1
|
McMurran CE, de Meo E, Cunniffe NG, Brown JWL, Prados F, Kanber B, Cole JH, Coles AJ, Hägg S, Chard DT. Exploratory analysis of biological age measures in a remyelination clinical trial. Brain Commun 2025; 7:fcaf032. [PMID: 40008332 PMCID: PMC11852336 DOI: 10.1093/braincomms/fcaf032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 12/20/2024] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Enhancing CNS myelin repair (remyelination) is a promising strategy to prevent neurodegeneration and associated progressive disability in multiple sclerosis. Remyelination becomes inefficient with older chronological age, but the relationship between measures of biological age and remyelination has not been previously described in a clinical cohort. Here, we investigated two measures of biological age amongst participants of the Cambridge Centre for Myelin Repair One trial of bexarotene: MRI brain age (BAMRI) and a blood-based biological age (BABlood). In people with radiologically stable multiple sclerosis (n = 44 of 49 total participants), we found that treatment with bexarotene, along with promoting remyelination, was associated with significant decrease in MRI brain age [-1.98 years, 95% confidence interval (CI) [-3.75, -0.21 years] versus placebo over 6 months, P = 0.034]. Whilst BAMRI increased as expected during the trial in the placebo group (+0.92 years, CI [-0.41, 2.26]), the brain MRIs of participants treated with bexarotene appeared on average 11 months younger at the end compared to the start of the trial (-0.93 years, CI [-2.02, 0.17]). The effect of bexarotene on BAMRI was associated with its remyelinating activity in cortical grey matter lesions (β = 0.25% units (pu)/year, CI [0.03, 0.46], P = 0.023) and brainstem lesions (β = 0.24 pu/year, CI [0.09, 0.39], P = 0.003). We also observed some regional trends that the remyelinating response to bexarotene was linked with measures of biological age at baseline. For example, after adjustment for chronological age, remyelination of brainstem lesions assessed by magnetization transfer ratio was reduced by 0.06 pu for each year increase in BAMRI (CI [0.00, 0.13], P = 0.058) and 0.02 pu for each year increase in BABlood (CI [-0.01, 0.05], P = 0.17). This is, to the best of our knowledge, the first demonstration that MRI brain age can be therapeutically modulated by a drug in people with a neurological disorder. Overall, these findings highlight that beyond chronological age, biological age may also influence the potential for repair and should be considered when developing treatments for multiple sclerosis.
Collapse
Affiliation(s)
- Christopher E McMurran
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0AH, UK
- Department of Neuroinflammation, NMR Research Unit, Queen Square Multiple Sclerosis Centre, University College London (UCL) Queen Square Institute of Neurology, London, WC1B 5EH, UK
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, SE-171 77, Sweden
| | - Ermelinda de Meo
- Department of Neuroinflammation, NMR Research Unit, Queen Square Multiple Sclerosis Centre, University College London (UCL) Queen Square Institute of Neurology, London, WC1B 5EH, UK
| | - Nick G Cunniffe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0AH, UK
| | - J William L Brown
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0AH, UK
- Department of Neuroinflammation, NMR Research Unit, Queen Square Multiple Sclerosis Centre, University College London (UCL) Queen Square Institute of Neurology, London, WC1B 5EH, UK
| | - Ferran Prados
- Department of Neuroinflammation, NMR Research Unit, Queen Square Multiple Sclerosis Centre, University College London (UCL) Queen Square Institute of Neurology, London, WC1B 5EH, UK
- Department of Medical Physics and Biomedical Engineering, Centre for Medical Image Computing, University College London, London, WC1V 6LJ, UK
- eHealth Center, Universitat Oberta de Catalunya, Barcelona 08018, Spain
| | - Baris Kanber
- Department of Neuroinflammation, NMR Research Unit, Queen Square Multiple Sclerosis Centre, University College London (UCL) Queen Square Institute of Neurology, London, WC1B 5EH, UK
| | - James H Cole
- Department of Computer Science, Centre for Medical Image Computing, University College London, London, WC1V 6LJ, UK
- Dementia Research Centre, Queen Square Institute of Neurology, University College London, London, WC1N 3AR, UK
| | - Alasdair J Coles
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0AH, UK
| | - Sara Hägg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, SE-171 77, Sweden
| | - Declan T Chard
- Department of Neuroinflammation, NMR Research Unit, Queen Square Multiple Sclerosis Centre, University College London (UCL) Queen Square Institute of Neurology, London, WC1B 5EH, UK
- National Institute for Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research Centre, London, W1T 7DN, UK
| |
Collapse
|
2
|
