1
|
Zhao Y, Zhang Y, Liu X, Zhang J, Gao Y, Li S, Chang C, Liu X, Yang G. Comparative proteomic analysis of plasma exosomes reveals the functional contribution of N-acetyl-alpha-glucosaminidase to Parkinson's disease. Neural Regen Res 2025; 20:2998-3012. [PMID: 38993127 PMCID: PMC11826475 DOI: 10.4103/nrr.nrr-d-23-01500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/12/2024] [Accepted: 04/08/2024] [Indexed: 07/13/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202510000-00029/figure1/v/2024-11-26T163120Z/r/image-tiff Parkinson's disease is the second most common progressive neurodegenerative disorder, and few reliable biomarkers are available to track disease progression. The proteins, DNA, mRNA, and lipids carried by exosomes reflect intracellular changes, and thus can serve as biomarkers for a variety of conditions. In this study, we investigated alterations in the protein content of plasma exosomes derived from patients with Parkinson's disease and the potential therapeutic roles of these proteins in Parkinson's disease. Using a tandem mass tag-based quantitative proteomics approach, we characterized the proteomes of plasma exosomes derived from individual patients, identified exosomal protein signatures specific to patients with Parkinson's disease, and identified N-acetyl-alpha-glucosaminidase as a differentially expressed protein. N-acetyl-alpha-glucosaminidase expression levels in exosomes from the plasma of patients and healthy controls were validated by enzyme-linked immunosorbent assay and western blot. The results demonstrated that the exosomal N-acetyl-alpha-glucosaminidase concentration was not only lower in Parkinson's disease, but also decreased with increasing Hoehn-Yahr stage, suggesting that N-acetyl-alpha-glucosaminidase could be used to rapidly evaluate Parkinson's disease severity. Furthermore, western blot and immunohistochemistry analysis showed that N-acetyl-alpha-glucosaminidase levels were markedly reduced both in cells treated with 1-methyl-4-phenylpyridinium and cells overexpressing α-synuclein compared with control cells. Additionally, N-acetyl-alpha-glucosaminidase overexpression significantly increased cell viability and inhibited α-synuclein expression in 1-methyl-4-phenylpyridinium-treated cells. Taken together, our findings demonstrate for the first time that exosomal N-acetyl-alpha-glucosaminidase may serve as a biomarker for Parkinson's disease diagnosis, and that N-acetyl-alpha-glucosaminidase may reduce α-synuclein expression and 1-methyl-4-phenylpyridinium-induced neurotoxicity, thus providing a new therapeutic target for Parkinson's disease.
Collapse
Affiliation(s)
- Yuan Zhao
- Department of Geriatrics, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Yidan Zhang
- Department of Geriatrics, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Xin Liu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Jian Zhang
- Department of Geriatrics, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Ya Gao
- Department of Geriatrics, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Shuyue Li
- Department of Geriatrics, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Cui Chang
- Department of Geriatrics, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Xiang Liu
- Department of Geriatrics, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Guofeng Yang
- Department of Geriatrics, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| |
Collapse
|
2
|
Vaillancourt DE, Barmpoutis A, Wu SS, DeSimone JC, Schauder M, Chen R, Parrish TB, Wang WE, Molho E, Morgan JC, Simon DK, Scott BL, Rosenthal LS, Gomperts SN, Akhtar RS, Grimes D, De Jesus S, Stover N, Bayram E, Ramirez-Zamora A, Prokop S, Fang R, Slevin JT, Kanel P, Bohnen NI, Tuite P, Aradi S, Strafella AP, Siddiqui MS, Davis AA, Huang X, Ostrem JL, Fernandez H, Litvan I, Hauser RA, Pantelyat A, McFarland NR, Xie T, Okun MS, Leader A, Russell Á, Babcock H, White-Tong K, Hua J, Goodheart AE, Peterec EC, Poon C, Galarce MB, Thompson T, Collier AM, Cromer C, Putra N, Costello R, Yilmaz E, Mercado C, Mercado T, Fessenden A, Wagner R, Spears CC, Caswell JL, Bryants M, Kuzianik K, Ahmed Y, Bendahan N, Njoku JO, Stiebel A, Zahed H, Wang SS, Hoang PT, Seemiller J, Du G. Automated Imaging Differentiation for Parkinsonism. JAMA Neurol 2025; 82:495-505. [PMID: 40094699 PMCID: PMC11915115 DOI: 10.1001/jamaneurol.2025.0112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/05/2024] [Indexed: 03/19/2025]
Abstract
Importance Magnetic resonance imaging (MRI) paired with appropriate disease-specific machine learning holds promise for the clinical differentiation of Parkinson disease (PD), multiple system atrophy (MSA) parkinsonian variant, and progressive supranuclear palsy (PSP). A prospective study is needed to test whether the approach meets primary end points to be considered in a diagnostic workup. Objective To assess the discriminative performance of Automated Imaging Differentiation for Parkinsonism (AIDP) using 3-T diffusion MRI and support vector machine (SVM) learning. Design, Setting, and Participants This was a prospective, multicenter cohort study conducted from July 2021 to January 2024 across 21 Parkinson Study Group sites (US/Canada). Included were patients with PD, MSA, and PSP with established criteria and unanimous agreement in the clinical diagnosis among 3 independent, blinded neurologists who specialize in movement disorders. Patients were assigned to a training set or an independent testing set. Exposure MRI. Main Outcomes and Measures Area under the receiver operating characteristic curve (AUROC) in the testing set for primary model end points of PD vs atypical parkinsonism, MSA vs PSP, PD vs MSA, and PD vs PSP. AIDP was also paired with antemortem MRI to test against postmortem neuropathology in a subset of autopsy cases. Results A total of 316 patients were screened and 249 patients (mean [SD] age, 67.8 [7.7] years; 155 male [62.2%]) met inclusion criteria. Of these patients, 99 had PD, 53 had MSA, and 97 had PSP. A retrospective cohort of 396 patients (mean [SD] age, 65.8 [8.9] years; 234 male [59.1%]) was also included. Of these patients, 211 had PD, 98 had MSA, and 87 had PSP. Patients were assigned to the training set (78%; 104 prospective, 396 retrospective) or independent testing set, which included 145 (22%; 60 PD, 27 MSA, 58 PSP) prospective patients (mean age, 67.4 [SD 7.7] years; 95 male [65.5%]). The model was robust in differentiating PD vs atypical parkinsonism (AUROC, 0.96; 95% CI, 0.93-0.99; positive predictive value [PPV], 0.91; negative predictive value [NPV], 0.83), MSA vs PSP (AUROC, 0.98; 95% CI, 0.96-1.00; PPV, 0.98; NPV, 0.81), PD vs MSA (AUROC, 0.98; 95% CI, 0.96-1.00; PPV, 0.97; NPV, 0.97), and PD vs PSP (AUROC, 0.98; 95% CI, 0.96-1.00; PPV, 0.92; NPV, 0.98). AIDP predictions were confirmed neuropathologically in 46 of 49 brains (93.9%). Conclusions and Relevance This prospective multicenter cohort study of AIDP met its primary end points. Results suggest using AIDP in the diagnostic workup for common parkinsonian syndromes.
Collapse
Affiliation(s)
- David E Vaillancourt
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville
- Department of Neurology, University of Florida, Gainesville
- J Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville
| | - Angelos Barmpoutis
- Digital Worlds Institute, College of the Arts, University of Florida, Gainesville
| | - Samuel S Wu
- Department of Biostatistics, University of Florida, Gainesville
| | - Jesse C DeSimone
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville
| | - Marissa Schauder
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville
| | - Robin Chen
- J Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville
| | - Todd B Parrish
- Department of Radiology, Northwestern University, Chicago, Illinois
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois
| | - Wei-En Wang
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville
| | - Eric Molho
- Parkinson's Disease and Movement Disorders Center, Albany Medical Center, Albany, New York
| | - John C Morgan
- Department of Neurology, Medical College of Georgia at Augusta University, Augusta
| | - David K Simon
- Department of Neurology, Harvard Medical School, Boston, Massachusetts
- Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Burton L Scott
- Department of Neurology, Duke University Medical Center, Durham, North Carolina
| | - Liana S Rosenthal
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Stephen N Gomperts
- Department of Neurology, Harvard Medical School, Boston, Massachusetts
- Massachusetts General Hospital, Boston
| | - Rizwan S Akhtar
- Ken and Ruth Davee Department of Neurology, Parkinson's Disease and Movement Disorders Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - David Grimes
- Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Sol De Jesus
- Department of Neurology, College of Medicine, Pennsylvania State University, Hershey
| | - Natividad Stover
- Department of Neurology, University of Alabama at Birmingham, Birmingham
| | - Ece Bayram
- Department of Neurosciences, University of California, San Diego
| | - Adolfo Ramirez-Zamora
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville
- Department of Neurology, University of Florida, Gainesville
| | - Stefan Prokop
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville
- Department of Pathology, Immunology, and Laboratory Science, University of Florida, Gainesville
| | - Ruogu Fang
- J Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville
- Center for Cognitive Aging and Memory Translational Research Institute, University of Florida, Gainesville
| | - John T Slevin
- Department of Neurology, University of Kentucky, Lexington
| | - Prabesh Kanel
- Department of Radiology, University of Michigan, Ann Arbor
- Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor
| | - Nicolaas I Bohnen
- Department of Radiology, University of Michigan, Ann Arbor
- Department of Neurology, University of Michigan, Ann Arbor
| | - Paul Tuite
- Department of Neurology, University of Minnesota, Minneapolis
| | - Stephen Aradi
- Department of Neurology, University of South Florida, Tampa
| | - Antonio P Strafella
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
| | - Mustafa S Siddiqui
- Department of Neurology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Albert A Davis
- Department of Neurology, Washington University School of Medicine in St Louis, St Louis, Missouri
| | - Xuemei Huang
- Department of Neurology, College of Medicine, Pennsylvania State University, Hershey
| | - Jill L Ostrem
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco
| | - Hubert Fernandez
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, Cleveland, Ohio
| | - Irene Litvan
- Department of Neurosciences, University of California, San Diego
| | | | - Alexander Pantelyat
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Nikolaus R McFarland
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville
- Department of Neurology, University of Florida, Gainesville
| | - Tao Xie
- Department of Neurology, University of Chicago, Chicago, Illinois
| | - Michael S Okun
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville
- Department of Neurology, University of Florida, Gainesville
| | - Alicia Leader
- Parkinson's Disease and Movement Disorders Center, Albany Medical Center, Albany, New York
| | - Áine Russell
- Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Hannah Babcock
- Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Karen White-Tong
- Department of Neurology, Duke University Medical Center, Durham, North Carolina
| | - Jun Hua
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Anna E Goodheart
- Department of Neurology, Harvard Medical School, Boston, Massachusetts
- Massachusetts General Hospital, Boston
| | - Erin Colleen Peterec
- Department of Neurology, Harvard Medical School, Boston, Massachusetts
- Massachusetts General Hospital, Boston
| | - Cynthia Poon
- Ken and Ruth Davee Department of Neurology, Parkinson's Disease and Movement Disorders Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Max B Galarce
- Ken and Ruth Davee Department of Neurology, Parkinson's Disease and Movement Disorders Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Tanya Thompson
- The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Autumn M Collier
- Department of Neurology, College of Medicine, Pennsylvania State University, Hershey
| | - Candace Cromer
- Department of Neurology, University of Alabama at Birmingham, Birmingham
| | - Natt Putra
- Department of Neurosciences, University of California, San Diego
| | - Reilly Costello
- Department of Neurosciences, University of California, San Diego
| | - Eda Yilmaz
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco
| | - Crystal Mercado
- Department of Neurology, University of Chicago, Chicago, Illinois
| | - Tomas Mercado
- Department of Neurology, University of Chicago, Chicago, Illinois
| | | | - Renee Wagner
- Department of Neurology, University of Kentucky, Lexington
| | | | | | - Marina Bryants
- Department of Neurology, University of Minnesota, Minneapolis
| | | | - Youshra Ahmed
- Department of Neurology, University of South Florida, Tampa
| | - Nathaniel Bendahan
- Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
| | - Joy O Njoku
- Department of Neurology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Amy Stiebel
- Department of Neurology, Washington University School of Medicine in St Louis, St Louis, Missouri
| | - Hengameh Zahed
- Department of Neurology, Stanford Movement Disorders Center, Stanford University, Palo Alto, California
| | - Sarah S Wang
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco
| | - Phuong T Hoang
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco
| | - Joseph Seemiller
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Guangwei Du
- Department of Neurology, College of Medicine, Pennsylvania State University, Hershey
| |
Collapse
|
3
|
Venuto CS, Herbst K, Chahine LM, Kieburtz K. Predicting Cerebrospinal Fluid Alpha-Synuclein Seed Amplification Assay Status from Demographics and Clinical Data. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2024.08.07.24311578. [PMID: 39148857 PMCID: PMC11326325 DOI: 10.1101/2024.08.07.24311578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Objective To develop and externally validate models to predict probabilities of alpha-synuclein (a-syn) positive or negative status in vivo in a mixture of people with and without Parkinson's disease (PD) using easily accessible clinical predictors. Methods Uni- and multi-variable logistic regression models were developed in a cohort of participants from the Parkinson Progression Marker Initiative (PPMI) study to predict cerebrospinal fluid (CSF) a-syn status as measured by seeding amplification assay (SAA). Models were externally validated in a cohort of participants from the Systemic Synuclein Sampling Study (S4) that had also measured CSF a-syn status using SAA. Results The PPMI model training/testing cohort consisted of 1260 participants, of which 76% had manifest PD with a mean (± standard deviation) disease duration of 1.2 (±1.6) years. Overall, 68.7% of the overall PPMI cohort (and 88.0% with PD of those with manifest PD) had positive CSF a-syn SAA status results. Variables from the full multivariable model to predict CSF a-syn SAA status included age- and sex-specific University of Pennsylvania Smell Identification Test (UPSIT) percentile values, sex, self-reported presence of constipation problems, leucine-rich repeat kinase 2 ( LRRK2 ) genetic status and pathogenic variant, and GBA status. Internal performance of the model on PPMI data to predict CSF a-syn SAA status had an area under the receiver operating characteristic curve (AUROC) of 0.920, and sensitivity/specificity of 0.881/0.845. When this model was applied to the external S4 cohort, which included 71 participants (70.4% with manifest PD for a mean 5.1 (±4.8) years), it performed well, achieving an AUROC of 0.976, and sensitivity/specificity of 0.958/0.870. Models using only UPSIT percentile performed similarly well upon internal and external testing. Conclusion Data-driven models using non-invasive clinical features can accurately predict CSF a-syn SAA positive and negative status in cohorts enriched for people living with PD. Scores from the UPSIT were highly significant in predicting a-syn SAA status.
