1
|
Bøstrand SMK, Seeker LA, Bestard-Cuche N, Kazakou NL, Jäkel S, Kenkhuis B, Henderson NC, de Bot ST, van Roon-Mom WMC, Priller J, Williams A. Mapping the glial transcriptome in Huntington's disease using snRNAseq: selective disruption of glial signatures across brain regions. Acta Neuropathol Commun 2024; 12:165. [PMID: 39428482 PMCID: PMC11492505 DOI: 10.1186/s40478-024-01871-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 09/29/2024] [Indexed: 10/22/2024] Open
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease with a fatal outcome. There is accumulating evidence of a prominent role of glia in the pathology of HD, and we investigated this by conducting single nuclear RNA sequencing (snRNAseq) of human post mortem brain in four differentially affected regions; caudate nucleus, frontal cortex, hippocampus and cerebellum. Across 127,205 nuclei from donors with HD and age/sex matched controls, we found heterogeneity of glia which is altered in HD. We describe prominent changes in the abundance of certain subtypes of astrocytes, microglia, oligodendrocyte precursor cells and oligodendrocytes between HD and control samples, and these differences are widespread across brain regions. Furthermore, we highlight possible mechanisms that characterise the glial contribution to HD pathology including depletion of myelinating oligodendrocytes, an oligodendrocyte-specific upregulation of the calmodulin-dependent 3',5'-cyclic nucleotide phosphodiesterase 1 A (PDE1A) and an upregulation of molecular chaperones as a cross-glial signature and a potential adaptive response to the accumulation of mutant huntingtin (mHTT). Our results support the hypothesis that glia have an important role in the pathology of HD, and show that all types of glia are affected in the disease.
Collapse
Affiliation(s)
- Sunniva M K Bøstrand
- Centre for Regenerative Medicine, Institute of Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Luise A Seeker
- Centre for Regenerative Medicine, Institute of Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Nadine Bestard-Cuche
- Centre for Regenerative Medicine, Institute of Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Nina-Lydia Kazakou
- Centre for Regenerative Medicine, Institute of Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Sarah Jäkel
- Institute for Stroke and Dementia Research, Ludwig-Maximilians-Universität, LMU Hospital, Munich, Germany
| | - Boyd Kenkhuis
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Neil C Henderson
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, Edinburgh, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Susanne T de Bot
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Josef Priller
- CCBS and UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK.
- Department of Psychiatry and Psychotherapy, School of Medicine and Health, TU Munich, Munich, Germany.
- Neuropsychiatry and DZNE, Charité Universitätsmedizin Berlin, Berlin, Germany.
| | - Anna Williams
- Centre for Regenerative Medicine, Institute of Regeneration and Repair, University of Edinburgh, Edinburgh, UK.
- CCBS and UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
2
|
Qu J, Zhu R, Wu Y, Xu G, Wang D. Abnormal structural‒functional coupling patterning in progressive supranuclear palsy is associated with diverse gradients and histological features. Commun Biol 2024; 7:1195. [PMID: 39341965 PMCID: PMC11439051 DOI: 10.1038/s42003-024-06877-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/10/2024] [Indexed: 10/01/2024] Open
Abstract
The anatomy of the brain supports inherent processes, fostering mental abilities and eventually facilitating adaptive behavior. Recent studies have shown that progressive supranuclear palsy (PSP) is accompanied by alterations in functional and structural networks. However, how the structure and function of PSP coordinates change is not clear, and the relationships between structural‒functional coupling (SFC) and the gradient of hierarchical structure and cellular histology remain largely unknown. Here, we use neuroimaging data from two independent cohorts and a public histological dataset to investigate the relationships among the cellular histology, hierarchical structure, and SFC of PSP patients. We find that the SFC of the entire cortex in PSP is severely disrupted, with higher coupling in the visual network (VN). Moreover, coupling differences in PSP follow a macroscopic organizational principle from unimodal to transmodal gradients. Finally, we elucidate greater laminar differentiation in VN regions sensitive to SFC changes in PSP, which is related mainly to the higher cellular density and smaller size of the internal-granular layer. In conclusion, our findings provide an interpretable framework for understanding SFC changes in PSP and provide new insights into the consistency of structural and functional changes in PSP regarding hierarchical structure and cellular histology.
Collapse
Affiliation(s)
- Junyu Qu
- Department of Radiology, Qilu Hospital of Shandong University; Qilu Medical Imaging Institute of Shandong University, Jinan, China
| | - Rui Zhu
- Department of Radiology, Qilu Hospital of Shandong University; Qilu Medical Imaging Institute of Shandong University, Jinan, China
| | - Yongsheng Wu
- Department of Radiology, Qilu Hospital of Shandong University; Qilu Medical Imaging Institute of Shandong University, Jinan, China
| | - Guihua Xu
- Department of Radiology, Qilu Hospital of Shandong University; Qilu Medical Imaging Institute of Shandong University, Jinan, China
| | - Dawei Wang
- Department of Radiology, Qilu Hospital of Shandong University; Qilu Medical Imaging Institute of Shandong University, Jinan, China.
- Research Institute of Shandong University: Magnetic Field-free Medicine & Functional Imaging, Jinan, China.
- Shandong Key Laboratory: Magnetic Field-free Medicine & Functional Imaging (MF), Jinan, China.
| |
Collapse
|
3
|
Pressl C, Mätlik K, Kus L, Darnell P, Luo JD, Paul MR, Weiss AR, Liguore W, Carroll TS, Davis DA, McBride J, Heintz N. Selective vulnerability of layer 5a corticostriatal neurons in Huntington's disease. Neuron 2024; 112:924-941.e10. [PMID: 38237588 DOI: 10.1016/j.neuron.2023.12.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/18/2023] [Accepted: 12/13/2023] [Indexed: 01/30/2024]
Abstract
The properties of the cell types that are selectively vulnerable in Huntington's disease (HD) cortex, the nature of somatic CAG expansions of mHTT in these cells, and their importance in CNS circuitry have not been delineated. Here, we employed serial fluorescence-activated nuclear sorting (sFANS), deep molecular profiling, and single-nucleus RNA sequencing (snRNA-seq) of motor-cortex samples from thirteen predominantly early stage, clinically diagnosed HD donors and selected samples from cingulate, visual, insular, and prefrontal cortices to demonstrate loss of layer 5a pyramidal neurons in HD. Extensive mHTT CAG expansions occur in vulnerable layer 5a pyramidal cells, and in Betz cells, layers 6a and 6b neurons that are resilient in HD. Retrograde tracing experiments in macaque brains identify layer 5a neurons as corticostriatal pyramidal cells. We propose that enhanced somatic mHTT CAG expansion and altered synaptic function act together to cause corticostriatal disconnection and selective neuronal vulnerability in HD cerebral cortex.
Collapse
Affiliation(s)
- Christina Pressl
- Laboratory of Molecular Biology, The Rockefeller University, New York, NY, USA
| | - Kert Mätlik
- Laboratory of Molecular Biology, The Rockefeller University, New York, NY, USA
| | - Laura Kus
- Laboratory of Molecular Biology, The Rockefeller University, New York, NY, USA
| | - Paul Darnell
- Laboratory of Molecular Biology, The Rockefeller University, New York, NY, USA
| | - Ji-Dung Luo
- Bioinformatics Resource Center, The Rockefeller University, New York, NY, USA
| | - Matthew R Paul
- Bioinformatics Resource Center, The Rockefeller University, New York, NY, USA
| | - Alison R Weiss
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA
| | - William Liguore
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Thomas S Carroll
- Bioinformatics Resource Center, The Rockefeller University, New York, NY, USA
| | - David A Davis
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jodi McBride
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Nathaniel Heintz
- Laboratory of Molecular Biology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
4
|
Aracil-Bolaños I, Pérez-Pérez J, Martínez-Horta S, Horta-Barba A, Puig-Davi A, García-Cornet J, Olmedo-Saura G, Campolongo A, Pagonabarraga J, Kulisevsky J. Baseline Large-Scale Network Dynamics Associated with Disease Progression in Huntington's Disease. Mov Disord 2024; 39:197-203. [PMID: 38148511 DOI: 10.1002/mds.29655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/11/2023] [Accepted: 10/24/2023] [Indexed: 12/28/2023] Open
Abstract
BACKGROUND Huntington's disease (HD) is a genetically determined disease with motor, cognitive, and neuropsychiatric disorders. However, the links between clinical progression and disruptions to dynamics in motor and cognitive large-scale networks are not well established. OBJECTIVE To investigate changes in dynamic and static large-scale networks using an established tool of disease progression in Huntington's disease, the composite Unified Huntington's Disease Rating Scale (cUHDRS). METHODS Sixty-four mutation carriers were included. Static and dynamic baseline functional connectivity as well as topological features were correlated to 2-year follow-up clinical assessments using the cUHDRS. RESULTS Decline in cUHDRS scores was associated with higher connectivity between frontal default-mode and motor networks, whereas higher connectivity in posterior, mainly visuospatial regions was associated with a smaller decline in cUHDRS scores. CONCLUSIONS Structural disruptions in HD were evident both in posterior parietal/occipital and frontal motor regions, with reciprocal increases in functional connectivity. However, although higher visuospatial network connectivity was tied to a smaller cUHDRS decline, increased motor and frontal default-mode connections were linked to a larger cUHDRS decreases. Therefore, divergent functional compensation mechanisms might be at play in the clinical evolution of HD.