Vander Wall R, Basavarajappa D, Palanivel V, Sharma S, Gupta V, Klistoner A, Graham S, You Y. VEP Latency Delay Reflects Demyelination Beyond the Optic Nerve in the Cuprizone Model. Invest Ophthalmol Vis Sci 2024; 65:50. [PMID: 39576623 PMCID: PMC11587907 DOI: 10.1167/iovs.65.13.50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/24/2024] [Indexed: 11/24/2024] Open
Abstract
Purpose Remyelination therapies are advancing for multiple sclerosis, focusing on visual pathways and using visual evoked potentials (VEPs) for de/remyelination processes. While the cuprizone (CZ) model and VEPs are core tools in preclinical trials, many overlook the posterior visual pathway. This study aimed to assess functional and structural changes across the murine visual pathway during de/remyelination. Methods One group of C57BL/6 mice underwent a CZ diet for 6 weeks to simulate demyelination, with a subset returning to a regular diet to induce remyelination. An additional group was fed a protracted CZ diet for 12 weeks to maintain chronic demyelination. Visual function was evaluated using electrophysiological recordings, including scotopic threshold responses (STRs) and electroretinograms (ERGs), with VEPs serving as a key biomarker for overall pathway health. Tissues from eyes, brains, and optic nerves (ONs) were collected at different time points for structural analysis. Results Our results demonstrated significant effects on VEPs, including increased N1 latencies and reduced amplitudes in the CZ mouse model. However, retinal function remained unaffected, as evidenced by unchanged STRs, ERGs, and retinal ganglion cell counts. Analysis of ONs revealed morphological changes, characterized by a significantly decreased axon diameter in the core region compared to the subpial region. Additionally, there was a significant increase in the g-ratio of the core region at 12 weeks CZ compared to controls. Immunofluorescence further demonstrated a decrease in myelin basic protein levels at 6 and 12 weeks in CZ animals. Interestingly, the dorsal lateral geniculate nucleus and primary visual cortex (V1) exhibited similar myelin changes, correlating with VEP latency alterations. Conclusions These data reveal that interpreting VEP latency solely as a marker for ON demyelination is incomplete. Previous preclinical studies have overlooked the posterior visual pathways, necessitating a broader interpretation of VEP latency to cover the entire visual pathway.
Collapse
Affiliation(s)
- Roshana Vander Wall
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Devaraj Basavarajappa
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Viswanthram Palanivel
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Samridhi Sharma
- Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Vivek Gupta
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Alexander Klistoner
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Stuart Graham
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, Australia
- Save Sight Institute, Sydney University, Sydney, NSW, Australia
| | - Yuyi You
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, Australia
- Save Sight Institute, Sydney University, Sydney, NSW, Australia
| |
Collapse
|
3
|
de la Fuente AG, Dittmer M, Heesbeen EJ, de la Vega Gallardo N, White JA, Young A, McColgan T, Dashwood A, Mayne K, Cabeza-Fernández S, Falconer J, Rodriguez-Baena FJ, McMurran CE, Inayatullah M, Rawji KS, Franklin RJM, Dooley J, Liston A, Ingram RJ, Tiwari VK, Penalva R, Dombrowski Y, Fitzgerald DC. Ageing impairs the regenerative capacity of regulatory T cells in mouse central nervous system remyelination. Nat Commun 2024; 15:1870. [PMID: 38467607 PMCID: PMC10928230 DOI: 10.1038/s41467-024-45742-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 01/31/2024] [Indexed: 03/13/2024] Open
Abstract
Myelin regeneration (remyelination) is essential to prevent neurodegeneration in demyelinating diseases such as Multiple Sclerosis, however, its efficiency declines with age. Regulatory T cells (Treg) recently emerged as critical players in tissue regeneration, including remyelination. However, the effect of ageing on Treg-mediated regenerative processes is poorly understood. Here, we show that expansion of aged Treg does not rescue age-associated remyelination impairment due to an intrinsically diminished capacity of aged Treg to promote oligodendrocyte differentiation and myelination in male and female mice. This decline in regenerative Treg functions can be rescued by a young environment. We identified Melanoma Cell Adhesion Molecule 1 (MCAM1) and Integrin alpha 2 (ITGA2) as candidates of Treg-mediated oligodendrocyte differentiation that decrease with age. Our findings demonstrate that ageing limits the neuroregenerative capacity of Treg, likely limiting their remyelinating therapeutic potential in aged patients, and describe two mechanisms implicated in Treg-driven remyelination that may be targetable to overcome this limitation.
