1
|
Lockhart SN, Sutphen CL, Tanley J, Gonzalez-Ortiz F, Kac PR, Habes M, Heckbert SR, Ashton NJ, Mielke MM, Koeppe R, Rudolph MD, Whitlow CT, Hiatt KD, Craft S, Register TC, Hayden KM, Rapp SR, Sachs BC, Zetterberg H, Blennow K, Karikari TK, Hughes TM. Plasma and neuroimaging biomarkers of small vessel disease and Alzheimer's disease in a diverse cohort: MESA. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.02.11.25322109. [PMID: 39990571 PMCID: PMC11844615 DOI: 10.1101/2025.02.11.25322109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
INTRODUCTION Little is known about how Alzheimer's disease (AD) plasma biomarkers relate to cerebral small vessel disease (cSVD) neuroimaging biomarkers. METHODS The study involved 251 Wake Forest Multi-Ethnic Study of Atherosclerosis (MESA) Exam 6 participants with plasma AD biomarkers, MRI, amyloid PET, and adjudicated cognitive status. Multivariable models examined cross-sectional relationships between plasma and neuroimaging biomarkers, considering comorbidities. RESULTS Lower Aβ42/Aβ40, and higher GFAP, NfL, and p-tau217 were associated with greater neurodegeneration. Lower plasma Aβ42/Aβ40 and higher p-tau217 and p-tau231 were associated with greater Aβ PET deposition. NfL was positively associated with WMH and WM Free Water. P-tau measures were positively associated with WM Free Water. Lower Aβ42/Aβ40 was associated with presence of microbleeds. GFAP was positively associated with WMH. DISCUSSION We observed expected associations of plasma biomarkers with cognitive status and imaging biomarkers. GFAP, NfL, p-tau181, p-tau217, and p-tau231 are associated with cSVD in addition to AD-related pathology.
Collapse
Affiliation(s)
- Samuel N Lockhart
- Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Perceptive Inc., Burlington, MA, USA
| | | | - Jordan Tanley
- Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | | | | | - Mohamad Habes
- University of Texas Health Science Center, San Antonio, TX, USA
| | | | - Nicholas J Ashton
- University of Gothenburg, Mölndal, Sweden
- King's College London, London, UK
- NIHR Maudsley Biomedical Research Centre, London, UK
- Stavanger University Hospital, Stavanger, Norway
| | | | | | - Marc D Rudolph
- Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | | | - Kevin D Hiatt
- Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Suzanne Craft
- Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | | | | | - Stephen R Rapp
- Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Bonnie C Sachs
- Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Henrik Zetterberg
- University of Gothenburg, Mölndal, Sweden
- Sahlgrenska University Hospital, Mölndal, Sweden
- University College London, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- University of Wisconsin-Madison, Madison, WI, USA
| | - Kaj Blennow
- University of Gothenburg, Mölndal, Sweden
- Sahlgrenska University Hospital, Mölndal, Sweden
- Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
- University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, China
| | - Thomas K Karikari
- University of Gothenburg, Mölndal, Sweden
- University of Pittsburgh, Pittsburgh, PA, USA
| | - Timothy M Hughes
- Wake Forest University School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
2
|
Aivalioti E, Georgiopoulos G, Tual-Chalot S, Bampatsias D, Delialis D, Sopova K, Drakos SG, Stellos K, Stamatelopoulos K. Amyloid-beta metabolism in age-related neurocardiovascular diseases. Eur Heart J 2025; 46:250-272. [PMID: 39527015 PMCID: PMC11735085 DOI: 10.1093/eurheartj/ehae655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/13/2024] [Accepted: 09/15/2024] [Indexed: 11/16/2024] Open
Abstract
Epidemiological evidence suggests the presence of common risk factors for the development and prognosis of both cardio- and cerebrovascular diseases, including stroke, Alzheimer's disease, vascular dementia, heart, and peripheral vascular diseases. Accumulation of harmful blood signals may induce organotypic endothelial dysfunction affecting blood-brain barrier function and vascular health in age-related diseases. Genetic-, age-, lifestyle- or cardiovascular therapy-associated imbalance of amyloid-beta (Aβ) peptide metabolism in the brain and periphery may be the missing link between age-related neurocardiovascular diseases. Genetic polymorphisms of genes related to Aβ metabolism, lifestyle modifications, drugs used in clinical practice, and Aβ-specific treatments may modulate Aβ levels, affecting brain, vascular, and cardiac diseases. This narrative review elaborates on the effects of interventions on Aβ metabolism in the brain, cerebrospinal fluid, blood, and peripheral heart or vascular tissues. Implications for clinical applicability, gaps in knowledge, and future perspectives of Aβ as the link among age-related neurocardiovascular diseases are also discussed.
Collapse
Affiliation(s)
- Evmorfia Aivalioti
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens Medical School, PO Box 11528, 80 Vas. Sofias Str., Athens, Greece
| | - Georgios Georgiopoulos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens Medical School, PO Box 11528, 80 Vas. Sofias Str., Athens, Greece
- School of Biomedical Engineering and Imaging Sciences, King’s College, London, UK
- Department of Physiology, School of Medicine, University of Patras, Patra, Greece
| | - Simon Tual-Chalot
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Centre for Life, Newcastle Upon Tyne, NE1 3BZ, UK
| | - Dimitrios Bampatsias
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens Medical School, PO Box 11528, 80 Vas. Sofias Str., Athens, Greece
- Division of Cardiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Dimitrios Delialis
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens Medical School, PO Box 11528, 80 Vas. Sofias Str., Athens, Greece
| | - Kateryna Sopova
- Department of Cardiovascular Research, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Straße 13–17, D-68167 Mannheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Mannheim, Germany
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Stavros G Drakos
- Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), University of Utah School of Medicine, Salt Lake City, UT, USA
- Division of Cardiovascular Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Konstantinos Stellos
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Centre for Life, Newcastle Upon Tyne, NE1 3BZ, UK
- Department of Cardiovascular Research, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Straße 13–17, D-68167 Mannheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Mannheim, Germany
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Kimon Stamatelopoulos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens Medical School, PO Box 11528, 80 Vas. Sofias Str., Athens, Greece
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Centre for Life, Newcastle Upon Tyne, NE1 3BZ, UK
| |
Collapse
|
3
|
Fang Z, Chen X, Zhao Y, Zhou X, Cai X, Deng J, Cheng W, Sun W, Zhuang J, Yin Y. Quantitative assessments of white matter hyperintensities and plasma biomarkers can predict cognitive impairment and cerebral microbleeds in cerebral small vessel disease patients. Neuroscience 2025; 564:41-51. [PMID: 39522933 DOI: 10.1016/j.neuroscience.2024.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 10/08/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
The objective of this study is to examine the efficacy of magnetic resonance imaging (MRI) features and peripheral blood biomarkers in assessing cognitive function in patients with cerebral small vessel disease (CSVD). A total of 58 CSVD patients were recruited. Six features of white matter hyperintensities (WMHs) were derived from MRI scans. Additionally, five neurodegenerative biomarkers (Aβ40, Aβ42, t-tau, p-tau181, NfL) and 13 serum inflammatory cytokines (VILIP-1, CCL2, IL-6, IL-18, TNF-α, CX3CL, sTREM-1/2, VEGF, s-RAGE, BNDF, TGF-β1, β-NGF) were quantified. Cognitive assessments were conducted using standardized neuropsychological scales. Spearman analysis revealed that the volumetric characteristics (absolute area, upper area, bottom area, absolute area percentage, upper percentage, and bottom percentage) of WMHs were negatively correlated with performance on all cognitive scale measures except the verbal fluency test (VFT) (r < -0.3, p > 0.05), while they were positively correlated with plasma neurofilament light (NFL) levels (r > 0.4, p < 0.05). Additionally, serum tumor necrosis factor-α (TNF-α) and soluble receptor for advanced glycation end-products (s-RAGE) showed significant correlations with scales of speech function. An integrated model incorporating WMHs features, neurodegenerative biomarkers, and neuroinflammatory markers was developed, demonstrating high predictive accuracy for cognitive impairment with an area under the curve (AUC) of 0.95 (accuracy 0.88, sensitivity 0.87, specificity 0.89). Another integrated model that includes features of WMHs and inflammatory cytokines for predicting cerebral microbleeds (CMBs) achieved an AUC of 0.95 (accuracy 0.88, sensitivity 0.82, specificity 0.92). Our findings suggest that these markers have the potential to be used for the early detection of cognitive decline and CMBs in patients with CSVD.
