1
|
Tenchov R, Sasso JM, Zhou QA. Evolving Landscape of Parkinson's Disease Research: Challenges and Perspectives. ACS OMEGA 2025; 10:1864-1892. [PMID: 39866628 PMCID: PMC11755173 DOI: 10.1021/acsomega.4c09114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/22/2024] [Accepted: 12/30/2024] [Indexed: 01/28/2025]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder that primarily affects movement. It occurs due to a gradual deficit of dopamine-producing brain cells, particularly in the substantia nigra. The precise etiology of PD is not fully understood, but it likely involves a combination of genetic and environmental factors. The therapies available at present alleviate symptoms but do not stop the disease's advancement. Research endeavors are currently directed at inventing disease-controlling therapies that aim at the inherent mechanisms of PD. PD biomarker breakthroughs hold enormous potential: earlier diagnosis, better monitoring, and targeted treatment based on individual response could significantly improve patient outcomes and ease the burden of this disease. PD research is an active and evolving field, focusing on understanding disease mechanisms, identifying biomarkers, developing new treatments, and improving care. In this report, we explore data from the CAS Content Collection to outline the research progress in PD. We analyze the publication landscape to offer perspective into the latest expertise advancements. Key emerging concepts are reviewed and strategies to fight disease evaluated. Pharmacological targets, genetic risk factors, as well as comorbid diseases are explored, and clinical usage of products against PD with their production pipelines and trials for drug repurposing are examined. This review aims to offer a comprehensive overview of the advancing landscape of the current understanding about PD, to define challenges, and to assess growth prospects to stimulate efforts in battling the disease.
Collapse
Affiliation(s)
- Rumiana Tenchov
- CAS, a division of the American Chemical
Society, Columbus, Ohio 43210, United States
| | - Janet M. Sasso
- CAS, a division of the American Chemical
Society, Columbus, Ohio 43210, United States
| | | |
Collapse
|
2
|
Tassone A, Meringolo M, Ponterio G, Bonsi P, Schirinzi T, Martella G. Mitochondrial Bioenergy in Neurodegenerative Disease: Huntington and Parkinson. Int J Mol Sci 2023; 24:ijms24087221. [PMID: 37108382 PMCID: PMC10138549 DOI: 10.3390/ijms24087221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Strong evidence suggests a correlation between degeneration and mitochondrial deficiency. Typical cases of degeneration can be observed in physiological phenomena (i.e., ageing) as well as in neurological neurodegenerative diseases and cancer. All these pathologies have the dyshomeostasis of mitochondrial bioenergy as a common denominator. Neurodegenerative diseases show bioenergetic imbalances in their pathogenesis or progression. Huntington's chorea and Parkinson's disease are both neurodegenerative diseases, but while Huntington's disease is genetic and progressive with early manifestation and severe penetrance, Parkinson's disease is a pathology with multifactorial aspects. Indeed, there are different types of Parkinson/Parkinsonism. Many forms are early-onset diseases linked to gene mutations, while others could be idiopathic, appear in young adults, or be post-injury senescence conditions. Although Huntington's is defined as a hyperkinetic disorder, Parkinson's is a hypokinetic disorder. However, they both share a lot of similarities, such as neuronal excitability, the loss of striatal function, psychiatric comorbidity, etc. In this review, we will describe the start and development of both diseases in relation to mitochondrial dysfunction. These dysfunctions act on energy metabolism and reduce the vitality of neurons in many different brain areas.
Collapse
Affiliation(s)
- Annalisa Tassone
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| | - Maria Meringolo
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
- Saint Camillus International University of Health and Medical Sciences, 00131 Rome, Italy
| | - Giulia Ponterio
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| | - Paola Bonsi
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| | - Tommaso Schirinzi
- Unit of Neurology, Department of Systems Medicine, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Giuseppina Martella
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| |
Collapse
|
3
|
Kulkarni A, Preeti K, Tryphena KP, Srivastava S, Singh SB, Khatri DK. Proteostasis in Parkinson's disease: Recent development and possible implication in diagnosis and therapeutics. Ageing Res Rev 2023; 84:101816. [PMID: 36481490 DOI: 10.1016/j.arr.2022.101816] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/27/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
The protein dyshomeostasis is identified as the hallmark of many age-related neurodegenerative disorders including Parkinson's disease (PD). The diseased brain shows the deposition of Lewy bodies composed of α-synuclein protein aggregates. Functional proteostasis is characterized by the well-coordinated signaling network constituting unfolded protein response (UPR), the ubiquitin-proteasome system (UPS), and the autophagy-lysosome pathway (ALP). These networks ensure proper synthesis, folding, confirmation, and degradation of protein i.e., α-synuclein protein in PD. The proper functioning the of intricately woven proteostasis network is quite resilient to sustain under the influence of stressors. The synuclein protein turnover is hugely influenced by the autosomal dominant, recessive, and X-linked mutational changes of a gene involved in UPR, UPS, and ALP. The methylation, acetylation-related epigenetic modifications of DNA and histone proteins along with microRNA-mediated transcriptional changes also lead to extensive proteostasis dysregulation. The result of defective proteostasis is the deposition of many proteins which start appearing in the biofluids and can be identified as potential biomarkers for early diagnosis of PD. The therapeutic intervention targeted at different strata of proteostasis machinery holds great possibilities for delaying the age-related accumulation of pathological hallmarks.
