1
|
Furukawa K, Ikoma Y, Niino Y, Hiraoka Y, Tanaka K, Miyawaki A, Hirrlinger J, Matsui K. Dynamics of Neuronal and Astrocytic Energy Molecules in Epilepsy. J Neurochem 2025; 169:e70044. [PMID: 40108970 PMCID: PMC11923518 DOI: 10.1111/jnc.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 03/22/2025]
Abstract
The dynamics of energy molecules in the mouse brain during metabolic challenges induced by epileptic seizures were examined. A transgenic mouse line expressing a fluorescence resonance energy transfer (FRET)-based adenosine triphosphate (ATP) sensor, selectively expressed in the cytosol of neurons, was used. An optical fiber was inserted into the hippocampus, and changes in cytosolic ATP concentration were estimated using the fiber photometry method. To induce epileptic neuronal hyperactivity, a train of electrical stimuli was delivered to a bipolar electrode placed alongside the optical fiber. Although maintaining a steady cytosolic ATP concentration is crucial for cell survival, a single episode of epileptic neuronal hyperactivity drastically reduced neuronal ATP levels. Interestingly, the magnitude of ATP reduction did not increase with the exacerbation of epilepsy, but rather decreased. This suggests that the primary consumption of ATP during epileptic neuronal hyperactivity may not be solely directed toward restoring the Na+ and K+ ionic imbalance caused by action potential bursts. Cytosolic ATP concentration reflects the balance between supply and consumption. To investigate the metabolic flux leading to neuronal ATP production, a new FRET-based pyruvate sensor was developed and selectively expressed in the cytosol of astrocytes in transgenic mice. Upon epileptic neuronal hyperactivity, an increase in astrocytic pyruvate concentration was observed. Changes in the supply of energy molecules, such as glucose and oxygen, due to blood vessel constriction or dilation, as well as metabolic alterations in astrocyte function, may contribute to cytosolic ATP dynamics in neurons.
Collapse
Affiliation(s)
- Kota Furukawa
- Super-network Brain Physiology, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Yoko Ikoma
- Super-network Brain Physiology, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Yusuke Niino
- Laboratory for Cell Function Dynamics, RIKEN Center for Brain Science, Wako-City, Japan
| | - Yuichi Hiraoka
- Laboratory of Molecular Neuroscience, Medical Research Institute (MRI), Tokyo Medical and Dental University (TMDU), Tokyo Institute of Technology, Tokyo, Japan
- Laboratory of Genome Editing for Biomedical Research, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo Institute of Technology, Tokyo, Japan
| | - Kohichi Tanaka
- Laboratory of Genome Editing for Biomedical Research, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo Institute of Technology, Tokyo, Japan
| | - Atsushi Miyawaki
- Laboratory for Cell Function Dynamics, RIKEN Center for Brain Science, Wako-City, Japan
- Biotechnological Optics Research Team, RIKEN Center for Advanced Photonics, Wako-City, Japan
| | - Johannes Hirrlinger
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, Leipzig University, Leipzig, Germany
- Department of Neurogenetics, Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Ko Matsui
- Super-network Brain Physiology, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
- Super-network Brain Physiology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| |
Collapse
|
2
|
Avila A, Málaga I, Sirsi D, Kayani S, Primeaux S, Kathote GA, Jakkamsetti V, Kallem RR, Putnam WC, Park JY, Shinnar S, Pascual JM. Combination of triheptanoin with the ketogenic diet in Glucose transporter type 1 deficiency (G1D). Sci Rep 2023; 13:8951. [PMID: 37268656 DOI: 10.1038/s41598-023-36001-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 05/27/2023] [Indexed: 06/04/2023] Open
Abstract
Fuel influx and metabolism replenish carbon lost during normal neural activity. Ketogenic diets studied in epilepsy, dementia and other disorders do not sustain such replenishment because their ketone body derivatives contain four carbon atoms and are thus devoid of this anaplerotic or net carbon donor capacity. Yet, in these diseases carbon depletion is often inferred from cerebral fluorodeoxyglucose-positron emission tomography. Further, ketogenic diets may prove incompletely therapeutic. These deficiencies provide the motivation for complementation with anaplerotic fuel. However, there are few anaplerotic precursors consumable in clinically sufficient quantities besides those that supply glucose. Five-carbon ketones, stemming from metabolism of the food supplement triheptanoin, are anaplerotic. Triheptanoin can favorably affect Glucose transporter type 1 deficiency (G1D), a carbon-deficiency encephalopathy. However, the triheptanoin constituent heptanoate can compete with ketogenic diet-derived octanoate for metabolism in animals. It can also fuel neoglucogenesis, thus preempting ketosis. These uncertainties can be further accentuated by individual variability in ketogenesis. Therefore, human investigation is essential. Consequently, we examined the compatibility of triheptanoin at maximum tolerable dose with the ketogenic diet in 10 G1D individuals using clinical and electroencephalographic analyses, glycemia, and four- and five-carbon ketosis. 4 of 8 of subjects with pre-triheptanoin beta-hydroxybutyrate levels greater than 2 mM demonstrated a significant reduction in ketosis after triheptanoin. Changes in this and the other measures allowed us to deem the two treatments compatible in the same number of individuals, or 50% of persons in significant beta-hydroxybutyrate ketosis. These results inform the development of individualized anaplerotic modifications to the ketogenic diet.ClinicalTrials.gov registration NCT03301532, first registration: 04/10/2017.