Collapse
|
4
|
de Mena L, Parés G, Garrido A, Pilco‐Janeta DF, Fernández M, Pérez J, Tolosa E, Cámara A, Valldeoriola F, Ezquerra M, Martí M, Fernández‐Santiago R. α-Synuclein Gene Hypomethylation in LRRK2 Parkinson's Disease Patients. Mov Disord 2025; 40:550-555. [PMID: 39711195 PMCID: PMC11926512 DOI: 10.1002/mds.30094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/18/2024] [Accepted: 12/09/2024] [Indexed: 12/24/2024] Open
Abstract
BACKGROUND α-Synuclein (SNCA) gene hypomethylation was reported in idiopathic Parkinson's disease (iPD). Based on a high clinical resemblance between iPD and leucine-rich repeat kinase 2 (LRRK2)-driven Parkinson's disease (L2PD), we investigated the epigenetic status of SNCA in an extensive LRRK2 clinical cohort from Spain. METHODS We assessed the methylation levels of 23 CpG sites in the SNCA promoter region using peripheral blood DNA from L2PD patients (n = 151), LRRK2 nonmanifesting carriers (n = 55), iPD patients (n = 115), and healthy control subjects (n = 154) (total: N = 475). RESULTS Compared with control subjects, we found significant SNCA hypomethylation in 11 of 23 CpGs in L2PD (48%), whereas 22 CpGs (96%) were hypomethylated in iPD. In line with a healthy status, asymptomatic mutation carriers had similar SNCA methylation profiles to control subjects. CONCLUSIONS This study shows for the first time that SNCA hypomethylation occurs in patients with L2PD. Further studies addressing SNCA methylation status in additional worldwide LRRK2 cohorts are warranted. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Lorena de Mena
- Laboratory of Parkinson's and Other Movement DisordersInstitut d'Investigacions Biomèdiques August Pi i SunyerBarcelonaSpain
- Institut de Neurociències, Universitat de BarcelonaBarcelonaSpain
| | - Guillem Parés
- Laboratory of Parkinson's and Other Movement DisordersInstitut d'Investigacions Biomèdiques August Pi i SunyerBarcelonaSpain
- Institut de Neurociències, Universitat de BarcelonaBarcelonaSpain
| | - Alicia Garrido
- Institut de Neurociències, Universitat de BarcelonaBarcelonaSpain
- Parkinson's Disease and Movement Disorders Unit, Neurology ServiceHospital Clínic de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas CB06/05/0018‐ISCIIIBarcelonaSpain
| | - Daniel F. Pilco‐Janeta
- Institut de Neurociències, Universitat de BarcelonaBarcelonaSpain
- Parkinson's Disease and Movement Disorders Unit, Neurology ServiceHospital Clínic de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas CB06/05/0018‐ISCIIIBarcelonaSpain
| | - Manel Fernández
- Laboratory of Parkinson's and Other Movement DisordersInstitut d'Investigacions Biomèdiques August Pi i SunyerBarcelonaSpain
- Institut de Neurociències, Universitat de BarcelonaBarcelonaSpain
| | - Jesica Pérez
- Laboratory of Parkinson's and Other Movement DisordersInstitut d'Investigacions Biomèdiques August Pi i SunyerBarcelonaSpain
- Institut de Neurociències, Universitat de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas CB06/05/0018‐ISCIIIBarcelonaSpain
| | - Eduardo Tolosa
- Laboratory of Parkinson's and Other Movement DisordersInstitut d'Investigacions Biomèdiques August Pi i SunyerBarcelonaSpain
- Institut de Neurociències, Universitat de BarcelonaBarcelonaSpain
- Parkinson's Disease and Movement Disorders Unit, Neurology ServiceHospital Clínic de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas CB06/05/0018‐ISCIIIBarcelonaSpain
| | - Ana Cámara
- Laboratory of Parkinson's and Other Movement DisordersInstitut d'Investigacions Biomèdiques August Pi i SunyerBarcelonaSpain
- Institut de Neurociències, Universitat de BarcelonaBarcelonaSpain
- Parkinson's Disease and Movement Disorders Unit, Neurology ServiceHospital Clínic de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas CB06/05/0018‐ISCIIIBarcelonaSpain
| | - Francesc Valldeoriola
- Laboratory of Parkinson's and Other Movement DisordersInstitut d'Investigacions Biomèdiques August Pi i SunyerBarcelonaSpain
- Institut de Neurociències, Universitat de BarcelonaBarcelonaSpain
- Parkinson's Disease and Movement Disorders Unit, Neurology ServiceHospital Clínic de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas CB06/05/0018‐ISCIIIBarcelonaSpain
| | - Mario Ezquerra
- Laboratory of Parkinson's and Other Movement DisordersInstitut d'Investigacions Biomèdiques August Pi i SunyerBarcelonaSpain
- Institut de Neurociències, Universitat de BarcelonaBarcelonaSpain
- Parkinson's Disease and Movement Disorders Unit, Neurology ServiceHospital Clínic de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas CB06/05/0018‐ISCIIIBarcelonaSpain
| | - María‐José Martí
- Laboratory of Parkinson's and Other Movement DisordersInstitut d'Investigacions Biomèdiques August Pi i SunyerBarcelonaSpain
- Institut de Neurociències, Universitat de BarcelonaBarcelonaSpain
- Parkinson's Disease and Movement Disorders Unit, Neurology ServiceHospital Clínic de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas CB06/05/0018‐ISCIIIBarcelonaSpain
| | - Rubén Fernández‐Santiago
- Laboratory of Parkinson's and Other Movement DisordersInstitut d'Investigacions Biomèdiques August Pi i SunyerBarcelonaSpain
- Institut de Neurociències, Universitat de BarcelonaBarcelonaSpain
- Parkinson's Disease and Movement Disorders Unit, Neurology ServiceHospital Clínic de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas CB06/05/0018‐ISCIIIBarcelonaSpain
| | | |
Collapse
|
5
|
Yi LX, Tan EK, Zhou ZD. The α-Synuclein Seeding Amplification Assay for Parkinson's Disease. Int J Mol Sci 2025; 26:389. [PMID: 39796243 PMCID: PMC11720040 DOI: 10.3390/ijms26010389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/29/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease in the world. Currently, PD is incurable, and the diagnosis of PD mainly relies on clinical manifestations. The central pathological event in PD is the abnormal aggregation and deposition of misfolded α-synuclein (α-Syn) protein aggregates in the Lewy body (LB) in affected brain areas. Behaving as a prion-like seeding, the misfolded α-syn protein can induce and facilitate the aggregation of native unfolded α-Syn protein to aggravate α-Syn protein aggregation, leading to PD progression. Recently, in a blood-based α-Syn seeding amplification assay (SAA), Kluge et al. identified pathological α-Syn seeding activity in PD patients with Parkin (PRKN) gene variants. Additionally, pathological α-syn seeding activity was also identified in sporadic PD and PD patients with Leucine-rich repeat kinase 2 (LRRK2) or glucocerebrosidase (GBA) gene variants. Principally, the α-Syn SAA can be used to detect pathological α-Syn seeding activity, which will significantly enhance PD diagnosis, progression monitoring, prognosis prediction, and anti-PD therapy. The significance and future strategies of α-Syn SAA protocol are highlighted and proposed, whereas challenges and limitations of the assay are discussed.
Collapse
Affiliation(s)
- Ling-Xiao Yi
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, Singapore 30843, Singapore;
| | - Eng King Tan
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, Singapore 30843, Singapore;
- Department of Neurology, Singapore General Hospital, Outram Road, Singapore 169608, Singapore
- Signature Research Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School Singapore, 8 College Road, Singapore 169857, Singapore
| | - Zhi Dong Zhou
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, Singapore 30843, Singapore;
- Signature Research Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School Singapore, 8 College Road, Singapore 169857, Singapore
| |
Collapse
|
6
|
Droby A, Yoffe-Vasiliev A, Atias D, Fraser KB, Mabrouk OS, Omer N, Bar-Shira A, Gana-Weisz M, Goldstein O, Artzi M, Ben Bashat D, Alcalay RN, Orr-Urtreger A, Shirvan JC, Cedarbaum JM, Giladi N, Mirelman A, Thaler A. Radiological markers of CSF α-synuclein aggregation in Parkinson's disease patients. NPJ Parkinsons Dis 2025; 11:7. [PMID: 39753572 PMCID: PMC11698941 DOI: 10.1038/s41531-024-00854-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 12/02/2024] [Indexed: 01/06/2025] Open
Abstract
Alpha-synuclein (αS) aggregation is a widely regarded hallmark of Parkinson's disease (PD) and can be detected through synuclein amplification assays (SAA). This study investigated the association between cerebrospinal fluid (CSF) radiological measures in 41 PD patients (14 iPD, 14 GBA1-PD, 13 LRRK2-PD) and 14 age-and-sex-matched healthy controls. Quantitative measures including striatal binding ratios (SBR), whole-brain and deep gray matter volumes, neuromelanin-MRI (NM-MRI), functional connectivity (FC), and white matter (WM) diffusion-tensor imaging (DTI) were calculated. Nine LRRK2-PD patients were SAA-negative (PD-SAA-). PD-SAA+ patients showed lower whole-brain gray matter, putamenal, brainstem, and substantia nigra volumes, reduced FC in the left caudate, and lower fractional anisotropy in the left fronto-occipital fasciculus compared to PD-SAA-. Taken together, αS aggregation was observed in iPD, GBA1-PD, and 38% of LRRK2-PD patients, and this was associated with reduced regional brain volumes, altered caudal FC, and SBRs. These changes were less pronounced in PD-SAA-, possibly suggesting a milder neurodegenerative process.
Collapse
Affiliation(s)
- Amgad Droby
- Movement Disorders Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel.
- Laboratory for Early Markers of Neurodegeneration, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel.
- Faculty of Medicine and Health Sciences, Tel Aviv University, Tel Aviv, Israel.