Collapse
Affiliation(s)
- Amrita Kulkarni
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education, and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Kumari Preeti
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education, and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Kamatham Pushpa Tryphena
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education, and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Shashi Bala Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education, and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Dharmendra Kumar Khatri
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education, and Research (NIPER), Hyderabad, Telangana 500037, India.
| |
Collapse
|
4
|
Tabata F, Wada Y, Kawakami S, Tamakoshi A, Miyaji K. A Methodological Basis for Estimating Human Mercaptalbumin in Serum and Plasma Using a Thiol-Binding Resin. J Nutr Sci Vitaminol (Tokyo) 2023; 69:340-346. [PMID: 37940574 DOI: 10.3177/jnsv.69.340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Human serum albumin is categorized into human mercaptalbumin (HMA) and human non-mercaptalbumin (HNA), according to the redox state of the cysteine residue at position 34. The ratio of HMA to total albumin (%HMA) is a novel biomarker of oxidative stress as well as protein nutritional status, but measuring %HMA normally requires an expensive analyzer such as HPLC and LC-MS, and can hardly be conducted in many clinical sites. To address this issue, we aimed to develop a methodological basis for estimating %HMA without these analyzers. An analytical method was investigated consisting of three steps, i.e., 1) removal of HMA from serum or plasma by using a thiol-binding resin (i.e., thereby obtaining a HNA fraction), 2) determination of both total albumin and HNA concentrations by a colorimetric assay or ELISA, and 3) calculation of %HMA. Proof-of-concept experiments, using serum and plasma samples of 4 adult volunteers, showed that the estimated value of %HMA obtained by this analytical method was significantly correlated with the theoretical value of %HMA determined by HPLC. The subsequent validation experiment, using 86 serum samples of pregnant women in the Japanese participants of SMILE Iwamizawa, also confirmed the significant association between the estimated and theoretical values of %HMA. This analytical method can be a basis to determine %HMA without using HPLC or LC-MS, contributing to the universalization of %HMA measurement as a clinical test.
Collapse
Affiliation(s)
- Fuka Tabata
- Hearth Care & Nutritional Science Institute, Morinaga Milk Industry Co., Ltd
- Center for Food and Medical Innovation Promotion, Institute for the Promotion of Business-Regional Collaboration of Hokkaido University
| | - Yasuaki Wada
- Innovative Research Institute, Morinaga Milk Industry Co., Ltd
| | - Satomi Kawakami
- Hearth Care & Nutritional Science Institute, Morinaga Milk Industry Co., Ltd
- Center for Food and Medical Innovation Promotion, Institute for the Promotion of Business-Regional Collaboration of Hokkaido University
| | | | - Kazuhiro Miyaji
- Hearth Care & Nutritional Science Institute, Morinaga Milk Industry Co., Ltd
| |
Collapse
|
5
|
Yi S, Wang L, Wang H, Ho MS, Zhang S. Pathogenesis of α-Synuclein in Parkinson's Disease: From a Neuron-Glia Crosstalk Perspective. Int J Mol Sci 2022; 23:14753. [PMID: 36499080 PMCID: PMC9739123 DOI: 10.3390/ijms232314753] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder. The classical behavioral defects of PD patients involve motor symptoms such as bradykinesia, tremor, and rigidity, as well as non-motor symptoms such as anosmia, depression, and cognitive impairment. Pathologically, the progressive loss of dopaminergic (DA) neurons in the substantia nigra (SN) and the accumulation of α-synuclein (α-syn)-composed Lewy bodies (LBs) and Lewy neurites (LNs) are key hallmarks. Glia are more than mere bystanders that simply support neurons, they actively contribute to almost every aspect of neuronal development and function; glial dysregulation has been implicated in a series of neurodegenerative diseases including PD. Importantly, amounting evidence has added glial activation and neuroinflammation as new features of PD onset and progression. Thus, gaining a better understanding of glia, especially neuron-glia crosstalk, will not only provide insight into brain physiology events but also advance our knowledge of PD pathologies. This review addresses the current understanding of α-syn pathogenesis in PD, with a focus on neuron-glia crosstalk. Particularly, the transmission of α-syn between neurons and glia, α-syn-induced glial activation, and feedbacks of glial activation on DA neuron degeneration are thoroughly discussed. In addition, α-syn aggregation, iron deposition, and glial activation in regulating DA neuron ferroptosis in PD are covered. Lastly, we summarize the preclinical and clinical therapies, especially targeting glia, in PD treatments.