Collapse
Affiliation(s)
- Adrian Avila
- Rare Brain Disorders Program, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Mail Code 8813, Dallas, TX, 75390, USA
- Department of Neurology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Ignacio Málaga
- Rare Brain Disorders Program, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Mail Code 8813, Dallas, TX, 75390, USA
- Department of Neurology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Deepa Sirsi
- Department of Neurology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Saima Kayani
- Department of Neurology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Sharon Primeaux
- Rare Brain Disorders Program, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Mail Code 8813, Dallas, TX, 75390, USA
- Department of Neurology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Gauri A Kathote
- Rare Brain Disorders Program, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Mail Code 8813, Dallas, TX, 75390, USA
- Department of Neurology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Vikram Jakkamsetti
- Rare Brain Disorders Program, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Mail Code 8813, Dallas, TX, 75390, USA
- Department of Neurology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Raja Reddy Kallem
- Department of Pharmacy Practice and Clinical Pharmacology, Experimental Therapeutics Center, Texas Tech University Health Sciences Center, Dallas, TX, 75235, USA
| | - William C Putnam
- Department of Pharmacy Practice and Clinical Pharmacology, Experimental Therapeutics Center, Texas Tech University Health Sciences Center, Dallas, TX, 75235, USA
- Department of Pharmaceutical Science, Texas Tech University Health Sciences Center, Dallas, TX, 75235, USA
| | - Jason Y Park
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Shlomo Shinnar
- Departments of Neurology and Pediatrics, Albert Einstein College of Medicine, Bronx, NY, 10467, USA
| | - Juan M Pascual
- Rare Brain Disorders Program, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Mail Code 8813, Dallas, TX, 75390, USA.
- Department of Neurology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Eugene McDermott Center for Human Growth & Development/Center for Human Genetics, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
3
|
Maximum dose, safety, tolerability and ketonemia after triheptanoin in glucose transporter type 1 deficiency (G1D). Sci Rep 2023; 13:3465. [PMID: 36859467 PMCID: PMC9977760 DOI: 10.1038/s41598-023-30578-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/27/2023] [Indexed: 03/03/2023] Open
Abstract
Augmentation of anaplerosis, or replenishment of carbon lost during intermediary metabolic transitions, is desirable in energy metabolism defects. Triheptanoin, the triglyceride of 7-carbon heptanoic acid, is anaplerotic via direct oxidation or 5-carbon ketone body generation. In this context, triheptanoin can be used to treat Glucose transporter type 1 deficiency encephalopathy (G1D). An oral triheptanoin dose of 1 g/Kg/day supplies near 35% of the total caloric intake and impacted epilepsy and cognition in G1D. This provided the motivation to establish a maximum, potentially greater dose. Using a 3 + 3 dose-finding approach useful in oncology, we studied three age groups: 4-6, 6.8-10 and 11-16 years old. This allowed us to arrive at a maximum tolerated dose of 45% of daily caloric intake for each group. Safety was ascertained via analytical blood measures. One dose-limiting toxicity, occurring in 1 of 6 subjects, was encountered in the middle age group in the context of frequently reduced gastrointestinal tolerance for all groups. Ketonemia following triheptanoin was determined in another group of G1D subjects. In them, β-ketopentanoate and β-hydroxypentanoate concentrations were robustly but variably increased. These results enable the rigorous clinical investigation of triheptanoin in G1D by providing dosing and initial tolerability, safety and ketonemic potential.ClinicalTrials.gov registration: NCT03041363, first registration 02/02/2017.