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| | - Avital Yoffe-Vasiliev
- Movement Disorders Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel
- Laboratory for Early Markers of Neurodegeneration, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Daniel Atias
- Movement Disorders Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel
- Laboratory for Early Markers of Neurodegeneration, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel
| | | | | | - Nurit Omer
- Movement Disorders Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel
- Laboratory for Early Markers of Neurodegeneration, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Anat Bar-Shira
- Movement Disorders Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel
- The Genomic Research Laboratory for Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Mali Gana-Weisz
- Movement Disorders Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel
- The Genomic Research Laboratory for Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Orly Goldstein
- Movement Disorders Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel
- The Genomic Research Laboratory for Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Moran Artzi
- Sagol brain institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Dafna Ben Bashat
- Sagol brain institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Roy N Alcalay
- Movement Disorders Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel
- Faculty of Medicine and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- The Genomic Research Laboratory for Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Avi Orr-Urtreger
- Faculty of Medicine and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- The Genomic Research Laboratory for Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | | | | | - Nir Giladi
- Movement Disorders Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel
- Laboratory for Early Markers of Neurodegeneration, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel
- Faculty of Medicine and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Anat Mirelman
- Movement Disorders Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel
- Laboratory for Early Markers of Neurodegeneration, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel
- Faculty of Medicine and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Avner Thaler
- Movement Disorders Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel
- Laboratory for Early Markers of Neurodegeneration, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel
- Faculty of Medicine and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
7
|
Riek HC, Visanji NP, Pitigoi IC, Di Luca DG, Armengou-Garcia L, Ahmed N, Perkins JE, Brien DC, Huang J, Coe BC, Huang J, Ghate T, Lang AE, Marras C, Munoz DP. Multimodal oculomotor assessment reveals prodromal markers of Parkinson's disease in non-manifesting LRRK2 G2019S mutation carriers. NPJ Parkinsons Dis 2024; 10:234. [PMID: 39702611 DOI: 10.1038/s41531-024-00840-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 11/14/2024] [Indexed: 12/21/2024] Open
Abstract
Oculomotor behaviour changes in patients with Parkinson's disease (PD) are a promising source of prodromal disease markers. Capitalizing on this phenomenon to facilitate early diagnosis requires oculomotor assessment in prodromal cohorts. We examined oculomotor behaviour in non-manifesting LRRK2 G2019S mutation carriers (LRRK2-NM), who have heightened PD risk.Seventeen LRRK2-NM participants, 47 patients with idiopathic PD, and 63 healthy age-matched control participants completed an interleaved pro- and antisaccade task while undergoing video-based eye-tracking. We analyzed between-group differences in saccade, pupil, blink, and fixation acquisition behaviour. Patients with PD showed previously demonstrated abnormalities (saccade hypometria, antisaccade errors). Relative to controls, LRRK2-NM participants and patients with PD both displayed increased short-latency prosaccades and reduced pupil velocity, plus altered fixation acquisition-less preemptive returning of gaze to the future fixation point location. Interestingly, the effect on blink probability was opposite-higher than controls in LRRK2-NM participants but lower in patients with PD. Future longitudinal studies must confirm the viability of these features as prodromal PD markers.
Collapse
Affiliation(s)
- Heidi C Riek
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada.
| | - Naomi P Visanji
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, University Health Network, Toronto, ON, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Rossy PSP Centre, University Health Network, Toronto, ON, Canada
| | - Isabell C Pitigoi
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Daniel G Di Luca
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, University Health Network, Toronto, ON, Canada
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Laura Armengou-Garcia
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, University Health Network, Toronto, ON, Canada
| | - Nazish Ahmed
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, University Health Network, Toronto, ON, Canada
| | - Julia E Perkins
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Donald C Brien
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Jeff Huang
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Brian C Coe
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Jana Huang
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, University Health Network, Toronto, ON, Canada
| | - Taneera Ghate
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, University Health Network, Toronto, ON, Canada
| | - Anthony E Lang
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, University Health Network, Toronto, ON, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Rossy PSP Centre, University Health Network, Toronto, ON, Canada
| | - Connie Marras
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, University Health Network, Toronto, ON, Canada
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Douglas P Munoz
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| |
Collapse
|
8
|
Kuang Y, Mao H, Huang X, Chen M, Dai W, Gan T, Wang J, Sun H, Lin H, Liu Q, Yang X, Xu PY. α-Synuclein seeding amplification assays for diagnosing synucleinopathies: an innovative tool in clinical implementation. Transl Neurodegener 2024; 13:56. [PMID: 39574205 PMCID: PMC11580393 DOI: 10.1186/s40035-024-00449-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/25/2024] [Indexed: 11/25/2024] Open
Abstract
The spectrum of synucleinopathies, including Parkinson's disease (PD), multiple system atrophy (MSA), and dementia with Lewy bodies (DLB), is characterized by α-synuclein (αSyn) pathology, which serves as the definitive diagnostic marker. However, current diagnostic methods primarily rely on motor symptoms that manifest years after the initial neuropathological changes, thereby delaying potential treatment. The symptomatic overlap between PD and MSA further complicates the diagnosis, highlighting the need for precise and differential diagnostic methods for these overlapping neurodegenerative diseases. αSyn misfolding and aggregation occur before clinical symptoms appear, suggesting that detection of pathological αSyn could enable early molecular diagnosis of synucleinopathies. Recent advances in seed amplification assay (SAA) offer a tool for detecting neurodegenerative diseases by identifying αSyn misfolding in fluid and tissue samples, even at preclinical stages. Extensive research has validated the effectiveness and reproducibility of SAAs for diagnosing synucleinopathies, with ongoing efforts focusing on optimizing conditions for detecting pathological αSyn in more accessible samples and identifying specific αSyn species to differentiate between various synucleinopathies. This review offers a thorough overview of SAA technology, exploring its applications for diagnosing synucleinopathies, addressing the current challenges, and outlining future directions for its clinical use.
Collapse
Affiliation(s)
- Yaoyun Kuang
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Hengxu Mao
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Xiaoyun Huang
- Houjie Hospital of Dongguan, Dongguan, 523000, China
| | - Minshan Chen
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Wei Dai
- Department of Neurology, Xinjiang Uygur Autonomous Region People's Hospital, Urumqi, 830054, Xinjiang, China
| | - Tingting Gan
- The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, China
| | - Jiaqi Wang
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Hui Sun
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Hao Lin
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Qin Liu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Xinling Yang
- The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, China.
| | - Ping-Yi Xu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| |
Collapse
|
9
|
Somerville EN, Gan-Or Z. Genetic-based diagnostics of Parkinson's disease and other Parkinsonian syndromes. Expert Rev Mol Diagn 2024:1-13. [PMID: 39545628 DOI: 10.1080/14737159.2024.2427625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
INTRODUCTION Parkinson's disease (PD) is a complex disorder with vast clinical heterogeneity. Recent genetic, imaging and clinical evidence suggest that there are multiple subtypes of PD, and perhaps even distinct clinical entities, which are being diagnosed under the umbrella of PD. These might have similar clinical presentation, but potentially different underlying mechanisms, which, in future, will require different treatments. Despite extensive genetic research progress, genetic testing is still not a common practice in clinical patient care. AREAS COVERED This review examines the numerous genes that have been discovered to affect the risk of, or cause, PD. We also outline genetic variants that affect PD age at onset, its progression, and the presence or severity of motor and non-motor symptoms. We differentiate between PD, other synucleinopathies, and atypical parkinsonism syndromes, and describe genes responsible for familial forms of typical PD and atypical parkinsonism. Lastly, we present current clinical trails that are underway for targeted therapies, particularly for GBA1-PD and LRRK2-PD which are the most significant subtypes. EXPERT OPINION While genetic studies alone cannot be diagnostic for PD, proper utilization of genetic screening for PD could improve diagnostic accuracy and predictions for prognosis, guide treatment, and identify individuals that qualify for clinical trials.
Collapse
Affiliation(s)
- Emma N Somerville
- The Neuro (Montréal Neurological Institute-Hospital), McGill University, Montréal, Canada
- Department of Human Genetics, McGill University, Montréal, Canada
| | - Ziv Gan-Or
- The Neuro (Montréal Neurological Institute-Hospital), McGill University, Montréal, Canada
- Department of Human Genetics, McGill University, Montréal, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Canada
| |
Collapse
|
10
|
Bougea A. Seeding Aggregation Assays in Lewy Bodies Disorders: A Narrative State-of-the-Art Review. Int J Mol Sci 2024; 25:10783. [PMID: 39409112 PMCID: PMC11477186 DOI: 10.3390/ijms251910783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
Multiple system atrophy and Lewy body diseases (LBDs) such as Parkinson's disease, dementia with Lewy bodies, and Parkinson's disease with dementia, known as synucleinopathies, are defined neuropathologically by the accumulation and deposition of aberrant protein aggregates, primarily in neuronal cells. Seeding aggregation assays (SAA) have significant potential as biomarkers for early diagnosis, monitoring disease progression, and evaluating treatment efficacy for these diseases. Real-time quaking-induced conversion (RT-QuIC) and Protein Misfolding Cyclic Amplification (PMCA) assays represent two ultrasensitive protein amplification techniques that were initially tested for the field of prion disorders. Although the fundamental idea behind the creation of these two methods is very similar, their technical differences resulted in different levels of diagnostic accuracy for the identification of prion proteins, making the RT-QuIC assay the most trustworthy and effective instrument for the detection of suspected cases of LBDs and prion-like diseases.
Collapse
Affiliation(s)
- Anastasia Bougea
- 1st Department of Neurology, "Aiginition" Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| |
Collapse
|
11
|
Zhao Y, Bracher-Smith M, Li Y, Harvey K, Escott-Price V, Lewis PA, Manzoni C. Transcriptomics and weighted protein network analyses of the LRRK2 protein interactome reveal distinct molecular signatures for sporadic and LRRK2 Parkinson's Disease. NPJ Parkinsons Dis 2024; 10:144. [PMID: 39097579 PMCID: PMC11297940 DOI: 10.1038/s41531-024-00761-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 07/24/2024] [Indexed: 08/05/2024] Open
Abstract
Mutations in the LRRK2 gene are the most common genetic cause of familial Parkinson's Disease (LRRK2-PD) and an important risk factor for sporadic PD (sPD). Multiple clinical trials are ongoing to evaluate the benefits associated with the therapeutical reduction of LRRK2 kinase activity. In this study, we described the changes of transcriptomic profiles (whole blood mRNA levels) of LRRK2 protein interactors in sPD and LRRK2-PD cases as compared to healthy controls with the aim of comparing the two PD conditions. We went on to model the protein-protein interaction (PPI) network centred on LRRK2, which was weighted to reflect the transcriptomic changes on expression and co-expression levels of LRRK2 protein interactors. Our results showed that LRRK2 interactors present both similar and distinct alterations in expression levels and co-expression behaviours in the sPD and LRRK2-PD cases; suggesting that, albeit being classified as the same disease based on clinical features, LRRK2-PD and sPD display significant differences from a molecular perspective. Interestingly, the similar changes across the two PD conditions result in decreased connectivity within a topological cluster of the LRRK2 PPI network associated with protein metabolism/biosynthesis and ribosomal metabolism suggesting protein homoeostasis and ribosomal dynamics might be affected in both sporadic and familial PD in comparison with controls.
Collapse
Affiliation(s)
- Yibo Zhao
- UCL School of Pharmacy, dept Pharmacology, London, UK
| | - Matthew Bracher-Smith
- University of Cardiff, School of Medicine, Division of Psychological Medicine and Clinical Neurosciences, Cardiff, UK
- Dementia Research Institute, Cardiff University, Cardiff, UK
| | - Yuelin Li
- UCL School of Pharmacy, dept Pharmacology, London, UK
| | | | - Valentina Escott-Price
- University of Cardiff, School of Medicine, Division of Psychological Medicine and Clinical Neurosciences, Cardiff, UK
- Dementia Research Institute, Cardiff University, Cardiff, UK
| | - Patrick A Lewis
- Royal Veterinary College, London, UK
- UCL Queen Square Institute of Neurology, London, UK
| | | |
Collapse
|
12
|
Zarkali A, Thomas GEC, Zetterberg H, Weil RS. Neuroimaging and fluid biomarkers in Parkinson's disease in an era of targeted interventions. Nat Commun 2024; 15:5661. [PMID: 38969680 PMCID: PMC11226684 DOI: 10.1038/s41467-024-49949-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 06/19/2024] [Indexed: 07/07/2024] Open
Abstract
A major challenge in Parkinson's disease is the variability in symptoms and rates of progression, underpinned by heterogeneity of pathological processes. Biomarkers are urgently needed for accurate diagnosis, patient stratification, monitoring disease progression and precise treatment. These were previously lacking, but recently, novel imaging and fluid biomarkers have been developed. Here, we consider new imaging approaches showing sensitivity to brain tissue composition, and examine novel fluid biomarkers showing specificity for pathological processes, including seed amplification assays and extracellular vesicles. We reflect on these biomarkers in the context of new biological staging systems, and on emerging techniques currently in development.
