zin HM. Accuracy of a time-of-flight (ToF) imaging system for monitoring deep-inspiration breath-hold radiotherapy (DIBH-RT) for left breast cancer patients. Phys Eng Sci Med 2023; 46:339-352. [PMID: 36847965 PMCID: PMC9969933 DOI: 10.1007/s13246-023-01227-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/27/2023] [Indexed: 03/01/2023]
Abstract
Deep inspiration breath-hold radiotherapy (DIBH-RT) reduces cardiac dose by over 50%. However, poor breath-hold reproducibility could result in target miss which compromises the treatment success. This study aimed to benchmark the accuracy of a Time-of-Flight (ToF) imaging system for monitoring breath-hold during DIBH-RT. The accuracy of an Argos P330 3D ToF camera (Bluetechnix, Austria) was evaluated for patient setup verification and intra-fraction monitoring among 13 DIBH-RT left breast cancer patients. The ToF imaging was performed simultaneously with in-room cone beam computed tomography (CBCT) and electronic portal imaging device (EPID) imaging systems during patient setup and treatment delivery, respectively. Patient surface depths (PSD) during setup were extracted from the ToF and the CBCT images during free breathing and DIBH using MATLAB (MathWorks, Natick, MA) and the chest surface displacement were compared. The mean difference ± standard deviation, correlation coefficient, and limit of agreement between the CBCT and ToF were 2.88 ± 5.89 mm, 0.92, and - 7.36, 1.60 mm, respectively. The breath-hold stability and reproducibility were estimated using the central lung depth extracted from the EPID images during treatment and compared with the PSD from the ToF. The average correlation between ToF and EPID was - 0.84. The average intra-field reproducibility for all the fields was within 2.70 mm. The average intra-fraction reproducibility and stability were 3.74 mm, and 0.80 mm, respectively. The study demonstrated the feasibility of using ToF camera for monitoring breath-hold during DIBH-RT and shows good breath-hold reproducibility and stability during the treatment delivery.
Collapse
Affiliation(s)
- Auwal Abubakar
- Biomedical Imaging Department/Oncology and Radiotherapy Unit, Advanced Medical & Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia.
- Department of Medical Radiography, Faculty of Allied Health Sciences, College of Medical Sciences, University of Maiduguri, Maiduguri, Nigeria.
| | - Shazril Imran Shaukat
- Biomedical Imaging Department/Oncology and Radiotherapy Unit, Advanced Medical & Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia
- Oncology Unit, Pantai Hospital Sungai Petani, Bandar Amanjaya, 08000, Sungai Petani, Kedah, Malaysia
| | - Noor Khairiah A Karim
- Biomedical Imaging Department/Oncology and Radiotherapy Unit, Advanced Medical & Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia
- Breast Cancer Translational Research Programme (BCTRP), Advanced Medical & Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Mohammed Zakir Kassim
- Biomedical Imaging Department/Oncology and Radiotherapy Unit, Advanced Medical & Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Siew Yong Lim
- Biomedical Imaging Department/Oncology and Radiotherapy Unit, Advanced Medical & Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Gokula Kumar Appalanaido
- Biomedical Imaging Department/Oncology and Radiotherapy Unit, Advanced Medical & Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Hafiz Mohd Zin
- Biomedical Imaging Department/Oncology and Radiotherapy Unit, Advanced Medical & Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia.
- Breast Cancer Translational Research Programme (BCTRP), Advanced Medical & Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia.
| |
Collapse
|
17
|
Gnerucci A, Esposito M, Ghirelli A, Pini S, Paoletti L, Barca R, Fondelli S, Alpi P, Grilli B, Rossi F, Scoccianti S, Russo S. Surface-guided DIBH radiotherapy for left breast cancer: impact of different thresholds on intrafractional motion monitoring and DIBH stability. Strahlenther Onkol 2023; 199:55-66. [PMID: 36229656 DOI: 10.1007/s00066-022-02008-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 09/15/2022] [Indexed: 01/18/2023]
Abstract
PURPOSE To compare two left breast cancer patient cohorts (tangential vs. locoregional deep-inspiration breath-hold - DIBH treatment) with different predefined beam gating thresholds and to evaluate their impact on motion management and DIBH stability. METHODS An SGRT-based clinical workflow was adopted for the DIBH treatment. Intrafractional monitoring was performed by tracking both the respiratory signal and the real-time displacement between the isocenter on the daily reference surface and on the live surface ("SGRT shift"). Beam gating tolerances were 5 mm/4 mm for the SGRT shifts and 5 mm/3 mm for the gating window amplitude for breast tangential and breast + lymph nodes locoregional treatments, respectively. A total of 24 patients, 12 treated with a tangential technique and 12 with a locoregional technique, were evaluated for a total number of 684 fractions. Statistical distributions of SGRT shift and respiratory signal for each treatment fraction, for each patient treatment, and for the two population samples were generated. RESULTS Lateral cumulative distributions of SGRT shifts for both locoregional and tangential samples were consistent with a null shift, whereas longitudinal and vertical ones were slightly negative (mean values < 1 mm). The distribution of the percentage of beam on time with SGRT shift > 3 mm, > 4 mm, or > 5 mm was extended toward higher values for the tangential sample than for the locoregional sample. The variability in the DIBH respiration signal was significantly greater for the tangential sample. CONCLUSION Different beam gating thresholds for surface-guided DIBH treatment of left breast cancer can impact motion management and DIBH stability by reducing the frequency of the maximum SGRT shift and increasing respiration signal stability when tighter thresholds are adopted.
Collapse
Affiliation(s)
- A Gnerucci
- Department of Physics and Astronomy, University of Florence, Florence, Italy.