Collapse
Affiliation(s)
- Alerie Guzman de la Fuente
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK.
- Institute for Health and Biomedical Sciences of Alicante (ISABIAL), Alicante, 03010, Spain.
- Instituto de Neurosciencias CSIC-UMH, San Juan de Alicante, Alicante, 03550, Spain.
| | - Marie Dittmer
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
| | - Elise J Heesbeen
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
- Division of Pharmacology, Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Nira de la Vega Gallardo
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
| | - Jessica A White
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
| | - Andrew Young
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
| | - Tiree McColgan
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
| | - Amy Dashwood
- Department of Pathology, University of Cambridge, CB2 1QP, Cambridge, UK
- Babraham Institute, CB22 3AT, Cambridge, UK
| | - Katie Mayne
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
| | - Sonia Cabeza-Fernández
- Institute for Health and Biomedical Sciences of Alicante (ISABIAL), Alicante, 03010, Spain
- Instituto de Neurosciencias CSIC-UMH, San Juan de Alicante, Alicante, 03550, Spain
| | - John Falconer
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
- CRUK Beatson Institute, G61 1BD, Glasgow, UK
| | | | - Christopher E McMurran
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Mohammed Inayatullah
- Institute of Molecular Medicine, University of Southern Denmark, 5000, Odense, Denmark
- Danish Institute for Advanced Study (DIAS), 5230, Odense, Denmark
| | - Khalil S Rawji
- Altos Labs - Cambridge Institute of Science, Granta Park, Cambridge, CB21 6GP, UK
| | - Robin J M Franklin
- Altos Labs - Cambridge Institute of Science, Granta Park, Cambridge, CB21 6GP, UK
| | - James Dooley
- Department of Pathology, University of Cambridge, CB2 1QP, Cambridge, UK
| | - Adrian Liston
- Department of Pathology, University of Cambridge, CB2 1QP, Cambridge, UK
| | - Rebecca J Ingram
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
| | - Vijay K Tiwari
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
- Institute of Molecular Medicine, University of Southern Denmark, 5000, Odense, Denmark
- Danish Institute for Advanced Study (DIAS), 5230, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, 5000, Odense, Denmark
| | - Rosana Penalva
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
| | - Yvonne Dombrowski
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
| | - Denise C Fitzgerald
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK.
| |
Collapse
|
4
|
Riboni-Verri G, Chen BS, McMurran CE, Halliwell GJ, Brown JWL, Coles AJ, Cunniffe NG. Visual outcome measures in clinical trials of remyelinating drugs. BMJ Neurol Open 2024; 6:e000560. [PMID: 38389586 PMCID: PMC10882304 DOI: 10.1136/bmjno-2023-000560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/15/2024] [Indexed: 02/24/2024] Open
Abstract
One of the most promising approaches to delay, prevent or reverse disability progression in multiple sclerosis (MS) is to enhance endogenous remyelination and limit axonal degeneration. In clinical trials of remyelinating drugs, there is a need for reliable, sensitive and clinically relevant outcome measures. The visual pathway, which is frequently affected by MS, provides a unique model system to evaluate remyelination of acute and chronic MS lesions in vivo and non-invasively. In this review, we discuss the different measures that have been used and scrutinise visual outcome measure selection in current and future remyelination trials.