Collapse
Affiliation(s)
- Zhuo Fang
- Department of Data and Analytics, WuXi Diagnostics Innovation Research Institute, 200131, Shanghai, China; Danaher China Corporation, 200335, Shanghai, China
| | - Xiaohan Chen
- Department of Neurology, Second Affiliated Hospital of Naval Medical University, 200003, Shanghai, China
| | - Yike Zhao
- Department of Data and Analytics, WuXi Diagnostics Innovation Research Institute, 200131, Shanghai, China
| | - Xinrui Zhou
- Department of Data and Analytics, WuXi Diagnostics Innovation Research Institute, 200131, Shanghai, China
| | - Xiao Cai
- Department of Data and Analytics, WuXi Diagnostics Innovation Research Institute, 200131, Shanghai, China
| | - Jiale Deng
- Department of Data and Analytics, WuXi Diagnostics Innovation Research Institute, 200131, Shanghai, China
| | - Wenbin Cheng
- Department of Neurology, Second Affiliated Hospital of Naval Medical University, 200003, Shanghai, China
| | - Wenjing Sun
- Department of Neurology, Second Affiliated Hospital of Naval Medical University, 200003, Shanghai, China
| | - Jianhua Zhuang
- Department of Neurology, Second Affiliated Hospital of Naval Medical University, 200003, Shanghai, China
| | - You Yin
- Department of Neurology, Second Affiliated Hospital of Naval Medical University, 200003, Shanghai, China; Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, 200120, Shanghai, China.
| |
Collapse
|
4
|
Wertman E. Essential New Complexity-Based Themes for Patient-Centered Diagnosis and Treatment of Dementia and Predementia in Older People: Multimorbidity and Multilevel Phenomenology. J Clin Med 2024; 13:4202. [PMID: 39064242 PMCID: PMC11277671 DOI: 10.3390/jcm13144202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Dementia is a highly prevalent condition with devastating clinical and socioeconomic sequela. It is expected to triple in prevalence by 2050. No treatment is currently known to be effective. Symptomatic late-onset dementia and predementia (SLODP) affects 95% of patients with the syndrome. In contrast to trials of pharmacological prevention, no treatment is suggested to remediate or cure these symptomatic patients. SLODP but not young onset dementia is intensely associated with multimorbidity (MUM), including brain-perturbating conditions (BPCs). Recent studies showed that MUM/BPCs have a major role in the pathogenesis of SLODP. Fortunately, most MUM/BPCs are medically treatable, and thus, their treatment may modify and improve SLODP, relieving suffering and reducing its clinical and socioeconomic threats. Regrettably, the complex system features of SLODP impede the diagnosis and treatment of the potentially remediable conditions (PRCs) associated with them, mainly due to failure of pattern recognition and a flawed diagnostic workup. We suggest incorporating two SLODP-specific conceptual themes into the diagnostic workup: MUM/BPC and multilevel phenomenological themes. By doing so, we were able to improve the diagnostic accuracy of SLODP components and optimize detecting and favorably treating PRCs. These revolutionary concepts and their implications for remediability and other parameters are discussed in the paper.
Collapse
Affiliation(s)
- Eli Wertman
- Department of Neurology, Hadassah University Hospital, The Hebrew University, Jerusalem 9190500, Israel;
- Section of Neuropsychology, Department of Psychology, The Hebrew University, Jerusalem 9190500, Israel
- Or’ad: Organization for Cognitive and Behavioral Changes in the Elderly, Jerusalem 9458118, Israel
- Merhav Neuropsychogeriatric Clinics, Nehalim 4995000, Israel
| |
Collapse
|
5
|
Abyadeh M, Gupta V, Paulo JA, Mahmoudabad AG, Shadfar S, Mirshahvaladi S, Gupta V, Nguyen CT, Finkelstein DI, You Y, Haynes PA, Salekdeh GH, Graham SL, Mirzaei M. Amyloid-beta and tau protein beyond Alzheimer's disease. Neural Regen Res 2024; 19:1262-1276. [PMID: 37905874 PMCID: PMC11467936 DOI: 10.4103/1673-5374.386406] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/08/2023] [Accepted: 09/07/2023] [Indexed: 11/02/2023] Open
Abstract
ABSTRACT The aggregation of amyloid-beta peptide and tau protein dysregulation are implicated to play key roles in Alzheimer's disease pathogenesis and are considered the main pathological hallmarks of this devastating disease. Physiologically, these two proteins are produced and expressed within the normal human body. However, under pathological conditions, abnormal expression, post-translational modifications, conformational changes, and truncation can make these proteins prone to aggregation, triggering specific disease-related cascades. Recent studies have indicated associations between aberrant behavior of amyloid-beta and tau proteins and various neurological diseases, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis, as well as retinal neurodegenerative diseases like Glaucoma and age-related macular degeneration. Additionally, these proteins have been linked to cardiovascular disease, cancer, traumatic brain injury, and diabetes, which are all leading causes of morbidity and mortality. In this comprehensive review, we provide an overview of the connections between amyloid-beta and tau proteins and a spectrum of disorders.
Collapse
Affiliation(s)
| | - Vivek Gupta
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney, NSW, Australia
| | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | - Sina Shadfar
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney, NSW, Australia
| | - Shahab Mirshahvaladi
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney, NSW, Australia
| | - Veer Gupta
- School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Christine T.O. Nguyen
- Department of Optometry and Vision Sciences, School of Health Sciences, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - David I. Finkelstein
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Yuyi You
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney, NSW, Australia
| | - Paul A. Haynes
- School of Natural Sciences, Macquarie University, Macquarie Park, NSW, Australia
| | - Ghasem H. Salekdeh
- School of Natural Sciences, Macquarie University, Macquarie Park, NSW, Australia
| | - Stuart L. Graham
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney, NSW, Australia
| | - Mehdi Mirzaei
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney, NSW, Australia
| |
Collapse
|
6
|
Oveisgharan S, Grodstein F, Evia AM, James BD, Capuano AW, Chen Y, Arfanakis K, Schneider JA, Bennett DA. Association of Age-Related Neuropathologic Findings at Autopsy With a Claims-Based Epilepsy Diagnosis in Older Adults. Neurology 2024; 102:e209172. [PMID: 38478792 PMCID: PMC11383919 DOI: 10.1212/wnl.0000000000209172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/08/2023] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Epilepsy is 1 of the 3 most common neurologic diseases of older adults, but few studies have examined its underlying pathologies in older age. We examined the associations of age-related brain pathologies with epilepsy in older persons. METHODS Clinical and pathologic data came from 2 ongoing clinical pathologic cohort studies of community-dwelling older adults. Epilepsy was ascertained using Medicare fee-for-service Parts A and B claims data that were linked to data from the cohort studies. The postmortem pathologic assessment collected indices of 9 pathologies including Alzheimer disease, hippocampal sclerosis, macroinfarcts, and cerebral amyloid angiopathy. The fixed brain hemisphere was imaged using 3T MRI scanners before the pathologic assessments in a subgroup of participants. RESULTS The participants (n = 1,369) were on average 89.3 (6.6) years at death, and 67.0% were women. Epilepsy was identified in 58 (4.2%) participants. Cerebral amyloid angiopathy (odds ratio [OR] = 2.21, 95% CI 1.24-3.95, p = 0.007) and cortical macroinfarcts (OR = 2.74, 95% CI 1.42-5.28, p = 0.003) were associated with a higher odds of epilepsy. Of note, hippocampal sclerosis and Alzheimer disease pathology were not associated with epilepsy (both p's > 0.25), although hippocampal sclerosis was not common and thus hard to examine with the modest number of epilepsy cases here. In 673 participants with MRI data, the association of cerebral amyloid angiopathy and cortical macroinfarcts with epilepsy did not change after controlling for cortical gray matter atrophy, which was independently associated with a higher odds of epilepsy (OR = 1.06, 95% CI 1.02-1.10, p = 0.003). By contrast, hippocampal volume was not associated with epilepsy. DISCUSSION Cerebrovascular pathologies and cortical atrophy were associated with epilepsy in older persons.
