1
|
Zheng Y, Zhou Z, Liu M, Chen Z. Targeting selective autophagy in CNS disorders by small-molecule compounds. Pharmacol Ther 2024; 263:108729. [PMID: 39401531 DOI: 10.1016/j.pharmthera.2024.108729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 09/25/2024] [Accepted: 10/04/2024] [Indexed: 10/27/2024]
Abstract
Autophagy functions as the primary cellular mechanism for clearing unwanted intracellular contents. Emerging evidence suggests that the selective elimination of intracellular organelles through autophagy, compared to the increased bulk autophagic flux, is crucial for the pathological progression of central nervous system (CNS) disorders. Notably, autophagic removal of mitochondria, known as mitophagy, is well-understood in an unhealthy brain. Accumulated data indicate that selective autophagy of other substrates, including protein aggregates, liposomes, and endoplasmic reticulum, plays distinctive roles in various pathological stages. Despite variations in substrates, the molecular mechanisms governing selective autophagy can be broadly categorized into two types: ubiquitin-dependent and -independent pathways, both of which can be subjected to regulation by small-molecule compounds. Notably, natural products provide the remarkable possibility for future structural optimization to regulate the highly selective autophagic clearance of diverse substrates. In this context, we emphasize the selectivity of autophagy in regulating CNS disorders and provide an overview of chemical compounds capable of modulating selective autophagy in these disorders, along with the underlying mechanisms. Further exploration of the functions of these compounds will in turn advance our understanding of autophagic contributions to brain disorders and illuminate precise therapeutic strategies for these diseases.
Collapse
Affiliation(s)
- Yanrong Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Zhejiang, China
| | - Zhuchen Zhou
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Zhejiang, China
| | - Mengting Liu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Zhejiang, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Zhejiang, China.
| |
Collapse
|
2
|
Harnett A, Mathoux J, Wilson MM, Heiland M, Mamad O, Srinivas S, Sanfeliu A, Sanz-Rodriguez A, How KLE, Delanty N, Cryan J, Brett FM, Farrell MA, O'Brien DF, Henshall DC, Brennan GP. Impact of JQ1 treatment on seizures, hippocampal gene expression, and gliosis in a mouse model of temporal lobe epilepsy. Eur J Neurosci 2024; 60:5266-5283. [PMID: 39149798 DOI: 10.1111/ejn.16499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/04/2024] [Accepted: 07/24/2024] [Indexed: 08/17/2024]
Abstract
Epilepsy is a neurological disease characterised by recurrent seizures with complex aetiology. Temporal lobe epilepsy, the most common form in adults, can be acquired following brain insults including trauma, stroke, infection or sustained status epilepticus. The mechanisms that give rise to the formation and maintenance of hyperexcitable networks following acquired insults remain unknown, yet an extensive body of literature points towards persistent gene and epigenomic dysregulation as a potential mediator of this dysfunction. While much is known about the function of specific classes of epigenetic regulators (writers and erasers) in epilepsy, much less is known about the enzymes, which read the epigenome and modulate gene expression accordingly. Here, we explore the potential role for the epigenetic reader bromodomain and extra-terminal domain (BET) proteins in epilepsy. Using the intra-amygdala kainic acid model of temporal lobe epilepsy, we initially identified widespread dysregulation of important epigenetic regulators including EZH2 and REST as well as altered BRD4 expression in chronically epileptic mice. BRD4 activity was also notably affected by epilepsy-provoking insults as seen by elevated binding to and transcriptional regulation of the immediate early gene Fos. Despite influencing early aspects of epileptogenesis, blocking BET protein activity with JQ1 had no overt effects on epilepsy development in mice but did alter glial reactivity and influence gene expression patterns, promoting various neurotransmitter signalling mechanisms and inflammatory pathways in the hippocampus. Together, these results confirm that epigenetic reader activity is affected by epilepsy-provoking brain insults and that BET activity may exert cell-specific actions on inflammation in epilepsy.
Collapse
Affiliation(s)
- Aileen Harnett
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- FutureNeuro Research Centre, University College Dublin, Dublin, Ireland
| | - Justine Mathoux
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- FutureNeuro Research Centre, University College Dublin, Dublin, Ireland
| | - Marc-Michel Wilson
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- FutureNeuro Research Centre, University College Dublin, Dublin, Ireland
| | - Mona Heiland
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- FutureNeuro Research Centre, University College Dublin, Dublin, Ireland
| | - Omar Mamad
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- FutureNeuro Research Centre, University College Dublin, Dublin, Ireland
| | - Sujithra Srinivas
- FutureNeuro Research Centre, University College Dublin, Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Albert Sanfeliu
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- FutureNeuro Research Centre, University College Dublin, Dublin, Ireland
| | - Amaya Sanz-Rodriguez
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- FutureNeuro Research Centre, University College Dublin, Dublin, Ireland
| | - Kelvin Lau E How
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- FutureNeuro Research Centre, University College Dublin, Dublin, Ireland
| | - Norman Delanty
- FutureNeuro Research Centre, University College Dublin, Dublin, Ireland
- Beaumont Hospital, Dublin, Ireland
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | | | | | | | | | - David C Henshall
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- FutureNeuro Research Centre, University College Dublin, Dublin, Ireland
| | - Gary P Brennan
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- FutureNeuro Research Centre, University College Dublin, Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin 4, Ireland
- UCD Conway Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
3
|
Al Rawi S, Simpson L, Agnarsdóttir G, McDonald NQ, Chernuha V, Elpeleg O, Zeviani M, Barker RA, Spiegel R, Laman H. Study of an FBXO7 patient mutation reveals Fbxo7 and PI31 co-regulate proteasomes and mitochondria. FEBS J 2024; 291:2565-2589. [PMID: 38466799 DOI: 10.1111/febs.17114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/18/2024] [Accepted: 02/29/2024] [Indexed: 03/13/2024]
Abstract
Mutations in FBXO7 have been discovered to be associated with an atypical parkinsonism. We report here a new homozygous missense mutation in a paediatric patient that causes an L250P substitution in the dimerisation domain of Fbxo7. This alteration selectively ablates the Fbxo7-PI31 interaction and causes a significant reduction in Fbxo7 and PI31 levels in patient cells. Consistent with their association with proteasomes, patient fibroblasts have reduced proteasome activity and proteasome subunits. We also show PI31 interacts with the MiD49/51 fission adaptor proteins, and unexpectedly, PI31 acts to facilitate SCFFbxo7-mediated ubiquitination of MiD49. The L250P mutation reduces the SCFFbxo7 ligase-mediated ubiquitination of a subset of its known substrates. Although MiD49/51 expression was reduced in patient cells, there was no effect on the mitochondrial network. However, patient cells show reduced levels of mitochondrial function and mitophagy, higher levels of ROS and are less viable under stress. Our study demonstrates that Fbxo7 and PI31 regulate proteasomes and mitochondria and reveals a new function for PI31 in enhancing the SCFFbxo7 E3 ubiquitin ligase activity.
Collapse
Affiliation(s)
- Sara Al Rawi
- Department of Pathology, University of Cambridge, UK
| | - Lorna Simpson
- Department of Pathology, University of Cambridge, UK
| | | | - Neil Q McDonald
- Signalling and Structural Biology Laboratory, The Francis Crick Institute, London, UK
- Department of Biological Sciences, Institute of Structural and Molecular Biology, London, UK
| | - Veronika Chernuha
- Pediatric Neurology Institute, Dana-Dwek Children's Hospital, Tel Aviv Medical Centre and Sackler Faculty of Medicine, Israel
| | - Orly Elpeleg
- Monique and Jacques Roboh Department of Genetic Research, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Massimo Zeviani
- Mitochondrial Biology Unit, The MRC and University of Cambridge, UK
| | - Roger A Barker
- John van Geest Centre for Brain Repair, Cambridge, UK
- Wellcome-MRC Cambridge Stem Cell Institute, UK
| | - Ronen Spiegel
- Pediatric Department, Emek Medical Center, Afula, Israel
| | - Heike Laman
- Department of Pathology, University of Cambridge, UK
| |
Collapse
|
4
|
Guimarães TG, Parmera JB, Castro MAA, Cury RG, Barbosa ER, Kok F. X-Linked Levodopa-Responsive Parkinsonism-Epilepsy Syndrome: A Novel PGK1 Mutation and Literature Review. Mov Disord Clin Pract 2024; 11:556-566. [PMID: 38341651 PMCID: PMC11078492 DOI: 10.1002/mdc3.13992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/03/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Genetic underpinnings in Parkinson's disease (PD) and parkinsonian syndromes are challenging, and recent discoveries regarding their genetic pathways have led to potential gene-specific treatment trials. CASES We report 3 X-linked levodopa (l-dopa)-responsive parkinsonism-epilepsy syndrome cases due to a hemizygous variant in the phosphoglycerate kinase 1 (PGK1) gene. The likely pathogenic variant NM_000291.4 (PGK1):c.950G > A;p.(Gly317Asp) was identified in a hemizygous state. LITERATURE REVIEW Only 8 previous cases have linked this phenotype to PGK1, a gene more commonly associated with hemolytic anemia and myopathy. The unusual association of epilepsy, psychiatric symptoms, action tremor, limb dystonia, cognitive symptoms, and l-dopa-responsive parkinsonism must draw attention to PGK1 mutations, especially because this gene is absent from most commercial hereditary parkinsonism panels. CONCLUSIONS This report aims to shed light on an overlooked gene that causes hereditary parkinsonian syndromes. Further research regarding genetic pathways in PD may provide a better understanding of its pathophysiology and open possibilities for new disease-modifying trials, such as SNCA, LRRK2, PRKN, PINK1, and DJ-1 genes.