Collapse
Affiliation(s)
| | | | | | - Margaret S. Ho
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Shiping Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
6
|
Abstract
The role of albumin in Parkinson disease (PD) is not well understood, our study will investigate the association between the serum albumin level and risk of dementia, motor impairment, as well as survival outcome in PD. Data were obtained from the publicly available dataset in the DRYAD database (https://datadryad.org/). The original prospective study enrolled patients with PD from a single center in Japan between March 2004 and November 2007. Due to missing values, 242 and 274 participants were included in the study, in which we aimed to, respectively, analyze the relationship between serum albumin and cognitive function as well as motor impairment; additionally, 264 participants were included to assess the association between baseline serum albumin levels and risk of PD-related death with a median follow-up of 5.24 years. Compared to patients of the low tertile of albumin levels, Mini-Mental State Examination (MMSE) of patients of middle tertile increased 2.09 [95% confidence interval (CI) (0.45, 3.73), P = .013], independent of age, sex, PD duration, modified Hoehn-Yahr (mHY) stage, C-reactive protein (CRP) level, and use of nonsteroidal anti-inflammatory drugs (NSAIDs). Further analysis revealed a positive curvilinear association between albumin and MMSE, with cutoff values of 3.9. As concentration serum albumin increased, the risk of severe motor impairment was grown [odds ratio (OR) 0.34 (95% CI 0.14,0.8), P = .013] after adjustment by age, sex, PD duration, MMSE scores, CRP level, and use of NSAIDs. Albumin levels increased per unit of mg/dL, and the risk of PD-related death reduced 0.74-fold with 95% CI (0.15, 0.86) (P = .021), independent of age, sex, PD disease duration, mHY stage, CRP levels, use of NSAIDs, and MMSE. Higher serum albumin levels were significantly association with the better cognitive function when albumin was <3.9 mg/dL, and played a protective role in severe motor impairment and PD-related death.
Collapse
Affiliation(s)
- Shujun Sun
- Department of Neurology, The Frist People’s Hospital of Changde City, Changde, Hunan 415003, China
- * Correspondence: Shujun Sun, Department of Neurology, The Frist People’s Hospital of Changde City, Changde, Hunan 415003, China (e-mail: )
| | - Yiyong Wen
- Department of General Practice, The Frist People’s Hospital of Changde City, Changde, Hunan 415003, China
| | - Yandeng Li
- Department of Neurology, The Frist People’s Hospital of Changde City, Changde, Hunan 415003, China
| |
Collapse
|
7
|
A simple colorimetric assay to determine the concentration and proportion of human mercaptalbumin. Pract Lab Med 2022; 31:e00281. [PMID: 35711386 PMCID: PMC9192801 DOI: 10.1016/j.plabm.2022.e00281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/26/2022] [Accepted: 05/16/2022] [Indexed: 12/13/2022] Open
Abstract
Objectives Design and methods Results Conclusions Concentrations of the reduced form of human serum albumin (human mercaptalbumin) were measured by a colorimetric assay using Michler's Hydrol. The assay uses the total thiol concentration to approximate the human mercaptalbumin concentration. Accuracy was improved by alkylating part of the samples and canceling the contribution of the non-thiol component to the colorimetric changes. Combining Michler's Hydrol assay with bromocresol purple assay enabled us to obtain the proportions of mercaptalbumin and non-mercaptalbumin, which correlated with HPLC as a reference method.