Collapse
Affiliation(s)
- Shahram Oveisgharan
- From the Rush Alzheimer's Disease Center (S.O., F.G., A.M.E., B.D.J., A.W.C., Y.C., K.A., J.A.S., D.A.B.); Department of Neurological Sciences (S.O., A.W.C., J.A.S., D.A.B.); Department of Internal Medicine (F.G., B.D.J., Y.C.); Department of Diagnostic Radiology and Nuclear Medicine (A.M.E., K.A.), Rush University Medical Center; Department of Biomedical Engineering (K.A.), Illinois Institute of Technology; and Department of Pathology (J.A.S.), Rush University Medical Center, Chicago, IL
| | - Francine Grodstein
- From the Rush Alzheimer's Disease Center (S.O., F.G., A.M.E., B.D.J., A.W.C., Y.C., K.A., J.A.S., D.A.B.); Department of Neurological Sciences (S.O., A.W.C., J.A.S., D.A.B.); Department of Internal Medicine (F.G., B.D.J., Y.C.); Department of Diagnostic Radiology and Nuclear Medicine (A.M.E., K.A.), Rush University Medical Center; Department of Biomedical Engineering (K.A.), Illinois Institute of Technology; and Department of Pathology (J.A.S.), Rush University Medical Center, Chicago, IL
| | - Arnold M Evia
- From the Rush Alzheimer's Disease Center (S.O., F.G., A.M.E., B.D.J., A.W.C., Y.C., K.A., J.A.S., D.A.B.); Department of Neurological Sciences (S.O., A.W.C., J.A.S., D.A.B.); Department of Internal Medicine (F.G., B.D.J., Y.C.); Department of Diagnostic Radiology and Nuclear Medicine (A.M.E., K.A.), Rush University Medical Center; Department of Biomedical Engineering (K.A.), Illinois Institute of Technology; and Department of Pathology (J.A.S.), Rush University Medical Center, Chicago, IL
| | - Bryan D James
- From the Rush Alzheimer's Disease Center (S.O., F.G., A.M.E., B.D.J., A.W.C., Y.C., K.A., J.A.S., D.A.B.); Department of Neurological Sciences (S.O., A.W.C., J.A.S., D.A.B.); Department of Internal Medicine (F.G., B.D.J., Y.C.); Department of Diagnostic Radiology and Nuclear Medicine (A.M.E., K.A.), Rush University Medical Center; Department of Biomedical Engineering (K.A.), Illinois Institute of Technology; and Department of Pathology (J.A.S.), Rush University Medical Center, Chicago, IL
| | - Ana W Capuano
- From the Rush Alzheimer's Disease Center (S.O., F.G., A.M.E., B.D.J., A.W.C., Y.C., K.A., J.A.S., D.A.B.); Department of Neurological Sciences (S.O., A.W.C., J.A.S., D.A.B.); Department of Internal Medicine (F.G., B.D.J., Y.C.); Department of Diagnostic Radiology and Nuclear Medicine (A.M.E., K.A.), Rush University Medical Center; Department of Biomedical Engineering (K.A.), Illinois Institute of Technology; and Department of Pathology (J.A.S.), Rush University Medical Center, Chicago, IL
| | - Yi Chen
- From the Rush Alzheimer's Disease Center (S.O., F.G., A.M.E., B.D.J., A.W.C., Y.C., K.A., J.A.S., D.A.B.); Department of Neurological Sciences (S.O., A.W.C., J.A.S., D.A.B.); Department of Internal Medicine (F.G., B.D.J., Y.C.); Department of Diagnostic Radiology and Nuclear Medicine (A.M.E., K.A.), Rush University Medical Center; Department of Biomedical Engineering (K.A.), Illinois Institute of Technology; and Department of Pathology (J.A.S.), Rush University Medical Center, Chicago, IL
| | - Konstantinos Arfanakis
- From the Rush Alzheimer's Disease Center (S.O., F.G., A.M.E., B.D.J., A.W.C., Y.C., K.A., J.A.S., D.A.B.); Department of Neurological Sciences (S.O., A.W.C., J.A.S., D.A.B.); Department of Internal Medicine (F.G., B.D.J., Y.C.); Department of Diagnostic Radiology and Nuclear Medicine (A.M.E., K.A.), Rush University Medical Center; Department of Biomedical Engineering (K.A.), Illinois Institute of Technology; and Department of Pathology (J.A.S.), Rush University Medical Center, Chicago, IL
| | - Julie A Schneider
- From the Rush Alzheimer's Disease Center (S.O., F.G., A.M.E., B.D.J., A.W.C., Y.C., K.A., J.A.S., D.A.B.); Department of Neurological Sciences (S.O., A.W.C., J.A.S., D.A.B.); Department of Internal Medicine (F.G., B.D.J., Y.C.); Department of Diagnostic Radiology and Nuclear Medicine (A.M.E., K.A.), Rush University Medical Center; Department of Biomedical Engineering (K.A.), Illinois Institute of Technology; and Department of Pathology (J.A.S.), Rush University Medical Center, Chicago, IL
| | - David A Bennett
- From the Rush Alzheimer's Disease Center (S.O., F.G., A.M.E., B.D.J., A.W.C., Y.C., K.A., J.A.S., D.A.B.); Department of Neurological Sciences (S.O., A.W.C., J.A.S., D.A.B.); Department of Internal Medicine (F.G., B.D.J., Y.C.); Department of Diagnostic Radiology and Nuclear Medicine (A.M.E., K.A.), Rush University Medical Center; Department of Biomedical Engineering (K.A.), Illinois Institute of Technology; and Department of Pathology (J.A.S.), Rush University Medical Center, Chicago, IL
| |
Collapse
|
7
|
Wu LY, Chai YL, Cheah IK, Chia RSL, Hilal S, Arumugam TV, Chen CP, Lai MKP. Blood-based biomarkers of cerebral small vessel disease. Ageing Res Rev 2024; 95:102247. [PMID: 38417710 DOI: 10.1016/j.arr.2024.102247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 02/12/2024] [Accepted: 02/22/2024] [Indexed: 03/01/2024]
Abstract
Age-associated cerebral small vessel disease (CSVD) represents a clinically heterogenous condition, arising from diverse microvascular mechanisms. These lead to chronic cerebrovascular dysfunction and carry a substantial risk of subsequent stroke and vascular cognitive impairment in aging populations. Owing to advances in neuroimaging, in vivo visualization of cerebral vasculature abnormities and detection of CSVD, including lacunes, microinfarcts, microbleeds and white matter lesions, is now possible, but remains a resource-, skills- and time-intensive approach. As a result, there has been a recent proliferation of blood-based biomarker studies for CSVD aimed at developing accessible screening tools for early detection and risk stratification. However, a good understanding of the pathophysiological processes underpinning CSVD is needed to identify and assess clinically useful biomarkers. Here, we provide an overview of processes associated with CSVD pathogenesis, including endothelial injury and dysfunction, neuroinflammation, oxidative stress, perivascular neuronal damage as well as cardiovascular dysfunction. Then, we review clinical studies of the key biomolecules involved in the aforementioned processes. Lastly, we outline future trends and directions for CSVD biomarker discovery and clinical validation.