| | - M Esposito
- Medical Physics Unit, Azienda USL Toscana Centro, Florence, Italy
| | - A Ghirelli
- Medical Physics Unit, Azienda USL Toscana Centro, Florence, Italy
| | - S Pini
- Medical Physics Unit, Azienda USL Toscana Centro, Florence, Italy
| | - L Paoletti
- Radiotherapy Unit, Azienda USL Toscana Centro, Florence, Italy
| | - R Barca
- Radiotherapy Unit, Azienda USL Toscana Centro, Florence, Italy
| | - S Fondelli
- Radiotherapy Unit, Azienda USL Toscana Centro, Florence, Italy
| | - P Alpi
- Radiotherapy Unit, Azienda USL Toscana Centro, Florence, Italy
| | - B Grilli
- Radiotherapy Unit, Azienda USL Toscana Centro, Florence, Italy
| | - F Rossi
- Radiotherapy Unit, Azienda USL Toscana Sud Est, Grosseto, Italy
| | - S Scoccianti
- Radiotherapy Unit, Azienda USL Toscana Centro, Florence, Italy
| | - S Russo
- Medical Physics Unit, Azienda USL Toscana Centro, Florence, Italy
| |
Collapse
|
18
|
Shaheen H, Zaghloul MS, Ammar H, Aly B, Hassanin E, Mohsen SAE, Ahmed S. Voluntary deep inspiration breath-hold with volumetric modulated arc therapy in pediatric patients with mediastinal Hodgkin lymphoma. Future Oncol 2023; 19:137-145. [PMID: 36919855 DOI: 10.2217/fon-2022-0555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Background: Deep inspiration breath-hold (DIBH) has been established to decrease normal tissue radiation dose in breast cancer. Methods: Forty-nine patients had two CT scans during DIBH or free breathing. Chest-wall position, setup verification and breath-hold monitoring were performed. Cone-beam CT and a surface image system were used for verification. Results: A total of 1617 breath-holds were analyzed in 401 fractions. The mean time bit was 6.01 min. The mean breaths-holds per fraction was 4.96. The median for intra-breath hold variability was 3 mm. No patient stopped treatment for intolerance. Clinical target volume margins were calculated as 0.36, 0.36 and 0.32 for the three translational positions. The mean saved volume was 26.3%. Conclusion: Voluntary DIBH is feasible, tolerable and easy to apply for children with Hodgkin lymphoma involving the mediastinum.
Collapse
Affiliation(s)
- Haitham Shaheen
- Clinical Oncology Department, Suez Canal University, Ismailia, Egypt
- Children Cancer Hospital Egypt, 57357, Cairo, Egypt
| | - Mohamed S Zaghloul
- Children Cancer Hospital Egypt, 57357, Cairo, Egypt
- Radiation Oncology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Hany Ammar
- Children Cancer Hospital Egypt, 57357, Cairo, Egypt
- Clinical Oncology Department, Aswan University, Aswan, Egypt
| | - Bakr Aly
- Children Cancer Hospital Egypt, 57357, Cairo, Egypt
| | - Ehab Hassanin
- Clinical Oncology Department, Suez Canal University, Ismailia, Egypt
| | | | - Soha Ahmed
- Clinical Oncology Department, Suez University, Suez, Egypt
| |
Collapse
|
19
|
Costin IC, Marcu LG. Factors impacting on patient setup analysis and error management during breast cancer radiotherapy. Crit Rev Oncol Hematol 2022; 178:103798. [PMID: 36031175 DOI: 10.1016/j.critrevonc.2022.103798] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/28/2022] [Accepted: 08/21/2022] [Indexed: 12/24/2022] Open
Abstract
Radiotherapy is required to deliver an accurate dose to the tumor while protecting surrounding normal tissues. Breast cancer radiotherapy involves a number of factors that can influence patient setup and error management, including the immobilization device used, the verification system and the patient's treatment position. The aim of this review is to compile and discuss the setup errors that occur due to the above-mentioned factors. In view of this, a systematic search of the scientific literature in the Medline/PubMed databases was performed over the 1990-2021 time period, with 93 articles found to be relevant for the study. To be accessible to all, this study not only aims to identify factors impacting on patient setup analysis, but also seeks to evaluate the role of each verification device, board immobilization and position in influencing these errors.
Collapse
Affiliation(s)
- Ioana-Claudia Costin
- West University of Timisoara, Faculty of Physics, Timisoara, Romania; "Dr. Gavril Curteanu" County Hospital, Oradea 410469, Romania
| | - Loredana G Marcu
- West University of Timisoara, Faculty of Physics, Timisoara, Romania; Faculty of Informatics & Science, University of Oradea, Oradea 410087, Romania; Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia.
| |
Collapse
|
20
|
Lu W, Li G, Hong L, Yorke E, Tang X, Mechalakos JG, Zhang P, Cerviño LI, Powell S, Berry SL. Reproducibility of chestwall and heart position using surface-guided versus RPM-guided DIBH radiotherapy for left breast cancer. J Appl Clin Med Phys 2022; 24:e13755. [PMID: 35993318 PMCID: PMC9859984 DOI: 10.1002/acm2.13755] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/27/2022] [Accepted: 08/26/2021] [Indexed: 01/27/2023] Open
Abstract
This study compared the reproducibility of chestwall and heart position using surface-guided versus RPM (real-time position management)-guided deep inspiration breath hold (DIBH) radiotherapy for left sided breast cancer. Forty DIBH patients under either surface-guided radiotherapy (SGRT) or RPM guidance were studied. For patients treated with tangential fields, reproducibility was measured as the displacements in central lung distance (CLD) and heart shadow to field edge distance (HFD) between pretreatment MV (megavoltage) images and planning DRRs (digitally reconstructed radiographs). For patients treated with volumetric modulated arc therapy (VMAT), sternum to isocenter (ISO) distance (StID), spine to rib edge distance (SpRD), and heart shadow to central axis (CAX) distance (HCD) between pretreatment kV images and planning DRRs were measured. These displacements were compared between SGRT and RPM-guided DIBH. In tangential patients, the mean absolute displacements of SGRT versus RPM guidance were 0.19 versus 0.23 cm in CLD, and 0.33 versus 0.62 cm in HFD. With respect to planning DRR, heart appeared closer to the field edge by 0.04 cm with surface imaging versus 0.62 cm with RPM. In VMAT patients, the displacements of surface imaging versus RPM guidance were 0.21 versus 0.15 cm in StID, 0.24 versus 0.19 cm in SpRD, and 0.72 versus 0.41 cm in HCD. Heart appeared 0.41 cm further away from CAX with surface imaging, whereas 0.10 cm closer to field CAX with RPM. None of the differences between surface imaging and RPM guidance was statistically significant. In conclusion, the displacements of chestwall were small and were comparable with SGRT- or RPM-guided DIBH. The position deviations of heart were larger than those of chestwall with SGRT or RPM. Although none of the differences between SGRT and RPM guidance were statistically significant, there was a trend that the position deviations of heart were smaller and more favorable with SGRT than with RPM guidance in tangential patients.