Collapse
Affiliation(s)
- Thiago Gonçalves Guimarães
- Department of Neurology, Movement Disorders CenterUniversity of São PauloSão PauloBrazil
- Department of Neurology, Neurogenetics CenterUniversity of São PauloSão PauloBrazil
| | - Jacy Bezerra Parmera
- Department of Neurology, Movement Disorders CenterUniversity of São PauloSão PauloBrazil
| | | | - Rubens Gisbert Cury
- Department of Neurology, Movement Disorders CenterUniversity of São PauloSão PauloBrazil
| | - Egberto Reis Barbosa
- Department of Neurology, Movement Disorders CenterUniversity of São PauloSão PauloBrazil
| | - Fernando Kok
- Department of Neurology, Neurogenetics CenterUniversity of São PauloSão PauloBrazil
| |
Collapse
|
5
|
Jo D, Arjunan A, Choi S, Jung YS, Park J, Jo J, Kim OY, Song J. Oligonol ameliorates liver function and brain function in the 5 × FAD mouse model: transcriptional and cellular analysis. Food Funct 2023; 14:9650-9670. [PMID: 37843873 DOI: 10.1039/d3fo03451h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease worldwide and is accompanied by memory deficits, personality changes, anxiety, depression, and social difficulties. For treatment of AD, many researchers have attempted to find medicinal resources with high effectiveness and without side effects. Oligonol is a low molecular weight polypeptide derived from lychee fruit extract. We investigated the effects of oligonol in 5 × FAD transgenic AD mice, which developed severe amyloid pathology, through behavioral tests (Barnes maze, marble burying, and nestle shredding) and molecular experiments. Oligonol treatment attenuated blood glucose levels and increased the antioxidant response in the livers of 5 × FAD mice. Moreover, the behavioral score data showed improvements in anxiety, depressive behavior, and cognitive impairment following a 2-month course of orally administered oligonol. Oligonol treatment not only altered the circulating levels of cytokines and adipokines in 5 × FAD mice, but also significantly enhanced the mRNA and protein levels of antioxidant enzymes and synaptic plasticity in the brain cortex and hippocampus. Therefore, we highlight the therapeutic potential of oligonol to attenuate neuropsychiatric problems and improve memory deficits in the early stage of AD.
Collapse
Affiliation(s)
- Danbi Jo
- Department of Anatomy, Chonnam National University Medical School, Seoyangro 264, Hwasun 58128, Republic of Korea.
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Seoyangro 264, Hwasun 58128, Republic of Korea
| | - Archana Arjunan
- Department of Anatomy, Chonnam National University Medical School, Seoyangro 264, Hwasun 58128, Republic of Korea.
| | - Seoyoon Choi
- Department of Anatomy, Chonnam National University Medical School, Seoyangro 264, Hwasun 58128, Republic of Korea.
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Seoyangro 264, Hwasun 58128, Republic of Korea
| | - Yoon Seok Jung
- Department of Anatomy, Chonnam National University Medical School, Seoyangro 264, Hwasun 58128, Republic of Korea.
| | - Jihyun Park
- Department of Food Science and Nutrition, Dong-A University, Nakdong-daero 550 beon-gil, Saha-gu, Busan, 49315, Republic of Korea.
- Department of Health Sciences, Graduate School of Dong-A University, Nakdong-daero 550 beon-gil, Saha-gu, Busan, 49315, Republic of Korea
| | - Jihoon Jo
- Department of Biomedical Science, Chonnam National University Medical School, Seoyangro 264, Hwasun 58128, Republic of Korea.
| | - Oh Yoen Kim
- Department of Food Science and Nutrition, Dong-A University, Nakdong-daero 550 beon-gil, Saha-gu, Busan, 49315, Republic of Korea.
- Department of Health Sciences, Graduate School of Dong-A University, Nakdong-daero 550 beon-gil, Saha-gu, Busan, 49315, Republic of Korea
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Seoyangro 264, Hwasun 58128, Republic of Korea.
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Seoyangro 264, Hwasun 58128, Republic of Korea
| |
Collapse
|
6
|
Wang J, Joseph S, Vingill S, Dere E, Tatenhorst L, Ronnenberg A, Lingor P, Preisinger C, Ehrenreich H, Schulz JB, Stegmüller J. Loss of the parkinsonism-associated protein FBXO7 in glutamatergic forebrain neurons in mice leads to abnormal motor behavior and synaptic defects. J Neurochem 2023; 167:296-317. [PMID: 37753846 DOI: 10.1111/jnc.15962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023]
Abstract
Mutations in PARK15, which encodes for the F-box protein FBXO7 have been associated with Parkinsonian Pyramidal syndrome, a rare and complex movement disorder with Parkinsonian symptoms, pyramidal tract signs and juvenile onset. Our previous study showed that systemic loss of Fbxo7 in mice causes motor defects and premature death. We have also demonstrated that FBXO7 has a crucial role in neurons as the specific deletion in tyrosine hydroxylase-positive or glutamatergic forebrain neurons leads to late-onset or early-onset motor dysfunction, respectively. In this study, we examined NEX-Cre;Fbxo7fl/fl mice, in which Fbxo7 was specifically deleted in glutamatergic projection neurons. The effects of FBXO7 deficiency on striatal integrity were investigated with HPLC and histological analyses. NEX-Cre;Fbxo7fl/fl mice revealed an increase in striatal dopamine concentrations, changes in the glutamatergic, GABAergic and dopaminergic pathways, astrogliosis and microgliosis and little or no neuronal loss in the striatum. To determine the effects on the integrity of the synapse, we purified synaptic membranes, subjected them to quantitative mass spectrometry analysis and found alterations in the complement system, endocytosis and exocytosis pathways. These neuropathological changes coincide with alterations in spontaneous home cage behavior. Taken together, our findings suggest that FBXO7 is crucial for corticostriatal projections and the synaptic integrity of the striatum, and consequently for proper motor control.