Collapse
Affiliation(s)
- Liu-Yun Wu
- Memory Aging and Cognition Centre, National University Health System, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yuek Ling Chai
- Memory Aging and Cognition Centre, National University Health System, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Irwin K Cheah
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Neurobiology Programme, Centre for Life Sciences, National University of Singapore, Singapore
| | - Rachel S L Chia
- Memory Aging and Cognition Centre, National University Health System, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Saima Hilal
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Kent Ridge, Singapore
| | - Thiruma V Arumugam
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea; Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
| | - Christopher P Chen
- Memory Aging and Cognition Centre, National University Health System, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Mitchell K P Lai
- Memory Aging and Cognition Centre, National University Health System, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
8
|
Feng Q, Lu Y, Zhang R, Li Y, Zhao Z, Zhou H. Identification of differentially expressed exosome proteins in serum as potential biomarkers for cognitive impairments in cerebral small vessel disease. Neurosci Lett 2024; 822:137631. [PMID: 38211879 DOI: 10.1016/j.neulet.2024.137631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/25/2023] [Accepted: 01/08/2024] [Indexed: 01/13/2024]
Abstract
BACKGROUND Cognitive impairment arising from cerebral small vessel disease (CSVD) represents a critical subtype of vascular cognitive impairments (VCI) and is the primary cause of vascular dementia. However, identifying reliable clinical and laboratory indicators for this disease remain elusive. We hypothesize that plasma exosome proteins hold the potential to serve as biomarkers for the onset of cognitive dysfunction associated with cerebrovascular diseases. METHODS We employed TMT-based proteomics to discern variations in serum exosome proteomes between individuals with cognitive impairments due to CSVD and healthy volunteers. RESULTS Each group comprised 18 subjects, and through differential expression analysis, we identified 22 down-regulated and 8 up-regulated proteins between the two groups. Our research revealed 30 differentially expressed plasma exosome proteins, including histone, proteasome, clusterin and coagulation factor XIII, in individuals with cognitive impairments caused by CSVD. CONCLUSION The 30 differentially expressed plasma exosome proteins identified in our study are promising as biomarkers for diagnosing cognitive impairments resulting from CSVD. These findings may help us better understand the underlying pathological mechanisms involved in the diseases.
Collapse
Affiliation(s)
- Qian Feng
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Yanjing Lu
- Department of Neurology, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Ruyang Zhang
- Department of Neurology, Suzhou Wuzhong People's Hospital, Suzhou, China
| | - Yifan Li
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Zhong Zhao
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China.
| | - Hua Zhou
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China.
| |
Collapse
|
9
|
van Gennip ACE, Satizabal CL, Tracy RP, Sigurdsson S, Gudnason V, Launer LJ, van Sloten TT. Associations of plasma NfL, GFAP, and t-tau with cerebral small vessel disease and incident dementia: longitudinal data of the AGES-Reykjavik Study. GeroScience 2024; 46:505-516. [PMID: 37530894 PMCID: PMC10828267 DOI: 10.1007/s11357-023-00888-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/24/2023] [Indexed: 08/03/2023] Open
Abstract
We investigated the associations of plasma neurofilament light (NfL), glial fibrillary acidic protein (GFAP), and total tau (t-tau) with markers of cerebral small vessel disease (SVD) and with incident dementia. We also investigated whether associations of NfL, GFAP, and t-tau with incident dementia were explained by SVD. Data are from a random subsample (n = 1069) of the population-based AGES-Reykjavik Study who underwent brain MRI and in whom plasma NfL, GFAP, and t-tau were measured at baseline (76.1 ± 5.4 years/55.9% women/baseline 2002-2006/follow-up until 2015). A composite SVD burden score was calculated using white matter hyperintensity volume (WMHV), subcortical infarcts, cerebral microbleeds, and large perivascular spaces. Dementia was assessed in a 3-step process and adjudicated by specialists. Higher NfL was associated with a higher SVD burden score. Dementia occurred in 225 (21.0%) individuals. The SVD burden score significantly explained part of the association between NfL and incident dementia. WMHV mostly strongly contributed to the explained effect. GFAP was not associated with the SVD burden score, but was associated with WMHV, and WMHV significantly explained part of the association between GFAP and incident dementia. T-tau was associated with WMHV, but not with incident dementia. In conclusion, the marker most strongly related to SVD is plasma NfL, for which the association with WMHV appeared to explain part of its association with incident dementia. This study suggests that plasma NfL may reflect the contribution of co-morbid vascular disease to dementia. However, the magnitude of the explained effect was relatively small, and further research is required to investigate the clinical implications of this finding.
Collapse
Affiliation(s)
- April C E van Gennip
- Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
- School for Cardiovascular Diseases (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Claudia L Satizabal
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, Department of Population Health Sciences, UT Health San Antonio, San Antonio, TX, USA
| | - Russell P Tracy
- Laboratory for Clinical Biochemistry Research, The Robert Larner M.D. College of Medicine, University of Vermont, Burlington, VT, USA
| | | | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, National Institute On Aging, National Institutes of Health, Baltimore, MD, USA
| | - Thomas T van Sloten
- Department of Vascular Medicine, Utrecht University Medical Center, Utrecht, The Netherlands.
| |
Collapse
|
10
|
Anisetti B, Stewart MW, Eggenberger ER, Shourav MMI, Youssef H, Elkhair A, Ertekin-Taner N, Meschia JF, Lin MP. Age-related macular degeneration is associated with probable cerebral amyloid angiopathy: A case-control study. J Stroke Cerebrovasc Dis 2023; 32:107244. [PMID: 37422928 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/14/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023] Open
Abstract
BACKGROUND Age-related macular degeneration (AMD) is a common retinal degenerative disorder among older individuals. Amyloid deposits, a hallmark of cerebral amyloid angiopathy (CAA), may be involved in the pathogenesis of AMD. Since amyloid deposits may contribute to the development of both AMD and CAA, we hypothesized that patients with AMD have a higher prevalence of CAA. OBJECTIVE To compare the prevalence of CAA in patients with or without AMD matched for age. METHODS We conducted a cross-sectional, 1:1 age-matched, case-control study of patients ≥40 years of age at the Mayo Clinic who had undergone both retinal optical coherence tomography and brain MRI from 2011 to 2015. Primary dependent variables were probable CAA, superficial siderosis, and lobar and deep cerebral microbleeds (CMBs). The relationship between AMD and CAA was assessed using multivariable logistic regression and was compared across AMD severity (none vs early vs late AMD). RESULTS Our analysis included 256 age-matched pairs (AMD 126, no AMD 130). Of those with AMD, 79 (30.9%) had early AMD and 47 (19.4%) had late AMD. The mean age was 75±9 years, and there was no significant difference in vascular risk factors between groups. Patients with AMD had a higher prevalence of CAA (16.7% vs 10.0%, p=0.116) and superficial siderosis (15.1% vs 6.2%, p=0.020), but not deep CMB (5.2% vs 6.2%, p=0.426), compared to those without AMD. After adjusting for covariates, having late AMD was associated with increased odds of CAA (OR 2.83, 95% CI 1.10-7.27, p=0.031) and superficial siderosis (OR 3.40, 95%CI 1.20-9.65, p=0.022), but not deep CMB (OR 0.7, 95%CI 0.14-3.51, p=0.669). CONCLUSIONS AMD was associated with CAA and superficial siderosis but not deep CMB, consistent with the hypothesis that amyloid deposits play a role in the development of AMD. Prospective studies are needed to determine if features of AMD may serve as biomarkers for the early diagnosis of CAA.