Collapse
Affiliation(s)
- Wei Lu
- Department of Medical PhysicsMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Guang Li
- Department of Medical PhysicsMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Linda Hong
- Department of Medical PhysicsMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Ellen Yorke
- Department of Medical PhysicsMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Xiaoli Tang
- Department of Medical PhysicsMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - James G. Mechalakos
- Department of Medical PhysicsMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Pengpeng Zhang
- Department of Medical PhysicsMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Laura I. Cerviño
- Department of Medical PhysicsMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Simon Powell
- Department of Radiation OncologyMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Sean L. Berry
- Department of Medical PhysicsMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| |
Collapse
|
21
|
Kaučić H, Kosmina D, Schwarz D, Mack A, Čehobašić A, Leipold V, Avdićević A, Mlinarić M, Lekić M, Schwarz K, Banović M. Stereotactic Body Radiotherapy for Locally Advanced Pancreatic Cancer Using Optical Surface Management System - AlignRT as an Optical Body Surface Motion Management in Deep Breath Hold Patients: Results from a Single-Arm Retrospective Study. Cancer Manag Res 2022; 14:2161-2172. [PMID: 35855763 PMCID: PMC9288179 DOI: 10.2147/cmar.s368662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/22/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose To assess the efficacy and safety of stereotactic body radiotherapy for patients with unresectable, locally advanced pancreatic cancer using Optical Surface Management System - AlignRT (OSMS-AlignRT) as an optical body surface motion management in deep breath hold. Patients and Methods Forty-five patients diagnosed with locally advanced pancreatic cancer were treated with stereotactic body radiotherapy in 3 or 5 fractions, and received varying BED10 (median 79.5 Gy) from April 2017 to December 2020. All patients were treated in deep breath hold with OSMS-AlignRT used as optical body surface motion management. Thirty-three patients received systemic treatment before and/or after stereotactic body radiotherapy, and twelve patients received no systemic treatment. In this retrospective, observational, single-arm study, primary endpoints were overall survival and freedom from local progression (ie, local control). Secondary endpoints were progression-free survival and toxicity. Actuarial survival analysis and univariate analysis were investigated. Results Data from forty-five patients were analyzed. Median follow-up was 15 months. One-year freedom from local progression and survival were 95.5% and 71.1%, respectively. Median progression-free survival was 14 months. Median overall survival from diagnosis for all patients was 17 months, and 19 months for patients alive at the time of analysis. No patient had >G2 toxicity. Conclusion Stereotactic body radiotherapy for locally advanced pancreatic cancer using OSMS-AlignRT as optical body surface motion management in deep breath hold patients is an effective and safe local treatment option, with no >G2 toxicity, and could be a promising therapeutic option with acceptable toxicity, either as a single treatment or in a multimodal regimen. OSMS-AlignRT provided accurate and reliable body surface motion management during stereotactic body radiotherapy.
Collapse
Affiliation(s)
- Hrvoje Kaučić
- Department of Radiosurgery and Radiotherapy, Special Hospital Radiochirurgia Zagreb, Sveta Nedelja, Croatia.,University Josip Juraj Strossmayer in Osijek - Medical Faculty Osijek, Osijek, Croatia
| | - Domagoj Kosmina
- Department of Medical Physics, Special Hospital Radiochirurgia Zagreb, Sveta Nedelja, Croatia
| | - Dragan Schwarz
- Department of Surgery, Special Hospital Radiochirurgia Zagreb, Sveta Nedelja, Croatia.,Department of Surgery, Medical Faculty of University in Rijeka, Rijeka, Croatia.,Department of Surgery, University Josip Juraj Strossmayer in Osijek - Faculty of Dental medicine and Health, Osijek, Croatia
| | - Andreas Mack
- Swiss NeuroRadiosurgery Center, Swiss Clinical NeuroScience Institute, Zürich, Switzerland
| | - Adlan Čehobašić
- University Josip Juraj Strossmayer in Osijek - Medical Faculty Osijek, Osijek, Croatia.,Department of Medical Physics, Special Hospital Radiochirurgia Zagreb, Sveta Nedelja, Croatia
| | - Vanda Leipold
- University Josip Juraj Strossmayer in Osijek - Medical Faculty Osijek, Osijek, Croatia.,Department of Medical Physics, Special Hospital Radiochirurgia Zagreb, Sveta Nedelja, Croatia
| | - Asmir Avdićević
- Department of Radiosurgery and Radiotherapy, Special Hospital Radiochirurgia Zagreb, Sveta Nedelja, Croatia
| | - Mihaela Mlinarić
- Department of Medical Physics, Special Hospital Radiochirurgia Zagreb, Sveta Nedelja, Croatia
| | - Matea Lekić
- Department of Radiosurgery and Radiotherapy, Special Hospital Radiochirurgia Zagreb, Sveta Nedelja, Croatia
| | - Karla Schwarz
- University of Zagreb, Medical Faculty, Zagreb, Croatia
| | - Marija Banović
- Department of Endocrinology, Polyclinic Leptir, Zagreb, Croatia
| |
Collapse
|
22
|
Al-Hallaq HA, Cerviño L, Gutierrez AN, Havnen-Smith A, Higgins SA, Kügele M, Padilla L, Pawlicki T, Remmes N, Smith K, Tang X, Tomé WA. AAPM task group report 302: Surface guided radiotherapy. Med Phys 2022; 49:e82-e112. [PMID: 35179229 PMCID: PMC9314008 DOI: 10.1002/mp.15532] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/26/2021] [Accepted: 02/05/2022] [Indexed: 11/06/2022] Open
Abstract
The clinical use of surface imaging has increased dramatically with demonstrated utility for initial patient positioning, real-time motion monitoring, and beam gating in a variety of anatomical sites. The Therapy Physics Subcommittee and the Imaging for Treatment Verification Working Group of the American Association of Physicists in Medicine commissioned Task Group 302 to review the current clinical uses of surface imaging and emerging clinical applications. The specific charge of this task group was to provide technical guidelines for clinical indications of use for general positioning, breast deep-inspiration breath-hold (DIBH) treatment, and frameless stereotactic radiosurgery (SRS). Additionally, the task group was charged with providing commissioning and on-going quality assurance (QA) requirements for surface guided radiation therapy (SGRT) as part of a comprehensive QA program including risk assessment. Workflow considerations for other anatomic sites and for computed tomography (CT) simulation, including motion management are also discussed. Finally, developing clinical applications such as stereotactic body radiotherapy (SBRT) or proton radiotherapy are presented. The recommendations made in this report, which are summarized at the end of the report, are applicable to all video-based SGRT systems available at the time of writing. Review current use of non-ionizing surface imaging functionality and commercially available systems. Summarize commissioning and on-going quality assurance (QA) requirements of surface image-guided systems, including implementation of risk or hazard assessment of surface guided radiotherapy as a part of a total quality management program (e.g., TG-100). Provide clinically relevant technical guidelines that include recommendations for the use of SGRT for general patient positioning, breast DIBH, and frameless brain SRS, including potential pitfalls to avoid when implementing this technology. Discuss emerging clinical applications of SGRT and associated QA implications based on evaluation of technology and risk assessment. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hania A Al-Hallaq