Collapse
Affiliation(s)
- Angeliki Zarkali
- Dementia Research Centre, Institute of Neurology, UCL, London, UK.
| | | | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Rimona S Weil
- Dementia Research Centre, Institute of Neurology, UCL, London, UK
- Department of Advanced Neuroimaging, UCL, London, UK
- Movement Disorders Centre, UCL, London, UK
| |
Collapse
|
13
|
Yuan Y, Li H, Sreeram K, Malankhanova T, Boddu R, Strader S, Chang A, Bryant N, Yacoubian TA, Standaert DG, Erb M, Moore DJ, Sanders LH, Lutz MW, Velmeshev D, West AB. Single molecule array measures of LRRK2 kinase activity in serum link Parkinson's disease severity to peripheral inflammation. Mol Neurodegener 2024; 19:47. [PMID: 38862989 PMCID: PMC11167795 DOI: 10.1186/s13024-024-00738-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/02/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND LRRK2-targeting therapeutics that inhibit LRRK2 kinase activity have advanced to clinical trials in idiopathic Parkinson's disease (iPD). LRRK2 phosphorylates Rab10 on endolysosomes in phagocytic cells to promote some types of immunological responses. The identification of factors that regulate LRRK2-mediated Rab10 phosphorylation in iPD, and whether phosphorylated-Rab10 levels change in different disease states, or with disease progression, may provide insights into the role of Rab10 phosphorylation in iPD and help guide therapeutic strategies targeting this pathway. METHODS Capitalizing on past work demonstrating LRRK2 and phosphorylated-Rab10 interact on vesicles that can shed into biofluids, we developed and validated a high-throughput single-molecule array assay to measure extracellular pT73-Rab10. Ratios of pT73-Rab10 to total Rab10 measured in biobanked serum samples were compared between informative groups of transgenic mice, rats, and a deeply phenotyped cohort of iPD cases and controls. Multivariable and weighted correlation network analyses were used to identify genetic, transcriptomic, clinical, and demographic variables that predict the extracellular pT73-Rab10 to total Rab10 ratio. RESULTS pT73-Rab10 is absent in serum from Lrrk2 knockout mice but elevated by LRRK2 and VPS35 mutations, as well as SNCA expression. Bone-marrow transplantation experiments in mice show that serum pT73-Rab10 levels derive primarily from circulating immune cells. The extracellular ratio of pT73-Rab10 to total Rab10 is dynamic, increasing with inflammation and rapidly decreasing with LRRK2 kinase inhibition. The ratio of pT73-Rab10 to total Rab10 is elevated in iPD patients with greater motor dysfunction, irrespective of disease duration, age, sex, or the usage of PD-related or anti-inflammatory medications. pT73-Rab10 to total Rab10 ratios are associated with neutrophil degranulation, antigenic responses, and suppressed platelet activation. CONCLUSIONS The extracellular serum ratio of pT73-Rab10 to total Rab10 is a novel pharmacodynamic biomarker for LRRK2-linked innate immune activation associated with disease severity in iPD. We propose that those iPD patients with higher serum pT73-Rab10 levels may benefit from LRRK2-targeting therapeutics that mitigate associated deleterious immunological responses.
Collapse
Affiliation(s)
- Yuan Yuan
- Duke Center for Neurodegeneration and Neurotheraputics, Duke University, Durham, NC, USA
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Huizhong Li
- Duke Center for Neurodegeneration and Neurotheraputics, Duke University, Durham, NC, USA
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Kashyap Sreeram
- Duke Center for Neurodegeneration and Neurotheraputics, Duke University, Durham, NC, USA
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Tuyana Malankhanova
- Duke Center for Neurodegeneration and Neurotheraputics, Duke University, Durham, NC, USA
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Ravindra Boddu
- Duke Center for Neurodegeneration and Neurotheraputics, Duke University, Durham, NC, USA
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Samuel Strader
- Duke Center for Neurodegeneration and Neurotheraputics, Duke University, Durham, NC, USA
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Allison Chang
- Duke Center for Neurodegeneration and Neurotheraputics, Duke University, Durham, NC, USA
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Nicole Bryant
- Duke Center for Neurodegeneration and Neurotheraputics, Duke University, Durham, NC, USA
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Talene A Yacoubian
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David G Standaert
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Madalynn Erb
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Darren J Moore
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Laurie H Sanders
- Duke Center for Neurodegeneration and Neurotheraputics, Duke University, Durham, NC, USA
- Department of Neurology, Duke University, Durham, NC, USA
- Department of Pathology, Duke University, Durham, NC, USA
| | - Michael W Lutz
- Department of Neurology, Duke University, Durham, NC, USA
- Department of Pathology, Duke University, Durham, NC, USA
| | | | - Andrew B West
- Duke Center for Neurodegeneration and Neurotheraputics, Duke University, Durham, NC, USA.
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA.
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA.
- Department of Neurology, Duke University, Durham, NC, USA.
- Department of Neurobiology, Duke University, Durham, NC, USA.
| |
Collapse
|
14
|
Yuan Y, Li H, Sreeram K, Malankhanova T, Boddu R, Strader S, Chang A, Bryant N, Yacoubian TA, Standaert DG, Erb M, Moore DJ, Sanders LH, Lutz MW, Velmeshev D, West AB. Single molecule array measures of LRRK2 kinase activity in serum link Parkinson's disease severity to peripheral inflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.15.589570. [PMID: 38659797 PMCID: PMC11042295 DOI: 10.1101/2024.04.15.589570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Background LRRK2-targeting therapeutics that inhibit LRRK2 kinase activity have advanced to clinical trials in idiopathic Parkinson's disease (iPD). LRRK2 phosphorylates Rab10 on endolysosomes in phagocytic cells to promote some types of immunological responses. The identification of factors that regulate LRRK2-mediated Rab10 phosphorylation in iPD, and whether phosphorylated-Rab10 levels change in different disease states, or with disease progression, may provide insights into the role of Rab10 phosphorylation in iPD and help guide therapeutic strategies targeting this pathway. Methods Capitalizing on past work demonstrating LRRK2 and phosphorylated-Rab10 interact on vesicles that can shed into biofluids, we developed and validated a high-throughput single-molecule array assay to measure extracellular pT73-Rab10. Ratios of pT73-Rab10 to total Rab10 measured in biobanked serum samples were compared between informative groups of transgenic mice, rats, and a deeply phenotyped cohort of iPD cases and controls. Multivariable and weighted correlation network analyses were used to identify genetic, transcriptomic, clinical, and demographic variables that predict the extracellular pT73-Rab10 to total Rab10 ratio. Results pT73-Rab10 is absent in serum from Lrrk2 knockout mice but elevated by LRRK2 and VPS35 mutations, as well as SNCA expression. Bone-marrow transplantation experiments in mice show that serum pT73-Rab10 levels derive primarily from circulating immune cells. The extracellular ratio of pT73-Rab10 to total Rab10 is dynamic, increasing with inflammation and rapidly decreasing with LRRK2 kinase inhibition. The ratio of pT73-Rab10 to total Rab10 is elevated in iPD patients with greater motor dysfunction, irrespective of disease duration, age, sex, or the usage of PD-related or anti-inflammatory medications. pT73-Rab10 to total Rab10 ratios are associated with neutrophil activation, antigenic responses, and the suppression of platelet activation. Conclusions The extracellular ratio of pT73-Rab10 to total Rab10 in serum is a novel pharmacodynamic biomarker for LRRK2-linked innate immune activation associated with disease severity in iPD. We propose that those iPD patients with higher serum pT73-Rab10 levels may benefit from LRRK2-targeting therapeutics to mitigate associated deleterious immunological responses.
Collapse
|
15
|
Huang J, Yuan X, Chen L, Hu B, Wang H, Wang Y, Huang W. Pathological α-synuclein detected by real-time quaking-induced conversion in synucleinopathies. Exp Gerontol 2024; 187:112366. [PMID: 38280659 DOI: 10.1016/j.exger.2024.112366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/10/2024] [Accepted: 01/21/2024] [Indexed: 01/29/2024]
Abstract
synucleinopathies are diseases characterized by the aggregation of α-synuclein (α-syn), which forms fibrils through misfolding and accumulates in a prion-like manner. To detect the presence of these α-syn aggregates in clinical samples, seed amplification assays (SAAs) have been developed. These SAAs are capable of amplifying the α-syn seeds, allowing for their detection. αSyn-SAAs have been reported under the names 'protein misfolding cyclic amplification' (αSyn-PMCA) and 'real-time quaking-induced conversion'α-Syn-RT-QuIC. The α-Syn RT-QuIC, in particular, has been adapted to amplify and detect α-syn aggregates in various biospecimens, including cerebrospinal fluid (CSF), skin, nasal brushing, serum and saliva. The α-syn RT-QuIC assay has demonstrated good sensitivity and specificity in detecting pathological α-syn, particularly in Parkinson's disease (PD) and dementia with Lewy bodies (DLB) cases, with an accuracy rate of up to 80 %. Additionally, differential diagnosis between DLB and PD, as well as PD and multiple system atrophy (MSA), can be achieved by utilizing certain kinetic thioflavin T (ThT) parameters and other parameters. Moreover, the positive detection of α-syn in the prodromal stage of synucleinopathies provides an opportunity for early intervention and management. In summary, the development of the α-syn RT-QuIC assay has greatly contributed to the field of synucleinopathies. Therefore, we review the development of α-syn RT-QuIC assay and describe in detail the recent advancements of α-syn RT-QuIC assay for detecting pathological α-syn in synucleinopathies.
Collapse
Affiliation(s)
- Juan Huang
- Department of Neurology, Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, China
| | - Xingxing Yuan
- Department of Anesthesiology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, China
| | - Lin Chen
- Department of Neurology, Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, China
| | - Binbin Hu
- Department of Neurology, Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, China
| | - Hui Wang
- Department of Neurology, Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, China
| | - Ye Wang
- Department of Neurology, Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, China.
| | - Wei Huang
- Department of Neurology, Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, China.
| |
Collapse
|
16
|
Sun X, Dou K, Xue L, Xie Y, Yang Y, Xie A. Comprehensive analysis of clinical and biological features in Parkinson's disease associated with the LRRK2 G2019S mutation: Data from the PPMI study. Clin Transl Sci 2024; 17:e13720. [PMID: 38266062 PMCID: PMC10804919 DOI: 10.1111/cts.13720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 01/26/2024] Open
Abstract
The Parkinson's Progression Marker Initiative (PPMI) aims to identify biomarkers for Parkinson's disease (PD) risk, onset, and progression. This study focuses on the G2019S missense mutation in the LRRK2 gene, which is associated with hereditary and sporadic PD. Utilizing data from the PPMI database, we conducted an analysis of baseline clinical characteristics, as well as serum and cerebrospinal fluid levels in two groups: patients with PD with the G2019S mutation (PD + G2019S) and patients with PD without the mutation (PD-G2019S). Multiple linear regression and longitudinal analysis were performed, controlling for confounding factors. Compared to the PD-G2019S group, the PD + G2019S group showed more obvious initial motor dysfunction-higher baseline Movement Disorder Society-Sponsored Revision of the Unified Parkinson Disease Rating Scale (MDS-UPDRS) scores (false discovery rate [FDR]-adjusted p < 0.001), but progressed more slowly. Mechanism of Coordinated Access and activities of daily living (ADL) scores were lower at baseline (FDR-adjusted p < 0.001), whereas Scales for Outcomes of Parkinson's Disease (SCOPA)-Thermoregulatory (FDR-adjusted p = 0.015) scores were higher, emphasizing the increase of non-motor symptoms associated with LRRK2-G2019S mutation. During the follow-up period, the motor and non-motor symptoms changed dynamically with time, and there were longitudinal differences in the scores of MDS-UPDRS (FDR-adjusted PI = 0.013, PII = 0.008, PIV < 0.001), Questionnaire for Impulsive-Compulsive Disorders in Parkinson's Disease (FDR-adjusted p = 0.027), SCOPA-Thermoregulatory (FDR-adjusted p = 0.021), and ADL (FDR-adjusted p = 0.027) scale scores. PD associated with the LRRK2 G2019S mutation demonstrated more severe symptoms at baseline but slower progression. Motor complications and thermoregulatory disorders were more pronounced.