Collapse
Affiliation(s)
- Bhrugun Anisetti
- Department of Neurology, Mayo Clinic, 4500 San Pablo Rd., Jacksonville, FL 32224, United States
| | - Michael W Stewart
- Department of Ophthalmology, Mayo Clinic, Jacksonville, FL, United States
| | - Eric R Eggenberger
- Department of Neurology, Mayo Clinic, 4500 San Pablo Rd., Jacksonville, FL 32224, United States; Department of Ophthalmology, Mayo Clinic, Jacksonville, FL, United States
| | - Md Manjurul I Shourav
- Department of Neurology, Mayo Clinic, 4500 San Pablo Rd., Jacksonville, FL 32224, United States
| | - Hossam Youssef
- Department of Neurology, Mayo Clinic, 4500 San Pablo Rd., Jacksonville, FL 32224, United States
| | - Ahamed Elkhair
- Department of Neurology, Mayo Clinic, 4500 San Pablo Rd., Jacksonville, FL 32224, United States
| | - Nilufer Ertekin-Taner
- Department of Neurology, Mayo Clinic, 4500 San Pablo Rd., Jacksonville, FL 32224, United States
| | - James F Meschia
- Department of Neurology, Mayo Clinic, 4500 San Pablo Rd., Jacksonville, FL 32224, United States
| | - Michelle P Lin
- Department of Neurology, Mayo Clinic, 4500 San Pablo Rd., Jacksonville, FL 32224, United States.
| |
Collapse
|
11
|
Maglinger B, Harp JP, Frank JA, Rupareliya C, McLouth CJ, Pahwa S, Sheikhi L, Dornbos D, Trout AL, Stowe AM, Fraser JF, Pennypacker KR. Inflammatory-associated proteomic predictors of cognitive outcome in subjects with ELVO treated by mechanical thrombectomy. BMC Neurol 2023; 23:214. [PMID: 37280551 PMCID: PMC10243077 DOI: 10.1186/s12883-023-03253-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 05/18/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND Emergent Large Vessel Occlusion (ELVO) stroke causes devastating vascular events which can lead to significant cognitive decline and dementia. In the subset of ELVO subjects treated with mechanical thrombectomy (MT) at our institution, we aimed to identify systemic and intracranial proteins predictive of cognitive function at time of discharge and at 90-days. These proteomic biomarkers may serve as prognostic indicators of recovery, as well as potential targets for novel/existing therapeutics to be delivered during the subacute stage of stroke recovery. METHODS At the University of Kentucky Center for Advanced Translational Stroke Sciences, the BACTRAC tissue registry (clinicaltrials.gov; NCT03153683) of human biospecimens acquired during ELVO stroke by MT is utilized for research. Clinical data are collected on each enrolled subject who meets inclusion criteria. Blood samples obtained during thrombectomy were sent to Olink Proteomics for proteomic expression values. Montreal Cognitive Assessments (MoCA) were evaluated with categorical variables using ANOVA and t-tests, and continuous variables using Pearson correlations. RESULTS There were n = 52 subjects with discharge MoCA scores and n = 28 subjects with 90-day MoCA scores. Several systemic and intracranial proteins were identified as having significant correlations to discharge MoCA scores as well as 90-day MoCA scores. Highlighted proteins included s-DPP4, CCL11, IGFBP3, DNER, NRP1, MCP1, and COMP. CONCLUSION We set out to identify proteomic predictors and potential therapeutic targets related to cognitive outcomes in ELVO subjects undergoing MT. Here, we identify several proteins which predicted MoCA after MT, which may serve as therapeutic targets to lessen post-stroke cognitive decline.
Collapse
Affiliation(s)
- Benton Maglinger
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Jordan P Harp
- Department of Neurology, University of Kentucky, Lexington, KY, USA
- Center for Advanced Translational Stroke Science, University of Kentucky, Lexington, KY, USA
| | - Jacqueline A Frank
- Department of Neurology, University of Kentucky, Lexington, KY, USA
- Center for Advanced Translational Stroke Science, University of Kentucky, Lexington, KY, USA
| | | | | | - Shivani Pahwa
- Department of Neurosurgery, University of Kentucky, Lexington, KY, USA
- Department of Radiology, University of Kentucky, Lexington, KY, USA
| | - Lila Sheikhi
- Department of Neurology, University of Kentucky, Lexington, KY, USA
- Department of Neurosurgery, University of Kentucky, Lexington, KY, USA
- Department of Radiology, University of Kentucky, Lexington, KY, USA
| | - David Dornbos
- Department of Neurosurgery, University of Kentucky, Lexington, KY, USA
- Department of Radiology, University of Kentucky, Lexington, KY, USA
| | - Amanda L Trout
- Department of Neurology, University of Kentucky, Lexington, KY, USA
- Center for Advanced Translational Stroke Science, University of Kentucky, Lexington, KY, USA
| | - Ann M Stowe
- Department of Neurology, University of Kentucky, Lexington, KY, USA
- Center for Advanced Translational Stroke Science, University of Kentucky, Lexington, KY, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA
| | - Justin F Fraser
- Department of Neurology, University of Kentucky, Lexington, KY, USA
- Center for Advanced Translational Stroke Science, University of Kentucky, Lexington, KY, USA
- Department of Neurosurgery, University of Kentucky, Lexington, KY, USA
- Department of Radiology, University of Kentucky, Lexington, KY, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA
| | - Keith R Pennypacker
- Department of Neurology, University of Kentucky, Lexington, KY, USA.
- Center for Advanced Translational Stroke Science, University of Kentucky, Lexington, KY, USA.
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA.