Collapse
Affiliation(s)
- Gioia Riboni-Verri
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Cambridge Clinical Vision Laboratory, University of Cambridge, Cambridge, UK
| | - Benson S Chen
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Cambridge Clinical Vision Laboratory, University of Cambridge, Cambridge, UK
| | - Christopher E McMurran
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Cambridge Clinical Vision Laboratory, University of Cambridge, Cambridge, UK
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Gregory J Halliwell
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - J William L Brown
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Clinical Outcomes Research Unit (CORe), University of Melbourne, Melborune, Melborune, Australia
| | - Alasdair J Coles
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Cambridge Clinical Vision Laboratory, University of Cambridge, Cambridge, UK
| | - Nick G Cunniffe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Cambridge Clinical Vision Laboratory, University of Cambridge, Cambridge, UK
| |
Collapse
|
5
|
Kamen Y, Evans KA, Sitnikov S, Spitzer SO, de Faria O, Yucel M, Káradóttir RT. Clemastine and metformin extend the window of NMDA receptor surface expression in ageing oligodendrocyte precursor cells. Sci Rep 2024; 14:4091. [PMID: 38374232 PMCID: PMC10876931 DOI: 10.1038/s41598-024-53615-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/02/2024] [Indexed: 02/21/2024] Open
Abstract
In the central nervous system, oligodendrocyte precursor cells (OPCs) proliferate and differentiate into myelinating oligodendrocytes throughout life, allowing for ongoing myelination and myelin repair. With age, differentiation efficacy decreases and myelin repair fails; therefore, recent therapeutic efforts have focused on enhancing differentiation. Many cues are thought to regulate OPC differentiation, including neuronal activity, which OPCs can sense and respond to via their voltage-gated ion channels and glutamate receptors. However, OPCs' density of voltage-gated ion channels and glutamate receptors differs with age and brain region, and correlates with their proliferation and differentiation potential, suggesting that OPCs exist in different functional cell states, and that age-associated states might underlie remyelination failure. Here, we use whole-cell patch-clamp to investigate whether clemastine and metformin, two pro-remyelination compounds, alter OPC membrane properties and promote a specific OPC state. We find that clemastine and metformin extend the window of NMDAR surface expression, promoting an NMDAR-rich OPC state. Our findings highlight a possible mechanism for the pro-remyelinating action of clemastine and metformin, and suggest that OPC states can be modulated as a strategy to promote myelin repair.
Collapse
Affiliation(s)
- Yasmine Kamen
- Cambridge Stem Cell Institute and Department of Veterinary Medicine, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge Biomedical Campus, Cambridge, CB2 A0W, UK.
| | - Kimberley Anne Evans
- Cambridge Stem Cell Institute and Department of Veterinary Medicine, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge Biomedical Campus, Cambridge, CB2 A0W, UK
| | - Sergey Sitnikov
- Cambridge Stem Cell Institute and Department of Veterinary Medicine, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge Biomedical Campus, Cambridge, CB2 A0W, UK
| | - Sonia Olivia Spitzer
- Cambridge Stem Cell Institute and Department of Veterinary Medicine, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge Biomedical Campus, Cambridge, CB2 A0W, UK
| | - Omar de Faria
- Cambridge Stem Cell Institute and Department of Veterinary Medicine, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge Biomedical Campus, Cambridge, CB2 A0W, UK
| | - Mert Yucel
- Cambridge Stem Cell Institute and Department of Veterinary Medicine, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge Biomedical Campus, Cambridge, CB2 A0W, UK
| | - Ragnhildur Thóra Káradóttir
- Cambridge Stem Cell Institute and Department of Veterinary Medicine, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge Biomedical Campus, Cambridge, CB2 A0W, UK.