Collapse
Affiliation(s)
- Ignacio Aracil-Bolaños
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona (U.A.B.), Barcelona, Spain
- Institut d'Investigacions Biomèdiques-Sant Pau (IIB-Sant Pau), Barcelona, Spain
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Jesús Pérez-Pérez
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona (U.A.B.), Barcelona, Spain
- Institut d'Investigacions Biomèdiques-Sant Pau (IIB-Sant Pau), Barcelona, Spain
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Saül Martínez-Horta
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona (U.A.B.), Barcelona, Spain
- Institut d'Investigacions Biomèdiques-Sant Pau (IIB-Sant Pau), Barcelona, Spain
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Andrea Horta-Barba
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona (U.A.B.), Barcelona, Spain
- Institut d'Investigacions Biomèdiques-Sant Pau (IIB-Sant Pau), Barcelona, Spain
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Arnau Puig-Davi
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona (U.A.B.), Barcelona, Spain
- Institut d'Investigacions Biomèdiques-Sant Pau (IIB-Sant Pau), Barcelona, Spain
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Júlia García-Cornet
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona (U.A.B.), Barcelona, Spain
- Institut d'Investigacions Biomèdiques-Sant Pau (IIB-Sant Pau), Barcelona, Spain
| | - Gonzalo Olmedo-Saura
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona (U.A.B.), Barcelona, Spain
- Institut d'Investigacions Biomèdiques-Sant Pau (IIB-Sant Pau), Barcelona, Spain
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Antonia Campolongo
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona (U.A.B.), Barcelona, Spain
- Institut d'Investigacions Biomèdiques-Sant Pau (IIB-Sant Pau), Barcelona, Spain
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Javier Pagonabarraga
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona (U.A.B.), Barcelona, Spain
- Institut d'Investigacions Biomèdiques-Sant Pau (IIB-Sant Pau), Barcelona, Spain
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Jaime Kulisevsky
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona (U.A.B.), Barcelona, Spain
- Institut d'Investigacions Biomèdiques-Sant Pau (IIB-Sant Pau), Barcelona, Spain
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
5
|
Wilton DK, Mastro K, Heller MD, Gergits FW, Willing CR, Fahey JB, Frouin A, Daggett A, Gu X, Kim YA, Faull RLM, Jayadev S, Yednock T, Yang XW, Stevens B. Microglia and complement mediate early corticostriatal synapse loss and cognitive dysfunction in Huntington's disease. Nat Med 2023; 29:2866-2884. [PMID: 37814059 PMCID: PMC10667107 DOI: 10.1038/s41591-023-02566-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 08/24/2023] [Indexed: 10/11/2023]
Abstract
Huntington's disease (HD) is a devastating monogenic neurodegenerative disease characterized by early, selective pathology in the basal ganglia despite the ubiquitous expression of mutant huntingtin. The molecular mechanisms underlying this region-specific neuronal degeneration and how these relate to the development of early cognitive phenotypes are poorly understood. Here we show that there is selective loss of synaptic connections between the cortex and striatum in postmortem tissue from patients with HD that is associated with the increased activation and localization of complement proteins, innate immune molecules, to these synaptic elements. We also found that levels of these secreted innate immune molecules are elevated in the cerebrospinal fluid of premanifest HD patients and correlate with established measures of disease burden.In preclinical genetic models of HD, we show that complement proteins mediate the selective elimination of corticostriatal synapses at an early stage in disease pathogenesis, marking them for removal by microglia, the brain's resident macrophage population. This process requires mutant huntingtin to be expressed in both cortical and striatal neurons. Inhibition of this complement-dependent elimination mechanism through administration of a therapeutically relevant C1q function-blocking antibody or genetic ablation of a complement receptor on microglia prevented synapse loss, increased excitatory input to the striatum and rescued the early development of visual discrimination learning and cognitive flexibility deficits in these models. Together, our findings implicate microglia and the complement cascade in the selective, early degeneration of corticostriatal synapses and the development of cognitive deficits in presymptomatic HD; they also provide new preclinical data to support complement as a therapeutic target for early intervention.
Collapse
Affiliation(s)
- Daniel K Wilton
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, US.
| | - Kevin Mastro
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, US
| | - Molly D Heller
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, US
| | - Frederick W Gergits
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, US
| | - Carly Rose Willing
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, US
| | - Jaclyn B Fahey
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, US
| | - Arnaud Frouin
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, US
| | - Anthony Daggett
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
| | - Xiaofeng Gu
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
| | - Yejin A Kim
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, US
| | - Richard L M Faull
- Department of Anatomy with Radiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Suman Jayadev
- Department of Neurology, University of Washington, Seattle, WA, USA
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Ted Yednock
- Annexon Biosciences, South San Francisco, CA, USA
| | - X William Yang
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
| | - Beth Stevens
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, US.
- Stanley Center, Broad Institute, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Pressl C, Mätlik K, Kus L, Darnell P, Luo JD, Paul MR, Weiss AR, Liguore W, Carroll TS, Davis DA, McBride J, Heintz N. Selective Vulnerability of Layer 5a Corticostriatal Neurons in Huntington's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.24.538096. [PMID: 37162977 PMCID: PMC10168234 DOI: 10.1101/2023.04.24.538096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The properties of the cell types that are selectively vulnerable in Huntington's disease (HD) cortex, the nature of somatic CAG expansions of mHTT in these cells, and their importance in CNS circuitry have not been delineated. Here we employed serial fluorescence activated nuclear sorting (sFANS), deep molecular profiling, and single nucleus RNA sequencing (snRNAseq) to demonstrate that layer 5a pyramidal neurons are vulnerable in primary motor cortex and other cortical areas of HD donors. Extensive mHTT -CAG expansions occur in vulnerable layer 5a pyramidal cells, and in Betz cells, layer 6a, layer 6b neurons that are resilient in HD. Retrograde tracing experiments in macaque brains identify the vulnerable layer 5a neurons as corticostriatal pyramidal cells. We propose that enhanced somatic mHTT -CAG expansion and altered synaptic function act together to cause corticostriatal disconnection and selective neuronal vulnerability in the HD cerebral cortex.
Collapse
|
7
|
Manivannan A, Foley LM, Hitchens TK, Rattray I, Bates GP, Modo M. Ex vivo 100 μm isotropic diffusion MRI-based tractography of connectivity changes in the end-stage R6/2 mouse model of Huntington's disease. NEUROPROTECTION 2023; 1:66-83. [PMID: 37745674 PMCID: PMC10516267 DOI: 10.1002/nep3.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/08/2022] [Indexed: 09/26/2023]
Abstract
Background Huntington's disease is a progressive neurodegenerative disorder. Brain atrophy, as measured by volumetric magnetic resonance imaging (MRI), is a downstream consequence of neurodegeneration, but microstructural changes within brain tissue are expected to precede this volumetric decline. The tissue microstructure can be assayed non-invasively using diffusion MRI, which also allows a tractographic analysis of brain connectivity. Methods We here used ex vivo diffusion MRI (11.7 T) to measure microstructural changes in different brain regions of end-stage (14 weeks of age) wild type and R6/2 mice (male and female) modeling Huntington's disease. To probe the microstructure of different brain regions, reduce partial volume effects and measure connectivity between different regions, a 100 μm isotropic voxel resolution was acquired. Results Although fractional anisotropy did not reveal any difference between wild-type controls and R6/2 mice, mean, axial, and radial diffusivity were increased in female R6/2 mice and decreased in male R6/2 mice. Whole brain streamlines were only reduced in male R6/2 mice, but streamline density was increased. Region-to-region tractography indicated reductions in connectivity between the cortex, hippocampus, and thalamus with the striatum, as well as within the basal ganglia (striatum-globus pallidus-subthalamic nucleus-substantia nigra-thalamus). Conclusions Biological sex and left/right hemisphere affected tractographic results, potentially reflecting different stages of disease progression. This proof-of-principle study indicates that diffusion MRI and tractography potentially provide novel biomarkers that connect volumetric changes across different brain regions. In a translation setting, these measurements constitute a novel tool to assess the therapeutic impact of interventions such as neuroprotective agents in transgenic models, as well as patients with Huntington's disease.
Collapse
Affiliation(s)
- Ashwinee Manivannan
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Lesley M. Foley
- Animal Imaging Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - T. Kevin Hitchens
- Animal Imaging Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ivan Rattray
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, Huntington’s Disease Centre and UK Dementia Research Institute at UCL, University College London, London, UK
| | - Gillian P. Bates
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, Huntington’s Disease Centre and UK Dementia Research Institute at UCL, University College London, London, UK
| | - Michel Modo
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
8
|
McColgan P, Gregory S, Zeun P, Zarkali A, Johnson EB, Parker C, Fayer K, Lowe J, Nair A, Estevez-Fraga C, Papoutsi M, Zhang H, Scahill RI, Tabrizi SJ, Rees G. Neurofilament light-associated connectivity in young-adult Huntington's disease is related to neuronal genes. Brain 2022; 145:3953-3967. [PMID: 35758263 PMCID: PMC9679168 DOI: 10.1093/brain/awac227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 05/27/2022] [Accepted: 06/03/2022] [Indexed: 11/13/2022] Open
Abstract
Upregulation of functional network connectivity in the presence of structural degeneration is seen in the premanifest stages of Huntington's disease (preHD) 10-15 years from clinical diagnosis. However, whether widespread network connectivity changes are seen in gene carriers much further from onset has yet to be explored. We characterized functional network connectivity throughout the brain and related it to a measure of disease pathology burden (CSF neurofilament light, NfL) and measures of structural connectivity in asymptomatic gene carriers, on average 24 years from onset. We related these measurements to estimates of cortical and subcortical gene expression. We found no overall differences in functional (or structural) connectivity anywhere in the brain comparing control and preHD participants. However, increased functional connectivity, particularly between posterior cortical areas, correlated with increasing CSF NfL level in preHD participants. Using the Allen Human Brain Atlas and expression-weighted cell-type enrichment analysis, we demonstrated that this functional connectivity upregulation occurred in cortical regions associated with regional expression of genes specific to neuronal cells. This relationship was validated using single-nucleus RNAseq data from post-mortem Huntington's disease and control brains showing enrichment of neuronal-specific genes that are differentially expressed in Huntington's disease. Functional brain networks in asymptomatic preHD gene carriers very far from disease onset show evidence of upregulated connectivity correlating with increased disease burden. These changes occur among brain areas that show regional expression of genes specific to neuronal GABAergic and glutamatergic cells.