- Department of Neurology and Neuroscience, Center for Advanced Translational Stroke Science, University of Kentucky, Building BBSRB, Office B383, Lexington, KY, 40536, USA.
| |
Collapse
|
12
|
Sun Y, Hu HY, Hu H, Huang LY, Tan L, Yu JT. Cerebral Small Vessel Disease Burden Predicts Neurodegeneration and Clinical Progression in Prodromal Alzheimer's Disease. J Alzheimers Dis 2023; 93:283-294. [PMID: 36970905 DOI: 10.3233/jad-221207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
BACKGROUND Cerebral small vessel disease (CSVD) has been suggested to contribute to the pathogenesis of Alzheimer's disease (AD). OBJECTIVE This study aimed to comprehensively investigated the associations of CSVD burden with cognition and AD pathologies. METHODS A total of 546 non-demented participants (mean age, 72.1 years, range, 55-89; 47.4% female) were included. The longitudinal neuropathological and clinical correlates of CSVD burden were assessed using linear mixed-effects and Cox proportional-hazard models. Partial least squares structural equation model (PLS-SEM) was used to assess the direct and indirect effects of CSVD burden on cognition. RESULTS We found that higher CSVD burden was associated with worse cognition (MMSE, β= -0.239, p = 0.006; MoCA, β= -0.493, p = 0.013), lower cerebrospinal fluid (CSF) Aβ level (β= -0.276, p < 0.001) and increased amyloid burden (β= 0.048, p = 0.002). In longitudinal, CSVD burden contributed to accelerated rates of hippocampus atrophy, cognitive decline, and higher risk of AD dementia. Furthermore, as the results of PLS-SEM, we observed both significant direct and indirect impact of advanced age (direct, β= -0.206, p < 0.001; indirect, β= -0.002, p = 0.043) and CSVD burden (direct, β= -0.096, p = 0.018; indirect, β= -0.005, p = 0.040) on cognition by Aβ-p-tau-tau pathway. CONCLUSION CSVD burden could be a prodromal predictor for clinical and pathological progression. Simultaneously, we found that the effects were mediated by the one-direction-only sequence of pathological biomarker changes starting with Aβ, through abnormal p-tau, and neurodegeneration.
Collapse
Affiliation(s)
- Yan Sun
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - He-Ying Hu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Hao Hu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Liang-Yu Huang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Laudanski K, Liu D, Okeke T, Restrepo M, Szeto WY. Persistent Depletion of Neuroprotective Factors Accompanies Neuroinflammatory, Neurodegenerative, and Vascular Remodeling Spectra in Serum Three Months after Non-Emergent Cardiac Surgery. Biomedicines 2022; 10:2364. [PMID: 36289630 PMCID: PMC9598177 DOI: 10.3390/biomedicines10102364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/24/2022] Open
Abstract
We hypothesized that the persistent depletion of neuroprotective markers accompanies neuroinflammation and neurodegeneration in patients after cardiac surgery. A total of 158 patients underwent elective heart surgery with their blood collected before surgery (tbaseline) and 24 h (t24hr), seven days (t7d), and three months (t3m) post-surgery. The patients' serum was measured for markers of neurodegeneration (τau, τaup181-183, amyloid β1-40/β2-42, and S100), atypical neurodegeneration (KLK6 and NRGN), neuro-injury (neurofilament light/heavy, UC-HL, and GFAP), neuroinflammation (YKL-40 and TDP-43), peripheral nerve damage (NCAM-1), neuroprotection (apoE4, BDNF, fetuin, and clusterin), and vascular smoldering inflammation (C-reactive protein, CCL-28 IL-6, and IL-8). The mortality at 28 days, incidence of cerebrovascular accidents (CVA), and functional status were followed for three months. The levels of amyloid β1-40/β1-42 and NF-L were significantly elevated at all time points. The levels of τau, S100, KLK6, NRGN, and NCAM-1 were significantly elevated at 24 h. A cluster analysis demonstrated groupings around amyloids, KLK6, and NCAM-1. YKL-40, but not TDP-43, was significantly elevated across all time points. BDNF, apoE4, fetuin, and clusterin levels were significantly diminished long-term. IL-6 and IL-8 levles returned to baseline at t3m. The levels of CRP, CCL-28, and Hsp-70 remained elevated. At 3 months, 8.2% of the patients experienced a stroke, with transfusion volume being a significant variable. Cardiac-surgery patients exhibited persistent peripheral and neuronal inflammation, blood vessel remodeling, and the depletion of neuroprotective factors 3 months post-procedure.
Collapse
Affiliation(s)
- Krzysztof Laudanski
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Leonard Davis Institute for Health Economics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Da Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110055, China
| | - Tony Okeke
- Department of Bioengineering, Drexel University, Philadelphia, PA 19104, USA
| | - Mariana Restrepo
- College of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wilson Y. Szeto
- Division of Cardiovascular Surgery, Department of Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
14
|
Piccarducci R, Caselli MC, Zappelli E, Ulivi L, Daniele S, Siciliano G, Ceravolo R, Mancuso M, Baldacci F, Martini C. The Role of Amyloid-β, Tau, and α-Synuclein Proteins as Putative Blood Biomarkers in Patients with Cerebral Amyloid Angiopathy. J Alzheimers Dis 2022; 89:1039-1049. [PMID: 35964181 DOI: 10.3233/jad-220216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Cerebral amyloid angiopathy (CAA) is a cerebrovascular disorder characterized by the deposition of amyloid-β protein (Aβ) within brain blood vessels that develops in elderly people and Alzheimer's disease (AD) patients. Therefore, the investigation of biomarkers able to differentiate CAA patients from AD patients and healthy controls (HC) is of great interest, in particular in peripheral fluids. OBJECTIVE The current study aimed to detect the neurodegenerative disease (ND)-related protein (i.e., Aβ 1 - 40, Aβ 1 - 42, tau, and α-synuclein) levels in both red blood cells (RBCs) and plasma of CAA patients and HC, evaluating their role as putative peripheral biomarkers for CAA. METHODS For this purpose, the proteins' concentration was quantified in RBCs and plasma by homemade immunoenzymatic assays in an exploratory cohort of 20 CAA patients and 20 HC. RESULTS The results highlighted a significant increase of Aβ 1 - 40 and α-synuclein concentrations in both RBCs and plasma of CAA patients, while higher Aβ 1 - 42 and t-tau levels were detected only in RBCs of CAA individuals compared to HC. Moreover, Aβ 1 - 42/Aβ 1 - 40 ratio increased in RBCs and decreased in plasma of CAA patients. The role of these proteins as candidate peripheral biomarkers easily measurable with a blood sample in CAA needs to be confirmed in larger studies. CONCLUSION In conclusion, we provide evidence concerning the possible use of blood biomarkers for contributing to CAA diagnosis and differentiation from other NDs.
Collapse
Affiliation(s)
| | - Maria Chiara Caselli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Leonardo Ulivi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Roberto Ceravolo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Michelangelo Mancuso
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Filippo Baldacci
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | |
Collapse
|
15
|
Pinheiro A, Demissie S, Scruton A, Charidimou A, Parva P, DeCarli C, Seshadri S, Romero JR. Association of Apolipoprotein E ɛ4 Allele with Enlarged Perivascular Spaces. Ann Neurol 2022; 92:23-31. [PMID: 35373386 PMCID: PMC9233108 DOI: 10.1002/ana.26364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/10/2022] [Accepted: 03/30/2022] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Enlarged perivascular spaces have emerged as markers of cerebral small vessel disease and are linked to perivascular drainage dysfunction. The apolipoprotein E-ɛ4 (APOE-ɛ4) allele is the strongest genetic risk factor for cerebral amyloid angiopathy and Alzheimer's neuropathology, but the underlying mechanisms remain unclear. We studied the relationship between APOE-ɛ4 and the topography and burden of enlarged perivascular spaces to elucidate underlying mechanisms between APOE-ɛ4 and adverse clinical outcomes. METHODS We included 3,564 Framingham Heart Study participants with available genotypes and magnetic resonance imaging. Enlarged perivascular spaces in the basal ganglia and centrum semiovale were rated using a validated scale. We related APOE-ɛ4 allele presence to high burden of enlarged perivascular spaces in each region and a mixed score reflecting high burden in both regions using multivariable logistic regression. Exploratory analyses incorporated presence of cerebral microbleeds and assessed effect modification by hypertension. RESULTS Mean age was 60.7 years (SD = 14.6), 1,644 (46.1%) were men, 1,486 (41.8%) were hypertensive, and 836 (23.5%) participants were APOE-ɛ4 carriers. APOE-ɛ4 was associated with high burden of enlarged perivascular spaces in the centrum semiovale (odds ratio [OR] = 1.45, 95% confidence interval [CI] = 1.16, 1.81) and mixed regions (OR = 1.37, 95% CI = 1.11, 1.68). Associations were slightly stronger in hypertensive subjects. INTERPRETATION The APOE-ɛ4 allele plays a modest role in the burden of enlarged perivascular spaces in the centrum semiovale. Further studies are needed to clarify the underlying small vessel disease type in community-dwelling individuals with predominant centrum semiovale enlarged perivascular spaces, which may be hypertensive angiopathy in our sample. ANN NEUROL 2022;92:23-31.