- Department of Physiology, BioMedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland.
| |
Collapse
|
6
|
Park SY, Kwon YN, Kim S, Kim SH, Kim JK, Kim JS, Nam TS, Min YG, Park KS, Park JS, Seok JM, Sung JJ, Sohn E, Shin KJ, Shin JH, Shin HY, Oh SI, Oh J, Yoon BA, Lee S, Lee JM, Lee HL, Choi K, Huh SY, Jang MJ, Min JH, Kim BJ, Kim SM. Early rituximab treatment reduces long-term disability in aquaporin-4 antibody-positive neuromyelitis optica spectrum. J Neurol Neurosurg Psychiatry 2023; 94:800-805. [PMID: 37268404 DOI: 10.1136/jnnp-2022-330714] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 05/12/2023] [Indexed: 06/04/2023]
Abstract
BACKGROUND Neuromyelitis optica spectrum disorder (NMOSD) causes relapsing inflammatory attacks in the central nervous system, leading to disability. As rituximab, a B-lymphocyte-depleting monoclonal antibody, is an effective in preventing NMOSD relapses, we hypothesised that earlier initiation of rituximab can also reduce long-term disability of patients with NMOSD. METHODS This multicentre retrospective study involving 19 South Korean referral centres included patients with NMOSD with aquaporin-4 antibodies receiving rituximab treatment. Factors associated with the long-term Expanded Disability Status Scale (EDSS) were assessed using multivariable regression analysis. RESULTS In total, 145 patients with rituximab treatment (mean age of onset, 39.5 years; 88.3% female; 98.6% on immunosuppressants/oral steroids before rituximab treatment; mean disease duration of 121 months) were included. Multivariable analysis revealed that the EDSS at the last follow-up was associated with time to rituximab initiation (interval from first symptom onset to initiation of rituximab treatment). EDSS at the last follow-up was also associated with maximum EDSS before rituximab treatment. In subgroup analysis, the time to initiation of rituximab was associated with EDSS at last follow-up in patients aged less than 50 years, female and those with a maximum EDSS score ≥6 before rituximab treatment. CONCLUSIONS Earlier initiation of rituximab treatment may prevent long-term disability worsening in patients with NMOSD, especially among those with early to middle-age onset, female sex and severe attacks.
Collapse
Affiliation(s)
- Su Yeon Park
- Department of Neurology, Korea Cancer Center Hospital, Seoul, Korea (the Republic of)
| | - Young Nam Kwon
- Department of Neurology, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea (the Republic of)
| | - Sunyoung Kim
- Department of Neurology, Ulsan University Hospital College of Medicine, Ulsan, Korea (the Republic of)
| | - Seung-Hyun Kim
- Department of Neurology, Hanyang University College of Medicine, Seoul, Korea (the Republic of)
| | - Jong Kuk Kim
- Department of Neurology, Dong-A University College of Medicine, Busan, Korea (the Republic of)
| | - Jun-Soon Kim
- Department of Neurology, Seoul National University Bundang Hospital, Seongnam, Korea (the Republic of)
| | - Tai-Seung Nam
- Department of Neurology, Chonnam National University Medical School, Chonnam National University Hospital, Gwangju, Korea (the Republic of)
| | - Young Gi Min
- Department of Neurology, Seoul National University College of Medicine, Seoul, Korea (the Republic of)
| | - Kyung Seok Park
- Department of Neurology, Seoul National University Bundang Hospital, Seongnam, Korea (the Republic of)
| | - Jin-Sung Park
- Department of Neurology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Korea (the Republic of)
| | - Jin Myoung Seok
- Department of Neurology, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, Korea (the Republic of)
| | - Jung-Joon Sung
- Department of Neurology, Seoul National University College of Medicine, Seoul, Korea (the Republic of)
| | - Eunhee Sohn
- Department of Neurology, Chungnam National University, College of Medicine, Daejeon, Korea (the Republic of)
| | - Kyong Jin Shin
- Department of Neurology, Haeundae Paik Hospital, Inje University, Busan, Korea (the Republic of)
| | - Jin-Hong Shin
- Department of Neurology, Pusan National University Yangsan Hospital, Yangsan, Korea (the Republic of)
| | - Ha Young Shin
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea (the Republic of)
| | - Seong-Il Oh
- Department of Neurology, Busan Paik Hospital, Inje University College of Medicine, Busan, Korea (the Republic of)
| | - Jeeyoung Oh
- Department of Neurology, Konkuk University School of Medicine, Seoul, Korea (the Republic of)
| | - Byeol-A Yoon
- Department of Neurology, Dong-A University College of Medicine, Busan, Korea (the Republic of)
| | - Sanggon Lee
- Department of Neurology, Chung-Ang University Gwangmyeong Hospital, Gwangmyeong, Korea (the Republic of)
| | - Jong-Mok Lee