Collapse
Affiliation(s)
- Jingbo Wang
- Department of Neurology, RWTH University Hospital, Aachen, Germany
| | - Sabitha Joseph
- Department of Neurology, RWTH University Hospital, Aachen, Germany
| | - Siv Vingill
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Ekrem Dere
- Sorbonne Université. Institut de Biologie Paris-Seine, (IBPS), Département UMR 8256, UFR des Sciences de la Vie, Campus Pierre et Marie Curie, Paris Cedex, France
- Clinical Neuroscience, Hermann Rein Strasse 3, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Lars Tatenhorst
- Department of Neurology, University Medical Center, Göttingen, Germany
| | - Anja Ronnenberg
- Clinical Neuroscience, Hermann Rein Strasse 3, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Paul Lingor
- Department of Neurology, School of Medicine, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | | | - Hannelore Ehrenreich
- Clinical Neuroscience, Hermann Rein Strasse 3, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Jörg B Schulz
- Department of Neurology, RWTH University Hospital, Aachen, Germany
- Jülich Aachen Research Alliance (JARA)-BRAIN Institute of Molecular Neuroscience and Neuroimaging, Research Center Jülich and RWTH Aachen University, Aachen, Germany
- Research Training Group 2416 MultiSenses-MultiScales, RWTH Aachen University, Aachen, Germany
| | - Judith Stegmüller
- Department of Neurology, RWTH University Hospital, Aachen, Germany
- Research Training Group 2416 MultiSenses-MultiScales, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
7
|
Reboucas P, Fillebeen C, Botta A, Cleverdon R, Steele AP, Richard V, Zahedi RP, Borchers CH, Burelle Y, Hawke TJ, Pantopoulos K, Sweeney G. Discovery-Based Proteomics Identify Skeletal Muscle Mitochondrial Alterations as an Early Metabolic Defect in a Mouse Model of β-Thalassemia. Int J Mol Sci 2023; 24:ijms24054402. [PMID: 36901833 PMCID: PMC10002226 DOI: 10.3390/ijms24054402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
Although metabolic complications are common in thalassemia patients, there is still an unmet need to better understand underlying mechanisms. We used unbiased global proteomics to reveal molecular differences between the th3/+ mouse model of thalassemia and wild-type control animals focusing on skeletal muscles at 8 weeks of age. Our data point toward a significantly impaired mitochondrial oxidative phosphorylation. Furthermore, we observed a shift from oxidative fibre types toward more glycolytic fibre types in these animals, which was further supported by larger fibre-type cross-sectional areas in the more oxidative type fibres (type I/type IIa/type IIax hybrid). We also observed an increase in capillary density in th3/+ mice, indicative of a compensatory response. Western blotting for mitochondrial oxidative phosphorylation complex proteins and PCR analysis of mitochondrial genes indicated reduced mitochondrial content in the skeletal muscle but not the hearts of th3/+ mice. The phenotypic manifestation of these alterations was a small but significant reduction in glucose handling capacity. Overall, this study identified many important alterations in the proteome of th3/+ mice, amongst which mitochondrial defects leading to skeletal muscle remodelling and metabolic dysfunction were paramount.
Collapse
Affiliation(s)
| | - Carine Fillebeen
- Lady Davis Institute for Medical Research, Department of Medicine, McGill University, Montreal, QC H3T 1E2, Canada
| | - Amy Botta
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada
| | - Riley Cleverdon
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Alexandra P. Steele
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Vincent Richard
- Lady Davis Institute for Medical Research, Department of Medicine, McGill University, Montreal, QC H3T 1E2, Canada
- Segal Cancer Proteomics Centre, Lady Davis Institute, Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada
| | - René P. Zahedi
- Lady Davis Institute for Medical Research, Department of Medicine, McGill University, Montreal, QC H3T 1E2, Canada
- Segal Cancer Proteomics Centre, Lady Davis Institute, Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada
- Manitoba Centre for Proteomics & Systems Biology, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Department of Internal Medicine, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Christoph H. Borchers
- Lady Davis Institute for Medical Research, Department of Medicine, McGill University, Montreal, QC H3T 1E2, Canada
- Segal Cancer Proteomics Centre, Lady Davis Institute, Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada
- Manitoba Centre for Proteomics & Systems Biology, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Yan Burelle
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Thomas J. Hawke
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Kostas Pantopoulos
- Lady Davis Institute for Medical Research, Department of Medicine, McGill University, Montreal, QC H3T 1E2, Canada
| | - Gary Sweeney
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada
- Correspondence: ; Tel.: +1-416-736-2100 (ext. 66635)
| |
Collapse
|
8
|
The characteristics of FBXO7 and its role in human diseases. Gene X 2023; 851:146972. [DOI: 10.1016/j.gene.2022.146972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/26/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
|
9
|
Baviera-Muñoz R, Carretero-Vilarroig L, Vázquez-Costa JF, Morata-Martínez C, Campins-Romeu M, Muelas N, Sastre-Bataller I, Martínez-Torres I, Pérez-García J, Sivera R, Sevilla T, Vilchez JJ, Jaijo T, Espinós C, Millán JM, Bataller L, Aller E. Diagnostic Efficacy of Genetic Studies in a Series of Hereditary Cerebellar Ataxias in Eastern Spain. NEUROLOGY GENETICS 2022; 8:e200038. [DOI: 10.1212/nxg.0000000000200038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022]
Abstract
Background and ObjectivesTo determine the diagnostic efficacy of clinical exome-targeted sequencing (CES) and spinocerebellar ataxia 36 (SCA36) screening in a real-life cohort of patients with cerebellar ataxia (CA) from Eastern Spain.MethodsA total of 130 unrelated patients with CA, negative for common trinucleotide repeat expansions (SCA1, SCA2, SCA3, SCA6, SCA7, SCA8, SCA12, SCA17, dentatorubral pallidoluysian atrophy [DRPLA], and Friedreich ataxia), were studied with CES. Bioinformatic and genotype-phenotype analyses were performed to assess the pathogenicity of the variants encountered. Copy number variants were analyzed when appropriate. In undiagnosed dominant and sporadic cases, repeat primed PCR was used to screen for the presence of a repeat expansion in theNOP56gene.ResultsCES identified pathogenic or likely pathogenic variants in 50 families (39%), including 23 novel variants. Overall, there was a high genetic heterogeneity, and the most frequent genetic diagnosis wasSPG7(n = 15), followed bySETX(n = 6),CACNA1A(n = 5),POLR3A(n = 4), andSYNE1(n = 3). In addition, 17 families displayed likely pathogenic/pathogenic variants in 14 different genes:KCND3(n = 2),KIF1C(n = 2),CYP27A1A(n = 2),AFG3L2(n = 1),ANO10(n = 1),CAPN1(n = 1),CWF19L1(n = 1),ITPR1(n = 1),KCNA1(n = 1),OPA1(n = 1),PNPLA6(n = 1),SPG11(n = 1),SPTBN2(n = 1), andTPP1(n = 1). Twenty-two novel variants were characterized. SCA36 was diagnosed in 11 families, all with autosomal dominant (AD) presentation. SCA36 screening increased the total diagnostic rate to 47% (n = 61/130). Ultimately, undiagnosed patients showed delayed age at onset (p< 0.05) and were more frequently sporadic.DiscussionOur study provides insight into the genetic landscape of CA in Eastern Spain. Although CES was an effective approach to capture genetic heterogeneity, most patients remained undiagnosed. SCA36 was found to be a relatively frequent form and, therefore, should be tested prior to CES in familial AD presentations in particular geographical regions.
Collapse
|
10
|
Kim EY, Kim SY, Seo Y, Shin C. Nearly Abolished Dopamine Transporter Uptake in a Patient With a Novel FBXO7 Mutation. J Mov Disord 2022; 15:269-272. [PMID: 35880381 PMCID: PMC9536907 DOI: 10.14802/jmd.22006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/26/2022] [Indexed: 12/11/2022] Open
Abstract
Mutations in the F-box only protein 7 (FBXO7) gene are the cause of autosomal recessive parkinsonian-pyramidal syndrome. Herein, we report a patient with a novel FBXO7 mutation with a unique clinical presentation. A 43-year-old male visited our hospital with complaints of progressing gait disturbance since a generalized tonic clonic seizure. There were no past neurological symptoms or familial disorders. Neurological examination revealed bradykinesia, masked face, stooped posture, parkinsonian gait, and postural instability. The bilateral uptake by dopamine transporters was nearly abolished, as determined by N-(3-[18F]fluoropropyl)-2β-carbon ethoxy-3β-(4-iodophenyl) nortropane positron emission tomography (18F-FP-CIT PET). Next-generation sequencing revealed a heterozygous c.1066_1069delTCTG (p.Ser356ArgfsTer56) frameshift variant and a heterozygous c.80G>A (p.Arg27His) missense variant of the FBXO7 gene. The patient’s specific clinical features, medication-refractory parkinsonism and seizures further broaden the spectrum of FBXO7 mutations. The nearly abolished dopamine transporter uptake identified by 18F-FP-CIT PET is frequently found in patients with FBXO7 mutations, which is different from the usual rostrocaudal gradient that is observed in patients with Parkinson’s disease.