- Department of Radiation & Cellular Oncology, University of Chicago, Chicago, IL, 60637, USA
| | - Laura Cerviño
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Alonso N Gutierrez
- Department of Radiation Oncology, Miami Cancer Institute, Miami, FL, 33173, USA
| | | | - Susan A Higgins
- Department of Therapeutic Radiology, Yale University, New Haven, CT, 06520, USA
| | - Malin Kügele
- Department of Hematology, Oncology and Radiation Physics, Skåne University, Lund, 221 00, Sweden.,Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund, 221 00, Sweden
| | - Laura Padilla
- Department of Radiation Medicine & Applied Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Todd Pawlicki
- Department of Radiation Medicine & Applied Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Nicholas Remmes
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Koren Smith
- IROC Rhode Island, University of Massachusetts Chan Medical School, Lincoln, RI, 02865, USA
| | | | - Wolfgang A Tomé
- Department of Radiation Oncology and Department of Neurology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| |
Collapse
|
23
|
Evaluation of image-guided and surface-guided radiotherapy for breast cancer patients treated in deep inspiration breath-hold: A single institution experience. Tech Innov Patient Support Radiat Oncol 2022; 21:51-57. [PMID: 35243045 PMCID: PMC8861395 DOI: 10.1016/j.tipsro.2022.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/27/2022] [Accepted: 02/08/2022] [Indexed: 01/20/2023] Open
Abstract
INTRODUCTION Nowadays, deep inspiratory breath-hold is a common technique to reduce heart dose in left-sided breast radiotherapy. This study evaluates the evolution of the breath-hold technique in our institute, from portal imaging during dose delivery to continuous monitoring with surface-guided radiotherapy (SGRT). MATERIALS AND METHODS Setup data and portal imaging results were analyzed for 98 patients treated before 2014, and SGRT data for 228 patients treated between 2018 and 2020. For the pre-SGRT group, systematic and random setup errors were calculated for different correction protocols. Residual errors and reproducibility of breath-holds were evaluated for both groups. The benefit of using SGRT for initial positioning was evaluated for another cohort of 47 patients. RESULTS Online correction reduced the population mean error from 3.9 mm (no corrections) to 1.4 mm. Despite online setup correction, deviations greater than 3 mm were observed in about 10% and 20% of the treatment beams in ventral-dorsal and cranial-caudal directions, respectively. However, these percentages were much smaller than with offline protocols or no corrections. Mean absolute differences between breath-holds within a fraction were smaller in the SGRT-group (1.69 mm) than in the pre-SGRT-group (2.10 mm), and further improved with addition of visual feedback (1.30 mm). SGRT for positioning did not improve setup accuracy, but slightly reduced the time for imaging and setup correction, allowing completion within 3.5 min for 95% of fractions. CONCLUSION For accurate radiotherapy breast treatments using deep inspiration breath-hold, daily imaging and correction is required. SGRT provides accurate information on patient positioning during treatment and improves patient compliance with visual feedback.
Collapse
Key Words
- (U, V), ventral-dorsal and cranial-caudal direction in the tangential beam, respectively
- Breast
- Breath-hold
- CBCT, cone-beam CT
- CT, computer tomography
- DIBH
- DIBH, Deep inspiratory breath-hold
- DRRs, digitally reconstructed radiographs
- LAT, medio-lateral direction
- LNG, cranial-caudal direction
- NAL, no-action-level setup correction protocol
- OTM, online treatment monitor
- SGRT, surface-guided radiotherapy
- Surface-guided radiotherapy
- VRT, anterior-posterior direction
- eNAL, extended NAL setup correction protocol
Collapse
|
24
|
Li G, Lu W, O'Grady K, Yan I, Yorke E, Arriba LIC, Powell S, Hong L. A uniform and versatile surface‐guided radiotherapy procedure and workflow for high‐quality breast deep‐inspiration breath‐hold treatment in a multi‐center institution. J Appl Clin Med Phys 2022; 23:e13511. [PMID: 35049108 PMCID: PMC8906224 DOI: 10.1002/acm2.13511] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 01/21/2021] [Accepted: 12/03/2021] [Indexed: 12/27/2022] Open
Abstract
Purpose We share our experiences on uniformly implementing an effective and efficient SGRT procedure with a new clinical workflow for treating breast patients in deep‐inspiration breath‐hold (DIBH) among 9 clinical centers using 26 optical surface imaging (OSI) systems. Methods Our procedures have five major components: (1) acquiring both free‐breathing (FB) and DIBH computed tomography (CT) at simulation to quantify the rise of the anterior surface, (2) defining uniformly a large region of interest (ROI) to accommodate large variations in patient anatomy and treatment techniques, (3) performing two‐step setup in FB by first aligning the arm and chin to minimize breast deformation and reproduce local lymphnode positions and then aligning the ROI, (4) aligning the vertical shift precisely from FB to DIBH, and (5) capturing a new on‐site reference image at DIBH to separate residual setup errors from the DIBH motion monitoring uncertainties. Moreover, a new clinical workflow was developed for patient data preparation using 4 OSI offline workstations without interruption of SGRT treatment at 22 OSI online workstations. This procedure/workflow is suitable for all photon planning techniques, including 2‐field, 3‐field, 4‐field, partial breast irradiation (PBI), and volumetric‐modulated arc therapy (VMAT) with or without bolus. Results Since 2019, we have developed and applied the uniform breast SGRT DIBH procedure with optimized clinical workflow and ensured treatment accuracy among the nine clinics within our institution. About 150 breast DIBH patients are treated daily and two major upgrades are achieved smoothly throughout our institution, owing to the uniform and versatile procedure, adequate staff training, and efficient workflow with effective clinical supports and backup strategies. Conclusion The uniform and versatile breast SGRT DIBH procedure and workflow have been developed to ensure smooth and optimal clinical operations, simplify clinical staff training and clinical troubleshooting, and allow high‐quality SGRT delivery in a busy multi‐center institution.