Collapse
Affiliation(s)
- Xiaohui Sun
- Department of NeurologyAffiliated Hospital of Qingdao UniversityQingdaoChina
| | - Kaixin Dou
- Department of NeurologyAffiliated Hospital of Qingdao UniversityQingdaoChina
| | - Li Xue
- Recording RoomThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Yijie Xie
- Clinical Laboratory, Central LaboratoryQingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital)QingdaoChina
| | - Yong Yang
- Department of NeurologyAffiliated Hospital of Qingdao UniversityQingdaoChina
| | - Anmu Xie
- Department of NeurologyAffiliated Hospital of Qingdao UniversityQingdaoChina
- Cerebral Vascular Disease Institute, Affiliated Hospital of Qingdao UniversityQingdaoChina
| |
Collapse
|
17
|
Crotty GF, Ayer SJ, Schwarzschild MA. Designing the First Trials for Parkinson's Prevention. JOURNAL OF PARKINSON'S DISEASE 2024; 14:S381-S393. [PMID: 39302381 PMCID: PMC11491995 DOI: 10.3233/jpd-240164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/20/2024] [Indexed: 09/22/2024]
Abstract
For decades the greatest goal of Parkinson's disease (PD) research has often been distilled to the discovery of treatments that prevent the disease or its progression. However, until recently only the latter has been realistically pursued through randomized clinical trials of candidate disease-modifying therapy (DMT) conducted on individuals after they received traditional clinical diagnosis of PD (i.e., tertiary prevention trials). Now, in light of major advances in our understanding of the prodromal stages of PD, as well as its genetics and biomarkers, the first secondary prevention trials for PD are beginning. In this review, we take stock of DMT trials to date, summarize the breakthroughs that allow the identification of cohorts at high risk of developing a traditional diagnosis of PD, and describe key design elements of secondary prevention trials and how they depend on the prodromal stage being targeted. These elements address whom to enroll, what interventions to test, and how to measure secondary prevention (i.e., slowed progression during the prodromal stages of PD). Although these design strategies, along with the biological definition, subtype classification, and staging of the disease are evolving, all are driven by continued progress in the underlying science and integrated by a broad motivated community of stakeholders. While considerable methodological challenges remain, opportunities to move clinical trials of DMT to earlier points in the disease process than ever before have begun to unfold, and the prospects for PD prevention are nowtangible.
Collapse
Affiliation(s)
- Grace F. Crotty
- Molecular Neurobiology Laboratory, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
- Present address: Department of Neurology, Cork University Hospital, Cork, Ireland
| | - Samuel J. Ayer
- Molecular Neurobiology Laboratory, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Michael A. Schwarzschild
- Molecular Neurobiology Laboratory, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
18
|
Al-Kuraishy HM, Al-Gareeb AI, Zaidalkiani AT, Alexiou A, Papadakis M, Bahaa MM, Al-Faraga A, Batiha GES. Calprotectin in Parkinsonian disease: Anticipation and dedication. Ageing Res Rev 2024; 93:102143. [PMID: 38008403 DOI: 10.1016/j.arr.2023.102143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/13/2023] [Accepted: 11/22/2023] [Indexed: 11/28/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease due to degeneration of dopaminergic neurons (DNs) in the substantia nigra pars compacta (SNpc). PD is characterized by motor and non-motor symptoms. Non-motor symptoms such as constipation and dysfunction of gastrointestinal tract (GIT) motility together with medications used in the management of PD affect gut microbiota. Alterations of gut microbiota with development of gut dyspiosis can induce momentous changes in gut barrier with subsequent systemic inflammation and induction of neuroinflammation. It has been shown that calprotectin which reflect intestinal inflammation and gut barrier injury are augmented in PD. Therefore, this review aims to elucidate the possible role of gut barrier injury and associated dysbiois in PD neuropathology, and how calprotectin reflects gut barrier injury in PD. Benefit of this review was to elucidate that high fecal calprotectin level in PD patients indicated gut dysbiosis and intestinal inflammation. Early increment of fecal calprotectin indicates the development of gut dysbiosis and/or gut-barrier injury which may precede motor symptoms by decades. Thus, fecal calprotectin could be a diagnostic and prognostic biomarker in PD. preclinical and clinical studies are warranted in this regard to emphasize the potential role of fecal calprotectin in PD neuropathology.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ayah Talal Zaidalkiani
- Department of Nutrition, Faculty of Pharmacy and Medical Sciences, University of Petra, 11196 Amman, Jordan
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia; AFNP Med, 1030 Wien, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283 Wuppertal, Germany
| | - Mostafa M Bahaa
- Pharmacy Practice Department, Faculty of Pharmacy, Horus University, New Damietta, Egypt.
| | - Ammar Al-Faraga
- Department of Biochemistry, College of Science University of Jeddah, Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira 22511, Egypt
| |
Collapse
|
19
|
Seibler P, Streubel-Gallasch L, Klein C. Combining Biomarkers with Genetics In Prodromal/Earliest Phase Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2024; 14:S345-S351. [PMID: 39331107 PMCID: PMC11492027 DOI: 10.3233/jpd-240155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/03/2024] [Indexed: 09/28/2024]
Abstract
Family studies have linked several rare genetic variants to hereditary forms of Parkinson's disease (PD). In addition to these monogenic forms, many PD cases are associated with genetic risk factors. Asymptomatic individuals carrying pathogenic variants linked to PD are at risk of developing the disease later in life, thereby providing a unique opportunity for the detection of the earliest pathophysiological and later clinical changes and, importantly, also of protective and compensatory features and mechanisms. However, the rarity of monogenic PD-causing variants is a major challenge of this approach. In this review, we discuss recent advances in the search for biomarkers in the prodromal/earliest phase of genetically linked PD.
Collapse
Affiliation(s)
- Philip Seibler
- Institute of Neurogenetics, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Linn Streubel-Gallasch
- Institute of Neurogenetics, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany
| |
Collapse
|
20
|
Kluge A, Iranzo A. Biofluid Detection of Pathological α-Synuclein in the Prodromal Phase of Synucleinopathies. JOURNAL OF PARKINSON'S DISEASE 2024; 14:S323-S331. [PMID: 38995801 PMCID: PMC11494638 DOI: 10.3233/jpd-230429] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/10/2024] [Indexed: 07/14/2024]
Abstract
Synucleinopathies are disorders characterized by the aggregation and deposition of pathological α-synuclein conformers. The underlying neurodegenerative processes begin years or decades before the onset of cardinal motor symptoms. This prodromal phase may manifest with various signs or symptoms. However, there are no current standardized laboratory tests to ascertain the progression and conversion of prodromal conditions such as mild cognitive impairment, isolated REM sleep behavior disorder or pure autonomic failure. The aim of this systematic review was to evaluate the diagnostic possibilities using human biofluids as source material to detect pathological α-synuclein in the prodromal phase of synucleinopathies. Our review identified eight eligible studies, that investigated pathological α-synuclein conformers using cerebrospinal fluid from patients with prodromal signs of synulceinopathies to differentiate this patient group from non-synucleinopathies, while only one study investigated this aspect using blood as medium. While previous studies clearly demonstrated a high diagnostic performance of α-synuclein seed amplification assays for differentiating synucleinopathies with Lewy bodies from healthy controls, only few analyses were performed focussing on individuals with prodromal disease. Nevertheless, results for the early detection of α-synuclein seeds using α-synuclein seed amplification assays were promising and may be of particular relevance for future clinical trials and clinical practice.
Collapse
Affiliation(s)
- Annika Kluge
- Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel and Kiel University, Kiel, Germany
| | - Alex Iranzo
- Sleep Unit, Neurology Service, Hospital Clínic Barcelona, Barcelona University, IDIBAPS, CIBERNED, Barcelona, Spain
| |
Collapse
|
21
|
Zheng Y, Li S, Yang C, Yu Z, Jiang Y, Feng T. Comparison of biospecimens for α-synuclein seed amplification assays in Parkinson's disease: A systematic review and network meta-analysis. Eur J Neurol 2023; 30:3949-3967. [PMID: 37573472 DOI: 10.1111/ene.16041] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/23/2023] [Accepted: 08/10/2023] [Indexed: 08/14/2023]
Abstract
BACKGROUND AND PURPOSE Alpha-synuclein seed amplification assays (α-syn SAAs) are promising diagnostic methods for Parkinson's disease (PD) and other synucleinopathies. However, there is limited consensus regarding the diagnostic and differential diagnostic performance of α-syn SAAs on biofluids and peripheral tissues. METHODS A comprehensive research was performed in PubMed, Web of Science, Embase and Cochrane Library. Meta-analysis was performed using a random-effects model. A network meta-analysis based on an ANOVA model was conducted to compare the relative accuracy of α-syn SAAs with different specimens. RESULTS The pooled sensitivity and specificity of α-syn SAAs in distinguishing PD from healthy controls or non-neurodegenerative neurological controls were 0.91 (95% confidence interval [CI] 0.89-0.92) and 0.95 (95% CI 0.94-0.96) for cerebrospinal fluid (CSF); 0.91 (95% CI 0.86-0.94) and 0.92 (95% CI 0.87-0.95) for skin; 0.80 (95% CI 0.66-0.89) and 0.87 (95% CI 0.69-0.96) for submandibular gland; 0.44 (95% CI 0.30-0.59) and 0.92 (95% CI 0.79-0.98) for gastrointestinal tract; 0.79 (95% CI 0.70-0.86) and 0.88 (95% CI 0.77-0.95) for saliva; and 0.51 (95% CI 0.39-0.62) and 0.91 (95% CI 0.84-0.96) for olfactory mucosa (OM). The pooled sensitivity and specificity were 0.91 (95% CI 0.89-0.93) and 0.50 (95% CI 0.44-0.55) for CSF, 0.92 (95% CI 0.83-0.97) and 0.22 (95% CI 0.06-0.48) for skin, and 0.55 (95% CI 0.42-0.68) and 0.50 (95% CI 0.35-0.65) for OM in distinguishing PD from multiple system atrophy. The pooled sensitivity and specificity were 0.92 (95% CI 0.89-0.94) and 0.84 (95% CI 0.73-0.91) for CSF, 0.92 (95% CI 0.83-0.97) and 0.88 (95% CI 0.64-0.99) for skin and 0.63 (95% CI 0.52-0.73) and 0.86 (95% CI 0.64-0.97) for OM in distinguishing PD from progressive supranuclear palsy. The pooled sensitivity and specificity were 0.94 (95% CI 0.90-0.97) and 0.95 (95% CI 0.77-1.00) for CSF and 0.94 (95% CI 0.84-0.99) and 0.86 (95% CI 0.42-1.00) for skin in distinguishing PD from corticobasal degeneration. CONCLUSIONS α-Synuclein SAAs of CSF, skin, saliva, submandibular gland, gastrointestinal tract and OM are promising diagnostic assays for PD, with CSF and skin α-syn SAAs demonstrating higher diagnostic performance.
Collapse
Affiliation(s)
- Yuanchu Zheng
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Siming Li
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chen Yang
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhenwei Yu
- Department of Pathophysiology, Beijing Neurosurgical Institute, Beijing, China
| | - Ying Jiang
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Tao Feng
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
22
|
Audrain M, Egesipe AL, Tentillier N, Font L, Ratnam M, Mottier L, Clavel M, Le Roux-Bourdieu M, Fenyi A, Ollier R, Chevalier E, Guilhot F, Fuchs A, Piorkowska K, Carlyle B, Arnold SE, Berry JD, Luthi-Carter R, Adolfsson O, Pfeifer A, Kosco-Vilbois M, Seredenina T, Afroz T. Targeting amyotrophic lateral sclerosis by neutralizing seeding-competent TDP-43 in CSF. Brain Commun 2023; 5:fcad306. [PMID: 38025276 PMCID: PMC10644982 DOI: 10.1093/braincomms/fcad306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/08/2023] [Accepted: 11/02/2023] [Indexed: 12/01/2023] Open
Abstract
In amyotrophic lateral sclerosis, a disease driven by abnormal transactive response DNA-binding protein of 43 kDa aggregation, CSF may contain pathological species of transactive response DNA-binding protein of 43 kDa contributing to the propagation of pathology and neuronal toxicity. These species, released in part by degenerating neurons, would act as a template for the aggregation of physiological protein contributing to the spread of pathology in the brain and spinal cord. In this study, a robust seed amplification assay was established to assess the presence of seeding-competent transactive response DNA-binding protein of 43 kDa species in CSF of apparently sporadic amyotrophic lateral sclerosis patients. These samples resulted in a significant acceleration of substrate aggregation differentiating the kinetics from healthy controls. In parallel, a second assay was developed to determine the level of target engagement that would be necessary to neutralize such species in human CSF by a therapeutic monoclonal antibody targeting transactive response DNA-binding protein of 43 kDa. For this, evaluation of the pharmacokinetic/pharmacodynamic effect for the monoclonal antibody, ACI-5891.9, in vivo and in vitro confirmed that a CSF concentration of ≍1100 ng/mL would be sufficient for sustained target saturation. Using this concentration in the seed amplification assay, ACI-5891.9 was able to neutralize the transactive response DNA-binding protein of 43 kDa pathogenic seeds derived from amyotrophic lateral sclerosis patient CSF. This translational work adds to the evidence of transmission of transactive response DNA-binding protein of 43 kDa pathology via CSF that could contribute to the non-contiguous pattern of clinical manifestations observed in amyotrophic lateral sclerosis and demonstrates the ability of a therapeutic monoclonal antibody to neutralize the toxic, extracellular seeding-competent transactive response DNA-binding protein of 43 kDa species in the CSF of apparently sporadic amyotrophic lateral sclerosis patients.