Collapse
Affiliation(s)
- Eun Young Kim
- Department of Neurology and Chungnam National University Sejong Hospital, Sejong, Korea
| | - Seon Young Kim
- Department of Laboratory Medicine, Chungnam National University Hospital, Chungnam National University, Daejeon, Korea
| | - Youngduk Seo
- Department of Nuclear Medicine, Chungnam National University Sejong Hospital, Sejong, Korea
| | - Chaewon Shin
- Department of Neurology and Chungnam National University Sejong Hospital, Sejong, Korea.,Department of Neurology, Chungnam National University College of Medicine, Daejeon, Korea
| |
Collapse
|
11
|
Moyano P, Vicente-Zurdo D, Blázquez-Barbadillo C, Menéndez JC, González JF, Rosales-Conrado N, Pino JD. Neuroprotective mechanisms of multitarget 7-aminophenanthridin-6(5H)-one derivatives against metal-induced amyloid proteins generation and aggregation. Food Chem Toxicol 2022; 167:113264. [PMID: 35781037 DOI: 10.1016/j.fct.2022.113264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/28/2022] [Accepted: 06/24/2022] [Indexed: 11/25/2022]
Abstract
Brain's metals accumulation is associated with toxic proteins, like amyloid-proteins (Aβ), formation, accumulation, and aggregation, leading to neurodegeneration. Metals downregulate the correct folding, disaggregation, or degradation mechanisms of toxic proteins, as heat shock proteins (HSPs) and proteasome. The 7-amino-phenanthridin-6(5H)-one derivatives (APH) showed neuroprotective effects against metal-induced cell death through their antioxidant effect, independently of their chelating activity. However, additional neuroprotective mechanisms seem to be involved. We tested the most promising APH compounds (APH1-5, 10-100 μM) chemical ability to prevent metal-induced Aβ proteins aggregation; the APH1-5 effect on HSP70 and proteasome 20S (P20S) expression, the metals effect on Aβ formation and the involvement of HSP70 and P20S in the process, and the APH1-5 neuroprotective effects against Aβ proteins (1 μM) and metals in SN56 cells. Our results show that APH1-5 compounds chemically avoid metal-induced Aβ proteins aggregation and induce HSP70 and P20S expression. Additionally, iron and cadmium induced Aβ proteins formation through downregulation of HSP70 and P20S. Finally, APH1-5 compounds protected against Aβ proteins-induced neuronal cell death, reversing partially or completely this effect. These data may help to provide a new therapeutic approach against the neurotoxic effect induced by metals and other environmental pollutants, especially when mediated by toxic proteins.
Collapse
Affiliation(s)
- Paula Moyano
- Departamento de Farmacología y Toxicología, Facultad de Veterinaria, Universidad Complutense, 28040, Madrid, Spain
| | - David Vicente-Zurdo
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense, 28040, Madrid, Spain
| | - Cristina Blázquez-Barbadillo
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain
| | - J Carlos Menéndez
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain
| | - Juan F González
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain.
| | - Noelia Rosales-Conrado
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense, 28040, Madrid, Spain.
| | - Javier Del Pino
- Departamento de Farmacología y Toxicología, Facultad de Veterinaria, Universidad Complutense, 28040, Madrid, Spain.
| |
Collapse
|
12
|
Martínez-Rubio D, Rodríguez-Prieto Á, Sancho P, Navarro-González C, Gorría-Redondo N, Miquel-Leal J, Marco-Marín C, Jenkins A, Soriano-Navarro M, Hernández A, Pérez-Dueñas B, Fazzari P, AƗguilera-Albesa S, Espinós C. Protein misfolding and clearance in the pathogenesis of a new infantile onset ataxia caused by mutations in PRDX3. Hum Mol Genet 2022; 31:3897-3913. [PMID: 35766882 DOI: 10.1093/hmg/ddac146] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/09/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Peroxiredoxin 3 (PRDX3) encodes a mitochondrial antioxidant protein which is essential for the control of reactive oxidative species (ROS) homeostasis. So far, PRDX3 mutations are involved in mild-to-moderate progressive juvenile onset cerebellar ataxia. We aimed to unravel the molecular bases underlying the disease in an infant suffering from cerebellar ataxia that started at 19 months old and presented severe cerebellar atrophy and peripheral neuropathy early in the course of disease. By whole exome sequencing, we identified a novel homozygous mutation, PRDX3 p.D163E, which impaired the mitochondrial ROS defense system. In mouse primary cortical neurons, the exogenous expression of PRDX3 p.D163E was reduced and triggered alterations in neurite morphology and in mitochondria. Mitochondrial computational parameters showed that p.D163E led to serious mitochondrial alterations. In transfected HeLa cells expressing the mutation, mitochondria accumulation was detected by correlative light electron microscopy (CLEM). Mitochondrial morphology showed severe changes, including extremely damaged outer and inner membranes with a notable cristae disorganization. Moreover, spherical structures compatible with lipid droplets were identified, which can be associated with a generalized response to stress and can be involved in the removal of unfolded proteins. In the patient's fibroblasts, PRDX3 expression was nearly absent. The biochemical analysis suggested that the mutation p.D163E would result in an unstable structure tending to form aggregates that trigger unfolded protein responses via mitochondria and endoplasmic reticulum. Altogether, our findings broaden the clinical spectrum of the recently described PRDX3-associated neurodegeneration and provide new insight into the pathological mechanisms underlying this new form of cerebellar ataxia.
Collapse
Affiliation(s)
- Dolores Martínez-Rubio
- Rare Neurodegenerative Diseases Laboratory, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain.,Joint Unit CIPF-IIS La Fe Rare Diseases, 46012 Valencia, Spain
| | - Ángela Rodríguez-Prieto
- Cortical Circuits in Health and Disease Laboratory, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain
| | - Paula Sancho
- Rare Neurodegenerative Diseases Laboratory, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain
| | - Carmen Navarro-González
- Cortical Circuits in Health and Disease Laboratory, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain
| | - Nerea Gorría-Redondo
- Pediatric Neurology Unit, Department of Pediatrics, Complejo Hospitalario de Navarra, Navarrabiomed, 31008 Pamplona, Spain
| | - Javier Miquel-Leal
- Cortical Circuits in Health and Disease Laboratory, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain
| | - Clara Marco-Marín
- Structural Enzymopathology Unit, Instituto de Biomedicina de Valencia (IBV), Consejo Superior de Investigaciones Científicas (CSIC), CIBER de Enfermedades Raras (CIBERER-ISCIII), 46010 Valencia, Spain
| | - Alison Jenkins
- Rare Neurodegenerative Diseases Laboratory, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain
| | - Mario Soriano-Navarro
- Electron Microscopy Core Facility, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain
| | - Alberto Hernández
- Service of Advanced Light Microscopy, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain
| | - Belén Pérez-Dueñas
- Department of Pediatric Neurology, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca, 08035 Barcelona, Spain
| | - Pietro Fazzari
- Cortical Circuits in Health and Disease Laboratory, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain
| | - Sergio AƗguilera-Albesa
- Pediatric Neurology Unit, Department of Pediatrics, Complejo Hospitalario de Navarra, Navarrabiomed, 31008 Pamplona, Spain
| | - Carmen Espinós
- Rare Neurodegenerative Diseases Laboratory, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain.,Joint Unit CIPF-IIS La Fe Rare Diseases, 46012 Valencia, Spain.,Biotechnology Department, Faculty of Veterinary and Experimental Sciences, Universidad Católica de Valencia, 46001 Valencia, Spain
| |
Collapse
|
13
|
Cerebral Iron Deposition in Neurodegeneration. Biomolecules 2022; 12:biom12050714. [PMID: 35625641 PMCID: PMC9138489 DOI: 10.3390/biom12050714] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 02/04/2023] Open
Abstract
Disruption of cerebral iron regulation appears to have a role in aging and in the pathogenesis of various neurodegenerative disorders. Possible unfavorable impacts of iron accumulation include reactive oxygen species generation, induction of ferroptosis, and acceleration of inflammatory changes. Whole-brain iron-sensitive magnetic resonance imaging (MRI) techniques allow the examination of macroscopic patterns of brain iron deposits in vivo, while modern analytical methods ex vivo enable the determination of metal-specific content inside individual cell-types, sometimes also within specific cellular compartments. The present review summarizes the whole brain, cellular, and subcellular patterns of iron accumulation in neurodegenerative diseases of genetic and sporadic origin. We also provide an update on mechanisms, biomarkers, and effects of brain iron accumulation in these disorders, focusing on recent publications. In Parkinson’s disease, Friedreich’s disease, and several disorders within the neurodegeneration with brain iron accumulation group, there is a focal siderosis, typically in regions with the most pronounced neuropathological changes. The second group of disorders including multiple sclerosis, Alzheimer’s disease, and amyotrophic lateral sclerosis shows iron accumulation in the globus pallidus, caudate, and putamen, and in specific cortical regions. Yet, other disorders such as aceruloplasminemia, neuroferritinopathy, or Wilson disease manifest with diffuse iron accumulation in the deep gray matter in a pattern comparable to or even more extensive than that observed during normal aging. On the microscopic level, brain iron deposits are present mostly in dystrophic microglia variably accompanied by iron-laden macrophages and in astrocytes, implicating a role of inflammatory changes and blood–brain barrier disturbance in iron accumulation. Options and potential benefits of iron reducing strategies in neurodegeneration are discussed. Future research investigating whether genetic predispositions play a role in brain Fe accumulation is necessary. If confirmed, the prevention of further brain Fe uptake in individuals at risk may be key for preventing neurodegenerative disorders.