Collapse
Affiliation(s)
- Guang Li
- Department of Medical Physics Memorial Sloan Kettering Cancer Center New York New York USA
| | - Wei Lu
- Department of Medical Physics Memorial Sloan Kettering Cancer Center New York New York USA
| | - Kyle O'Grady
- Department of Medical Physics Memorial Sloan Kettering Cancer Center New York New York USA
| | - Iris Yan
- Department of Medical Physics Memorial Sloan Kettering Cancer Center New York New York USA
| | - Ellen Yorke
- Department of Medical Physics Memorial Sloan Kettering Cancer Center New York New York USA
| | - Laura I Cervino Arriba
- Department of Medical Physics Memorial Sloan Kettering Cancer Center New York New York USA
| | - Simon Powell
- Department of Radiation Oncology Memorial Sloan Kettering Cancer Center New York New York USA
| | - Linda Hong
- Department of Medical Physics Memorial Sloan Kettering Cancer Center New York New York USA
| |
Collapse
|
25
|
Patient setup accuracy in DIBH radiotherapy of breast cancer with lymph node inclusion using surface tracking and image guidance. Med Dosim 2022; 47:146-150. [PMID: 35039223 DOI: 10.1016/j.meddos.2021.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/20/2021] [Accepted: 12/14/2021] [Indexed: 11/23/2022]
Abstract
Studying setup accuracy in breast cancer patients with axillary lymph node inclusion in deep inspiration breath-hold (DIBH) after patient setup with surface-guided radiotherapy (SGRT) and image-guided radiotherapy (IGRT). Breast cancer patients (N = 51) were treated (50 Gy in 25 fractions) with axillary lymph nodes within the planning target volume (PTV). Patient setup was initiated with tattoos and lasers, and further adjusted with SGRT. The DIBH guidance was based on SGRT. Orthogonal and/or tangential imaging was analyzed for residual position errors of bony landmarks, the breath-hold level (BHL), the skin outline, and the heart; and setup margins were calculated for the PTV. The calculated PTV margins were 4.3 to 6.3 and 2.8 to 4.6 mm before and after orthogonal imaging, respectively. The residual errors of the heart were 3.6 ± 2.2 mm and 2.5 ± 2.4 mm before and 3.0 ± 2.5 and 2.9 ± 2.3 mm after orthogonal imaging in the combined anterior-posterior/lateral and the cranio-caudal directions, respectively, in tangential images. The humeral head did not benefit from daily IGRT, but SGRT guided it to the correct location. We presented a slightly complicated but highly accurate workflow for DIBH treatments. The residual position errors after both SGRT and IGRT were excellent compared to previous literature. With well-planned SGRT, IGRT brings only slight improvements to systematic accuracy. However, with the calculated PTV margins and the number of outliers, imaging cannot be omitted despite SGRT, unless the PTV margins are re-evaluated.
Collapse
|
26
|
Saito M, Kajihara D, Suzuki H, Komiyama T, Marino K, Aoki S, Ueda K, Sano N, Onishi H. Reproducibility of deep inspiration breath-hold technique for left-side breast cancer with respiratory monitoring device, Abches. J Appl Clin Med Phys 2022; 23:e13529. [PMID: 35018712 PMCID: PMC8992950 DOI: 10.1002/acm2.13529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/28/2021] [Accepted: 12/25/2021] [Indexed: 11/08/2022] Open
Abstract
PURPOSE This study aimed to evaluate the reproducibility of deep inspiration breath-hold (DIBH) using a respiratory control device, Abches, in patients with left-sided breast cancer. MATERIAL AND METHODS Abches comprises a main body, an indicator panel, and two fulcrums, one each on the chest and abdomen. Forty left side breast cancer patients treated with DIBH using abches were enrolled in this study. For all patients, CT images were taken three times to confirm the target position inside the body and to check the breath-hold reproducibility. Three anatomical points on the nipple, sternum, and heart were selected as measurement points on CT images. After measuring the coordinates, breath-hold reproducibility was defined as the mean of the absolute difference in the coordinates between the three CT images. The maximum differences were also investigated. In addition, the dice similarity coefficient (DSC) was calculated to examine the displacement of the heart volume in detail. Moreover, digitally reconstructed radiographs (DRRs) and linac graphs (LGs) were used to measure the positional accuracy of the chest and heart. RESULTS The reproducibility in all patients was within 0.75 mm for the nipple, 0.78 mm for the sternum, and 2.18 mm for the heart in each direction. Similarly, the maximum displacements for all patients were within 1.90 mm, 1.69 mm, and 4.75 mm, respectively, in each direction. For heart volume, the average DSC for all cases was 0.93 ± 0.01. The differences between the DRR and LG images were 1.70 ± 1.10 mm and 2.10 ± 1.60 mm, for the chest and heart, respectively. CONCLUSION Our study showed that DIBH using Abches can be performed with good target reproducibility of less than 3 mm with proper breath-hold practice, whereas the heartbeat-derived reproducibility of the cardiac position is poor and needs to be monitored carefully during treatment simulation.
Collapse
Affiliation(s)
- Masahide Saito
- Department of Radiology, University of Yamanashi, Chuo City, Yamanashi, Japan
| | - Daichi Kajihara
- Department of Radiology, University of Yamanashi, Chuo City, Yamanashi, Japan
| | - Hidekazu Suzuki
- Department of Radiology, University of Yamanashi, Chuo City, Yamanashi, Japan
| | - Takafumi Komiyama
- Department of Radiology, University of Yamanashi, Chuo City, Yamanashi, Japan
| | - Kan Marino
- Department of Radiology, University of Yamanashi, Chuo City, Yamanashi, Japan
| | - Shinichi Aoki
- Department of Radiology, University of Yamanashi, Chuo City, Yamanashi, Japan
| | - Koji Ueda
- Department of Radiology, University of Yamanashi, Chuo City, Yamanashi, Japan
| | - Naoki Sano
- Department of Radiology, University of Yamanashi, Chuo City, Yamanashi, Japan
| | - Hiroshi Onishi
- Department of Radiology, University of Yamanashi, Chuo City, Yamanashi, Japan
| |
Collapse
|
27
|
Performance assessment of surface-guided radiation therapy and patient setup in head-and-neck and breast cancer patients based on statistical process control. Phys Med 2021; 89:243-249. [PMID: 34428608 DOI: 10.1016/j.ejmp.2021.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/17/2021] [Accepted: 08/10/2021] [Indexed: 02/05/2023] Open
Abstract
PURPOSE To assess the effectiveness of SGRT in clinical applications through statistical process control (SPC). METHODS Taking the patients' positioning through optical surface imaging (OSI) as a process, the average level of process execution was defined as the process mean. Setup errors detected by cone-beam computed tomography (CBCT) and OSI were extracted for head-and-neck cancer (HNC) and breast cancer patients. These data were used to construct individual and exponentially weighted moving average (EWMA) control charts to analyze outlier fractions and small process shifts from the process mean. Using the control charts and process capability indices derived from this process, the patient positioning-related OSI performance and setup error were analyzed for each patient. RESULTS Outlier fractions and small shifts from the process mean that are indicative of setup errors were found to be widely prevalent, with the outliers randomly distributed between fractions. A systematic error of up to 1.6 mm between the OSI and CBCT results was observed in all directions, indicating a significantly degraded OSI performance. Adjusting this systematic error for each patient using setup errors of the first five fractions could effectively mitigate these effects. Process capability analysis following adjustment for systematic error indicated that OSI performance was acceptable (process capability index Cpk = 1.0) for HNC patients but unacceptable (Cpk < 0.75) for breast cancer patients. CONCLUSION SPC is a powerful tool for detecting the outlier fractions and process changes. Our application of SPC to patient-specific evaluations validated the suitability of OSI in clinical applications involving patient positioning.