Collapse
Affiliation(s)
- Peter McColgan
- Huntington’s Disease Centre, Department of Neurodegenerative disease, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Sarah Gregory
- Huntington’s Disease Centre, Department of Neurodegenerative disease, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Paul Zeun
- Huntington’s Disease Centre, Department of Neurodegenerative disease, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Angeliki Zarkali
- Dementia Research Centre, University College London, London WC1N 3AR, UK
| | - Eileanoir B Johnson
- Huntington’s Disease Centre, Department of Neurodegenerative disease, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Christopher Parker
- Department of Computer Science and Centre for Medical Image Computing, University College London, London WC1V 6LJ, UK
| | - Kate Fayer
- Huntington’s Disease Centre, Department of Neurodegenerative disease, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Jessica Lowe
- Huntington’s Disease Centre, Department of Neurodegenerative disease, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Akshay Nair
- Huntington’s Disease Centre, Department of Neurodegenerative disease, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Carlos Estevez-Fraga
- Huntington’s Disease Centre, Department of Neurodegenerative disease, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Marina Papoutsi
- Huntington’s Disease Centre, Department of Neurodegenerative disease, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Hui Zhang
- Dementia Research Centre, University College London, London WC1N 3AR, UK
| | - Rachael I Scahill
- Huntington’s Disease Centre, Department of Neurodegenerative disease, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Sarah J Tabrizi
- Huntington’s Disease Centre, Department of Neurodegenerative disease, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- Dementia Research Centre, University College London, London WC1N 3AR, UK
| | - Geraint Rees
- University College London Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, UK
| |
Collapse
|
9
|
Casella C, Chamberland M, Laguna PL, Parker GD, Rosser AE, Coulthard E, Rickards H, Berry SC, Jones DK, Metzler‐Baddeley C. Mutation-related magnetization-transfer, not axon density, drives white matter differences in premanifest Huntington disease: Evidence from in vivo ultra-strong gradient MRI. Hum Brain Mapp 2022; 43:3439-3460. [PMID: 35396899 PMCID: PMC9248323 DOI: 10.1002/hbm.25859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/07/2022] [Accepted: 03/27/2022] [Indexed: 11/10/2022] Open
Abstract
White matter (WM) alterations have been observed in Huntington disease (HD) but their role in the disease-pathophysiology remains unknown. We assessed WM changes in premanifest HD by exploiting ultra-strong-gradient magnetic resonance imaging (MRI). This allowed to separately quantify magnetization transfer ratio (MTR) and hindered and restricted diffusion-weighted signal fractions, and assess how they drove WM microstructure differences between patients and controls. We used tractometry to investigate region-specific alterations across callosal segments with well-characterized early- and late-myelinating axon populations, while brain-wise differences were explored with tract-based cluster analysis (TBCA). Behavioral measures were included to explore disease-associated brain-function relationships. We detected lower MTR in patients' callosal rostrum (tractometry: p = .03; TBCA: p = .03), but higher MTR in their splenium (tractometry: p = .02). Importantly, patients' mutation-size and MTR were positively correlated (all p-values < .01), indicating that MTR alterations may directly result from the mutation. Further, MTR was higher in younger, but lower in older patients relative to controls (p = .003), suggesting that MTR increases are detrimental later in the disease. Finally, patients showed higher restricted diffusion signal fraction (FR) from the composite hindered and restricted model of diffusion (CHARMED) in the cortico-spinal tract (p = .03), which correlated positively with MTR in the posterior callosum (p = .033), potentially reflecting compensatory mechanisms. In summary, this first comprehensive, ultra-strong gradient MRI study in HD provides novel evidence of mutation-driven MTR alterations at the premanifest disease stage which may reflect neurodevelopmental changes in iron, myelin, or a combination of these.
Collapse
Affiliation(s)
- Chiara Casella
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of PsychologyCardiff UniversityCardiffUK
- Department of Perinatal Imaging and Health, School of Biomedical Engineering & Imaging SciencesKing's College London, St Thomas' HospitalLondonUK
| | - Maxime Chamberland
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of PsychologyCardiff UniversityCardiffUK
- Donders Institute for Brain, Cognition and BehaviorRadboud UniversityNijmegenThe Netherlands
| | - Pedro L. Laguna
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of PsychologyCardiff UniversityCardiffUK
| | - Greg D. Parker
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of PsychologyCardiff UniversityCardiffUK
| | - Anne E. Rosser
- Department of Neurology and Psychological MedicineHayden Ellis BuildingCardiffUK
- School of BiosciencesCardiff UniversityCardiffUK
| | | | - Hugh Rickards
- Birmingham and Solihull Mental Health NHS Foundation TrustBirminghamUK
- Institute of Clinical Sciences, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Samuel C. Berry
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of PsychologyCardiff UniversityCardiffUK
| | - Derek K. Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of PsychologyCardiff UniversityCardiffUK
| | - Claudia Metzler‐Baddeley
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of PsychologyCardiff UniversityCardiffUK
| |
Collapse
|
10
|
Zeun P, McColgan P, Dhollander T, Gregory S, Johnson EB, Papoutsi M, Nair A, Scahill RI, Rees G, Tabrizi SJ. Timing of selective basal ganglia white matter loss in premanifest Huntington's disease. Neuroimage Clin 2022; 33:102927. [PMID: 34999565 PMCID: PMC8757039 DOI: 10.1016/j.nicl.2021.102927] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/30/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVES To investigate the timeframe prior to symptom onset when cortico-basal ganglia white matter (white matter) loss begins in premanifest Huntington's disease (preHD), and which striatal and thalamic sub-region white matter tracts are most vulnerable. METHODS We performed fixel-based analysis, which allows resolution of crossing white matter fibres at the voxel level, on diffusion tractography derived white matter tracts of striatal and thalamic sub-regions in two independent cohorts; TrackON-HD, which included 72 preHD (approx. 11 years before disease onset) and 85 controls imaged at three time points over two years; and the HD young adult study (HD-YAS), which included 54 preHD (approx. 25 years before disease onset) and 53 controls, imaged at one time point. Group differences in fibre density and cross section (FDC) were investigated. RESULTS We found no significant group differences in cortico-basal ganglia sub-region FDC in preHD gene carriers 25 years before onset. In gene carriers 11 years before onset, there were reductions in striatal (limbic and caudal motor) and thalamic (premotor, motor and sensory) FDC at baseline, with no significant change over 2 years. Caudal motor-striatal, pre-motor-thalamic, and primary motor-thalamic FDC at baseline, showed significant correlations with the Unified Huntington's disease rating scale (UHDRS) total motor score (TMS). Limbic cortico-striatal FDC and apathy were also significantly correlated. CONCLUSIONS Our findings suggest that limbic and motor white matter tracts to the striatum and thalamus are most susceptible to early degeneration in HD but that approximately 25 years from onset, these tracts appear preserved. These findings may have importance in determining the optimum time to initiate future disease modifying therapies in HD.