Collapse
Affiliation(s)
| | | | | | - Laure Font
- Research, AC Immune SA, 1015 Lausanne, Switzerland
| | | | | | | | | | - Alexis Fenyi
- Research, AC Immune SA, 1015 Lausanne, Switzerland
| | | | | | | | - Aline Fuchs
- Research, AC Immune SA, 1015 Lausanne, Switzerland
| | | | - Becky Carlyle
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Steven E Arnold
- Department of Neurology and the Massachusetts Alzheimer’s Disease Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - James D Berry
- Sean M. Healey & AMG Center for ALS & the Neurological Clinical Research Institute, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | | - Tariq Afroz
- Research, AC Immune SA, 1015 Lausanne, Switzerland
| |
Collapse
|
23
|
Vissers MFJM, Troyer MD, Thijssen E, Pereira DR, Heuberger |JAAC, Groeneveld GJ, Huntwork‐Rodriguez S. A leucine-rich repeat kinase 2 (LRRK2) pathway biomarker characterization study in patients with Parkinson's disease with and without LRRK2 mutations and healthy controls. Clin Transl Sci 2023; 16:1408-1420. [PMID: 37177855 PMCID: PMC10432885 DOI: 10.1111/cts.13541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/15/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Increased leucine-rich repeat kinase 2 (LRRK2) kinase activity is an established risk factor for Parkinson's disease (PD), and several LRRK2 kinase inhibitors are in clinical development as potential novel disease-modifying therapeutics. This biomarker characterization study explored within- and between-subject variability of multiple LRRK2 pathway biomarkers (total LRRK2 [tLRRK2], phosphorylation of the serine 935 (Ser935) residue on LRRK2 [pS935], phosphorylation of Rab10 [pRab10], and total Rab10 [tRab10]) in different biological sources (whole blood, peripheral blood mononuclear cells [PBMCs], neutrophils) as candidate human target engagement and pharmacodynamic biomarkers for implementation in phase I/II pharmacological studies of LRRK2 inhibitors. PD patients with a LRRK2 mutation (n = 6), idiopathic PD patients (n = 6), and healthy matched control subjects (n = 10) were recruited for repeated blood and cerebrospinal fluid (CSF) sampling split over 2 days. Within-subject variability (geometric coefficient of variation [CV], %) of these biomarkers was lowest in whole blood and neutrophils (range: 12.64%-51.32%) and considerably higher in PBMCs (range: 34.81%-273.88%). Between-subject variability displayed a similar pattern, with relatively lower variability in neutrophils (range: 61.30%-66.26%) and whole blood (range: 44.94%-123.11%), and considerably higher variability in PBMCs (range: 189.60%-415.19%). Group-level differences were observed with elevated mean pRab10 levels in neutrophils and a reduced mean pS935/tLRRK2 ratio in PBMCs in PD LRRK2-mutation carriers compared to healthy controls. These findings suggest that the evaluated biomarkers and assays could be used to verify pharmacological mechanisms of action and help explore the dose-response of LRRK2 inhibitors in early-phase clinical studies. In addition, comparable α-synuclein aggregation in CSF was observed in LRRK2-mutation carriers compared to idiopathic PD patients.
Collapse
Affiliation(s)
- Maurits F. J. M. Vissers
- Centre for Human Drug ResearchLeidenThe Netherlands
- Leiden University Medical CenterLeidenThe Netherlands
| | | | - Eva Thijssen
- Centre for Human Drug ResearchLeidenThe Netherlands
- Leiden University Medical CenterLeidenThe Netherlands
| | | | | | - Geert Jan Groeneveld
- Centre for Human Drug ResearchLeidenThe Netherlands
- Leiden University Medical CenterLeidenThe Netherlands
| | | |
Collapse
|
24
|
Taymans JM, Fell M, Greenamyre T, Hirst WD, Mamais A, Padmanabhan S, Peter I, Rideout H, Thaler A. Perspective on the current state of the LRRK2 field. NPJ Parkinsons Dis 2023; 9:104. [PMID: 37393318 PMCID: PMC10314919 DOI: 10.1038/s41531-023-00544-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/05/2023] [Indexed: 07/03/2023] Open
Abstract
Almost 2 decades after linking LRRK2 to Parkinson's disease, a vibrant research field has developed around the study of this gene and its protein product. Recent studies have begun to elucidate molecular structures of LRRK2 and its complexes, and our understanding of LRRK2 has continued to grow, affirming decisions made years ago to therapeutically target this enzyme for PD. Markers of LRRK2 activity, with potential to monitor disease progression or treatment efficacy, are also under development. Interestingly, there is a growing understanding of the role of LRRK2 outside of the central nervous system in peripheral tissues such as gut and immune cells that may also contribute to LRRK2 mediated pathology. In this perspective, our goal is to take stock of LRRK2 research by discussing the current state of knowledge and critical open questions in the field.
Collapse
Affiliation(s)
- Jean-Marc Taymans
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172-LilNCog-Lille Neuroscience & Cognition, F-59000, Lille, France.
| | - Matt Fell
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Tim Greenamyre
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, 3501 Fifth Avenue, Suite 7039, Pittsburgh, PA, 15260, USA
| | - Warren D Hirst
- Neurodegenerative Diseases Research Unit, Biogen, 115 Broadway, Cambridge, MA, 02142, USA
| | - Adamantios Mamais
- Center for Translational Research in Neurodegenerative Disease, Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Shalini Padmanabhan
- The Michael J. Fox Foundation for Parkinson's Research, Grand Central Station, P.O. Box 4777, New York, NY, 10120, USA
| | - Inga Peter
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, New York, NY, 10029, USA
| | - Hardy Rideout
- Centre for Clinical, Experimental Surgery, and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Avner Thaler
- Movement Disorders Unit and Laboratory of Early Markers of Neurodegeneration, Neurological Institute, Tel-Aviv Medical Center, Faculty of medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
25
|
Tamvaka N, Manne S, Kondru N, Ross OA. Pick's Disease, Seeding an Answer to the Clinical Diagnosis Conundrum. Biomedicines 2023; 11:1646. [PMID: 37371741 DOI: 10.3390/biomedicines11061646] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
Pick's disease (PiD) is a devastating neurodegenerative disease that is characterized by dementia, frontotemporal lobar degeneration, and the aggregation of 3R tau in pathognomonic inclusions known as Pick bodies. The term PiD has adopted many meanings since its conception in 1926, but it is currently used as a strictly neuropathological term, since PiD patients cannot be diagnosed during life. Due to its rarity, PiD remains significantly understudied, and subsequently, the etiology and pathomechanisms of the disease remain to be elucidated. The study of PiD and the preferential 3R tau accumulation that is unique to PiD is imperative in order to expand the current understanding of the disease and inform future studies and therapeutic development, since the lack of intervention strategies for tauopathies remains an unmet need. Yet, the lack of an antemortem diagnostic test for the disease has further complicated the study of PiD. The development of a clinical diagnostic assay for PiD will be a vital step in the study of the disease that will greatly contribute to therapeutic research, clinical trial design and patient recruitment and ultimately improve patient outcomes. Seed aggregation assays have shown great promise for becoming ante mortem clinical diagnostic tools for many proteinopathies, including tauopathies. Future research on adapting and optimizing current seed aggregation assays to successfully detect 3R tau pathogenic forms from PiD samples will be critical in establishing a 3R tau specific seed aggregation assay that can be used for clinical diagnosis and treatment evaluation.
Collapse
Affiliation(s)
- Nicole Tamvaka
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Mayo Graduate School, Neuroscience Track, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Sireesha Manne
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Naveen Kondru
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Mayo Graduate School, Neuroscience Track, Mayo Clinic, Jacksonville, FL 32224, USA
- Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL 32224, USA
- Department of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA
| |
Collapse
|
26
|
Wolff A, Schumacher NU, Pürner D, Machetanz G, Demleitner AF, Feneberg E, Hagemeier M, Lingor P. Parkinson's disease therapy: what lies ahead? J Neural Transm (Vienna) 2023; 130:793-820. [PMID: 37147404 PMCID: PMC10199869 DOI: 10.1007/s00702-023-02641-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/25/2023] [Indexed: 05/07/2023]
Abstract
The worldwide prevalence of Parkinson's disease (PD) has been constantly increasing in the last decades. With rising life expectancy, a longer disease duration in PD patients is observed, further increasing the need and socioeconomic importance of adequate PD treatment. Today, PD is exclusively treated symptomatically, mainly by dopaminergic stimulation, while efforts to modify disease progression could not yet be translated to the clinics. New formulations of approved drugs and treatment options of motor fluctuations in advanced stages accompanied by telehealth monitoring have improved PD patients care. In addition, continuous improvement in the understanding of PD disease mechanisms resulted in the identification of new pharmacological targets. Applying novel trial designs, targeting of pre-symptomatic disease stages, and the acknowledgment of PD heterogeneity raise hopes to overcome past failures in the development of drugs for disease modification. In this review, we address these recent developments and venture a glimpse into the future of PD therapy in the years to come.