Collapse
|
14
|
Monogenic Parkinson’s Disease: Genotype, Phenotype, Pathophysiology, and Genetic Testing. Genes (Basel) 2022; 13:genes13030471. [PMID: 35328025 PMCID: PMC8950888 DOI: 10.3390/genes13030471] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/24/2022] [Accepted: 03/02/2022] [Indexed: 02/07/2023] Open
Abstract
Parkinson’s disease may be caused by a single pathogenic variant (monogenic) in 5–10% of cases, but investigation of these disorders provides valuable pathophysiological insights. In this review, we discuss each genetic form with a focus on genotype, phenotype, pathophysiology, and the geographic and ethnic distribution. Well-established Parkinson’s disease genes include autosomal dominant forms (SNCA, LRRK2, and VPS35) and autosomal recessive forms (PRKN, PINK1 and DJ1). Furthermore, mutations in the GBA gene are a key risk factor for Parkinson’s disease, and there have been major developments for X-linked dystonia parkinsonism. Moreover, atypical or complex parkinsonism may be due to mutations in genes such as ATP13A2, DCTN1, DNAJC6, FBXO7, PLA2G6, and SYNJ1. Furthermore, numerous genes have recently been implicated in Parkinson’s disease, such as CHCHD2, LRP10, TMEM230, UQCRC1, and VPS13C. Additionally, we discuss the role of heterozygous mutations in autosomal recessive genes, the effect of having mutations in two Parkinson’s disease genes, the outcome of deep brain stimulation, and the role of genetic testing. We highlight that monogenic Parkinson’s disease is influenced by ethnicity and geographical differences, reinforcing the need for global efforts to pool large numbers of patients and identify novel candidate genes.
Collapse
|
15
|
Baviera-Muñoz R, Martínez-Rubio D, Sastre-Bataller I, Campins-Romeu M, Losada-López M, Pérez-García J, Novella-Maestre E, Martínez-Torres I, Espinós C. A 3.9-Mb Deletion on 2p11.2 Comprising the REEP1 Gene Causes Early-Onset Atypical Parkinsonism. Neurol Genet 2021; 7:e642. [PMID: 34825060 PMCID: PMC8610491 DOI: 10.1212/nxg.0000000000000642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 10/18/2021] [Indexed: 11/15/2022]
Affiliation(s)
- Raquel Baviera-Muñoz
- Health Research Institute (R.B.-M.), Hospital Universitari i Politècnic La Fe; Unit of Rare Neurodegenerative Diseases (D.M.-R., C.E.), Centro de Investigación Príncipe Felipe (CIPF); Joint Units INCLIVA & IIS La Fe Rare Diseases (D.M.-R., C.E.); Movement Disorders Unit (I.S.-B., M.C.-R., M.L.-L., J.P.-G., I.M.-T.), Neurology Department, Hospital Universitari i Politècnic La Fe; Department of Genetics (E.N.-M.), Hospital Universitari i Politècnic La Fe; and Health Sciences Faculty, Universidad Internacional de Valencia (VIU) (E.N.-M.), Valencia, Spain
| | - Dolores Martínez-Rubio
- Health Research Institute (R.B.-M.), Hospital Universitari i Politècnic La Fe; Unit of Rare Neurodegenerative Diseases (D.M.-R., C.E.), Centro de Investigación Príncipe Felipe (CIPF); Joint Units INCLIVA & IIS La Fe Rare Diseases (D.M.-R., C.E.); Movement Disorders Unit (I.S.-B., M.C.-R., M.L.-L., J.P.-G., I.M.-T.), Neurology Department, Hospital Universitari i Politècnic La Fe; Department of Genetics (E.N.-M.), Hospital Universitari i Politècnic La Fe; and Health Sciences Faculty, Universidad Internacional de Valencia (VIU) (E.N.-M.), Valencia, Spain
| | - Isabel Sastre-Bataller
- Health Research Institute (R.B.-M.), Hospital Universitari i Politècnic La Fe; Unit of Rare Neurodegenerative Diseases (D.M.-R., C.E.), Centro de Investigación Príncipe Felipe (CIPF); Joint Units INCLIVA & IIS La Fe Rare Diseases (D.M.-R., C.E.); Movement Disorders Unit (I.S.-B., M.C.-R., M.L.-L., J.P.-G., I.M.-T.), Neurology Department, Hospital Universitari i Politècnic La Fe; Department of Genetics (E.N.-M.), Hospital Universitari i Politècnic La Fe; and Health Sciences Faculty, Universidad Internacional de Valencia (VIU) (E.N.-M.), Valencia, Spain
| | - Marina Campins-Romeu
- Health Research Institute (R.B.-M.), Hospital Universitari i Politècnic La Fe; Unit of Rare Neurodegenerative Diseases (D.M.-R., C.E.), Centro de Investigación Príncipe Felipe (CIPF); Joint Units INCLIVA & IIS La Fe Rare Diseases (D.M.-R., C.E.); Movement Disorders Unit (I.S.-B., M.C.-R., M.L.-L., J.P.-G., I.M.-T.), Neurology Department, Hospital Universitari i Politècnic La Fe; Department of Genetics (E.N.-M.), Hospital Universitari i Politècnic La Fe; and Health Sciences Faculty, Universidad Internacional de Valencia (VIU) (E.N.-M.), Valencia, Spain
| | - Mireya Losada-López
- Health Research Institute (R.B.-M.), Hospital Universitari i Politècnic La Fe; Unit of Rare Neurodegenerative Diseases (D.M.-R., C.E.), Centro de Investigación Príncipe Felipe (CIPF); Joint Units INCLIVA & IIS La Fe Rare Diseases (D.M.-R., C.E.); Movement Disorders Unit (I.S.-B., M.C.-R., M.L.-L., J.P.-G., I.M.-T.), Neurology Department, Hospital Universitari i Politècnic La Fe; Department of Genetics (E.N.-M.), Hospital Universitari i Politècnic La Fe; and Health Sciences Faculty, Universidad Internacional de Valencia (VIU) (E.N.-M.), Valencia, Spain
| | - Julia Pérez-García
- Health Research Institute (R.B.-M.), Hospital Universitari i Politècnic La Fe; Unit of Rare Neurodegenerative Diseases (D.M.-R., C.E.), Centro de Investigación Príncipe Felipe (CIPF); Joint Units INCLIVA & IIS La Fe Rare Diseases (D.M.-R., C.E.); Movement Disorders Unit (I.S.-B., M.C.-R., M.L.-L., J.P.-G., I.M.-T.), Neurology Department, Hospital Universitari i Politècnic La Fe; Department of Genetics (E.N.-M.), Hospital Universitari i Politècnic La Fe; and Health Sciences Faculty, Universidad Internacional de Valencia (VIU) (E.N.-M.), Valencia, Spain
| | - Edurne Novella-Maestre
- Health Research Institute (R.B.-M.), Hospital Universitari i Politècnic La Fe; Unit of Rare Neurodegenerative Diseases (D.M.-R., C.E.), Centro de Investigación Príncipe Felipe (CIPF); Joint Units INCLIVA & IIS La Fe Rare Diseases (D.M.-R., C.E.); Movement Disorders Unit (I.S.-B., M.C.-R., M.L.-L., J.P.-G., I.M.-T.), Neurology Department, Hospital Universitari i Politècnic La Fe; Department of Genetics (E.N.-M.), Hospital Universitari i Politècnic La Fe; and Health Sciences Faculty, Universidad Internacional de Valencia (VIU) (E.N.-M.), Valencia, Spain
| | - Irene Martínez-Torres
- Health Research Institute (R.B.-M.), Hospital Universitari i Politècnic La Fe; Unit of Rare Neurodegenerative Diseases (D.M.-R., C.E.), Centro de Investigación Príncipe Felipe (CIPF); Joint Units INCLIVA & IIS La Fe Rare Diseases (D.M.-R., C.E.); Movement Disorders Unit (I.S.-B., M.C.-R., M.L.-L., J.P.-G., I.M.-T.), Neurology Department, Hospital Universitari i Politècnic La Fe; Department of Genetics (E.N.-M.), Hospital Universitari i Politècnic La Fe; and Health Sciences Faculty, Universidad Internacional de Valencia (VIU) (E.N.-M.), Valencia, Spain
| | - Carmen Espinós
- Health Research Institute (R.B.-M.), Hospital Universitari i Politècnic La Fe; Unit of Rare Neurodegenerative Diseases (D.M.-R., C.E.), Centro de Investigación Príncipe Felipe (CIPF); Joint Units INCLIVA & IIS La Fe Rare Diseases (D.M.-R., C.E.); Movement Disorders Unit (I.S.-B., M.C.-R., M.L.-L., J.P.-G., I.M.-T.), Neurology Department, Hospital Universitari i Politècnic La Fe; Department of Genetics (E.N.-M.), Hospital Universitari i Politècnic La Fe; and Health Sciences Faculty, Universidad Internacional de Valencia (VIU) (E.N.-M.), Valencia, Spain
| |
Collapse
|
16
|