Collapse
Affiliation(s)
- Paul Zeun
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, WC1N 3BG, UK
| | - Peter McColgan
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, WC1N 3BG, UK
| | - Thijs Dhollander
- The Murdoch Children's Research Institute, Parkville Victoria 3052, Australia
| | - Sarah Gregory
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, WC1N 3BG, UK
| | - Eileanoir B Johnson
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, WC1N 3BG, UK
| | - Marina Papoutsi
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, WC1N 3BG, UK
| | - Akshay Nair
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, WC1N 3BG, UK; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, UCL Queen Square Institute of Neurology, University College London, WC1N 3BG, UK
| | - Rachael I Scahill
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, WC1N 3BG, UK
| | - Geraint Rees
- UCL Institute of Cognitive Neuroscience, Queen Square, London WC1N 3BG, UK
| | - Sarah J Tabrizi
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, WC1N 3BG, UK; Dementia Research Institute at UCL, London WC1N 3BG, UK.
| |
Collapse
|
11
|
Li X, Fischer H, Manzouri A, Månsson KNT, Li TQ. A Quantitative Data-Driven Analysis Framework for Resting-State Functional Magnetic Resonance Imaging: A Study of the Impact of Adult Age. Front Neurosci 2021; 15:768418. [PMID: 34744623 PMCID: PMC8565286 DOI: 10.3389/fnins.2021.768418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/28/2021] [Indexed: 01/08/2023] Open
Abstract
The objective of this study is to introduce a new quantitative data-driven analysis (QDA) framework for the analysis of resting-state fMRI (R-fMRI) and use it to investigate the effect of adult age on resting-state functional connectivity (RFC). Whole-brain R-fMRI measurements were conducted on a 3T clinical MRI scanner in 227 healthy adult volunteers (N = 227, aged 18-76 years old, male/female = 99/128). With the proposed QDA framework we derived two types of voxel-wise RFC metrics: the connectivity strength index and connectivity density index utilizing the convolutions of the cross-correlation histogram with different kernels. Furthermore, we assessed the negative and positive portions of these metrics separately. With the QDA framework we found age-related declines of RFC metrics in the superior and middle frontal gyri, posterior cingulate cortex (PCC), right insula and inferior parietal lobule of the default mode network (DMN), which resembles previously reported results using other types of RFC data processing methods. Importantly, our new findings complement previously undocumented results in the following aspects: (1) the PCC and right insula are anti-correlated and tend to manifest simultaneously declines of both the negative and positive connectivity strength with subjects' age; (2) separate assessment of the negative and positive RFC metrics provides enhanced sensitivity to the aging effect; and (3) the sensorimotor network depicts enhanced negative connectivity strength with the adult age. The proposed QDA framework can produce threshold-free and voxel-wise RFC metrics from R-fMRI data. The detected adult age effect is largely consistent with previously reported studies using different R-fMRI analysis approaches. Moreover, the separate assessment of the negative and positive contributions to the RFC metrics can enhance the RFC sensitivity and clarify some of the mixed results in the literature regarding to the DMN and sensorimotor network involvement in adult aging.
Collapse
Affiliation(s)
- Xia Li
- Institute of Informatics Engineering, China Jiliang University, Hangzhou, China
| | - Håkan Fischer
- Department of Psychology, Stockholm University, Stockholm, Sweden.,Stockholm University Brain Imaging Centre, Stockholm, Sweden
| | | | - Kristoffer N T Månsson
- Department of Psychology, Stockholm University, Stockholm, Sweden.,Centre of Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Tie-Qiang Li
- Institute of Informatics Engineering, China Jiliang University, Hangzhou, China.,Department of Clinical Science, Intervention, and Technology, Karolinska Institute, Solna, Sweden.,Department of Medical Radiation and Nuclear Medicine, Karolinska University Hospital, Solna, Sweden
| |
Collapse
|
12
|
Casella C, Kleban E, Rosser AE, Coulthard E, Rickards H, Fasano F, Metzler-Baddeley C, Jones DK. Multi-compartment analysis of the complex gradient-echo signal quantifies myelin breakdown in premanifest Huntington's disease. Neuroimage Clin 2021; 30:102658. [PMID: 33865029 PMCID: PMC8079666 DOI: 10.1016/j.nicl.2021.102658] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 12/04/2022]
Abstract
White matter (WM) alterations have been identified as a relevant pathological feature of Huntington's disease (HD). Increasing evidence suggests that WM changes in this disorder are due to alterations in myelin-associated biological processes. Multi-compartmental analysis of the complex gradient-echo MRI signal evolution in WM has been shown to quantify myelin in vivo, therefore pointing to the potential of this technique for the study of WM myelin changes in health and disease. This study first characterized the reproducibility of metrics derived from the complex multi-echo gradient-recalled echo (mGRE) signal across the corpus callosum in healthy participants, finding highest reproducibility in the posterior callosal segment. Subsequently, the same analysis pipeline was applied in this callosal region in a sample of premanifest HD patients (n = 19) and age, sex and education matched healthy controls (n = 21). In particular, we focused on two myelin-associated derivatives: i. the myelin water signal fraction (fm), a parameter dependent on myelin content; and ii. The difference in frequency between myelin and intra-axonal water pools (Δω), a parameter dependent on the ratio between the inner and the outer axonal radii. fm was found to be lower in HD patients (β = -0.13, p = 0.03), while Δω did not show a group effect. Performance in tests of working memory, executive function, social cognition and movement was also assessed, and a greater age-related decline in executive function was detected in HD patients (β = -0.06, p = 0.006), replicating previous evidence of executive dysfunction in HD. Finally, the correlation between fm, executive function, and proximity to disease onset was explored in patients, and a positive correlation between executive function and fm was detected (r = 0.542; p = 0.02). This study emphasises the potential of complex mGRE signal analysis for aiding understanding of HD pathogenesis and progression. Moreover, expanding on evidence from pathology and animal studies, it provides novel in vivo evidence supporting myelin breakdown as an early feature of HD.
Collapse
Affiliation(s)
- Chiara Casella
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF 24 4HQ, UK.
| | - Elena Kleban
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF 24 4HQ, UK
| | - Anne E Rosser
- Department of Neurology and Psychological Medicine, Hayden Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK; School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | | | - Hugh Rickards
- Birmingham and Solihull Mental Health NHS Foundation Trust, 50 Summer Hill Road, Birmingham B1 3RB, UK; Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Fabrizio Fasano
- Siemens Healthcare Ltd, Camberly, UK; Siemens Healthcare GmbH, Erlangen, Germany
| | - Claudia Metzler-Baddeley
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF 24 4HQ, UK
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF 24 4HQ, UK
| |
Collapse
|
13
|
Bøstrand SMK, Williams A. Oligodendroglial Heterogeneity in Neuropsychiatric Disease. Life (Basel) 2021; 11:life11020125. [PMID: 33562031 PMCID: PMC7914430 DOI: 10.3390/life11020125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 11/17/2022] Open
Abstract
Oligodendroglia interact with neurons to support their health and maintain the normal functioning of the central nervous system (CNS). Human oligodendroglia are a highly heterogeneous population characterised by distinct developmental origins and regional differences, as well as variation in cellular states, as evidenced by recent analysis at single-nuclei resolution. Increasingly, there is evidence to suggest that the highly heterogeneous nature of oligodendroglia might underpin their role in a range of CNS disorders, including those with neuropsychiatric symptoms. Understanding the role of oligodendroglial heterogeneity in this group of disorders might pave the way for novel approaches to identify biomarkers and develop treatments.
Collapse
|
14
|
Zarkali A, McColgan P, Leyland LA, Lees AJ, Rees G, Weil RS. Organisational and neuromodulatory underpinnings of structural-functional connectivity decoupling in patients with Parkinson's disease. Commun Biol 2021; 4:86. [PMID: 33469150 PMCID: PMC7815846 DOI: 10.1038/s42003-020-01622-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 12/18/2020] [Indexed: 01/01/2023] Open
Abstract
Parkinson's dementia is characterised by changes in perception and thought, and preceded by visual dysfunction, making this a useful surrogate for dementia risk. Structural and functional connectivity changes are seen in humans with Parkinson's disease, but the organisational principles are not known. We used resting-state fMRI and diffusion-weighted imaging to examine changes in structural-functional connectivity coupling in patients with Parkinson's disease, and those at risk of dementia. We identified two organisational gradients to structural-functional connectivity decoupling: anterior-to-posterior and unimodal-to-transmodal, with stronger structural-functional connectivity coupling in anterior, unimodal areas and weakened towards posterior, transmodal regions. Next, we related spatial patterns of decoupling to expression of neurotransmitter receptors. We found that dopaminergic and serotonergic transmission relates to decoupling in Parkinson's overall, but instead, serotonergic, cholinergic and noradrenergic transmission relates to decoupling in patients with visual dysfunction. Our findings provide a framework to explain the specific disorders of consciousness in Parkinson's dementia, and the neurotransmitter systems that underlie these.
Collapse
Affiliation(s)
- Angeliki Zarkali
- Dementia Research Centre, University College London, 8-11 Queen Square, London, WC1N 3AR, UK.
| | - Peter McColgan
- Huntington's Disease Centre, University College London, Russell Square House, London, WC1B 5EH, UK
| | - Louise-Ann Leyland
- Dementia Research Centre, University College London, 8-11 Queen Square, London, WC1N 3AR, UK
| | - Andrew J Lees
- Reta Lila Weston Institute of Neurological Studies, 1 Wakefield Street, London, WC1N 1PJ, UK
| | - Geraint Rees
- Institute of Cognitive Neuroscience, University College London, 17-19 Queen Square, London, WC1N 3AR, UK
- Wellcome Centre for Human Neuroimaging, University College London, 12 Queen Square, London, WC1N 3AR, UK
| | - Rimona S Weil
- Dementia Research Centre, University College London, 8-11 Queen Square, London, WC1N 3AR, UK
- Wellcome Centre for Human Neuroimaging, University College London, 12 Queen Square, London, WC1N 3AR, UK
- Movement Disorders Consortium, University College London, London, WC1N 3BG, UK
| |
Collapse
|
15
|
Chipika RH, Siah WF, McKenna MC, Li Hi Shing S, Hardiman O, Bede P. The presymptomatic phase of amyotrophic lateral sclerosis: are we merely scratching the surface? J Neurol 2020; 268:4607-4629. [PMID: 33130950 DOI: 10.1007/s00415-020-10289-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023]
Abstract
Presymptomatic studies in ALS have consistently captured considerable disease burden long before symptom manifestation and contributed important academic insights. With the emergence of genotype-specific therapies, however, there is a pressing need to address practical objectives such as the estimation of age of symptom onset, phenotypic prediction, informing the optimal timing of pharmacological intervention, and identifying a core panel of biomarkers which may detect response to therapy. Existing presymptomatic studies in ALS have adopted striking different study designs, relied on a variety of control groups, used divergent imaging and electrophysiology methods, and focused on different genotypes and demographic groups. We have performed a systematic review of existing presymptomatic studies in ALS to identify common themes, stereotyped shortcomings, and key learning points for future studies. Existing presymptomatic studies in ALS often suffer from sample size limitations, lack of disease controls and rarely follow their cohort until symptom manifestation. As the characterisation of presymptomatic processes in ALS serves a multitude of academic and clinical purposes, the careful review of existing studies offers important lessons for future initiatives.