Collapse
|
8
|
Shojai S, Haeri Rohani SA, Moosavi-Movahedi AA, Habibi-Rezaei M. Human serum albumin in neurodegeneration. Rev Neurosci 2022; 33:803-817. [PMID: 35363449 DOI: 10.1515/revneuro-2021-0165] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/02/2022] [Indexed: 11/15/2022]
Abstract
Serum albumin (SA) exists in relatively high concentrations, in close contact with most cells. However, in the adult brain, except for cerebrospinal fluid (CSF), SA concentration is relatively low. It is mainly produced in the liver to serve as the main protein of the blood plasma. In the plasma, it functions as a carrier, chaperon, antioxidant, source of amino acids, osmoregulator, etc. As a carrier, it facilitates the stable presence and transport of the hydrophobic and hydrophilic molecules, including free fatty acids, steroid hormones, medicines, and metal ions. As a chaperon, SA binds to and protects other proteins. As an antioxidant, thanks to a free sulfhydryl group (-SH), albumin is responsible for most antioxidant properties of plasma. These functions qualify SA as a major player in, and a mirror of, overall health status, aging, and neurodegeneration. The low concentration of SA is associated with cognitive deterioration in the elderly and negative prognosis in multiple sclerosis (MS) and amyotrophic lateral sclerosis (ALS). SA has been shown to be structurally modified in neurological conditions such as Alzheimer's disease (AD). During blood-brain barrier damage albumin enters the brain tissue and could trigger epilepsy and neurodegeneration. SA is able to bind to the precursor agent of the AD, amyloid-beta (Aβ), preventing its toxic effects in the periphery, and is being tested for treating this disease. SA therapy may also be effective in brain rejuvenation. In the current review, we will bring forward the prominent properties and roles of SA in neurodegeneration.
Collapse
Affiliation(s)
- Sajjad Shojai
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | | | | | - Mehran Habibi-Rezaei
- School of Biology, College of Science, University of Tehran, Tehran, Iran
- Nano-Biomedicine Center of Excellence, Nanoscience and Nanotechnology Research Center, University of Tehran, Tehran, Iran
| |
Collapse
|
9
|
Clinical Significance of Albumin- and Bilirubin-Based Biomarkers in Glaucoma: A Retrospective Case-Control Study. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8063651. [PMID: 35281459 PMCID: PMC8916859 DOI: 10.1155/2022/8063651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/12/2022] [Accepted: 02/16/2022] [Indexed: 11/18/2022]
Abstract
Glaucoma is the second leading cause of global blindness. The etiology of glaucoma is complicated. In addition to elevated intraocular pressure (IOP), several other mechanisms have been implicated in pathogenesis, such as oxidative stress and systemic inflammation. Serum albumin (ALB) and bilirubin (BIL) have been reported to have potent antioxidant properties and contribute to maintain redox homeostasis in various diseases. However, associations between these parameters and glaucoma remain mostly unknown. Here, we conducted a retrospective case-control study, revealing that serum ALB, total BIL (TBIL), and indirect BIL (IBIL) levels were markedly lower in glaucoma patients than those in healthy controls. Furthermore, the neutrophil-to-ALB (NAR), neutrophil-to-TBIL (NTBR), and neutrophil-to-IBIL (NIBR) ratios were greatly higher in glaucoma. Additionally, interestingly, lower ALB and BIL levels and higher NAR, NTBR, and NIBR were associated with severer glaucomatous visual impairment, and NAR, NTBR, and NIBR showed good accuracy as diagnostic tests for glaucoma severity, suggesting these indices might be useful as discriminative biomarkers for disease severity. Our current findings demonstrate associations between ALB, BIL, NAR, NTBR, NIBL, and glaucoma. It might be useful to use NAR, NTBR, and NIBR as predictive markers for disease severity and employ ALB/BIL as alternative therapy or adjuvant medicines in glaucoma patients.
Collapse
|
10
|
Kusumoto Y, Sato M, Ikeda H, Yasukawa K, Tang X, Yatomi Y. Redox state as assessed using the measurement of human non-mercaptalbumin in embryo culture media is associated with successful embryo development in human in vitro fertilization. J Clin Biochem Nutr 2022; 71:69-72. [PMID: 35903606 PMCID: PMC9309080 DOI: 10.3164/jcbn.21-114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/03/2021] [Indexed: 11/22/2022] Open
Abstract
The role of oxidative stress in the pathogenesis of various diseases has been attracting attention. We speculated as to whether the redox state of treatment solutions used for various diseases may play a role in treatment success. In the current study, we focused on the human embryo culture medium used for in vitro fertilization (IVF). A total of 173 oocytes from a total of 91 patients treated with IVF were enrolled. The redox state was assessed by measuring the levels of human non-mercaptalbumin (HNA). We analyzed factors related to blastocyst formation on day 5 or 6 after insemination. We also developed a random forest (RF) model for the prediction of blastocyst formation. The variable importance in the predictive model was assessed using the mean decrease in the Gini impurity. Blastocyst formation was observed in 41.04% (71/173) of the oocytes and was associated with a lower %HNA in the culture medium, a younger patient age, and the fertilization method (standard IVF or intracytoplasmic sperm injection). The RF model developed using these factors and 70% of the samples (training set, n = 121) was validated in the remaining testing set (n = 52) and produced an area under the curve of 0.761, where the %HNA in the culture medium was the most important variable for predicting blastocyst formation. In conclusion, lower levels of oxidative stress in embryo culture media were associated with the success of IVF treatment. The redox state of treatment solutions should be considered to support treatment success.