Baviera-Muñoz R, Campins-Romeu M, Carretero-Vilarroig L, Sastre-Bataller I, Martínez-Torres I, Vázquez-Costa JF, Muelas N, Sevilla T, Vílchez JJ, Aller E, Jaijo T, Bataller L, Espinós C. Clinical and genetic characteristics of 21 Spanish patients with biallelic pathogenic SPG7 mutations. J Neurol Sci 2021; 429:118062. [PMID: 34500365 DOI: 10.1016/j.jns.2021.118062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 12/27/2022]
Abstract
Spastic paraplegia type 7 (SPG7) is one of the most common hereditary spastic paraplegias. SPG7 mutations most often lead to spastic paraparesis (HSP) and/or hereditary cerebellar ataxia (HCA), frequently with mixed phenotypes. We sought to clinically and genetically characterize a Spanish cohort of SPG7 patients. Patients were recruited from our HCA and HSP cohorts. We identified twenty-one patients with biallelic pathogenic SPG7 mutations. Mean age at onset was 37.4 years (SD ± 14.3). The most frequent phenotype was spastic ataxia (57%), followed by pure spastic paraplegia (19%) and complex phenotypes (19%). Isolated patients presented with focal or multifocal dystonia, subclinical myopathy or ophthalmoplegia. p.Ala510Val was the most frequent pathogenic variant encountered. Compound heterozygous for p.Ala510Val displayed younger onset (p < 0.05) and more complex phenotypes (p < 0.05) than p.Ala510Val homozygotes. Two novel variants were found: p.Lys559Argfs*33 and p.Ala312Glu. In conclusion, spastic ataxia is the most common phenotype found in Spanish patients. Nonetheless, SPG7 analysis should also be considered in patients with less frequent clinical findings such as dystonia or ophthalmoplegia especially when these symptoms are associated with mild spastic ataxia.
Collapse
Affiliation(s)
- Raquel Baviera-Muñoz
- Department of Neurology, Hospital Universitari I Politècnic La Fe, Valencia, Spain; Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; Rare Diseases Joint Unit, CIPF-IIS La Fe, Valencia, Spain
| | - Marina Campins-Romeu
- Department of Neurology, Hospital Universitari I Politècnic La Fe, Valencia, Spain; Rare Diseases Joint Unit, CIPF-IIS La Fe, Valencia, Spain
| | - Lidón Carretero-Vilarroig
- Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; Rare Diseases Joint Unit, CIPF-IIS La Fe, Valencia, Spain; Cell Biology Department, University of Valencia, Valencia, Spain
| | - Isabel Sastre-Bataller
- Department of Neurology, Hospital Universitari I Politècnic La Fe, Valencia, Spain; Rare Diseases Joint Unit, CIPF-IIS La Fe, Valencia, Spain
| | - Irene Martínez-Torres
- Department of Neurology, Hospital Universitari I Politècnic La Fe, Valencia, Spain; Rare Diseases Joint Unit, CIPF-IIS La Fe, Valencia, Spain
| | - Juan F Vázquez-Costa
- Department of Neurology, Hospital Universitari I Politècnic La Fe, Valencia, Spain; Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; Rare Diseases Joint Unit, CIPF-IIS La Fe, Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain
| | - Nuria Muelas
- Department of Neurology, Hospital Universitari I Politècnic La Fe, Valencia, Spain; Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; Rare Diseases Joint Unit, CIPF-IIS La Fe, Valencia, Spain
| | - Teresa Sevilla
- Department of Neurology, Hospital Universitari I Politècnic La Fe, Valencia, Spain; Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; Rare Diseases Joint Unit, CIPF-IIS La Fe, Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain; Department of Medicine, University of Valencia, Valencia, Spain
| | - Juan J Vílchez
- Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; Rare Diseases Joint Unit, CIPF-IIS La Fe, Valencia, Spain; Department of Medicine, University of Valencia, Valencia, Spain
| | - Elena Aller
- Rare Diseases Joint Unit, CIPF-IIS La Fe, Valencia, Spain; Department of Medicine, University of Valencia, Valencia, Spain; Department of Genetics, Hospital Universitari I Politècnic La Fe, Valencia, Spain
| | - Teresa Jaijo
- Rare Diseases Joint Unit, CIPF-IIS La Fe, Valencia, Spain; Department of Medicine, University of Valencia, Valencia, Spain; Department of Genetics, Hospital Universitari I Politècnic La Fe, Valencia, Spain
| | - Luis Bataller
- Department of Neurology, Hospital Universitari I Politècnic La Fe, Valencia, Spain; Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; Rare Diseases Joint Unit, CIPF-IIS La Fe, Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain; Department of Medicine, University of Valencia, Valencia, Spain.
| | - Carmen Espinós
- Rare Diseases Joint Unit, CIPF-IIS La Fe, Valencia, Spain; Department of Medicine, University of Valencia, Valencia, Spain; Laboratory of Rare Neurodegenerative Diseases, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| |
Collapse
|
17
|
Campins-Romeu M, Baviera-Muñoz R, Sastre-Bataller I, Bataller L, Jaijo T, Martínez-Torres I. Hereditary Spastic Paraplegia 7 Presenting as Multifocal Dystonia with Prominent Cranio-Cervical Involvement. Mov Disord Clin Pract 2021; 8:966-968. [PMID: 34405107 DOI: 10.1002/mdc3.13257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/08/2021] [Accepted: 05/04/2021] [Indexed: 12/27/2022] Open
Affiliation(s)
- Marina Campins-Romeu
- Movement Disorders Unit, Department of Neurology Hospital Universitari i Politècnic La Fe Valencia Spain
| | - Raquel Baviera-Muñoz
- Movement Disorders Unit, Department of Neurology Hospital Universitari i Politècnic La Fe Valencia Spain
| | - Isabel Sastre-Bataller
- Movement Disorders Unit, Department of Neurology Hospital Universitari i Politècnic La Fe Valencia Spain
| | - Luis Bataller
- Movement Disorders Unit, Department of Neurology Hospital Universitari i Politècnic La Fe Valencia Spain
| | - Teresa Jaijo
- Department of Genetics Hospital Universitari i Politècnic La Fe Valencia Spain
| | - Irene Martínez-Torres
- Movement Disorders Unit, Department of Neurology Hospital Universitari i Politècnic La Fe Valencia Spain
| |
Collapse
|
18
|
Neurodegeneration with Brain Iron Accumulation and a Brief Report of the Disease in Iran. Can J Neurol Sci 2021; 49:338-351. [PMID: 34082843 DOI: 10.1017/cjn.2021.124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Neurodegeneration with brain iron accumulation (NBIA) is a term used for a group of hereditary neurological disorders with abnormal accumulation of iron in basal ganglia. It is clinically and genetically heterogeneous with symptoms such as dystonia, dysarthria, Parkinsonism, intellectual disability, and spasticity. The age at onset and rate of progression are variable among individuals. Current therapies are exclusively symptomatic and unable to hinder the disease progression. Approximately 16 genes have been identified and affiliated to such condition with different functions such as iron metabolism (only two genes: Ferritin Light Chain (FTL) Ceruloplasmin (CP)), lipid metabolism, lysosomal functions, and autophagy process, but some functions have remained unknown so far. Subgroups of NBIA are categorized based on the mutant genes. Although in the last 10 years, the development of whole-exome sequencing (WES) technology has promoted the identification of disease-causing genes, there seem to be some unknown genes and our knowledge about the molecular aspects and pathogenesis of NBIA is not complete yet. There is currently no comprehensive study about the NBIA in Iran; however, one of the latest discovered NBIA genes, GTP-binding protein 2 (GTPBP2), has been identified in an Iranian family, and there are some patients who have genetically remained unknown.