Collapse
Affiliation(s)
- Rangariroyashe H Chipika
- Computational Neuroimaging Group (CNG), Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin, Ireland
| | - We Fong Siah
- Computational Neuroimaging Group (CNG), Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin, Ireland
| | - Mary Clare McKenna
- Computational Neuroimaging Group (CNG), Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin, Ireland
| | - Stacey Li Hi Shing
- Computational Neuroimaging Group (CNG), Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin, Ireland
| | - Orla Hardiman
- Computational Neuroimaging Group (CNG), Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin, Ireland
| | - Peter Bede
- Computational Neuroimaging Group (CNG), Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin, Ireland.
| |
Collapse
|
16
|
Estevez-Fraga C, Scahill R, Rees G, Tabrizi SJ, Gregory S. Diffusion imaging in Huntington's disease: comprehensive review. J Neurol Neurosurg Psychiatry 2020; 92:jnnp-2020-324377. [PMID: 33033167 PMCID: PMC7803908 DOI: 10.1136/jnnp-2020-324377] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/07/2020] [Accepted: 09/07/2020] [Indexed: 12/31/2022]
Abstract
Huntington's disease (HD) is a monogenic disorder with 100% penetrance. With the advent of genetic testing in adults, disease-related, structural brain changes can be investigated from the earliest, premorbid stages of HD. While examining macrostructural change characterises global neuronal damage, investigating microstructural alterations provides information regarding brain organisation and its underlying biological properties. Diffusion MRI can be used to track the progression of microstructural anomalies in HD decades prior to clinical disease onset, providing a greater understanding of neurodegeneration. Multiple approaches, including voxelwise, region of interest and tractography, have been used in HD cohorts, showing a centrifugal pattern of white matter (WM) degeneration starting from deep brain areas, which is consistent with neuropathological studies. The corpus callosum, longer WM tracts and areas that are more densely connected, in particular the sensorimotor network, also tend to be affected early during premanifest stages. Recent evidence supports the routine inclusion of diffusion analyses within clinical trials principally as an additional measure to improve understanding of treatment effects, while the advent of novel techniques such as multitissue compartment models and connectomics can help characterise the underpinnings of progressive functional decline in HD.
Collapse
Affiliation(s)
- Carlos Estevez-Fraga
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Rachael Scahill
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Geraint Rees
- Wellcome Centre for Neuroimaging, University College London, London, UK
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Sarah J Tabrizi
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Sarah Gregory
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
17
|
Wilton DK, Stevens B. The contribution of glial cells to Huntington's disease pathogenesis. Neurobiol Dis 2020; 143:104963. [PMID: 32593752 DOI: 10.1016/j.nbd.2020.104963] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/07/2020] [Accepted: 06/10/2020] [Indexed: 12/20/2022] Open
Abstract
Glial cells play critical roles in the normal development and function of neural circuits, but in many neurodegenerative diseases, they become dysregulated and may contribute to the development of brain pathology. In Huntington's disease (HD), glial cells both lose normal functions and gain neuropathic phenotypes. In addition, cell-autonomous dysfunction elicited by mutant huntingtin (mHTT) expression in specific glial cell types is sufficient to induce both pathology and Huntington's disease-related impairments in motor and cognitive performance, suggesting that these cells may drive the development of certain aspects of Huntington's disease pathogenesis. In support of this imaging studies in pre-symptomatic HD patients and work on mouse models have suggested that glial cell dysfunction occurs at a very early stage of the disease, prior to the onset of motor and cognitive deficits. Furthermore, selectively ablating mHTT from specific glial cells or correcting for HD-induced changes in their transcriptional profile rescues some HD-related phenotypes, demonstrating the potential of targeting these cells for therapeutic intervention. Here we review emerging research focused on understanding the involvement of different glial cell types in specific aspects of HD pathogenesis. This work is providing new insight into how HD impacts biological functions of glial cells in the healthy brain as well as how HD induced dysfunction in these cells might change the way they integrate into biological circuits.
Collapse
Affiliation(s)
- Daniel K Wilton
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Beth Stevens
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Stanley Center, Broad Institute, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
18
|
McColgan P, Joubert J, Tabrizi SJ, Rees G. The human motor cortex microcircuit: insights for neurodegenerative disease. Nat Rev Neurosci 2020; 21:401-415. [PMID: 32555340 DOI: 10.1038/s41583-020-0315-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2020] [Indexed: 12/22/2022]
Abstract
The human motor cortex comprises a microcircuit of five interconnected layers with different cell types. In this Review, we use a layer-specific and cell-specific approach to integrate physiological accounts of this motor cortex microcircuit with the pathophysiology of neurodegenerative diseases affecting motor functions. In doing so we can begin to link motor microcircuit pathology to specific disease stages and clinical phenotypes. Based on microcircuit physiology, we can make future predictions of axonal loss and microcircuit dysfunction. With recent advances in high-resolution neuroimaging we can then test these predictions in humans in vivo, providing mechanistic insights into neurodegenerative disease.
Collapse
Affiliation(s)
- Peter McColgan
- Huntington's Disease Research Centre, UCL Institute of Neurology, University College London, London, UK.
| | - Julie Joubert
- Huntington's Disease Research Centre, UCL Institute of Neurology, University College London, London, UK
| | - Sarah J Tabrizi
- Huntington's Disease Research Centre, UCL Institute of Neurology, University College London, London, UK.,Dementia Research Institute at UCL, London, UK
| | - Geraint Rees
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, University College London, London, UK.,UCL Institute of Cognitive Neuroscience, University College London, London, UK
| |
Collapse
|
19
|
Polosecki P, Castro E, Rish I, Pustina D, Warner JH, Wood A, Sampaio C, Cecchi GA. Resting-state connectivity stratifies premanifest Huntington's disease by longitudinal cognitive decline rate. Sci Rep 2020; 10:1252. [PMID: 31988371 PMCID: PMC6985137 DOI: 10.1038/s41598-020-58074-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 01/10/2020] [Indexed: 11/17/2022] Open
Abstract
Patient stratification is critical for the sensitivity of clinical trials at early stages of neurodegenerative disorders. In Huntington’s disease (HD), genetic tests make cognitive, motor and brain imaging measurements possible before symptom manifestation (pre-HD). We evaluated pre-HD stratification models based on single visit resting-state functional MRI (rs-fMRI) data that assess observed longitudinal motor and cognitive change rates from the multisite Track-On HD cohort (74 pre-HD, 79 control participants). We computed longitudinal performance change on 10 tasks (including visits from the preceding TRACK-HD study when available), as well as functional connectivity density (FCD) maps in single rs-fMRI visits, which showed high test-retest reliability. We assigned pre-HD subjects to subgroups of fast, intermediate, and slow change along single tasks or combinations of them, correcting for expectations based on aging; and trained FCD-based classifiers to distinguish fast- from slow-progressing individuals. For robustness, models were validated across imaging sites. Stratification models distinguished fast- from slow-changing participants and provided continuous assessments of decline applicable to the whole pre-HD population, relying on previously-neglected white matter functional signals. These results suggest novel correlates of early deterioration and a robust stratification strategy where a single MRI measurement provides an estimate of multiple ongoing longitudinal changes.
Collapse
Affiliation(s)
- Pablo Polosecki
- IBM T.J. Watson Research Center, Yorktown Heights, Yorktown, NY, USA.
| | - Eduardo Castro
- IBM T.J. Watson Research Center, Yorktown Heights, Yorktown, NY, USA
| | - Irina Rish
- IBM T.J. Watson Research Center, Yorktown Heights, Yorktown, NY, USA
| | | | | | - Andrew Wood
- CHDI Management/CHDI Foundation, Princeton, NJ, USA
| | | | | |
Collapse
|
20
|
Pini L, Jacquemot C, Cagnin A, Meneghello F, Semenza C, Mantini D, Vallesi A. Aberrant brain network connectivity in presymptomatic and manifest Huntington's disease: A systematic review. Hum Brain Mapp 2019; 41:256-269. [PMID: 31532053 PMCID: PMC7268025 DOI: 10.1002/hbm.24790] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/29/2019] [Accepted: 08/26/2019] [Indexed: 12/12/2022] Open
Abstract
Resting‐state functional magnetic resonance imaging (rs‐fMRI) has the potential to shed light on the pathophysiological mechanisms of Huntington's disease (HD), paving the way to new therapeutic interventions. A systematic literature review was conducted in three online databases according to PRISMA guidelines, using keywords for HD, functional connectivity, and rs‐fMRI. We included studies investigating connectivity in presymptomatic (pre‐HD) and manifest HD gene carriers compared to healthy controls, implementing seed‐based connectivity, independent component analysis, regional property, and graph analysis approaches. Visual network showed reduced connectivity in manifest HD, while network/areas underpinning motor functions were consistently altered in both manifest HD and pre‐HD, showing disease stage‐dependent changes. Cognitive networks underlying executive and attentional functions showed divergent anterior–posterior alterations, possibly reflecting compensatory mechanisms. The involvement of these networks in pre‐HD is still unclear. In conclusion, aberrant connectivity of the sensory‐motor network is observed in the early stage of HD while, as pathology spreads, other networks might be affected, such as the visual and executive/attentional networks. Moreover, sensory‐motor and executive networks exhibit hyper‐ and hypo‐connectivity patterns following different spatiotemporal trajectories. These findings could potentially help to implement future huntingtin‐lowering interventions.