Collapse
Affiliation(s)
- Adlin Pinheiro
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
- NHLBI's Framingham Heart Study, Framingham, MA
| | - Serkalem Demissie
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
- NHLBI's Framingham Heart Study, Framingham, MA
| | | | - Andreas Charidimou
- Department of Neurology, Boston University School of Medicine, Boston, MA
| | - Pedram Parva
- Department of Radiology, Veterans Affairs Boston Healthcare System, Boston, MA
- Department of Radiology, Boston University School of Medicine, Boston, MA
| | - Charles DeCarli
- Department of Neurology, University of California at Davis, Davis, CA
| | - Sudha Seshadri
- NHLBI's Framingham Heart Study, Framingham, MA
- The Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX
| | - José R Romero
- NHLBI's Framingham Heart Study, Framingham, MA
- Department of Neurology, Boston University School of Medicine, Boston, MA
| |
Collapse
|
16
|
McCarter SJ, Lesnick TG, Lowe VJ, Rabinstein AA, Przybelski SA, Algeciras-Schimnich A, Ramanan VK, Jack CR, Petersen RC, Knopman DS, Boeve BF, Kantarci K, Vemuri P, Mielke MM, Graff-Radford J. Association Between Plasma Biomarkers of Amyloid, Tau, and Neurodegeneration with Cerebral Microbleeds. J Alzheimers Dis 2022; 87:1537-1547. [PMID: 35527558 PMCID: PMC9472282 DOI: 10.3233/jad-220158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Cerebral microbleeds (CMBs) are a common vascular pathology associated with future intracerebral hemorrhage. Plasma biomarkers of amyloid, tau, and neurodegeneration may provide a screening avenue to identify those with CMBs, but evidence is conflicting. OBJECTIVE To determine the association between plasma biomarkers (Aβ40, Aβ42, t-tau, p-tau181, p-tau217, neurofilament light chain (NfL)) and CMBs in a population-based study of aging and whether these biomarkers predict higher signal on Aβ-PET imaging in patients with multiple CMBs. METHODS 712 participants from the Mayo Clinic Study of Aging with T2* GRE MRI and plasma biomarkers were included. Biomarkers were analyzed utilizing Simoa (Aβ40, Aβ42, t-tau, NfL) or Meso Scale Discovery (p-tau181, p-tau217) platforms. Cross-sectional associations between CMBs, plasma biomarkers and Aβ-PET were evaluated using hurdle models and multivariable regression models. RESULTS Among the 188 (26%) individuals with≥1 CMB, a lower plasma Aβ42/Aβ40 ratio was associated with more CMBs after adjusting for covariables (IRR 568.5 95% CI 2.8-116,127). No other biomarkers were associated with risk or number CMBs. In 81 individuals with≥2 CMBs, higher plasma t-tau, p-tau181, and p-tau217 all were associated with higher Aβ-PET signal, with plasma p-tau217 having the strongest predictive value (r2 0.603, AIC -53.0). CONCLUSION Lower plasma Aβ42/Aβ40 ratio and higher plasma p-tau217 were associated with brain amyloidosis in individuals with CMBs from the general population. Our results suggest that in individuals with multiple CMBs and/or lobar intracranial hemorrhage that a lower plasma Aβ42/Aβ40 ratio or elevated p-tau217 may indicate underlying cerebral amyloid angiopathy.
Collapse
Affiliation(s)
- Stuart J. McCarter
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Center for Sleep Medicine, Mayo Clinic, Rochester, MN, USA
| | - Timothy G. Lesnick
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Val J. Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | | | | | | | | | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | - Michelle M. Mielke
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
17
|
Laudanski K, Hajj J, Restrepo M, Siddiq K, Okeke T, Rader DJ. Dynamic Changes in Central and Peripheral Neuro-Injury vs. Neuroprotective Serum Markers in COVID-19 Are Modulated by Different Types of Anti-Viral Treatments but Do Not Affect the Incidence of Late and Early Strokes. Biomedicines 2021; 9:1791. [PMID: 34944606 PMCID: PMC8698659 DOI: 10.3390/biomedicines9121791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 01/07/2023] Open
Abstract
The balance between neurodegeneration, neuroinflammation, neuroprotection, and COVID-19-directed therapy may underly the heterogeneity of SARS-CoV-2's neurological outcomes. A total of 105 patients hospitalized with a diagnosis of COVID-19 had serum collected over a 6 month period to assess neuroinflammatory (MIF, CCL23, MCP-1), neuro-injury (NFL, NCAM-1), neurodegenerative (KLK6, τ, phospho τ, amyloids, TDP43, YKL40), and neuroprotective (clusterin, fetuin, TREM-2) proteins. These were compared to markers of nonspecific inflammatory responses (IL-6, D-dimer, CRP) and of the overall viral burden (spike protein). Data regarding treatment (steroids, convalescent plasma, remdasavir), pre-existing conditions, and incidences of strokes were collected. Amyloid β42, TDP43, NF-L, and KLK6 serum levels declined 2-3 days post-admission, yet recovered to admission baseline levels by 7 days. YKL-40 and NCAM-1 levels remained elevated over time, with clusters of differential responses identified among TREM-2, TDP43, and YKL40. Fetuin was elevated after the onset of COVID-19 while TREM-2 initially declined before significantly increasing over time. MIF serum level was increased 3-7 days after admission. Ferritin correlated with TDP-43 and KLK6. No treatment with remdesivir coincided with elevations in Amyloid-β40. A lack of convalescent plasma resulted in increased NCAM-1 and total tau, and steroidal treatments did not significantly affect any markers. A total of 11 incidences of stroke were registered up to six months after initial admission for COVID-19. Elevated D-dimer, platelet counts, IL-6, and leukopenia were observed. Variable MIF serum levels differentiated patients with CVA from those who did not have a stroke during the acute phase of COVID-19. This study demonstrated concomitant and opposite changes in neurodegenerative and neuroprotective markers persisting well into recovery.