Collapse
Affiliation(s)
- Yoshika Kusumoto
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo
| | - Masaya Sato
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo
| | - Hitoshi Ikeda
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo
| | - Keiko Yasukawa
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo
| | | | - Yutaka Yatomi
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo
| |
Collapse
|
11
|
Kuwashiro T, Tanabe K, Hayashi C, Mizoguchi T, Mori K, Jinnouchi J, Yasaka M, Okada Y. Oxidized Albumin and Cartilage Acidic Protein-1 as Blood Biomarkers to Predict Ischemic Stroke Outcomes. Front Neurol 2021; 12:686555. [PMID: 34917008 PMCID: PMC8670551 DOI: 10.3389/fneur.2021.686555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 11/08/2021] [Indexed: 11/17/2022] Open
Abstract
Background: There is high demand for blood biomarkers that reflect the therapeutic response or predict the outcomes of patients with acute ischemic stroke (AIS); however, few biomarkers have been evidentially verified to date. This study evaluated two proteins, oxidized albumin (OxHSA) and cartilage acidic protein-1 (CRTAC1), as potential prognostic markers of AIS. Methods: The ratio of OxHSA to normal albumin (%OxHSA) and the level of CRTAC1 in the sera of 74 AIS patients were analyzed on admission (day 0), and at 1 and 7 days after admission. AIS patients were divided into two groups according to their modified Rankin Scale (mRS) at 3 months after discharge: the low-mRS (mRS < 2) group included 48 patients and the high-mRS (mRS ≥ 2) group included 26 patients. The differences in %OxHSA and CRTAC1 between the two groups on days 0, 1, and 7 were evaluated. Results: The mean %OxHSA values of the high-mRS group on days 0, 1, and 7 were significantly higher than those of the low-mRS group (p < 0.05). The CRTAC1 levels continuously increased from day 0 to day 7, and those of the high-mRS group were significantly higher than those of the low-mRS group on day 7 (p < 0.05). Conclusions: These results suggest that higher %OxHSA and CRTAC1 are associated with poor outcomes in AIS patients. An index that combines %OxHSA and CRTAC1 can accurately predict the outcomes of AIS patients.
Collapse
Affiliation(s)
- Takahiro Kuwashiro
- Department of Cerebrovascular Medicine and Neurology, Clinical Research Institute, National Hospital Organization, Kyushu Medical Center, Fukuoka, Japan
| | - Kazuhiro Tanabe
- Medical Solution Promotion Department, Medical Solution Segment, LSI Medience Corporation, Tokyo, Japan.,Kyushu Pro Search Limited Liability Partnership, Fukuoka, Japan
| | - Chihiro Hayashi
- Medical Solution Promotion Department, Medical Solution Segment, LSI Medience Corporation, Tokyo, Japan
| | - Tadataka Mizoguchi
- Department of Cerebrovascular Medicine and Neurology, Clinical Research Institute, National Hospital Organization, Kyushu Medical Center, Fukuoka, Japan
| | - Kota Mori
- Department of Cerebrovascular Medicine and Neurology, Clinical Research Institute, National Hospital Organization, Kyushu Medical Center, Fukuoka, Japan
| | - Juro Jinnouchi
- Department of Cerebrovascular Medicine and Neurology, Clinical Research Institute, National Hospital Organization, Kyushu Medical Center, Fukuoka, Japan
| | - Masahiro Yasaka
- Department of Cerebrovascular Medicine and Neurology, Clinical Research Institute, National Hospital Organization, Kyushu Medical Center, Fukuoka, Japan
| | - Yasushi Okada
- Department of Cerebrovascular Medicine and Neurology, Clinical Research Institute, National Hospital Organization, Kyushu Medical Center, Fukuoka, Japan
| |
Collapse
|
12
|
Serum Albumin in Health and Disease: Esterase, Antioxidant, Transporting and Signaling Properties. Int J Mol Sci 2021; 22:ijms221910318. [PMID: 34638659 PMCID: PMC8508759 DOI: 10.3390/ijms221910318] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 12/11/2022] Open
Abstract
Being one of the main proteins in the human body and many animal species, albumin plays a decisive role in the transport of various ions-electrically neutral and charged molecules-and in maintaining the colloidal osmotic pressure of the blood. Albumin is able to bind to almost all known drugs, as well as many nutraceuticals and toxic substances, largely determining their pharmaco- and toxicokinetics. Albumin of humans and respective representatives in cattle and rodents have their own structural features that determine species differences in functional properties. However, albumin is not only passive, but also an active participant of pharmacokinetic and toxicokinetic processes, possessing a number of enzymatic activities. Numerous experiments have shown esterase or pseudoesterase activity of albumin towards a number of endogeneous and exogeneous esters. Due to the free thiol group of Cys34, albumin can serve as a trap for reactive oxygen and nitrogen species, thus participating in redox processes. Glycated albumin makes a significant contribution to the pathogenesis of diabetes and other diseases. The interaction of albumin with blood cells, blood vessels and tissue cells outside the vascular bed is of great importance. Interactions with endothelial glycocalyx and vascular endothelial cells largely determine the integrative role of albumin. This review considers the esterase, antioxidant, transporting and signaling properties of albumin, as well as its structural and functional modifications and their significance in the pathogenesis of certain diseases.