Collapse
Affiliation(s)
- Lorenzo Pini
- Department of Neuroscience & Padova Neuroscience Center, University of Padova, Padova, Italy
| | - Charlotte Jacquemot
- Département d'Etudes Cognitives, Ecole Normale Supérieure-PSL University, Paris, France.,Laboratoire de NeuroPsychologie Interventionnelle, Institut Mondor de Recherche Biomédicale, Institut National de la Santé et Recherche Médical (INSERM) U955, Equipe 01, Créteil, France.,Faculté de Médecine, Université Paris Est Créteil, Créteil, France
| | - Annachiara Cagnin
- Department of Neuroscience & Padova Neuroscience Center, University of Padova, Padova, Italy
| | - Francesca Meneghello
- Cognitive Neuroscience Research Group, IRCCS San Camillo Hospital, Venice, Italy
| | - Carlo Semenza
- Department of Neuroscience & Padova Neuroscience Center, University of Padova, Padova, Italy.,Cognitive Neuroscience Research Group, IRCCS San Camillo Hospital, Venice, Italy
| | - Dante Mantini
- Research Center for Motor Control and Neuroplasticity, KU Leuven, Leuven, Belgium.,Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, Venice, Italy
| | - Antonino Vallesi
- Department of Neuroscience & Padova Neuroscience Center, University of Padova, Padova, Italy.,Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, Venice, Italy
| |
Collapse
|
21
|
Johnson EB, Gregory S. Huntington's disease: Brain imaging in Huntington's disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 165:321-369. [PMID: 31481169 DOI: 10.1016/bs.pmbts.2019.04.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Huntington's disease (HD) gene-carriers show prominent neuronal loss by end-stage disease, and the use of magnetic resonance imaging (MRI) has been increasingly used to quantify brain changes during earlier stages of the disease. MRI offers an in vivo method of measuring structural and functional brain change. The images collected via MRI are processed to measure different anatomical features, such as brain volume, macro- and microstructural changes within white matter and functional brain activity. Structural imaging has demonstrated significant volume loss across multiple white and gray matter regions in HD, particularly within subcortical structures. There also appears to be increasing disorganization of white matter tracts and between-region connectivity with increasing disease progression. Finally, functional changes are thought to represent changes in brain activity underlying compensatory mechanisms in HD. This chapter will provide an overview of the principles of MRI and practicalities associated with using MRI in HD studies, and summarize findings from MRI studies investigating brain structure and function in HD.
Collapse
Affiliation(s)
- Eileanoir B Johnson
- Huntington's Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Sarah Gregory
- Huntington's Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.
| |
Collapse
|
22
|
Functional Magnetic Resonance Imaging in Huntington's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 142:381-408. [PMID: 30409260 DOI: 10.1016/bs.irn.2018.09.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Huntington's disease is an inherited neurodegenerative condition characterized by motor dysfunction, cognitive impairment and neuropsychiatric disturbance. The effects of the underlying pathology on brain morphology are relatively well understood. Numerous structural Magnetic Resonance Imaging (MRI) studies have demonstrated macrostructural change with widespread striatal and cortical atrophy and microstructural white matter loss in premanifest and manifest HD gene carriers. However, disease effects on brain function are less well characterized. Functional MRI provides an opportunity to examine differences in brain activity either in response to a particular task or in the brain at rest. There is increasing evidence that HD gene carriers exhibit altered activation patterns and functional connectivity between brain regions in response to the neurodegenerative process. Here we review the growing literature in this area and critically evaluate the utility of this imaging modality.
Collapse
|
23
|
Casula EP, Mayer IMS, Desikan M, Tabrizi SJ, Rothwell JC, Orth M. Motor cortex synchronization influences the rhythm of motor performance in premanifest huntington's disease. Mov Disord 2018; 33:440-448. [PMID: 29356133 DOI: 10.1002/mds.27285] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/17/2017] [Accepted: 12/10/2017] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND In Huntington's disease there is evidence of structural damage in the motor system, but it is still unclear how to link this to the behavioral disorder of movement. One feature of choreic movement is variable timing and coordination between sequences of actions. We postulate this results from desynchronization of neural activity in cortical motor areas. OBJECTIVES The objective of this study was to explore the ability to synchronize activity in a motor network using transcranial magnetic stimulation and to relate this to timing of motor performance. METHODS We examined synchronization in oscillatory activity of cortical motor areas in response to an external input produced by a pulse of transcranial magnetic stimulation. We combined this with EEG to compare the response of 16 presymptomatic Huntington's disease participants with 16 age-matched healthy volunteers to test whether the strength of synchronization relates to the variability of motor performance at the following 2 tasks: a grip force task and a speeded-tapping task. RESULTS Phase synchronization in response to M1 stimulation was lower in Huntington's disease than healthy volunteers (P < .01), resulting in a reduced cortical activity at global (P < .02) and local levels (P < .01). Participants who showed better timed motor performance also showed stronger oscillatory synchronization (r = -0.356; P < .05) and higher cortical activity (r = -0.393; P < .05). CONCLUSIONS Our data may model the ability of the motor command to respond to more subtle, physiological inputs from other brain areas. This novel insight indicates that impairments of the timing accuracy of synchronization and desynchronization could be a physiological basis for some key clinical features of Huntington's disease. © 2018 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Elias P Casula
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, UK
| | - Isabella M S Mayer
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, UK
- Department of Neurology, Ulm University Hospital, Ulm, Germany
| | - Mahalekshmi Desikan
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, UK
| | - Sarah J Tabrizi
- Huntington's Disease Research Centre, University College London Institute of Neurology, London, UK
| | - John C Rothwell
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, UK
| | - Michael Orth
- Department of Neurology, Ulm University Hospital, Ulm, Germany
| |
Collapse
|
24
|
Johnson EB, Byrne LM, Gregory S, Rodrigues FB, Blennow K, Durr A, Leavitt BR, Roos RA, Zetterberg H, Tabrizi SJ, Scahill RI, Wild EJ. Neurofilament light protein in blood predicts regional atrophy in Huntington disease. Neurology 2018; 90:e717-e723. [PMID: 29367444 PMCID: PMC5818166 DOI: 10.1212/wnl.0000000000005005] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/28/2017] [Indexed: 12/03/2022] Open
Abstract
OBJECTIVE Neurofilament light (NfL) protein in blood plasma has been proposed as a prognostic biomarker of neurodegeneration in a number of conditions, including Huntington disease (HD). This study investigates the regional distribution of NfL-associated neural pathology in HD gene expansion carriers. METHODS We examined associations between NfL measured in plasma and regionally specific atrophy in cross-sectional (n = 198) and longitudinal (n = 177) data in HD gene expansion carriers from the international multisite TRACK-HD study. Using voxel-based morphometry, we measured associations between baseline NfL levels and both baseline gray matter and white matter volume; and longitudinal change in gray matter and white matter over the subsequent 3 years in HD gene expansion carriers. RESULTS After controlling for demographics, associations between increased NfL levels and reduced brain volume were seen in cortical and subcortical gray matter and within the white matter. After also controlling for known predictors of disease progression (age and CAG repeat length), associations were limited to the caudate and putamen. Longitudinally, NfL predicted subsequent occipital gray matter atrophy and widespread white matter reduction, both before and after correction for other predictors of disease progression. CONCLUSIONS These findings highlight the value of NfL as a dynamic marker of brain atrophy and, more generally, provide further evidence of the strong association between plasma NfL level, a candidate blood biomarker, and pathologic neuronal change.