Collapse
|
28
|
Ono Y, Yoshimura M, Ono T, Fujimoto T, Miyabe Y, Matsuo Y, Mizowaki T. Appropriate margin for planning target volume for breast radiotherapy during deep inspiration breath-hold by variance component analysis. Radiat Oncol 2021; 16:49. [PMID: 33676532 PMCID: PMC7937254 DOI: 10.1186/s13014-021-01777-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/25/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND This study aimed to quantify errors by using a cine electronic portal imaging device (cine EPID) during deep inspiration breath-hold (DIBH) for left-sided breast cancer and to estimate the planning target volume (PTV) by variance component analysis. METHODS This study included 25 consecutive left-sided breast cancer patients treated with whole-breast irradiation (WBI) using DIBH. Breath-holding was performed while monitoring abdominal anterior-posterior (AP) motion using the Real-time Position Management (RPM) system. Cine EPID was used to evaluate the chest wall displacements in patients. Cine EPID images of the patients (309,609 frames) were analyzed to detect the edges of the chest wall using a Canny filter. The errors that occurred during DIBH included differences between the chest wall position detected by digitally reconstructed radiographs and that of all cine EPID images. The inter-patient, inter-fraction, and intra-fractional standard deviations (SDs) in the DIBH were calculated, and the PTV margin was estimated by variance component analysis. RESULTS The median patient age was 55 (35-79) years, and the mean irradiation time was 20.4 ± 1.7 s. The abdominal AP motion was 1.36 ± 0.94 (0.14-5.28) mm. The overall mean of the errors was 0.30 mm (95% confidence interval: - 0.05-0.65). The inter-patient, inter-fraction, and intra-fractional SDs in the DIBH were 0.82 mm, 1.19 mm, and 1.63 mm, respectively, and the PTV margin was calculated as 3.59 mm. CONCLUSIONS Errors during DIBH for breast radiotherapy were monitored using EPID images and appropriate PTV margins were estimated by variance component analysis.
Collapse
Affiliation(s)
- Yuka Ono
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, Kyoto 606-8507 Japan
| | - Michio Yoshimura
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, Kyoto 606-8507 Japan
| | - Tomohiro Ono
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, Kyoto 606-8507 Japan
| | - Takahiro Fujimoto
- Division of Clinical Radiology Service, Kyoto University Hospital, Kyoto, Japan
| | - Yuki Miyabe
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, Kyoto 606-8507 Japan
| | - Yukinori Matsuo
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, Kyoto 606-8507 Japan
| | - Takashi Mizowaki
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, Kyoto 606-8507 Japan
| |
Collapse
|
29
|
Xin X, Li J, Zhao Y, Wang P, Tang B, Yao X, Liao X, Ma J, Orlandini LC. Retrospective Study on Left-Sided Breast Radiotherapy: Dosimetric Results and Correlation with Physical Factors for Free Breathing and Breath Hold Irradiation Techniques. Technol Cancer Res Treat 2021; 20:15330338211062429. [PMID: 34855575 PMCID: PMC8646776 DOI: 10.1177/15330338211062429] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/12/2021] [Accepted: 10/25/2021] [Indexed: 12/25/2022] Open
Abstract
Objectives: In breast radiotherapy, the proximity of the target to sensitive structures together with the uncertainty introduced by respiratory movement, make this treatment one of the most studied to increase its effectiveness. Dosimetric and physical variables play an important role and the study of their correlation and impact on treatment is fundamental. This retrospective study aims to highlight the dosimetric differences of 2 different clinical data sets of patients receiving left-sided breast irradiation in free breathing (FB) or breath hold (BH). Methods: A total of 155 left breast carcinoma patients receiving whole-breast irradiation in FB (73 patients) and BH (82 patients) were enrolled in this study. The dosimetric parameters of the target, heart, left and right lung and right breast were evaluated and compared, and possible correlations were studied in both groups. Results: No significant difference (P > .05) was found in the target dosimetry; a clear advantage in BH for both high and low doses received by the heart, with reductions of the dosimetric parameters between 27.1% and 100% (P < .003); for the left lung reductions decreased with increasing dose (-22.4% and -13.4% for doses of 5 and 20 Gy, respectively, P < .003). Conclusion: Significant correlations for BH treatments were registered between the volumes of the target and left lung, and the dosimetric parameters of the heart and left lung. BH treatment brings significant dosimetric advantages to organs at risk for a wide range of patients with different anatomy, target volumes and lung capacity, with additional benefits for small-sized breasts and important lung capacity.