Collapse
|
19
|
Sancho P, Andrés-Bordería A, Gorría-Redondo N, Llano K, Martínez-Rubio D, Yoldi-Petri ME, Blumkin L, Rodríguez de la Fuente P, Gil-Ortiz F, Fernández-Murga L, Sánchez-Monteagudo A, Lupo V, Pérez-Dueñas B, Espinós C, Aguilera-Albesa S. Expanding the β-III Spectrin-Associated Phenotypes toward Non-Progressive Congenital Ataxias with Neurodegeneration. Int J Mol Sci 2021; 22:ijms22052505. [PMID: 33801522 PMCID: PMC7958857 DOI: 10.3390/ijms22052505] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/19/2021] [Accepted: 02/25/2021] [Indexed: 01/06/2023] Open
Abstract
(1) Background: A non-progressive congenital ataxia (NPCA) phenotype caused by β-III spectrin (SPTBN2) mutations has emerged, mimicking spinocerebellar ataxia, autosomal recessive type 14 (SCAR14). The pattern of inheritance, however, resembles that of autosomal dominant classical spinocerebellar ataxia type 5 (SCA5). (2) Methods: In-depth phenotyping of two boys studied by a customized gene panel. Candidate variants were sought by structural modeling and protein expression. An extensive review of the literature was conducted in order to better characterize the SPTBN2-associated NPCA. (3) Results: Patients exhibited an NPCA with hypotonia, developmental delay, cerebellar syndrome, and cognitive deficits. Both probands presented with progressive global cerebellar volume loss in consecutive cerebral magnetic resonance imaging studies, characterized by decreasing midsagittal vermis relative diameter measurements. Cortical hyperintensities were observed on fluid-attenuated inversion recovery (FLAIR) images, suggesting a neurodegenerative process. Each patient carried a novel de novo SPTBN2 substitution: c.193A > G (p.K65E) or c.764A > G (p.D255G). Modeling and protein expression revealed that both mutations might be deleterious. (4) Conclusions: The reported findings contribute to a better understanding of the SPTBN2-associated phenotype. The mutations may preclude proper structural organization of the actin spectrin-based membrane skeleton, which, in turn, is responsible for the underlying disease mechanism.
Collapse
Affiliation(s)
- Paula Sancho
- Unit of Rare Neurodegenerative Diseases, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain; (P.S.); (A.A.-B.); (D.M.-R.); (A.S.-M.); (V.L.)
| | - Amparo Andrés-Bordería
- Unit of Rare Neurodegenerative Diseases, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain; (P.S.); (A.A.-B.); (D.M.-R.); (A.S.-M.); (V.L.)
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
| | - Nerea Gorría-Redondo
- Pediatric Neurology Unit, Department of Pediatrics, Complejo Hospitalario de Navarra, 31008 Pamplona, Spain; (N.G.-R.); (M.E.Y.-P.)
| | - Katia Llano
- Clinical Psychology, Department of Psychiatry, Complejo Hospitalario de Navarra, 31008 Pamplona, Spain;
| | - Dolores Martínez-Rubio
- Unit of Rare Neurodegenerative Diseases, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain; (P.S.); (A.A.-B.); (D.M.-R.); (A.S.-M.); (V.L.)
| | - María Eugenia Yoldi-Petri
- Pediatric Neurology Unit, Department of Pediatrics, Complejo Hospitalario de Navarra, 31008 Pamplona, Spain; (N.G.-R.); (M.E.Y.-P.)
| | - Luba Blumkin
- Pediatric Neurology Unit, Wolfson Medical Center, Holon, Sackler School of Medicine, Tel-Aviv University, 69978 Tel-Aviv, Israel;
| | | | | | | | - Ana Sánchez-Monteagudo
- Unit of Rare Neurodegenerative Diseases, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain; (P.S.); (A.A.-B.); (D.M.-R.); (A.S.-M.); (V.L.)
| | - Vincenzo Lupo
- Unit of Rare Neurodegenerative Diseases, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain; (P.S.); (A.A.-B.); (D.M.-R.); (A.S.-M.); (V.L.)
| | - Belén Pérez-Dueñas
- Pediatric Neurology Research Group, Vall d’Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain;
| | - Carmen Espinós
- Unit of Rare Neurodegenerative Diseases, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain; (P.S.); (A.A.-B.); (D.M.-R.); (A.S.-M.); (V.L.)
- Correspondence: (C.E.); (S.A.-A.); Tel.: +34-963-289-680 (C.E.); +34-848-422-563 (S.A.-A.)
| | - Sergio Aguilera-Albesa
- Pediatric Neurology Unit, Department of Pediatrics, Complejo Hospitalario de Navarra, 31008 Pamplona, Spain; (N.G.-R.); (M.E.Y.-P.)
- Navarrabiomed-Fundación Miguel Servet, 31008 Pamplona, Spain
- Correspondence: (C.E.); (S.A.-A.); Tel.: +34-963-289-680 (C.E.); +34-848-422-563 (S.A.-A.)