Collapse
Affiliation(s)
- Eileanoir B Johnson
- From the Huntington's Disease Research Centre (E.B.J., L.M.B., S.G., F.B.R., S.J.T., R.I.S., E.J.W.), UCL Institute of Neurology, London, UK; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; Institut du Cerveau et de la Moelle épinière (A.D.), Sorbonne Universités, UPMC University Paris 06, UMRS 1127, INSERM, U 1127, CNRS, UMR 7225; APHP (A.D.), Genetics Department, Pitié-Salpêtrière University Hospital, Paris, France; Centre for Molecular Medicine and Therapeutics (B.R.L.), University of British Columbia, Vancouver, BC, Canada; Department of Neurology (R.A.R.), Leiden University, the Netherlands; Department of Molecular Neuroscience (H.Z.), UCL Institute of Neurology, Queen Square, London, UK; Department of Psychiatry and Neurochemistry (H.Z.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; and UK Dementia Research Institute (H.Z.), London, UK
| | - Lauren M Byrne
- From the Huntington's Disease Research Centre (E.B.J., L.M.B., S.G., F.B.R., S.J.T., R.I.S., E.J.W.), UCL Institute of Neurology, London, UK; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; Institut du Cerveau et de la Moelle épinière (A.D.), Sorbonne Universités, UPMC University Paris 06, UMRS 1127, INSERM, U 1127, CNRS, UMR 7225; APHP (A.D.), Genetics Department, Pitié-Salpêtrière University Hospital, Paris, France; Centre for Molecular Medicine and Therapeutics (B.R.L.), University of British Columbia, Vancouver, BC, Canada; Department of Neurology (R.A.R.), Leiden University, the Netherlands; Department of Molecular Neuroscience (H.Z.), UCL Institute of Neurology, Queen Square, London, UK; Department of Psychiatry and Neurochemistry (H.Z.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; and UK Dementia Research Institute (H.Z.), London, UK
| | - Sarah Gregory
- From the Huntington's Disease Research Centre (E.B.J., L.M.B., S.G., F.B.R., S.J.T., R.I.S., E.J.W.), UCL Institute of Neurology, London, UK; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; Institut du Cerveau et de la Moelle épinière (A.D.), Sorbonne Universités, UPMC University Paris 06, UMRS 1127, INSERM, U 1127, CNRS, UMR 7225; APHP (A.D.), Genetics Department, Pitié-Salpêtrière University Hospital, Paris, France; Centre for Molecular Medicine and Therapeutics (B.R.L.), University of British Columbia, Vancouver, BC, Canada; Department of Neurology (R.A.R.), Leiden University, the Netherlands; Department of Molecular Neuroscience (H.Z.), UCL Institute of Neurology, Queen Square, London, UK; Department of Psychiatry and Neurochemistry (H.Z.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; and UK Dementia Research Institute (H.Z.), London, UK
| | - Filipe B Rodrigues
- From the Huntington's Disease Research Centre (E.B.J., L.M.B., S.G., F.B.R., S.J.T., R.I.S., E.J.W.), UCL Institute of Neurology, London, UK; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; Institut du Cerveau et de la Moelle épinière (A.D.), Sorbonne Universités, UPMC University Paris 06, UMRS 1127, INSERM, U 1127, CNRS, UMR 7225; APHP (A.D.), Genetics Department, Pitié-Salpêtrière University Hospital, Paris, France; Centre for Molecular Medicine and Therapeutics (B.R.L.), University of British Columbia, Vancouver, BC, Canada; Department of Neurology (R.A.R.), Leiden University, the Netherlands; Department of Molecular Neuroscience (H.Z.), UCL Institute of Neurology, Queen Square, London, UK; Department of Psychiatry and Neurochemistry (H.Z.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; and UK Dementia Research Institute (H.Z.), London, UK
| | - Kaj Blennow
- From the Huntington's Disease Research Centre (E.B.J., L.M.B., S.G., F.B.R., S.J.T., R.I.S., E.J.W.), UCL Institute of Neurology, London, UK; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; Institut du Cerveau et de la Moelle épinière (A.D.), Sorbonne Universités, UPMC University Paris 06, UMRS 1127, INSERM, U 1127, CNRS, UMR 7225; APHP (A.D.), Genetics Department, Pitié-Salpêtrière University Hospital, Paris, France; Centre for Molecular Medicine and Therapeutics (B.R.L.), University of British Columbia, Vancouver, BC, Canada; Department of Neurology (R.A.R.), Leiden University, the Netherlands; Department of Molecular Neuroscience (H.Z.), UCL Institute of Neurology, Queen Square, London, UK; Department of Psychiatry and Neurochemistry (H.Z.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; and UK Dementia Research Institute (H.Z.), London, UK
| | - Alexandra Durr
- From the Huntington's Disease Research Centre (E.B.J., L.M.B., S.G., F.B.R., S.J.T., R.I.S., E.J.W.), UCL Institute of Neurology, London, UK; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; Institut du Cerveau et de la Moelle épinière (A.D.), Sorbonne Universités, UPMC University Paris 06, UMRS 1127, INSERM, U 1127, CNRS, UMR 7225; APHP (A.D.), Genetics Department, Pitié-Salpêtrière University Hospital, Paris, France; Centre for Molecular Medicine and Therapeutics (B.R.L.), University of British Columbia, Vancouver, BC, Canada; Department of Neurology (R.A.R.), Leiden University, the Netherlands; Department of Molecular Neuroscience (H.Z.), UCL Institute of Neurology, Queen Square, London, UK; Department of Psychiatry and Neurochemistry (H.Z.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; and UK Dementia Research Institute (H.Z.), London, UK
| | - Blair R Leavitt
- From the Huntington's Disease Research Centre (E.B.J., L.M.B., S.G., F.B.R., S.J.T., R.I.S., E.J.W.), UCL Institute of Neurology, London, UK; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; Institut du Cerveau et de la Moelle épinière (A.D.), Sorbonne Universités, UPMC University Paris 06, UMRS 1127, INSERM, U 1127, CNRS, UMR 7225; APHP (A.D.), Genetics Department, Pitié-Salpêtrière University Hospital, Paris, France; Centre for Molecular Medicine and Therapeutics (B.R.L.), University of British Columbia, Vancouver, BC, Canada; Department of Neurology (R.A.R.), Leiden University, the Netherlands; Department of Molecular Neuroscience (H.Z.), UCL Institute of Neurology, Queen Square, London, UK; Department of Psychiatry and Neurochemistry (H.Z.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; and UK Dementia Research Institute (H.Z.), London, UK
| | - Raymund A Roos
- From the Huntington's Disease Research Centre (E.B.J., L.M.B., S.G., F.B.R., S.J.T., R.I.S., E.J.W.), UCL Institute of Neurology, London, UK; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; Institut du Cerveau et de la Moelle épinière (A.D.), Sorbonne Universités, UPMC University Paris 06, UMRS 1127, INSERM, U 1127, CNRS, UMR 7225; APHP (A.D.), Genetics Department, Pitié-Salpêtrière University Hospital, Paris, France; Centre for Molecular Medicine and Therapeutics (B.R.L.), University of British Columbia, Vancouver, BC, Canada; Department of Neurology (R.A.R.), Leiden University, the Netherlands; Department of Molecular Neuroscience (H.Z.), UCL Institute of Neurology, Queen Square, London, UK; Department of Psychiatry and Neurochemistry (H.Z.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; and UK Dementia Research Institute (H.Z.), London, UK
| | - Henrik Zetterberg
- From the Huntington's Disease Research Centre (E.B.J., L.M.B., S.G., F.B.R., S.J.T., R.I.S., E.J.W.), UCL Institute of Neurology, London, UK; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; Institut du Cerveau et de la Moelle épinière (A.D.), Sorbonne Universités, UPMC University Paris 06, UMRS 1127, INSERM, U 1127, CNRS, UMR 7225; APHP (A.D.), Genetics Department, Pitié-Salpêtrière University Hospital, Paris, France; Centre for Molecular Medicine and Therapeutics (B.R.L.), University of British Columbia, Vancouver, BC, Canada; Department of Neurology (R.A.R.), Leiden University, the Netherlands; Department of Molecular Neuroscience (H.Z.), UCL Institute of Neurology, Queen Square, London, UK; Department of Psychiatry and Neurochemistry (H.Z.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; and UK Dementia Research Institute (H.Z.), London, UK
| | - Sarah J Tabrizi
- From the Huntington's Disease Research Centre (E.B.J., L.M.B., S.G., F.B.R., S.J.T., R.I.S., E.J.W.), UCL Institute of Neurology, London, UK; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; Institut du Cerveau et de la Moelle épinière (A.D.), Sorbonne Universités, UPMC University Paris 06, UMRS 1127, INSERM, U 1127, CNRS, UMR 7225; APHP (A.D.), Genetics Department, Pitié-Salpêtrière University Hospital, Paris, France; Centre for Molecular Medicine and Therapeutics (B.R.L.), University of British Columbia, Vancouver, BC, Canada; Department of Neurology (R.A.R.), Leiden University, the Netherlands; Department of Molecular Neuroscience (H.Z.), UCL Institute of Neurology, Queen Square, London, UK; Department of Psychiatry and Neurochemistry (H.Z.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; and UK Dementia Research Institute (H.Z.), London, UK
| | - Rachael I Scahill
- From the Huntington's Disease Research Centre (E.B.J., L.M.B., S.G., F.B.R., S.J.T., R.I.S., E.J.W.), UCL Institute of Neurology, London, UK; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; Institut du Cerveau et de la Moelle épinière (A.D.), Sorbonne Universités, UPMC University Paris 06, UMRS 1127, INSERM, U 1127, CNRS, UMR 7225; APHP (A.D.), Genetics Department, Pitié-Salpêtrière University Hospital, Paris, France; Centre for Molecular Medicine and Therapeutics (B.R.L.), University of British Columbia, Vancouver, BC, Canada; Department of Neurology (R.A.R.), Leiden University, the Netherlands; Department of Molecular Neuroscience (H.Z.), UCL Institute of Neurology, Queen Square, London, UK; Department of Psychiatry and Neurochemistry (H.Z.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; and UK Dementia Research Institute (H.Z.), London, UK
| | - Edward J Wild
- From the Huntington's Disease Research Centre (E.B.J., L.M.B., S.G., F.B.R., S.J.T., R.I.S., E.J.W.), UCL Institute of Neurology, London, UK; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; Institut du Cerveau et de la Moelle épinière (A.D.), Sorbonne Universités, UPMC University Paris 06, UMRS 1127, INSERM, U 1127, CNRS, UMR 7225; APHP (A.D.), Genetics Department, Pitié-Salpêtrière University Hospital, Paris, France; Centre for Molecular Medicine and Therapeutics (B.R.L.), University of British Columbia, Vancouver, BC, Canada; Department of Neurology (R.A.R.), Leiden University, the Netherlands; Department of Molecular Neuroscience (H.Z.), UCL Institute of Neurology, Queen Square, London, UK; Department of Psychiatry and Neurochemistry (H.Z.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; and UK Dementia Research Institute (H.Z.), London, UK.