Collapse
Affiliation(s)
- Xin Xin
- Sichuan Cancer Hospital & Research Institute, Chengdu, China
- UESTC University of Electronic Science and Technology of China, Chengdu, China
| | - Jie Li
- Sichuan Cancer Hospital & Research Institute, Chengdu, China
- UESTC University of Electronic Science and Technology of China, Chengdu, China
| | - Yanqun Zhao
- Sichuan Cancer Hospital & Research Institute, Chengdu, China
- UESTC University of Electronic Science and Technology of China, Chengdu, China
| | - Pei Wang
- Sichuan Cancer Hospital & Research Institute, Chengdu, China
- UESTC University of Electronic Science and Technology of China, Chengdu, China
| | - Bin Tang
- Sichuan Cancer Hospital & Research Institute, Chengdu, China
- UESTC University of Electronic Science and Technology of China, Chengdu, China
| | - Xinghong Yao
- Sichuan Cancer Hospital & Research Institute, Chengdu, China
- UESTC University of Electronic Science and Technology of China, Chengdu, China
| | - Xiongfei Liao
- Sichuan Cancer Hospital & Research Institute, Chengdu, China
- UESTC University of Electronic Science and Technology of China, Chengdu, China
| | - Jiabao Ma
- Sichuan Cancer Hospital & Research Institute, Chengdu, China
- UESTC University of Electronic Science and Technology of China, Chengdu, China
| | - Lucia Clara Orlandini
- Sichuan Cancer Hospital & Research Institute, Chengdu, China
- UESTC University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
30
|
Zhao Y, Diao P, Zhang D, Wu J, Xin X, Fontanarosa D, Liu M, Li J, Orlandini LC. Impact of Positioning Errors on the Dosimetry of Breath-Hold-Based Volumetric Arc Modulated and Tangential Field-in-Field Left-Sided Breast Treatments. Front Oncol 2020; 10:554131. [PMID: 33194616 PMCID: PMC7658584 DOI: 10.3389/fonc.2020.554131] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 10/07/2020] [Indexed: 12/11/2022] Open
Abstract
Heart diseases and cardiovascular events are well-known side effects in left-sided breast irradiation. Deep inspiration breath hold (BH) combined with fast delivery techniques such as volumetric modulated arc therapy (VMAT) or tangential field-in-field (TFiF) can serve as a valuable solution to reduce the dose to the heart. This study aims to compare the impact of positioning errors in VMAT and TFiF plans for BH left-sided breast treatments. Fifteen left-sided breast patients treated in BH with TFiF technique were included in this retrospective study. For each patient, a second plan with VMAT technique was optimized. Eighteen setup variations were introduced in each of these VMAT and TFiF reference plans, shifting the isocenter along six different directions by 3, 5, and 10 mm. A total of 540 perturbed plans, 270 for each technique, were recalculated and analyzed. The dose distributions on the target and organs at risk obtained in the different perturbed scenarios were compared with the reference scenarios, using as dosimetric endpoints the dose-volume histograms (DVH). The results were compared using the Wilcoxon test. Comparable plan quality was obtained for the reference VMAT and TFiF plans, except for low doses to organs at risk for which higher values (p < 0.05) were obtained for VMAT plans. For TFiF plans, perturbations of the isocenter position of 3, 5, or 10 mm produced mean deviations of the target DVH dosimetric parameters up to -0.5, -1.0, and -5.2%, respectively; VMAT plans were more sensitive to positioning errors resulting in mean deviations up to -0.5, -4.9, and -13.9%, respectively, for the same magnitude of the above mentioned perturbations. For organs at risk, only perturbations along the left, posterior, and inferior directions resulted in dose increase with a maximum deviation of +2% in the DVH dosimetric parameters. A notable exception were low doses to the left lung and heart for 10 mm isocenter shifts for which the mean differences ranged between +2.7 and +4.1%. Objective information on how external stresses affect the dosimetry of the treatment is the first step towards personalized radiotherapy.
Collapse
Affiliation(s)
- Yanqun Zhao
- Department of Radiation Oncology, Sichuan Cancer Hospital and Research Institute, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Radiation Oncology Key Laboratory of Sichuan Province, Chengdu, China
| | - Peng Diao
- Department of Radiation Oncology, Sichuan Cancer Hospital and Research Institute, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Da Zhang
- Department of Radiation Oncology, Sichuan Cancer Hospital and Research Institute, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Radiation Oncology Key Laboratory of Sichuan Province, Chengdu, China
| | - Juxiang Wu
- Department of Radiation Oncology, Sichuan Cancer Hospital and Research Institute, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Radiation Oncology Key Laboratory of Sichuan Province, Chengdu, China
| | - Xin Xin
- Department of Radiation Oncology, Sichuan Cancer Hospital and Research Institute, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Radiation Oncology Key Laboratory of Sichuan Province, Chengdu, China
| | - Davide Fontanarosa
- School of Clinical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
- Institute of Health & Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Min Liu
- Department of Radiation Oncology, Sichuan Cancer Hospital and Research Institute, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Radiation Oncology Key Laboratory of Sichuan Province, Chengdu, China
| | - Jie Li
- Department of Radiation Oncology, Sichuan Cancer Hospital and Research Institute, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Radiation Oncology Key Laboratory of Sichuan Province, Chengdu, China
| | - Lucia Clara Orlandini
- Department of Radiation Oncology, Sichuan Cancer Hospital and Research Institute, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Radiation Oncology Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
31
|
Freislederer P, Kügele M, Öllers M, Swinnen A, Sauer TO, Bert C, Giantsoudi D, Corradini S, Batista V. Recent advanced in Surface Guided Radiation Therapy. Radiat Oncol 2020; 15:187. [PMID: 32736570 PMCID: PMC7393906 DOI: 10.1186/s13014-020-01629-w] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/21/2020] [Indexed: 01/27/2023] Open
Abstract
The growing acceptance and recognition of Surface Guided Radiation Therapy (SGRT) as a promising imaging technique has supported its recent spread in a large number of radiation oncology facilities. Although this technology is not new, many aspects of it have only recently been exploited. This review focuses on the latest SGRT developments, both in the field of general clinical applications and special techniques.SGRT has a wide range of applications, including patient positioning with real-time feedback, patient monitoring throughout the treatment fraction, and motion management (as beam-gating in free-breathing or deep-inspiration breath-hold). Special radiotherapy modalities such as accelerated partial breast irradiation, particle radiotherapy, and pediatrics are the most recent SGRT developments.The fact that SGRT is nowadays used at various body sites has resulted in the need to adapt SGRT workflows to each body site. Current SGRT applications range from traditional breast irradiation, to thoracic, abdominal, or pelvic tumor sites, and include intracranial localizations.Following the latest SGRT applications and their specifications/requirements, a stricter quality assurance program needs to be ensured. Recent publications highlight the need to adapt quality assurance to the radiotherapy equipment type, SGRT technology, anatomic treatment sites, and clinical workflows, which results in a complex and extensive set of tests.Moreover, this review gives an outlook on the leading research trends. In particular, the potential to use deformable surfaces as motion surrogates, to use SGRT to detect anatomical variations along the treatment course, and to help in the establishment of personalized patient treatment (optimized margins and motion management strategies) are increasingly important research topics. SGRT is also emerging in the field of patient safety and integrates measures to reduce common radiotherapeutic risk events (e.g. facial and treatment accessories recognition).This review covers the latest clinical practices of SGRT and provides an outlook on potential applications of this imaging technique. It is intended to provide guidance for new users during the implementation, while triggering experienced users to further explore SGRT applications.