Collapse
|
13
|
Serum Albumin: A Multifaced Enzyme. Int J Mol Sci 2021; 22:ijms221810086. [PMID: 34576249 PMCID: PMC8466385 DOI: 10.3390/ijms221810086] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 02/06/2023] Open
Abstract
Human serum albumin (HSA) is the most abundant protein in plasma, contributing actively to oncotic pressure maintenance and fluid distribution between body compartments. HSA acts as the main carrier of fatty acids, recognizes metal ions, affects pharmacokinetics of many drugs, provides the metabolic modification of some ligands, renders potential toxins harmless, accounts for most of the anti-oxidant capacity of human plasma, and displays esterase, enolase, glucuronidase, and peroxidase (pseudo)-enzymatic activities. HSA-based catalysis is physiologically relevant, affecting the metabolism of endogenous and exogenous compounds including proteins, lipids, cholesterol, reactive oxygen species (ROS), and drugs. Catalytic properties of HSA are modulated by allosteric effectors, competitive inhibitors, chemical modifications, pathological conditions, and aging. HSA displays anti-oxidant properties and is critical for plasma detoxification from toxic agents and for pro-drugs activation. The enzymatic properties of HSA can be also exploited by chemical industries as a scaffold to produce libraries of catalysts with improved proficiency and stereoselectivity for water decontamination from poisonous agents and environmental contaminants, in the so called “green chemistry” field. Here, an overview of the intrinsic and metal dependent (pseudo-)enzymatic properties of HSA is reported to highlight the roles played by this multifaced protein.
Collapse
|
14
|
Cossu D, Yokoyama K, Sechi LA, Hattori N. Potential of PINK1 and PARKIN Proteins as Biomarkers for Active Multiple Sclerosis: A Japanese Cohort Study. Front Immunol 2021; 12:681386. [PMID: 34421896 PMCID: PMC8371632 DOI: 10.3389/fimmu.2021.681386] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/22/2021] [Indexed: 12/18/2022] Open
Abstract
Background Mitochondrial dysfunction has been suggested to play an important role in all stages of multiple sclerosis (MS). Objective To determine the expression of two mitophagy-related proteins, PTEN-induced kinase 1 (PINK1) and PARKIN, in a cohort of Japanese patients with different neuroinflammatory disorders. Methods Protein concentrations were measured using commercial ELISA in paired cerebrospinal fluid (CSF) and serum samples from patients with multiple sclerosis (MS), neuromyelitis optica spectrum disorders (NMOSD), and myelin oligodendrocyte glycoprotein antibody disorders (MOGAD), and from age- and sex-matched controls. Results CSF and serum concentrations of PINK1 were higher in patients with MS than in patients with NMOSD (p = 0.004 and p < 0.001, respectively), MOGAD (p = 0.008 and p = 0.011, respectively), and controls (p = 0.021 and p = 0.002, respectively). CSF and concentrations of PARKIN were elevated in patients with MS in comparison with those in controls (p = 0.016 and p = 0.05, respectively). Conclusions Our study highlighted the importance of mitophagy in MS and suggested the potential application of PINK1 and PARKIN as biomarkers to predict disease activity.