Collapse
|
4
|
Kathote G, Ma Q, Angulo G, Chen H, Jakkamsetti V, Dobariya A, Good LB, Posner B, Park JY, Pascual JM. Identification of Glucose Transport Modulators In Vitro and Method for Their Deep Learning Neural Network Behavioral Evaluation in Glucose Transporter 1-Deficient Mice. J Pharmacol Exp Ther 2023; 384:393-405. [PMID: 36635085 DOI: 10.1124/jpet.122.001428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/07/2022] [Accepted: 12/27/2022] [Indexed: 01/14/2023] Open
Abstract
Metabolic flux augmentation via glucose transport activation may be desirable in glucose transporter 1 (Glut1) deficiency syndrome (G1D) and dementia, whereas suppression might prove useful in cancer. Using lung adenocarcinoma cells that predominantly express Glut1 relative to other glucose transporters, we screened 9,646 compounds for effects on the accumulation of an extracellularly applied fluorescent glucose analog. Five drugs currently prescribed for unrelated indications or preclinically characterized robustly enhanced intracellular fluorescence. Additionally identified were 37 novel activating and nine inhibitory compounds lacking previous biologic characterization. Because few glucose-related mechanistic or pharmacological studies were available for these compounds, we developed a method to quantify G1D mouse behavior to infer potential therapeutic value. To this end, we designed a five-track apparatus to record and evaluate spontaneous locomotion videos. We applied this to a G1D mouse model that replicates the ataxia and other manifestations cardinal to the human disorder. Because the first two drugs that we examined in this manner (baclofen and acetazolamide) exerted various impacts on several gait aspects, we used deep learning neural networks to more comprehensively assess drug effects. Using this method, 49 locomotor parameters differentiated G1D from control mice. Thus, we used parameter modifiability to quantify efficacy on gait. We tested this by measuring the effects of saline as control and glucose as G1D therapy. The results indicate that this in vivo approach can estimate preclinical suitability from the perspective of G1D locomotion. This justifies the use of this method to evaluate our drugs or other interventions and sort candidates for further investigation. SIGNIFICANCE STATEMENT: There are few or no activators and few clinical inhibitors of glucose transport. Using Glut1-rich cells exposed to a glucose analog, we identified, in highthroughput fashion, a series of novel modulators. Some were drugs used to modify unrelated processes and some represented large but little studied chemical compound families. To facilitate their preclinical efficacy characterization regardless of potential mechanism of action, we developed a gait testing platform for deep learning neural network analysis of drug impact on Glut1-deficient mouse locomotion.
Collapse
Affiliation(s)
- Gauri Kathote
- Rare Brain Disorders Program, Department of Neurology (G.K., Q.M., G.A., V.J., A.D., L.B.G., J.M.P.), Department of Biochemistry (H.C., B.P.), Department of Pathology (J.Y.P.), Department of Physiology (J.M.P.), Department of Pediatrics (J.M.P.), and Eugene McDermott Center for Human Growth & Development/Center for Human Genetics (J.Y.P., J.M.P.), University of Texas Southwestern Medical Center, Dallas, Texas
| | - Qian Ma
- Rare Brain Disorders Program, Department of Neurology (G.K., Q.M., G.A., V.J., A.D., L.B.G., J.M.P.), Department of Biochemistry (H.C., B.P.), Department of Pathology (J.Y.P.), Department of Physiology (J.M.P.), Department of Pediatrics (J.M.P.), and Eugene McDermott Center for Human Growth & Development/Center for Human Genetics (J.Y.P., J.M.P.), University of Texas Southwestern Medical Center, Dallas, Texas
| | - Gustavo Angulo
- Rare Brain Disorders Program, Department of Neurology (G.K., Q.M., G.A., V.J., A.D., L.B.G., J.M.P.), Department of Biochemistry (H.C., B.P.), Department of Pathology (J.Y.P.), Department of Physiology (J.M.P.), Department of Pediatrics (J.M.P.), and Eugene McDermott Center for Human Growth & Development/Center for Human Genetics (J.Y.P., J.M.P.), University of Texas Southwestern Medical Center, Dallas, Texas
| | - Hong Chen