Collapse
Affiliation(s)
- P. Freislederer
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - M. Kügele
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
- Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - M. Öllers
- Maastricht Radiation Oncology (MAASTRO), Maastricht, the Netherlands
| | - A. Swinnen
- Maastricht Radiation Oncology (MAASTRO), Maastricht, the Netherlands
| | - T.-O. Sauer
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - C. Bert
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - D. Giantsoudi
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - S. Corradini
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - V. Batista
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- National Center for Tumor diseases (NCT), Heidelberg, Germany
| |
Collapse
|
32
|
Reitz D, Walter F, Schönecker S, Freislederer P, Pazos M, Niyazi M, Landry G, Alongi F, Bölke E, Matuschek C, Reiner M, Belka C, Corradini S. Stability and reproducibility of 6013 deep inspiration breath-holds in left-sided breast cancer. Radiat Oncol 2020; 15:121. [PMID: 32448224 PMCID: PMC7247126 DOI: 10.1186/s13014-020-01572-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 05/17/2020] [Indexed: 12/25/2022] Open
Abstract
Purpose Patients with left-sided breast cancer frequently receive deep inspiration breath-hold (DIBH) radiotherapy to reduce the risk of cardiac side effects. The aim of the present study was to analyze intra-breath-hold stability and inter-fraction breath-hold reproducibility in clinical practice. Material and methods Overall, we analyzed 103 patients receiving left-sided breast cancer radiotherapy using a surface-guided DIBH technique. During each treatment session the vertical motion of the patient was continuously measured by a surface guided radiation therapy (SGRT) system and automated gating control (beam on/off) was performed using an audio-visual patient feedback system. Dose delivery was automatically triggered when the tracking point was within a predefined gating window. Intra-breath-hold stability and inter-fraction reproducibility across all fractions of the entire treatment course were analyzed per patient. Results In the present series, 6013 breath-holds during beam-on time were analyzed. The mean amplitude of the gating window from the baseline breathing curve (maximum expiration during free breathing) was 15.8 mm (95%-confidence interval: [8.5–30.6] mm) and had a width of 3.5 mm (95%-CI: [2–4.3] mm). As a measure of intra-breath-hold stability, the median standard deviation of the breath-hold level during DIBH was 0.3 mm (95%-CI: [0.1–0.9] mm). Similarly, the median absolute intra-breath-hold linear amplitude deviation was 0.4 mm (95%-CI: [0.01–2.1] mm). Reproducibility testing showed good inter-fractional reliability, as the maximum difference in the breathing amplitudes in all patients and all fractions were 1.3 mm on average (95%-CI: [0.5–2.6] mm). Conclusion The clinical integration of an optical surface scanner enables a stable and reliable DIBH treatment delivery during SGRT for left-sided breast cancer in clinical routine.
Collapse
Affiliation(s)
- D Reitz
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - F Walter
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - S Schönecker
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - P Freislederer
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - M Pazos
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - M Niyazi
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - G Landry
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - F Alongi
- Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Negrar-Verona, Italy.,University of Brescia, Brescia, Italy
| | - E Bölke
- Department of Radiation Oncology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - C Matuschek
- Department of Radiation Oncology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - M Reiner
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - C Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - S Corradini
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
| |
Collapse
|
33
|
Hamming VC, Visser C, Batin E, McDermott LN, Busz DM, Both S, Langendijk JA, Sijtsema NM. Evaluation of a 3D surface imaging system for deep inspiration breath-hold patient positioning and intra-fraction monitoring. Radiat Oncol 2019; 14:125. [PMID: 31296245 PMCID: PMC6624957 DOI: 10.1186/s13014-019-1329-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 06/27/2019] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To determine the accuracy of a surface guided radiotherapy (SGRT) system for positioning of breast cancer patients in breath-hold (BH) with respect to cone-beam computed tomography (CBCT). Secondly, to evaluate the thorax position stability during BHs with SGRT, when using an air-volume guidance system. METHODS AND MATERIALS Eighteen left-sided breast cancer patients were monitored with SGRT during CBCT and treatment, both in BH. CBCT scans were matched on the target volume and the patient surface. The setup error differences were evaluated, including with linear regression analysis. The intra-fraction variability and stability of the air-volume guided BHs were determined from SGRT measurements. The variability was determined from the maximum difference between the different BH levels within one treatment fraction. The stability was determined from the difference between the start and end position of each BH. RESULTS SGRT data correlated well with CBCT data. The correlation was stronger for surface-to-CBCT (0.61) than target volume-to-CBCT (0.44) matches. Systematic and random setup error differences were ≤ 2 mm in all directions. The 95% limits of agreement (mean ± 2SD) were 0.1 ± 3.0, 0.6 ± 4.1 and 0.4 ± 3.4 mm in the three orthogonal directions, for the surface-to-CBCT matches. For air-volume guided BHs, the variability detected with SGRT was 2.2, 2.8 and 2.3 mm, and the stability - 1.0, 2.1 and 1.5 mm, in three orthogonal directions. Furthermore, the SGRT system could detect unexpected patient movement, undetectable by the air-volume BH system. CONCLUSION With SGRT, left-sided breast cancer patients can be positioned and monitored continuously to maintain position errors within 5 mm. Low intra-fraction variability and good stability can be achieved with the air-volume BH system, however, additional patient position information is available with SGRT, that cannot be detected with air-volume BH systems.
Collapse
Affiliation(s)
- Vincent C. Hamming
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Christa Visser
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Estelle Batin
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Leah N. McDermott
- Department of Radiation Oncology, Northwest Clinics, Alkmaar, The Netherlands
| | - Dianne M. Busz
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Stefan Both
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Johannes A. Langendijk
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Nanna M. Sijtsema
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
34
|
Kalet AM, Cao N, Smith WP, Young L, Wootton L, Stewart RD, Fang LC, Kim J, Horton T, Meyer J. Accuracy and stability of deep inspiration breath hold in gated breast radiotherapy – A comparison of two tracking and guidance systems. Phys Med 2019; 60:174-181. [DOI: 10.1016/j.ejmp.2019.03.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 03/14/2019] [Accepted: 03/24/2019] [Indexed: 01/22/2023] Open
|