Collapse
Affiliation(s)
- Davide Cossu
- Department of Neurology, Juntendo University, Tokyo, Japan.,Department of Biomedical Sciences, Sassari University, Sassari, Italy
| | | | - Leonardo Antonio Sechi
- Department of Biomedical Sciences, Sassari University, Sassari, Italy.,SC Microbiologia AOU Sassari, Sassari, Italy
| | | |
Collapse
|
15
|
Gopar-Cuevas Y, Duarte-Jurado AP, Diaz-Perez RN, Saucedo-Cardenas O, Loera-Arias MJ, Montes-de-Oca-Luna R, Rodriguez-Rocha H, Garcia-Garcia A. Pursuing Multiple Biomarkers for Early Idiopathic Parkinson's Disease Diagnosis. Mol Neurobiol 2021; 58:5517-5532. [PMID: 34350555 DOI: 10.1007/s12035-021-02500-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/16/2021] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) ranks first in the world as a neurodegenerative movement disorder and occurs most commonly in an idiopathic form. PD patients may have motor symptoms, non-motor symptoms, including cognitive and behavioral changes, and symptoms related to autonomic nervous system (ANS) failures, such as gastrointestinal, urinary, and cardiovascular symptoms. Unfortunately, the diagnostic accuracy of PD by general neurologists is relatively low. Currently, there is no objective molecular or biochemical test for PD; its diagnosis is based on clinical criteria, mainly by cardinal motor symptoms, which manifest when patients have lost about 60-80% of dopaminergic neurons. Therefore, it is urgent to establish a panel of biomarkers for the early and accurate diagnosis of PD. Once the disease is accurately diagnosed, it may be easier to unravel idiopathic PD's pathogenesis, and ultimately, finding a cure. This review discusses several biomarkers' potential to set a panel for early idiopathic PD diagnosis and future directions.
Collapse
Affiliation(s)
- Yareth Gopar-Cuevas
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, 64460, Monterrey, Mexico
| | - Ana P Duarte-Jurado
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, 64460, Monterrey, Mexico
| | - Rosa N Diaz-Perez
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, 64460, Monterrey, Mexico
| | - Odila Saucedo-Cardenas
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, 64460, Monterrey, Mexico.,Departamento de Genética Molecular, Centro de Investigación Biomédica del Noreste, Delegación Nuevo León, Instituto Mexicano del Seguro Social, Monterrey, Mexico
| | - Maria J Loera-Arias
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, 64460, Monterrey, Mexico
| | - Roberto Montes-de-Oca-Luna
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, 64460, Monterrey, Mexico
| | - Humberto Rodriguez-Rocha
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, 64460, Monterrey, Mexico.
| | - Aracely Garcia-Garcia
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, 64460, Monterrey, Mexico.
| |
Collapse
|
16
|
Koinuma T, Hatano T, Kamagata K, Andica C, Mori A, Ogawa T, Takeshige-Amano H, Uchida W, Saiki S, Okuzumi A, Ueno SI, Oji Y, Saito Y, Hori M, Aoki S, Hattori N. Diffusion MRI Captures White Matter Microstructure Alterations in PRKN Disease. JOURNAL OF PARKINSONS DISEASE 2021; 11:1221-1235. [PMID: 33896850 PMCID: PMC8461664 DOI: 10.3233/jpd-202495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Although pathological studies usually indicate pure dopaminergic neuronal degeneration in patients with parkin (PRKN) mutations, there is no evidence to date regarding white matter (WM) pathology. A previous diffusion MRI study has revealed WM microstructural alterations caused by systemic oxidative stress in idiopathic Parkinson's disease (PD), and we found that PRKN patients have systemic oxidative stress in serum biomarker studies. Thus, we hypothesized that PRKN mutations might lead to WM abnormalities. OBJECTIVE To investigate whether there are WM microstructural abnormalities in early-onset PD patients with PRKN mutations using diffusion tensor imaging (DTI). METHODS Nine PRKN patients and 15 age- and sex-matched healthy controls were recruited. DTI measures were acquired on a 3T MR scanner using a b value of 1,000 s/mm2 along 32 isotropic diffusion gradients. The DTI measures were compared between groups using tract-based spatial statistics (TBSS) analysis. Correlation analysis was also performed between the DTI parameters and several serum oxidative stress markers obtained in a previously conducted metabolomic analysis. RESULTS Although the WM volumes were not significantly different, the TBSS analysis revealed a corresponding decrease in fractional anisotropy and an increase in mean diffusivity and radial diffusivity in WM areas, such as the anterior and superior corona radiata and uncinate fasciculus, in PRKN patients compared with controls. Furthermore, 9-hydroxystearate, an oxidative stress marker, and disease duration were positively correlated with several parameters in PRKN patients. CONCLUSION This pilot study suggests that WM microstructural impairments occur in PRKN patients and are associated with disease duration and oxidative stress.