- Rare Brain Disorders Program, Department of Neurology (G.K., Q.M., G.A., V.J., A.D., L.B.G., J.M.P.), Department of Biochemistry (H.C., B.P.), Department of Pathology (J.Y.P.), Department of Physiology (J.M.P.), Department of Pediatrics (J.M.P.), and Eugene McDermott Center for Human Growth & Development/Center for Human Genetics (J.Y.P., J.M.P.), University of Texas Southwestern Medical Center, Dallas, Texas
| | - Vikram Jakkamsetti
- Rare Brain Disorders Program, Department of Neurology (G.K., Q.M., G.A., V.J., A.D., L.B.G., J.M.P.), Department of Biochemistry (H.C., B.P.), Department of Pathology (J.Y.P.), Department of Physiology (J.M.P.), Department of Pediatrics (J.M.P.), and Eugene McDermott Center for Human Growth & Development/Center for Human Genetics (J.Y.P., J.M.P.), University of Texas Southwestern Medical Center, Dallas, Texas
| | - Aksharkumar Dobariya
- Rare Brain Disorders Program, Department of Neurology (G.K., Q.M., G.A., V.J., A.D., L.B.G., J.M.P.), Department of Biochemistry (H.C., B.P.), Department of Pathology (J.Y.P.), Department of Physiology (J.M.P.), Department of Pediatrics (J.M.P.), and Eugene McDermott Center for Human Growth & Development/Center for Human Genetics (J.Y.P., J.M.P.), University of Texas Southwestern Medical Center, Dallas, Texas
| | - Levi B Good
- Rare Brain Disorders Program, Department of Neurology (G.K., Q.M., G.A., V.J., A.D., L.B.G., J.M.P.), Department of Biochemistry (H.C., B.P.), Department of Pathology (J.Y.P.), Department of Physiology (J.M.P.), Department of Pediatrics (J.M.P.), and Eugene McDermott Center for Human Growth & Development/Center for Human Genetics (J.Y.P., J.M.P.), University of Texas Southwestern Medical Center, Dallas, Texas
| | - Bruce Posner
- Rare Brain Disorders Program, Department of Neurology (G.K., Q.M., G.A., V.J., A.D., L.B.G., J.M.P.), Department of Biochemistry (H.C., B.P.), Department of Pathology (J.Y.P.), Department of Physiology (J.M.P.), Department of Pediatrics (J.M.P.), and Eugene McDermott Center for Human Growth & Development/Center for Human Genetics (J.Y.P., J.M.P.), University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jason Y Park
- Rare Brain Disorders Program, Department of Neurology (G.K., Q.M., G.A., V.J., A.D., L.B.G., J.M.P.), Department of Biochemistry (H.C., B.P.), Department of Pathology (J.Y.P.), Department of Physiology (J.M.P.), Department of Pediatrics (J.M.P.), and Eugene McDermott Center for Human Growth & Development/Center for Human Genetics (J.Y.P., J.M.P.), University of Texas Southwestern Medical Center, Dallas, Texas.
| | - Juan M Pascual
- Rare Brain Disorders Program, Department of Neurology (G.K., Q.M., G.A., V.J., A.D., L.B.G., J.M.P.), Department of Biochemistry (H.C., B.P.), Department of Pathology (J.Y.P.), Department of Physiology (J.M.P.), Department of Pediatrics (J.M.P.), and Eugene McDermott Center for Human Growth & Development/Center for Human Genetics (J.Y.P., J.M.P.), University of Texas Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
5
|
Yuskaitis CJ, Modasia JB, Schrötter S, Rossitto LA, Groff KJ, Morici C, Mithal DS, Chakrabarty RP, Chandel NS, Manning BD, Sahin M. DEPDC5-dependent mTORC1 signaling mechanisms are critical for the anti-seizure effects of acute fasting. Cell Rep 2022; 40:111278. [PMID: 36044864 PMCID: PMC9508617 DOI: 10.1016/j.celrep.2022.111278] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/11/2022] [Accepted: 08/05/2022] [Indexed: 11/30/2022] Open
Abstract
Caloric restriction and acute fasting are known to reduce seizures but through unclear mechanisms. mTOR signaling has been suggested as a potential mechanism for seizure protection from fasting. We demonstrate that brain mTORC1 signaling is reduced after acute fasting of mice and that neuronal mTORC1 integrates GATOR1 complex-mediated amino acid and tuberous sclerosis complex (TSC)-mediated growth factor signaling. Neuronal mTORC1 is most sensitive to withdrawal of leucine, arginine, and glutamine, which are dependent on DEPDC5, a component of the GATOR1 complex. Metabolomic analysis reveals that Depdc5 neuronal-specific knockout mice are resistant to sensing significant fluctuations in brain amino acid levels after fasting. Depdc5 neuronal-specific knockout mice are resistant to the protective effects of fasting on seizures or seizure-induced death. These results establish that acute fasting reduces seizure susceptibility in a DEPDC5-dependent manner. Modulation of nutrients upstream of GATOR1 and mTORC1 could offer a rational therapeutic strategy for epilepsy treatment.