- Department of Neurology, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Korea (the Republic of)
| | - Hye Lim Lee
- Department of Neurology, Korea University College of Medicine, Seoul, Korea (the Republic of)
| | - Kyomin Choi
- Department of Neurology, Konkuk University School of Medicine, Seoul, Korea (the Republic of)
| | - So-Young Huh
- Department of Neurology, Kosin University College of Medicine, Busan, Korea (the Republic of)
| | - Myoung-Jin Jang
- Medical Research Collaborating Center, Seoul National University Hospital, Seoul, Korea (the Republic of)
| | - Ju-Hong Min
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea (the Republic of)
| | - Byoung Joon Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea (the Republic of)
| | - Sung-Min Kim
- Department of Neurology, Seoul National University College of Medicine, Seoul, Korea (the Republic of)
| |
Collapse
|
7
|
Klotz L, Antel J, Kuhlmann T. Inflammation in multiple sclerosis: consequences for remyelination and disease progression. Nat Rev Neurol 2023; 19:305-320. [PMID: 37059811 DOI: 10.1038/s41582-023-00801-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2023] [Indexed: 04/16/2023]
Abstract
Despite the large number of immunomodulatory or immunosuppressive treatments available to treat relapsing-remitting multiple sclerosis (MS), treatment of the progressive phase of the disease has not yet been achieved. This lack of successful treatment approaches is caused by our poor understanding of the mechanisms driving disease progression. Emerging concepts suggest that a combination of persisting focal and diffuse inflammation within the CNS and a gradual failure of compensatory mechanisms, including remyelination, result in disease progression. Therefore, promotion of remyelination presents a promising intervention approach. However, despite our increasing knowledge regarding the cellular and molecular mechanisms regulating remyelination in animal models, therapeutic increases in remyelination remain an unmet need in MS, which suggests that mechanisms of remyelination and remyelination failure differ fundamentally between humans and demyelinating animal models. New and emerging technologies now allow us to investigate the cellular and molecular mechanisms underlying remyelination failure in human tissue samples in an unprecedented way. The aim of this Review is to summarize our current knowledge regarding mechanisms of remyelination and remyelination failure in MS and in animal models of the disease, identify open questions, challenge existing concepts, and discuss strategies to overcome the translational roadblock in the field of remyelination-promoting therapies.
Collapse
Affiliation(s)
- Luisa Klotz
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Jack Antel
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Québec, Canada
| | - Tanja Kuhlmann
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Québec, Canada.
- Institute of Neuropathology, University Hospital Münster, Münster, Germany.
| |
Collapse
|
8
|
Zhao X, Jacob C. Mechanisms of Demyelination and Remyelination Strategies for Multiple Sclerosis. Int J Mol Sci 2023; 24:ijms24076373. [PMID: 37047344 PMCID: PMC10093908 DOI: 10.3390/ijms24076373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/19/2023] [Accepted: 03/25/2023] [Indexed: 03/31/2023] Open
Abstract
All currently licensed medications for multiple sclerosis (MS) target the immune system. Albeit promising preclinical results demonstrated disease amelioration and remyelination enhancement via modulating oligodendrocyte lineage cells, most drug candidates showed only modest or no effects in human clinical trials. This might be due to the fact that remyelination is a sophistically orchestrated process that calls for the interplay between oligodendrocyte lineage cells, neurons, central nervous system (CNS) resident innate immune cells, and peripheral immune infiltrates and that this process may somewhat differ in humans and rodent models used in research. To ensure successful remyelination, the recruitment and activation/repression of each cell type should be regulated in a highly organized spatio–temporal manner. As a result, drug candidates targeting one single pathway or a single cell population have difficulty restoring the optimal microenvironment at lesion sites for remyelination. Therefore, when exploring new drug candidates for MS, it is instrumental to consider not only the effects on all CNS cell populations but also the optimal time of administration during disease progression. In this review, we describe the dysregulated mechanisms in each relevant cell type and the disruption of their coordination as causes of remyelination failure, providing an overview of the complex cell interplay in CNS lesion sites.