Collapse
Affiliation(s)
- Takahiro Koinuma
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Taku Hatano
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Koji Kamagata
- Department of Radiology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Christina Andica
- Department of Radiology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Akio Mori
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Takashi Ogawa
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | | | - Wataru Uchida
- Department of Radiology, Faculty of Medicine, Juntendo University, Tokyo, Japan.,Graduate School of Human Health Sciences, Department of Radiological Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Shinji Saiki
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Ayami Okuzumi
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Shin-Ichi Ueno
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Yutaka Oji
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Yuya Saito
- Department of Radiology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Masaaki Hori
- Department of Radiology, Faculty of Medicine, Juntendo University, Tokyo, Japan.,Department of Radiology, Toho University Omori Medical Center, Tokyo, Japan
| | - Shigeki Aoki
- Department of Radiology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| |
Collapse
|
17
|
Serum Albumin Redox States: More Than Oxidative Stress Biomarker. Antioxidants (Basel) 2021; 10:antiox10040503. [PMID: 33804859 PMCID: PMC8063786 DOI: 10.3390/antiox10040503] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 12/17/2022] Open
Abstract
Serum albumin is the most abundant circulating protein in mammals including humans. It has three isoforms according to the redox state of the free cysteine residue at position 34, named as mercaptalbumin (reduced albumin), non-mercaptalbumin-1 and -2 (oxidized albumin), respectively. The serum albumin redox state has long been viewed as a biomarker of systemic oxidative stress, as the redox state shifts to a more oxidized state in response to the severity of the pathological condition in various diseases such as liver diseases and renal failures. However, recent ex vivo studies revealed oxidized albumin per se could aggravate the pathological conditions. Furthermore, the possibility of the serum albumin redox state as a sensitive protein nutrition biomarker has also been demonstrated in a series of animal studies. A paradigm shift is thus ongoing in the research field of the serum albumin. This article provides an updated overview of analytical techniques for serum albumin redox state and its association with human health, focusing on recent findings.
Collapse
|
18
|
Zhang Y, Li J, Zhang X, Song D, Tian T. Advances of Mechanisms-Related Metabolomics in Parkinson's Disease. Front Neurosci 2021; 15:614251. [PMID: 33613180 PMCID: PMC7887307 DOI: 10.3389/fnins.2021.614251] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/11/2021] [Indexed: 12/15/2022] Open
Abstract
Parkinson's disease (PD) is a multifactorial disorder characterized by progressively debilitating dopaminergic neurodegeneration in the substantia nigra and the striatum, along with various metabolic dysfunctions and molecular abnormalities. Metabolomics is an emerging study and has been demonstrated to play important roles in describing complex human diseases by integrating endogenous and exogenous sources of alterations. Recently, an increasing amount of research has shown that metabolomics profiling holds great promise in providing unique insights into molecular pathogenesis and could be helpful in identifying candidate biomarkers for clinical detection and therapies of PD. In this review, we briefly summarize recent findings and analyze the application of molecular metabolomics in familial and sporadic PD from genetic mutations, mitochondrial dysfunction, and dysbacteriosis. We also review metabolic biomarkers to assess the functional stage and improve therapeutic strategies to postpone or hinder the disease progression.
Collapse
Affiliation(s)
| | | | | | | | - Tian Tian
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
19
|
The Universal Soldier: Enzymatic and Non-Enzymatic Antioxidant Functions of Serum Albumin. Antioxidants (Basel) 2020; 9:antiox9100966. [PMID: 33050223 PMCID: PMC7601824 DOI: 10.3390/antiox9100966] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022] Open
Abstract
As a carrier of many biologically active compounds, blood is exposed to oxidants to a greater extent than the intracellular environment. Serum albumin plays a key role in antioxidant defence under both normal and oxidative stress conditions. This review evaluates data published in the literature and from our own research on the mechanisms of the enzymatic and non-enzymatic activities of albumin that determine its participation in redox modulation of plasma and intercellular fluid. For the first time, the results of numerous clinical, biochemical, spectroscopic and computational experiments devoted to the study of allosteric modulation of the functional properties of the protein associated with its participation in antioxidant defence are analysed. It has been concluded that it is fundamentally possible to regulate the antioxidant properties of albumin with various ligands, and the binding and/or enzymatic features of the protein by changing its redox status. The perspectives for using the antioxidant properties of albumin in practice are discussed.
Collapse
|