Collapse
Affiliation(s)
- Krzysztof Laudanski
- The Department of Anesthesiology and Critical Care Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
- The Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jihane Hajj
- School of Nursing, Widener University, Philadelphia, PA 19013, USA;
| | - Mariana Restrepo
- College of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Kumal Siddiq
- College of Arts and Sciences, Drexel University, Philadelphia, PA 19104, USA;
| | - Tony Okeke
- School of Biomedical Engineering, Drexel University, Philadelphia, PA 19104, USA;
| | - Daniel J. Rader
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA;
| |
Collapse
|
18
|
Sullivan KJ, Blackshear C, Simino J, Tin A, Walker KA, Sharrett AR, Younkin S, Gottesman RF, Mielke MM, Knopman D, Windham BG, Griswold ME, Mosley TH. Association of Midlife Plasma Amyloid-β Levels With Cognitive Impairment in Late Life: The ARIC Neurocognitive Study. Neurology 2021; 97:e1123-e1131. [PMID: 34349010 DOI: 10.1212/wnl.0000000000012482] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 06/16/2021] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To evaluate the association between midlife plasma amyloid-beta (Aβ1-42, Aβ1-40, Aβ42:Aβ40) and risk of MCI and dementia. METHODS Plasma Aβ42 and Aβ40 were retrospectively measured using a fluorimetric bead-based immunoassay in a subsample of the Atherosclerosis Risk in Communities cohort study. We investigated the relationship of plasma Aβ42, Aβ40, and Aβ42:Aβ40 ratio measured in midlife, late-life, and the change from midlife to late-life, to risk of MCI, dementia, and combined MCI/dementia outcomes in late-life (from 2011-19). We used multinomial logistic regressions estimating relative risk ratios (RRR) of these cognitive outcomes vs cognitively normal adjusted for age, sex, education, site-race, APOE, hypertension, diabetes, and body mass index. RESULTS A total of 2284 participants were included (midlife mean age=59.2±5.2, 57% female, 22% Black). Each doubling of midlife Aβ42:Aβ40 was associated with 37% lower risk of MCI/dementia (RRR=0.63, 95% CI: 0.46, 0.87), but only up to approximately the median (spline model threshold 0.20). Every standard deviation increase in plasma Aβ42 (10 pg/mL) was associated with 13% lower risk of MCI/dementia (RRR=0.87, 95% CI: 0.77, 0.98), whereas every standard deviation increase in plasma Aβ40 (67 pg/mL) was associated with 15% higher risk of MCI/dementia (RRR=1.15, 95% CI: 1.01, 1.29). Associations were comparable, but slightly weaker statistically, when repeating models using late-life plasma Aβ predictors. Aβ42 and Aβ40 increased from midlife to late-life, but changes were not associated with cognitive outcomes. CONCLUSION Midlife measurement of plasma Aβ may have utility as a blood-based biomarker indicative of risk for future cognitive impairment.
Collapse
Affiliation(s)
- Kevin J Sullivan
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS
| | - Chad Blackshear
- Department of Data Science, University of Mississippi Medical Center, Jackson, MS
| | - Jeannette Simino
- Department of Data Science, University of Mississippi Medical Center, Jackson, MS
| | - Adrienne Tin
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS
| | - Keenan A Walker
- Department of Neurology, The Johns Hopkins University, Baltimore, MD
| | - A Richey Sharrett
- Department of Epidemiology, The Johns Hopkins University, Baltimore, MD
| | | | - Rebecca F Gottesman
- Department of Neurology, The Johns Hopkins University, Baltimore, MD.,Department of Epidemiology, The Johns Hopkins University, Baltimore, MD
| | - Michelle M Mielke
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN.,Department of Neurology, Mayo Clinic, Rochester, MN
| | | | - B Gwen Windham
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS
| | - Michael E Griswold
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS
| | - Thomas H Mosley
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS
| |
Collapse
|
19
|
Cacciottolo M, Morgan TE, Finch CE. Age, sex, and cerebral microbleeds in EFAD Alzheimer disease mice. Neurobiol Aging 2021; 103:42-51. [PMID: 33813349 PMCID: PMC8178216 DOI: 10.1016/j.neurobiolaging.2021.02.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/23/2021] [Accepted: 02/23/2021] [Indexed: 01/03/2023]
Abstract
Cerebral microbleeds (MBs) increase at later ages in association with increased cognitive decline and Alzheimer Disease (AD). MB prevalence is also increased by APOE4 and hypertension. In EFAD mice (5XFAD+/-/human APOE+/+), cerebral cortex MBs are most prevalent in E4 females at 6 months, paralleling plaque amyloid. We evaluated MBs at 2, 4, and 6 months in relation to amyloid in plaques and cerebral amyloid angiopathy (CAA) by age, sex, APOE allele, and blood pressure. At 2 mo, MBs were 50% more numerous than plaques, followed by decreased ratio of MBs:Aβ plaques with female excess to 6 mo. The stable size of MBs suggests MBs arise as single events of extravasation, which may "seed" plaque formation. Blood pressure was normal from 2 to 6 months, minimizing a role of hypertension. Memory, assessed by fear conditioning, decreased with age in correlation with MBs and amyloid. Cortical layer analysis showed prevalent MBs and plaque in layers 4 and 5. Contrarily, CAA was prevalent in layers 1 and 2, discounting its contribution to MBs.
Collapse
Affiliation(s)
- Mafalda Cacciottolo
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Todd E Morgan
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Caleb E Finch
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA; Departments of Neurobiology and Molecular Biology, The Dornsife College, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
20
|
Glymphatic clearance function in patients with cerebral small vessel disease. Neuroimage 2021; 238:118257. [PMID: 34118396 DOI: 10.1016/j.neuroimage.2021.118257] [Citation(s) in RCA: 201] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/31/2021] [Accepted: 06/07/2021] [Indexed: 02/08/2023] Open
Abstract
Few studies have focused on the connection between glymphatic dysfunction and cerebral small vessel disease (CSVD), partially due to the lack of non-invasive methods to measure glymphatic function. We established modified index for diffusion tensor image analysis along the perivascular space (mALPS-index), which was calculated on diffusion tensor image (DTI), compared it with the classical detection of glymphatic clearance function calculated on Glymphatic MRI after intrathecal administration of gadolinium (study 1), and analyzed the relationship between CSVD imaging markers and mALPS-index in CSVD patients from the CIRCLE study (ClinicalTrials.gov ID: NCT03542734) (study 2). Among 39 patients included in study 1, mALPS-index were significantly related to glymphatic clearance function calculated on Glymphatic MRI ( r = -0.772~-0.844, p < 0.001). A total of 330 CSVD patients were included in study 2. Severer periventricular and deep white matter hyperintensities (β = -0.332, p < 0.001; β = -0.293, p < 0.001), number of lacunas (β = -0.215, p < 0.001), number of microbleeds (β = -0.152, p = 0.005), and severer enlarged perivascular spaces in basal ganglia (β = -0.223, p < 0.001) were related to mALPS-index. Our results indicated that non-invasive mALPS-index might represent glymphatic clearance function, which could be applied in clinic in future. Glymphatic clearance function might play a role in the development of CSVD.
Collapse
|
21
|
Ding X, Zhang S, Jiang L, Wang L, Li T, Lei P. Ultrasensitive assays for detection of plasma tau and phosphorylated tau 181 in Alzheimer's disease: a systematic review and meta-analysis. Transl Neurodegener 2021; 10:10. [PMID: 33712071 PMCID: PMC7953695 DOI: 10.1186/s40035-021-00234-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/24/2021] [Indexed: 02/08/2023] Open
Abstract
A lack of convenient and reliable biomarkers for diagnosis and prognosis is a common challenge for neurodegenerative diseases such as Alzheimer's disease (AD). Recent advancement in ultrasensitive protein assays has allowed the quantification of tau and phosphorylated tau proteins in peripheral plasma. Here we identified 66 eligible studies reporting quantification of plasma tau and phosphorylated tau 181 (ptau181) using four ultrasensitive methods. Meta-analysis of these studies confirmed that the AD patients had significantly higher plasma tau and ptau181 levels compared with controls, and that the plasma tau and ptau181 could predict AD with high-accuracy area under curve of the Receiver Operating Characteristic. Therefore, plasma tau and plasma ptau181 can be considered as biomarkers for AD diagnosis.
Collapse
Affiliation(s)
- Xulong Ding
- Department of Neurology and State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shuting Zhang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lijun Jiang
- Mental Health Center and West China Brain Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lu Wang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Tao Li
- Mental Health Center and West China Brain Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|