Collapse
Affiliation(s)
- Andreas Wolff
- Department of Neurology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Straße 22, 81675, Munich, Germany
| | - Nicolas U Schumacher
- Department of Neurology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Straße 22, 81675, Munich, Germany
| | - Dominik Pürner
- Department of Neurology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Straße 22, 81675, Munich, Germany
| | - Gerrit Machetanz
- Department of Neurology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Straße 22, 81675, Munich, Germany
| | - Antonia F Demleitner
- Department of Neurology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Straße 22, 81675, Munich, Germany
| | - Emily Feneberg
- Department of Neurology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Straße 22, 81675, Munich, Germany
| | - Maike Hagemeier
- Department of Neurology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Straße 22, 81675, Munich, Germany
| | - Paul Lingor
- Department of Neurology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Straße 22, 81675, Munich, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
27
|
Siderowf A, Concha-Marambio L, Lafontant DE, Farris CM, Ma Y, Urenia PA, Nguyen H, Alcalay RN, Chahine LM, Foroud T, Galasko D, Kieburtz K, Merchant K, Mollenhauer B, Poston KL, Seibyl J, Simuni T, Tanner CM, Weintraub D, Videnovic A, Choi SH, Kurth R, Caspell-Garcia C, Coffey CS, Frasier M, Oliveira LMA, Hutten SJ, Sherer T, Marek K, Soto C. Assessment of heterogeneity among participants in the Parkinson's Progression Markers Initiative cohort using α-synuclein seed amplification: a cross-sectional study. Lancet Neurol 2023; 22:407-417. [PMID: 37059509 PMCID: PMC10627170 DOI: 10.1016/s1474-4422(23)00109-6] [Citation(s) in RCA: 313] [Impact Index Per Article: 156.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 04/16/2023]
Abstract
BACKGROUND Emerging evidence shows that α-synuclein seed amplification assays (SAAs) have the potential to differentiate people with Parkinson's disease from healthy controls. We used the well characterised, multicentre Parkinson's Progression Markers Initiative (PPMI) cohort to further assess the diagnostic performance of the α-synuclein SAA and to examine whether the assay identifies heterogeneity among patients and enables the early identification of at-risk groups. METHODS This cross-sectional analysis is based on assessments done at enrolment for PPMI participants (including people with sporadic Parkinson's disease from LRRK2 and GBA variants, healthy controls, prodromal individuals with either rapid eye movement sleep behaviour disorder (RBD) or hyposmia, and non-manifesting carriers of LRRK2 and GBA variants) from 33 participating academic neurology outpatient practices worldwide (in Austria, Canada, France, Germany, Greece, Israel, Italy, the Netherlands, Norway, Spain, the UK, and the USA). α-synuclein SAA analysis of CSF was performed using previously described methods. We assessed the sensitivity and specificity of the α-synuclein SAA in participants with Parkinson's disease and healthy controls, including subgroups based on genetic and clinical features. We established the frequency of positive α-synuclein SAA results in prodromal participants (RBD and hyposmia) and non-manifesting carriers of genetic variants associated with Parkinson's disease, and compared α-synuclein SAA to clinical measures and other biomarkers. We used odds ratio estimates with 95% CIs to measure the association between α-synuclein SAA status and categorical measures, and two-sample 95% CIs from the resampling method to assess differences in medians between α-synuclein SAA positive and negative participants for continuous measures. A linear regression model was used to control for potential confounders such as age and sex. FINDINGS This analysis included 1123 participants who were enrolled between July 7, 2010, and July 4, 2019. Of these, 545 had Parkinson's disease, 163 were healthy controls, 54 were participants with scans without evidence of dopaminergic deficit, 51 were prodromal participants, and 310 were non-manifesting carriers. Sensitivity for Parkinson's disease was 87·7% (95% CI 84·9-90·5), and specificity for healthy controls was 96·3% (93·4-99·2). The sensitivity of the α-synuclein SAA in sporadic Parkinson's disease with the typical olfactory deficit was 98·6% (96·4-99·4). The proportion of positive α-synuclein SAA was lower than this figure in subgroups including LRRK2 Parkinson's disease (67·5% [59·2-75·8]) and participants with sporadic Parkinson's disease without olfactory deficit (78·3% [69·8-86·7]). Participants with LRRK2 variant and normal olfaction had an even lower α-synuclein SAA positivity rate (34·7% [21·4-48·0]). Among prodromal and at-risk groups, 44 (86%) of 51 of participants with RBD or hyposmia had positive α-synuclein SAA (16 of 18 with hyposmia, and 28 of 33 with RBD). 25 (8%) of 310 non-manifesting carriers (14 of 159 [9%] LRRK2 and 11 of 151 [7%] GBA) were positive. INTERPRETATION This study represents the largest analysis so far of the α-synuclein SAA for the biochemical diagnosis of Parkinson's disease. Our results show that the assay classifies people with Parkinson's disease with high sensitivity and specificity, provides information about molecular heterogeneity, and detects prodromal individuals before diagnosis. These findings suggest a crucial role for the α-synuclein SAA in therapeutic development, both to identify pathologically defined subgroups of people with Parkinson's disease and to establish biomarker-defined at-risk cohorts. FUNDING PPMI is funded by the Michael J Fox Foundation for Parkinson's Research and funding partners, including: Abbvie, AcureX, Aligning Science Across Parkinson's, Amathus Therapeutics, Avid Radiopharmaceuticals, Bial Biotech, Biohaven, Biogen, BioLegend, Bristol-Myers Squibb, Calico Labs, Celgene, Cerevel, Coave, DaCapo Brainscience, 4D Pharma, Denali, Edmond J Safra Foundation, Eli Lilly, GE Healthcare, Genentech, GlaxoSmithKline, Golub Capital, Insitro, Janssen Neuroscience, Lundbeck, Merck, Meso Scale Discovery, Neurocrine Biosciences, Prevail Therapeutics, Roche, Sanofi Genzyme, Servier, Takeda, Teva, UCB, VanquaBio, Verily, Voyager Therapeutics, and Yumanity.
Collapse
Affiliation(s)
- Andrew Siderowf
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | | | - David-Erick Lafontant
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Carly M Farris
- Research and Development Unit, Amprion, San Diego, CA, USA
| | - Yihua Ma
- Research and Development Unit, Amprion, San Diego, CA, USA
| | - Paula A Urenia
- Research and Development Unit, Amprion, San Diego, CA, USA
| | - Hieu Nguyen
- Research and Development Unit, Amprion, San Diego, CA, USA
| | - Roy N Alcalay
- Department of Neurology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Lana M Chahine
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Douglas Galasko
- Department of Neurology, University of California, San Diego, CA, USA
| | - Karl Kieburtz
- University of Rochester Medical Center, University of Rochester, Rochester, NY, USA
| | - Kalpana Merchant
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Brit Mollenhauer
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany; Paracelsus-Elena Klinik, Kassel, and German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - Kathleen L Poston
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - John Seibyl
- Institute for Neurodegenerative Disorders, New Haven, CT, USA
| | - Tanya Simuni
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Caroline M Tanner
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA; Parkinson's Disease Research, Education and Clinical Center, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Daniel Weintraub
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Parkinson's Disease Research, Education and Clinical Center, Philadelphia Veterans Affairs Medical Center, Philadelphia, PA, USA
| | - Aleksandar Videnovic
- Department of Neurology, Neurological Clinical Research Institute, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Seung Ho Choi
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Ryan Kurth
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Chelsea Caspell-Garcia
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Christopher S Coffey
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Mark Frasier
- The Michael J Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Luis M A Oliveira
- The Michael J Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Samantha J Hutten
- The Michael J Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Todd Sherer
- The Michael J Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Kenneth Marek
- Institute for Neurodegenerative Disorders, New Haven, CT, USA
| | - Claudio Soto
- Research and Development Unit, Amprion, San Diego, CA, USA; Department of Neurology, University of Texas McGovern Medical School at Houston, TX, USA
| |
Collapse
|
28
|
Duan S, Yang J, Cui Z, Li J, Zheng H, Zhao T, Yuan Y, Liu Y, Zhao L, Wang Y, Luo H, Xu Y. Seed amplification assay of nasal swab extracts for accurate and non-invasive molecular diagnosis of neurodegenerative diseases. Transl Neurodegener 2023; 12:13. [PMID: 36922862 PMCID: PMC10017346 DOI: 10.1186/s40035-023-00345-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/02/2023] [Indexed: 03/18/2023] Open
Abstract
Nasal swabs are non-invasive testing methods for detecting diseases by collecting samples from the nasal cavity or nasopharynx. Dysosmia is regarded as an early sign of coronavirus disease 2019 (COVID-19), and nasal swabs are the gold standard for the detection. By nasal swabs, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleic acids can be cyclically amplified and detected using real-time reverse transcriptase-polymerase chain reaction after sampling. Similarly, olfactory dysfunction precedes the onset of typical clinical manifestations by several years in prion diseases and other neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. In neurodegenerative diseases, nasal swab tests are currently being explored using seed amplification assay (SAA) of pathogenic misfolded proteins, such as prion, α-synuclein, and tau. These misfolded proteins can serve as templates for the conformational change of other copies from the native form into the same misfolded form in a prion-like manner. SAA for misfolded prion-like proteins from nasal swab extracts has been developed, conceptually analogous to PCR, showing high sensitivity and specificity for molecular diagnosis of degenerative diseases even in the prodromal stage. Cyclic amplification assay of nasal swab extracts is an attractive and feasible method for accurate and non-invasive detection of trace amount of pathogenic substances for screening and diagnosis of neurodegenerative disease.
Collapse
Affiliation(s)
- Suying Duan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Jing Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
| | - Zheqing Cui
- Department of Rhinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiaqi Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Honglin Zheng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Taiqi Zhao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yanpeng Yuan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
| | - Yutao Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
| | - Lu Zhao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
| | - Yangyang Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
| | - Haiyang Luo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China. .,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China. .,Institute of Neuroscience, Zhengzhou University, Zhengzhou, China.
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China. .,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China. .,Institute of Neuroscience, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
29
|
Schmitz M, Candelise N, Canaslan S, Altmeppen HC, Matschke J, Glatzel M, Younas N, Zafar S, Hermann P, Zerr I. α-Synuclein conformers reveal link to clinical heterogeneity of α-synucleinopathies. Transl Neurodegener 2023; 12:12. [PMID: 36915212 PMCID: PMC10012698 DOI: 10.1186/s40035-023-00342-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/13/2023] [Indexed: 03/15/2023] Open
Abstract
α-Synucleinopathies, such as Parkinson's disease (PD), dementia with Lewy bodies (DLB) and multiple system atrophy, are a class of neurodegenerative diseases exhibiting intracellular inclusions of misfolded α-synuclein (αSyn), referred to as Lewy bodies or oligodendroglial cytoplasmic inclusions (Papp-Lantos bodies). Even though the specific cellular distribution of aggregated αSyn differs in PD and DLB patients, both groups show a significant pathological overlap, raising the discussion of whether PD and DLB are the same or different diseases. Besides clinical investigation, we will focus in addition on methodologies, such as protein seeding assays (real-time quaking-induced conversion), to discriminate between different types of α-synucleinopathies. This approach relies on the seeding conversion properties of misfolded αSyn, supporting the hypothesis that different conformers of misfolded αSyn may occur in different types of α-synucleinopathies. Understanding the pathological processes influencing the disease progression and phenotype, provoked by different αSyn conformers, will be important for a personalized medical treatment in future.
Collapse
Affiliation(s)
- Matthias Schmitz
- Department of Neurology, National Reference Center for TSE, The German Center for Neurodegenerative Diseases (DZNE), Georg-August-University, University Medicine Gottingen, Goettingen, Germany.
| | - Niccolò Candelise
- National Center for Drug Research and Evaluation, Institute Superiore di Sanità, Rome, Italy
| | - Sezgi Canaslan
- Department of Neurology, National Reference Center for TSE, The German Center for Neurodegenerative Diseases (DZNE), Georg-August-University, University Medicine Gottingen, Goettingen, Germany
| | - Hermann C Altmeppen
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Jakob Matschke
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Neelam Younas
- Department of Neurology, National Reference Center for TSE, The German Center for Neurodegenerative Diseases (DZNE), Georg-August-University, University Medicine Gottingen, Goettingen, Germany
| | - Saima Zafar
- Department of Neurology, National Reference Center for TSE, The German Center for Neurodegenerative Diseases (DZNE), Georg-August-University, University Medicine Gottingen, Goettingen, Germany
| | - Peter Hermann
- Department of Neurology, National Reference Center for TSE, The German Center for Neurodegenerative Diseases (DZNE), Georg-August-University, University Medicine Gottingen, Goettingen, Germany
| | - Inga Zerr
- Department of Neurology, National Reference Center for TSE, The German Center for Neurodegenerative Diseases (DZNE), Georg-August-University, University Medicine Gottingen, Goettingen, Germany
| |
Collapse
|
30
|
Who is at Risk of Parkinson Disease? Refining the Preclinical Phase of GBA1 and LRRK2 Variant Carriers: a Clinical, Biochemical, and Imaging Approach. Curr Neurol Neurosci Rep 2023; 23:121-130. [PMID: 36881256 PMCID: PMC10119235 DOI: 10.1007/s11910-023-01259-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2023] [Indexed: 03/08/2023]
Abstract
PURPOSE OF REVIEW Genetic variants in GBA1 and LRRK2 genes are the commonest genetic risk factor for Parkinson disease (PD); however, the preclinical profile of GBA1 and LRRK2 variant carriers who will develop PD is unclear. This review aims to highlight the more sensitive markers that can stratify PD risk in non-manifesting GBA1 and LRRK2 variant carriers. RECENT FINDINGS Several case-control and a few longitudinal studies evaluated clinical, biochemical, and neuroimaging markers within cohorts of non-manifesting carriers of GBA1 and LRRK2 variants. Despite similar levels of penetrance of PD in GBA1 and LRRK2 variant carriers (10-30%), these individuals have distinct preclinical profiles. GBA1 variant carriers at higher risk of PD can present with prodromal symptoms suggestive of PD (hyposmia), display increased α-synuclein levels in peripheral blood mononuclear cells, and show dopamine transporter abnormalities. LRRK2 variant carriers at higher risk of PD might show subtle motor abnormalities, but no prodromal symptoms, higher exposure to some environmental factors (non-steroid anti-inflammatory drugs), and peripheral inflammatory profile. This information will help clinicians tailor appropriate screening tests and counseling and facilitate researchers in the development of predictive markers, disease-modifying treatments, and selection of healthy individuals who might benefit from preventive interventions.