Collapse
|
9
|
Rawji KS, Neumann B, Franklin RJM. Glial aging and its impact on central nervous system myelin regeneration. Ann N Y Acad Sci 2023; 1519:34-45. [PMID: 36398864 DOI: 10.1111/nyas.14933] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Aging is a major risk factor for several neurodegenerative diseases and is associated with cognitive decline. In addition to affecting neuronal function, the aging process significantly affects the functional phenotype of the glial cell compartment, comprising oligodendrocyte lineage cells, astrocytes, and microglia. These changes result in a more inflammatory microenvironment, resulting in a condition that is favorable for neuron and synapse loss. In addition to facilitating neurodegeneration, the aging glial cell population has negative implications for central nervous system remyelination, a regenerative process that is of particular importance to the chronic demyelinating disease multiple sclerosis. This review will discuss the changes that occur with aging in the three main glial populations and provide an overview of the studies documenting the impact these changes have on remyelination.
Collapse
Affiliation(s)
- Khalil S Rawji
- Altos Labs, Cambridge Institute of Science, Cambridge, UK
| | - Björn Neumann
- Altos Labs, Cambridge Institute of Science, Cambridge, UK
| | | |
Collapse
|
10
|
Lashch NY, Pavlikov AE, Boyko AN. [The development of multiple sclerosis over the age of 50]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:21-25. [PMID: 37796063 DOI: 10.17116/jnevro202312309121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Multiple sclerosis (MS) is a common neurological disease among young people of working age, which tends to increase the number of cases registered in the world and in the Russian Federation. However, with improved diagnostics and the emergence of new drugs that change the course of MS (disease-modifying therapy), people's life expectancy increases and the percentage of patients in the older age group increases as well. In this article, we consider the possibility of developing MS among people over 50 years of age, features of the course, diagnosis and treatment.
Collapse
Affiliation(s)
- N Yu Lashch
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - A E Pavlikov
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - A N Boyko
- Pirogov Russian National Research Medical University, Moscow, Russia
- ²Federal Center for Brain and Neurotechnologies, Moscow, Russia
| |
Collapse
|
11
|
Fyfe I. Ageing reduces potential for remyelination in multiple sclerosis. Nat Rev Neurol 2022; 18:381. [PMID: 35641684 DOI: 10.1038/s41582-022-00680-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
Correale J, Ysrraelit MC. Multiple Sclerosis and Aging: The Dynamics of Demyelination and Remyelination. ASN Neuro 2022; 14:17590914221118502. [PMID: 35938615 PMCID: PMC9364177 DOI: 10.1177/17590914221118502] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system
(CNS) leading to demyelination and neurodegeneration. Life expectancy and age of onset in
MS patients have been rising over the last decades, and previous studies have shown that
age affects disease progression. Therefore, age appears as one of the most important
factors in accumulating disability in MS patients. Indeed, the degeneration of
oligodendrocytes (OGDs) and OGD precursors (OPCs) increases with age, in association with
increased inflammatory activity of astrocytes and microglia. Similarly, age-related
neuronal changes such as mitochondrial alterations, an increase in oxidative stress, and
disrupted paranodal junctions can impact myelin integrity. Conversely, once myelination is
complete, the long-term integrity of axons depends on OGD supply of energy. These
alterations determine pathological myelin changes consisting of myelin outfolding,
splitting, and accumulation of multilamellar fragments. Overall, these data demonstrate
that old mature OGDs lose their ability to produce and maintain healthy myelin over time,
to induce de novo myelination, and to remodel pre-existing myelinated
axons that contribute to neural plasticity in the CNS. Furthermore, as observed in other
tissues, aging induces a general decline in regenerative processes and, not surprisingly,
progressively hinders remyelination in MS. In this context, this review will provide an
overview of the current knowledge of age-related changes occurring in cells of the
oligodendroglial lineage and how they impact myelin synthesis, axonal degeneration, and
remyelination efficiency.
Collapse
Affiliation(s)
- Jorge Correale
- Departamento de Neurología, 58782Fleni, Buenos Aires, Argentina
| | | |
Collapse
|