Collapse
Affiliation(s)
- Christopher J Yuskaitis
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Division of Epilepsy and Clinical Neurophysiology and Epilepsy Genetics Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jinita B Modasia
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sandra Schrötter
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Leigh-Ana Rossitto
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Karenna J Groff
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Christopher Morici
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Divakar S Mithal
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Section of Neurology, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Ram P Chakrabarty
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Navdeep S Chandel
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Brendan D Manning
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Mustafa Sahin
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
6
|
Vallee KAJ, Fields JA. Caloric Restriction Mimetic 2-Deoxyglucose Reduces Inflammatory Signaling in Human Astrocytes: Implications for Therapeutic Strategies Targeting Neurodegenerative Diseases. Brain Sci 2022; 12:brainsci12030308. [PMID: 35326266 PMCID: PMC8945872 DOI: 10.3390/brainsci12030308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 01/27/2023] Open
Abstract
Therapeutic interventions are greatly needed for age-related neurodegenerative diseases. Astrocytes regulate many aspects of neuronal function including bioenergetics and synaptic transmission. Reactive astrocytes are implicated in neurodegenerative diseases due to their pro-inflammatory phenotype close association with damaged neurons. Thus, strategies to reduce astrocyte reactivity may support brain health. Caloric restriction and a ketogenic diet limit energy production via glycolysis and promote oxidative phosphorylation, which has gained traction as a strategy to improve brain health. However, it is unknown how caloric restriction affects astrocyte reactivity in the context of neuroinflammation. We investigated how a caloric restriction mimetic and glycolysis inhibitor, 2-deoxyglucose (2-DG), affects interleukin 1β-induced inflammatory gene expression in human astrocytes. Human astrocyte cultures were exposed to 2-DG or vehicle for 24 h and then to recombinant IL-1β for 6 or 24 h to analyze mRNA and protein expression, respectively. Gene expression levels of proinflammatory genes (complement component 3, IL-1β, IL6, and TNFα) were analyzed by real-time PCR, immunoblot, and immunohistochemistry. As expected, IL-1β induced elevated levels of proinflammatory genes. 2-DG reversed this effect at the mRNA and protein levels without inducing cytotoxicity. Collectively, these data suggest that inhibiting glycolysis in human astrocytes reduces IL-1β-induced reactivity. This finding may lead to novel therapeutic strategies to limit inflammation and enhance bioenergetics toward the goal of preventing and treating neurodegenerative diseases.
Collapse
|
7
|
Bonilla-Jaime H, Zeleke H, Rojas A, Espinosa-Garcia C. Sleep Disruption Worsens Seizures: Neuroinflammation as a Potential Mechanistic Link. Int J Mol Sci 2021; 22:12531. [PMID: 34830412 PMCID: PMC8617844 DOI: 10.3390/ijms222212531] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 12/13/2022] Open
Abstract
Sleep disturbances, such as insomnia, obstructive sleep apnea, and daytime sleepiness, are common in people diagnosed with epilepsy. These disturbances can be attributed to nocturnal seizures, psychosocial factors, and/or the use of anti-epileptic drugs with sleep-modifying side effects. Epilepsy patients with poor sleep quality have intensified seizure frequency and disease progression compared to their well-rested counterparts. A better understanding of the complex relationship between sleep and epilepsy is needed, since approximately 20% of seizures and more than 90% of sudden unexpected deaths in epilepsy occur during sleep. Emerging studies suggest that neuroinflammation, (e.g., the CNS immune response characterized by the change in expression of inflammatory mediators and glial activation) may be a potential link between sleep deprivation and seizures. Here, we review the mechanisms by which sleep deprivation induces neuroinflammation and propose that neuroinflammation synergizes with seizure activity to worsen neurodegeneration in the epileptic brain. Additionally, we highlight the relevance of sleep interventions, often overlooked by physicians, to manage seizures, prevent epilepsy-related mortality, and improve quality of life.
Collapse
Affiliation(s)
- Herlinda Bonilla-Jaime
- Departamento de Biología de la Reproducción, Área de Biología Conductual y Reproductiva, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de Mexico CP 09340, Mexico;
| | - Helena Zeleke
- Neuroscience and Behavioral Biology Program, College of Arts and Sciences, Emory University, Atlanta, GA 30322, USA;
| | - Asheebo Rojas
- Department of Pharmacology and Chemical Biology, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Claudia Espinosa-Garcia
- Department of Pharmacology and Chemical Biology, School of Medicine, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|