| |
Collapse
|
25
|
Garcia‐Gorro C, de Diego‐Balaguer R, Martínez‐Horta S, Pérez‐Pérez J, Kulisevsky J, Rodríguez‐Dechicha N, Vaquer I, Subira S, Calopa M, Muñoz E, Santacruz P, Ruiz‐Idiago J, Mareca C, Caballol N, Camara E. Reduced striato-cortical and inhibitory transcallosal connectivity in the motor circuit of Huntington's disease patients. Hum Brain Mapp 2018; 39:54-71. [PMID: 28990240 PMCID: PMC6866479 DOI: 10.1002/hbm.23813] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 08/25/2017] [Accepted: 09/05/2017] [Indexed: 12/13/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder which is primarily associated with striatal degeneration. However, the alterations in connectivity of this structure in HD have been underinvestigated. In this study, we analyzed the functional and structural connectivity of the left putamen, while participants performed a finger-tapping task. Using fMRI and DW-MRI, 30 HD gene expansion carriers (HDGEC) and 29 healthy participants were scanned. Psychophysiological interaction analysis and DTI-based tractography were employed to examine functional and structural connectivity, respectively. Manifest HDGEC exhibited a reduced functional connectivity of the left putamen with the left and the right primary sensorimotor areas (SM1). Based on this result, the inhibitory functional connectivity between the left SM1 and the right SM1 was explored, appearing to be also decreased. In addition, the tract connecting these areas (motor corpus callosum), and the tract connecting the left putamen with the left SM1 appeared disrupted in HDGEC compared to controls. Significant correlations were found between measures of functional and structural connectivity of the motor corpus callosum, showing a coupling of both types of alterations in this tract. The observed reduction of functional and structural connectivity was associated with worse motor scores, which highlights the clinical relevance of these results. Hum Brain Mapp 39:54-71, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Clara Garcia‐Gorro
- Cognition and Brain Plasticity UnitIDIBELL (Institut d'Investigació Biomèdica de Bellvitge), L'Hospitalet de LlobregatBarcelonaSpain
- Department of Cognition, Development and Educational PsychologyUniversity of BarcelonaBarcelonaSpain
| | - Ruth de Diego‐Balaguer
- Cognition and Brain Plasticity UnitIDIBELL (Institut d'Investigació Biomèdica de Bellvitge), L'Hospitalet de LlobregatBarcelonaSpain
- Department of Cognition, Development and Educational PsychologyUniversity of BarcelonaBarcelonaSpain
- The Institute of Neurosciences of the University of BarcelonaBarcelonaSpain
- ICREA (Catalan Institute for Research and Advanced Studies)BarcelonaSpain
| | - Saul Martínez‐Horta
- Movement Disorders Unit, Department of NeurologyBiomedical Research Institute Sant Pau (IIB‐Sant Pau), Hospital de la Santa Creu i Sant PauBarcelonaSpain
- CIBERNED (Center for Networked Biomedical Research on Neurodegenerative Diseases), Carlos III InstituteMadridSpain
| | - Jesus Pérez‐Pérez
- Movement Disorders Unit, Department of NeurologyBiomedical Research Institute Sant Pau (IIB‐Sant Pau), Hospital de la Santa Creu i Sant PauBarcelonaSpain
- CIBERNED (Center for Networked Biomedical Research on Neurodegenerative Diseases), Carlos III InstituteMadridSpain
| | - Jaime Kulisevsky
- Movement Disorders Unit, Department of NeurologyBiomedical Research Institute Sant Pau (IIB‐Sant Pau), Hospital de la Santa Creu i Sant PauBarcelonaSpain
- CIBERNED (Center for Networked Biomedical Research on Neurodegenerative Diseases), Carlos III InstituteMadridSpain
- Universidad Autónoma de BarcelonaBarcelonaSpain
| | | | - Irene Vaquer
- Hestia Duran i Reynals, Hospital Duran i Reynals, Hospitalet de LlobregatBarcelonaSpain
| | - Susana Subira
- Hestia Duran i Reynals, Hospital Duran i Reynals, Hospitalet de LlobregatBarcelonaSpain
- Department of Clinical and Health PsychologyUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - Matilde Calopa
- Movement Disorders Unit, Neurology Service, Hospital Universitari de Bellvitge, L'Hospitalet de LlobregatBarcelonaSpain
| | - Esteban Muñoz
- Movement Disorders Unit, Neurology Service, Hospital ClínicBarcelonaSpain
- IDIBAPS (Institut d'Investigacions Biomèdiques August Pi i Sunyer)BarcelonaSpain
- Facultat de medicina, University of BarcelonaBarcelonaSpain
| | - Pilar Santacruz
- Movement Disorders Unit, Neurology Service, Hospital ClínicBarcelonaSpain
| | | | | | - Nuria Caballol
- Hospital de Sant Joan Despí Moisès Broggi, Sant Joan DespíBarcelonaSpain
| | - Estela Camara
- Cognition and Brain Plasticity UnitIDIBELL (Institut d'Investigació Biomèdica de Bellvitge), L'Hospitalet de LlobregatBarcelonaSpain
- Department of Cognition, Development and Educational PsychologyUniversity of BarcelonaBarcelonaSpain
| |
Collapse
|
26
|
Minkova L, Gregory S, Scahill RI, Abdulkadir A, Kaller CP, Peter J, Long JD, Stout JC, Reilmann R, Roos RA, Durr A, Leavitt BR, Tabrizi SJ, Klöppel S. Cross-sectional and longitudinal voxel-based grey matter asymmetries in Huntington's disease. Neuroimage Clin 2017; 17:312-324. [PMID: 29527479 PMCID: PMC5842644 DOI: 10.1016/j.nicl.2017.10.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 10/18/2017] [Accepted: 10/23/2017] [Indexed: 11/22/2022]
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disorder that can be genetically confirmed with certainty decades before clinical onset. This allows the investigation of functional and structural changes in HD many years prior to disease onset, which may reveal important mechanistic insights into brain function, structure and organization in general. While regional atrophy is present at early stages of HD, it is still unclear if both hemispheres are equally affected by neurodegeneration and how the extent of asymmetry affects domain-specific functional decline. Here, we used whole-brain voxel-based analysis to investigate cross-sectional and longitudinal hemispheric asymmetries in grey matter (GM) volume in 56 manifest HD (mHD), 83 pre-manifest HD (preHD), and 80 healthy controls (HC). Furthermore, a regression analysis was used to assess the relationship between neuroanatomical asymmetries and decline in motor and cognitive measures across the disease spectrum. The cross-sectional analysis showed striatal leftward-biased GM atrophy in mHD, but not in preHD, relative to HC. Longitudinally, no net 36-month change in GM asymmetries was found in any of the groups. In the regression analysis, HD-related decline in quantitative-motor (Q-Motor) performance was linked to lower GM volume in the left superior parietal cortex. These findings suggest a stronger disease effect targeting the left hemisphere, especially in those with declining motor performance. This effect did not change over a period of three years and may indicate a compensatory role of the right hemisphere in line with recent functional imaging studies.
Collapse
Affiliation(s)
- Lora Minkova
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Freiburg, Germany; Freiburg Brain Imaging Center, Medical Center - University of Freiburg, Germany; Department of Psychology, Laboratory for Biological and Personality Psychology, University of Freiburg, Freiburg, Germany.
| | - Sarah Gregory
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London, UK
| | - Rachael I Scahill
- Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, UK
| | - Ahmed Abdulkadir
- Department of Computer Science, University of Freiburg, Freiburg, Germany; University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Christoph P Kaller
- Freiburg Brain Imaging Center, Medical Center - University of Freiburg, Germany; Department of Neurology, Medical Center - University of Freiburg, Freiburg, Germany; BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Freiburg, Germany
| | - Jessica Peter
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Freiburg, Germany; University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Jeffrey D Long
- Department of Psychiatry, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA; Department of Biostatistics, College of Public Health, The University of Iowa, Iowa City, IA, USA
| | - Julie C Stout
- School of Psychology and Psychiatry, Monash University, Victoria, Australia
| | - Ralf Reilmann
- George-Huntington-Institute, Münster, Germany; Department of Radiology, University of Münster, Münster, Germany; Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Raymund A Roos
- Department of Neurology, Leiden University Medical Centre, Leiden, Netherlands
| | - Alexandra Durr
- APHP Department of Genetics, ICM (Brain and Spine Institute) Pitié-Salpêtrière University Hospital Paris, France
| | - Blair R Leavitt
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Sarah J Tabrizi
- Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, UK
| | - Stefan Klöppel
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Freiburg, Germany; University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| |
Collapse
|
27
|
Birba A, García-Cordero I, Kozono G, Legaz A, Ibáñez A, Sedeño L, García AM. Losing ground: Frontostriatal atrophy disrupts language embodiment in Parkinson’s and Huntington’s disease. Neurosci Biobehav Rev 2017; 80:673-687. [DOI: 10.1016/j.neubiorev.2017.07.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 12/13/2022]
|