| |
Collapse
|
20
|
Jesús S, Hinarejos I, Carrillo F, Martínez-Rubio D, Macías-García D, Sánchez-Monteagudo A, Adarmes A, Lupo V, Pérez-Dueñas B, Mir P, Espinós C. NR4A2 Mutations Can Cause Intellectual Disability and Language Impairment With Persistent Dystonia-Parkinsonism. NEUROLOGY-GENETICS 2021; 7:e543. [PMID: 33585677 PMCID: PMC7879338 DOI: 10.1212/nxg.0000000000000543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 11/06/2020] [Indexed: 12/02/2022]
Affiliation(s)
- Silvia Jesús
- Unidad de Trastornos del Movimiento (S.J., F.C., D.M.-G., A.A., P.M.), Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED) (S.J., F.C., D.M.-G., A.A., P.M.), Spain; Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders (I.H., D.M.-R., A.S.-M., V.L., C.E.), Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain; Joint Units INCLIVA and IIS La Fe Rare Diseases (I.H., D.M.-R., A.S.-M., V.L., C.E.), Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain; Department of Pediatric Neurology (B.P.-D.), Hospital Universitari Vall d'Hebron, Barcelona, Spain; and Universitat Autònoma de Barcelona (B.P.-D.), Spain
| | - Isabel Hinarejos
- Unidad de Trastornos del Movimiento (S.J., F.C., D.M.-G., A.A., P.M.), Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED) (S.J., F.C., D.M.-G., A.A., P.M.), Spain; Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders (I.H., D.M.-R., A.S.-M., V.L., C.E.), Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain; Joint Units INCLIVA and IIS La Fe Rare Diseases (I.H., D.M.-R., A.S.-M., V.L., C.E.), Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain; Department of Pediatric Neurology (B.P.-D.), Hospital Universitari Vall d'Hebron, Barcelona, Spain; and Universitat Autònoma de Barcelona (B.P.-D.), Spain
| | - Fátima Carrillo
- Unidad de Trastornos del Movimiento (S.J., F.C., D.M.-G., A.A., P.M.), Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED) (S.J., F.C., D.M.-G., A.A., P.M.), Spain; Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders (I.H., D.M.-R., A.S.-M., V.L., C.E.), Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain; Joint Units INCLIVA and IIS La Fe Rare Diseases (I.H., D.M.-R., A.S.-M., V.L., C.E.), Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain; Department of Pediatric Neurology (B.P.-D.), Hospital Universitari Vall d'Hebron, Barcelona, Spain; and Universitat Autònoma de Barcelona (B.P.-D.), Spain
| | - Dolores Martínez-Rubio
- Unidad de Trastornos del Movimiento (S.J., F.C., D.M.-G., A.A., P.M.), Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED) (S.J., F.C., D.M.-G., A.A., P.M.), Spain; Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders (I.H., D.M.-R., A.S.-M., V.L., C.E.), Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain; Joint Units INCLIVA and IIS La Fe Rare Diseases (I.H., D.M.-R., A.S.-M., V.L., C.E.), Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain; Department of Pediatric Neurology (B.P.-D.), Hospital Universitari Vall d'Hebron, Barcelona, Spain; and Universitat Autònoma de Barcelona (B.P.-D.), Spain
| | - Daniel Macías-García
- Unidad de Trastornos del Movimiento (S.J., F.C., D.M.-G., A.A., P.M.), Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED) (S.J., F.C., D.M.-G., A.A., P.M.), Spain; Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders (I.H., D.M.-R., A.S.-M., V.L., C.E.), Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain; Joint Units INCLIVA and IIS La Fe Rare Diseases (I.H., D.M.-R., A.S.-M., V.L., C.E.), Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain; Department of Pediatric Neurology (B.P.-D.), Hospital Universitari Vall d'Hebron, Barcelona, Spain; and Universitat Autònoma de Barcelona (B.P.-D.), Spain
| | - Ana Sánchez-Monteagudo
- Unidad de Trastornos del Movimiento (S.J., F.C., D.M.-G., A.A., P.M.), Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED) (S.J., F.C., D.M.-G., A.A., P.M.), Spain; Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders (I.H., D.M.-R., A.S.-M., V.L., C.E.), Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain; Joint Units INCLIVA and IIS La Fe Rare Diseases (I.H., D.M.-R., A.S.-M., V.L., C.E.), Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain; Department of Pediatric Neurology (B.P.-D.), Hospital Universitari Vall d'Hebron, Barcelona, Spain; and Universitat Autònoma de Barcelona (B.P.-D.), Spain
| | - Astrid Adarmes
- Unidad de Trastornos del Movimiento (S.J., F.C., D.M.-G., A.A., P.M.), Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED) (S.J., F.C., D.M.-G., A.A., P.M.), Spain; Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders (I.H., D.M.-R., A.S.-M., V.L., C.E.), Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain; Joint Units INCLIVA and IIS La Fe Rare Diseases (I.H., D.M.-R., A.S.-M., V.L., C.E.), Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain; Department of Pediatric Neurology (B.P.-D.), Hospital Universitari Vall d'Hebron, Barcelona, Spain; and Universitat Autònoma de Barcelona (B.P.-D.), Spain
| | - Vincenzo Lupo
- Unidad de Trastornos del Movimiento (S.J., F.C., D.M.-G., A.A., P.M.), Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED) (S.J., F.C., D.M.-G., A.A., P.M.), Spain; Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders (I.H., D.M.-R., A.S.-M., V.L., C.E.), Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain; Joint Units INCLIVA and IIS La Fe Rare Diseases (I.H., D.M.-R., A.S.-M., V.L., C.E.), Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain; Department of Pediatric Neurology (B.P.-D.), Hospital Universitari Vall d'Hebron, Barcelona, Spain; and Universitat Autònoma de Barcelona (B.P.-D.), Spain
| | - Belén Pérez-Dueñas
- Unidad de Trastornos del Movimiento (S.J., F.C., D.M.-G., A.A., P.M.), Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED) (S.J., F.C., D.M.-G., A.A., P.M.), Spain; Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders (I.H., D.M.-R., A.S.-M., V.L., C.E.), Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain; Joint Units INCLIVA and IIS La Fe Rare Diseases (I.H., D.M.-R., A.S.-M., V.L., C.E.), Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain; Department of Pediatric Neurology (B.P.-D.), Hospital Universitari Vall d'Hebron, Barcelona, Spain; and Universitat Autònoma de Barcelona (B.P.-D.), Spain
| | - Pablo Mir
- Unidad de Trastornos del Movimiento (S.J., F.C., D.M.-G., A.A., P.M.), Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED) (S.J., F.C., D.M.-G., A.A., P.M.), Spain; Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders (I.H., D.M.-R., A.S.-M., V.L., C.E.), Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain; Joint Units INCLIVA and IIS La Fe Rare Diseases (I.H., D.M.-R., A.S.-M., V.L., C.E.), Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain; Department of Pediatric Neurology (B.P.-D.), Hospital Universitari Vall d'Hebron, Barcelona, Spain; and Universitat Autònoma de Barcelona (B.P.-D.), Spain
| | - Carmen Espinós
- Unidad de Trastornos del Movimiento (S.J., F.C., D.M.-G., A.A., P.M.), Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED) (S.J., F.C., D.M.-G., A.A., P.M.), Spain; Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders (I.H., D.M.-R., A.S.-M., V.L., C.E.), Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain; Joint Units INCLIVA and IIS La Fe Rare Diseases (I.H., D.M.-R., A.S.-M., V.L., C.E.), Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain; Department of Pediatric Neurology (B.P.-D.), Hospital Universitari Vall d'Hebron, Barcelona, Spain; and Universitat Autònoma de Barcelona (B.P.-D.), Spain
| |
Collapse
|
21
|
Hinarejos I, Machuca C, Sancho P, Espinós C. Mitochondrial Dysfunction, Oxidative Stress and Neuroinflammation in Neurodegeneration with Brain Iron Accumulation (NBIA). Antioxidants (Basel) 2020; 9:antiox9101020. [PMID: 33092153 PMCID: PMC7589120 DOI: 10.3390/antiox9101020] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/16/2020] [Accepted: 10/17/2020] [Indexed: 12/13/2022] Open
Abstract
The syndromes of neurodegeneration with brain iron accumulation (NBIA) encompass a group of invalidating and progressive rare diseases that share the abnormal accumulation of iron in the basal ganglia. The onset of NBIA disorders ranges from infancy to adulthood. Main clinical signs are related to extrapyramidal features (dystonia, parkinsonism and choreoathetosis), and neuropsychiatric abnormalities. Ten NBIA forms are widely accepted to be caused by mutations in the genes PANK2, PLA2G6, WDR45, C19ORF12, FA2H, ATP13A2, COASY, FTL1, CP, and DCAF17. Nonetheless, many patients remain without a conclusive genetic diagnosis, which shows that there must be additional as yet undiscovered NBIA genes. In line with this, isolated cases of known monogenic disorders, and also, new genetic diseases, which present with abnormal brain iron phenotypes compatible with NBIA, have been described. Several pathways are involved in NBIA syndromes: iron and lipid metabolism, mitochondrial dynamics, and autophagy. However, many neurodegenerative conditions share features such as mitochondrial dysfunction and oxidative stress, given the bioenergetics requirements of neurons. This review aims to describe the existing link between the classical ten NBIA forms by examining their connection with mitochondrial impairment as well as oxidative stress and neuroinflammation.
Collapse
Affiliation(s)
- Isabel Hinarejos
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain; (I.H.); (C.M.); (P.S.)
- Rare Diseases Joint Units, CIPF-IIS La Fe & INCLIVA, 46012 Valencia, Spain
| | - Candela Machuca
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain; (I.H.); (C.M.); (P.S.)
- Rare Diseases Joint Units, CIPF-IIS La Fe & INCLIVA, 46012 Valencia, Spain
- Unit of Stem Cells Therapies in Neurodegenerative Diseases, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain
| | - Paula Sancho
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain; (I.H.); (C.M.); (P.S.)
- Rare Diseases Joint Units, CIPF-IIS La Fe & INCLIVA, 46012 Valencia, Spain
| | - Carmen Espinós
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain; (I.H.); (C.M.); (P.S.)
- Rare Diseases Joint Units, CIPF-IIS La Fe & INCLIVA, 46012 Valencia, Spain
- Department of Genetics, University of Valencia, 46100 Valencia, Spain
- Correspondence: ; Tel.: +34-963-289-680
| |
Collapse
|