Collapse
|
31
|
Chahine LM, Simuni T. Role of novel endpoints and evaluations of response in Parkinson disease. HANDBOOK OF CLINICAL NEUROLOGY 2023; 193:325-345. [PMID: 36803820 DOI: 10.1016/b978-0-323-85555-6.00010-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
With progress in our understanding of Parkinson disease (PD) and other neurodegenerative disorders, from clinical features to imaging, genetic, and molecular characterization comes the opportunity to refine and revise how we measure these diseases and what outcome measures are used as endpoints in clinical trials. While several rater-, patient-, and milestone-based outcomes for PD exist that may serve as clinical trial endpoints, there remains an unmet need for endpoints that are clinically meaningful, patient centric while also being more objective and quantitative, less susceptible to effects of symptomatic therapy (for disease-modification trials), and that can be measured over a short period and yet accurately represent longer-term outcomes. Several novel outcomes that may be used as endpoints in PD clinical trials are in development, including digital measures of signs and symptoms, as well a growing array of imaging and biospecimen biomarkers. This chapter provides an overview of the state of PD outcome measures as of 2022, including considerations for selection of clinical trial endpoints in PD, advantages and limitations of existing measures, and emerging potential novel endpoints.
Collapse
Affiliation(s)
- Lana M Chahine
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Tanya Simuni
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.
| |
Collapse
|
32
|
Garrido A, Fairfoul G, Tolosa E, Marti MJ, Ezquerra M, Green AJE. Brain and Cerebrospinal Fluid α-Synuclein Real-Time Quaking-Induced Conversion Identifies Lewy Body Pathology in LRRK2-PD. Mov Disord 2023; 38:333-338. [PMID: 36471633 DOI: 10.1002/mds.29284] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 10/23/2022] [Accepted: 11/06/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The neuropathology of Parkinson's disease (PD) associated with leucine-rich repeat kinase 2 (LRRK2) mutations (LRRK2-PD) is heterogeneous and varies with the type of mutation. There are only a few studies evaluating seeding aggregation assays to detect α-synuclein (α-syn) in patients with LRRK2-PD. OBJECTIVE We aimed to investigate whether α-syn real-time quaking induced conversion (RT-QuIC) is a sensitive biomarker of synucleinopathy in LRRK2-PD. METHODS We studied α-syn RT-QuIC in brain tissue and postmortem ventricular cerebrospinal fluid (CSF) of LRRK2-PD cases with and without Lewy-type pathology. RESULTS The accuracy of α-syn RT-QuIC in substantia nigra and CSF samples of patients with LRRK2-PD was 100%. The test also obtained 100% sensitivity to detect misfolded α-syn in substantia nigra of cases with idiopathic PD and was negative in the substantia nigra of all the control brains without Lewy-type pathology. CONCLUSIONS Substantia nigra and ventricular CSF RT-QuIC discriminates with high sensitivity and specificity LRRK2 cases with Lewy-type pathology from those without it. RT-QuIC assay could be of particular interest in the selection of cases for clinical trials in this genetic form of PD. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Alicia Garrido
- Parkinson's Disease and Movement Disorders Unit, Institut Clínic de Neurociències, Hospital Clinic de Barcelona, Barcelona, Spain.,Laboratory of Parkinson Disease and Other Neurodegenerative Movement Disorders: Clinical and Experimental Research, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain.,Centre for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Graham Fairfoul
- The National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Eduardo Tolosa
- Laboratory of Parkinson Disease and Other Neurodegenerative Movement Disorders: Clinical and Experimental Research, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain.,Centre for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Maria J Marti
- Parkinson's Disease and Movement Disorders Unit, Institut Clínic de Neurociències, Hospital Clinic de Barcelona, Barcelona, Spain.,Laboratory of Parkinson Disease and Other Neurodegenerative Movement Disorders: Clinical and Experimental Research, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain.,Centre for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Mario Ezquerra
- Laboratory of Parkinson Disease and Other Neurodegenerative Movement Disorders: Clinical and Experimental Research, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Alison J E Green
- The National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
33
|
Bagree G, De Silva O, Liyanage PD, Ramarathinam SH, Sharma SK, Bansal V, Ramanathan R. α-synuclein as a potential biomarker for developing diagnostic tools against neurodegenerative disorders. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
34
|
Yoo D, Bang JI, Ahn C, Nyaga VN, Kim YE, Kang MJ, Ahn TB. Diagnostic value of α-synuclein seeding amplification assays in α-synucleinopathies: A systematic review and meta-analysis. Parkinsonism Relat Disord 2022; 104:99-109. [PMID: 36289019 DOI: 10.1016/j.parkreldis.2022.10.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/08/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
Abstract
INTRODUCTION Alpha-synuclein(αSyn) aggregates are definite pathological hallmarks of α-synucleinopathies. Seeding amplification assays (SAAs) have been developed to detect trace amounts of αSyn oligomers in vivo.. Herein, we assessed the diagnostic accuracy of the αSyn-SAAs across biospecimens, diagnostic references, methods, and subtypes. METHODS A systematic literature search yielded 36 eligible studies for a meta-analysis of the sensitivity and specificity of αSyn-SAAs in patients with α-synucleinopathies(n = 2722) and controls(n = 2278). Pooled sensitivities and specificities with 95% confidence intervals (CIs) were calculated using bivariate random-effects models and a meta-regression analysis was performed. RESULTS The summary sensitivity and specificity of αSyn-SAAs positivity for the diagnosis of α-synucleinopathies were 0.88(95% CIs = 0.84-0.91) and 0.95(0.93-0.97), respectively. Two covariates (biospecimen and diagnostic reference) were significant in fitting the meta-regression model (likelihood-ratio test for sensitivity and specificity, p < 0.01, p = 0.01, respectively). Skin αSyn-SAAs exhibited the highest sensitivity 0.92(0.87-0.95), which was not different from that of cerebrospinal fluid (CSF)(0.90(0.86-0.93), p = 0.39). Olfactory mucosa αSyn-SAAs exhibited a lower sensitivity 0.64(0.49-0.76) than those of the other two specimens(p = 0.02, 0.01, compared to CSF and skin, respectively). Application of pathological diagnostic standards were associated with a higher specificity of αSyn-SAAs compared to clinical diagnosis (p < 0.01). The diagnostic sensitivity and specificity of CSF αSyn-SAAs were 0.91(0.87-0.94) and 0.96(0.93-0.98) for Lewy body disease, 0.90(0.79-0.95) and 0.96(0.90-0.98) for prodromal α-synucleinopathies, and 0.63(0.24-0.90) and 0.97(0.93-0.99) for multiple system atrophy. CONCLUSIONS αSyn-SAAs are promising in vivo detectors of abnormal αSyn aggregates and may aid the early diagnosis of α-synucleinopathies.
Collapse
Affiliation(s)
- Dallah Yoo
- Department of Neurology, Kyung Hee University Hospital, Kyung Hee University College of Medicine, Seoul, Republic of Korea
| | - Ji-In Bang
- Department of Nuclear Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Gyeonggi-do, Republic of Korea
| | - Choonghyun Ahn
- Department of Orthopedic Surgery, University of Tokyo Hospital, Tokyo, Japan
| | - Victoria Nyawira Nyaga
- Unit of Cancer Epidemiology - Belgian Cancer Centre, Sciensano, Juliette Wytsmanstraat 14, 1050, Brussels, Belgium
| | - Young-Eun Kim
- Department of Neurology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Republic of Korea
| | - Min Ju Kang
- Department of Neurology, Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul, Republic of Korea
| | - Tae-Beom Ahn
- Department of Neurology, Kyung Hee University Hospital, Kyung Hee University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
35
|
Li J, Luo H, Zheng H, Duan S, Zhao T, Yuan Y, Liu Y, Zhang X, Wang Y, Yang J, Xu Y. Clinical application of prion-like seeding in α-synucleinopathies: Early and non-invasive diagnosis and therapeutic development. Front Mol Neurosci 2022; 15:975619. [PMID: 36299857 PMCID: PMC9588983 DOI: 10.3389/fnmol.2022.975619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
The accumulation and deposition of misfolded α-synuclein (α-Syn) aggregates in the brain is the central event in the pathogenesis of α-synucleinopathies, including Parkinson’s disease, dementia with Lewy bodies, and multiple-system atrophy. Currently, the diagnosis of these diseases mainly relies on the recognition of advanced clinical manifestations. Differential diagnosis among the various α-synucleinopathies subtypes remains challenging. Misfolded α-Syn can template its native counterpart into the same misfolded one within or between cells, behaving as a prion-like seeding. Protein-misfolding cyclic amplification and real-time quaking-induced conversion are ultrasensitive protein amplification assays initially used for the detection of prion diseases. Both assays showed high sensitivity and specificity in detection of α-synucleinopathies even in the pre-clinical stage recently. Herein, we collectively reviewed the prion-like properties of α-Syn and critically assessed the detection techniques of α-Syn-seeding activity. The progress of test tissues, which tend to be less invasive, is presented, particularly nasal swab, which is now widely known owing to the global fight against coronavirus disease 2019. We highlight the clinical application of α-Syn seeding in early and non-invasive diagnosis. Moreover, some promising therapeutic perspectives and clinical trials targeting α-Syn-seeding mechanisms are presented.
Collapse
Affiliation(s)
- Jiaqi Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Haiyang Luo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Honglin Zheng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Suying Duan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Taiqi Zhao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Yanpeng Yuan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Yutao Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaoyun Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Yangyang Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Jing Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
- *Correspondence: Jing Yang,
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
- Yuming Xu,
| |
Collapse
|
36
|
Real-time quaking-induced conversion assay is accurate for Lewy body diseases: a meta-analysis. Neurol Sci 2022; 43:4125-4132. [DOI: 10.1007/s10072-022-06014-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/14/2022] [Indexed: 11/25/2022]
|
37
|
Coysh T, Mead S. The Future of Seed Amplification Assays and Clinical Trials. Front Aging Neurosci 2022; 14:872629. [PMID: 35813946 PMCID: PMC9257179 DOI: 10.3389/fnagi.2022.872629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Prion-like seeded misfolding of host proteins is the leading hypothesised cause of neurodegenerative diseases. The exploitation of the mechanism in the protein misfolding cyclic amplification (PMCA) and real-time quaking-induced conversion (RT-QuIC) assays have transformed prion disease research and diagnosis and have steadily become more widely used for research into other neurodegenerative disorders. Clinical trials in adult neurodegenerative diseases have been expensive, slow, and disappointing in terms of clinical benefits. There are various possible factors contributing to the failure to identify disease-modifying treatments for adult neurodegenerative diseases, some of which include: limited accuracy of antemortem clinical diagnosis resulting in the inclusion of patients with the “incorrect” pathology for the therapeutic; the role of co-pathologies in neurodegeneration rendering treatments targeting one pathology alone ineffective; treatment of the primary neurodegenerative process too late, after irreversible secondary processes of neurodegeneration have become established or neuronal loss is already extensive; and preclinical models used to develop treatments not accurately representing human disease. The use of seed amplification assays in clinical trials offers an opportunity to tackle these problems by sensitively detecting in vivo the proteopathic seeds thought to be central to the biology of neurodegenerative diseases, enabling improved diagnostic accuracy of the main pathology and co-pathologies, and very early intervention, particularly in patients at risk of monogenic forms of neurodegeneration. The possibility of quantifying proteopathic seed load, and its reduction by treatments, is an attractive pharmacodynamic biomarker in the preclinical and early clinical stages of drug development. Here we review some potential applications of seed amplification assays in clinical trials.
Collapse
Affiliation(s)
- Thomas Coysh
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom
- National Prion Clinic, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Simon Mead
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom
- National Prion Clinic, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
38
|
Bellomo G, Giulia De Luca CM, Paoletti FP, Gaetani L, Moda F, Parnetti L. Alpha synuclein seed amplification assays for diagnosing synucleinopathies: the way forward. Neurology 2022; 99:195-205. [DOI: 10.1212/wnl.0000000000200878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/10/2022] [Indexed: 11/15/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease and the most common synucleinopathy, as alpha-synuclein (α-syn), a prion-like protein, plays an important pathophysiological role in its onset and progression. Although neuropathological changes begin many years before the onset of motor manifestations, diagnosis still relies on the identification of the motor symptoms, which hinders to formulate an early diagnosis. Since α-syn misfolding and aggregation precede clinical manifestations, the possibility to identify these phenomena in PD patients would allow us to recognize the disease at the earliest, premotor phases, as a consequence of the transition from a clinical to a molecular diagnosis.Seed amplification assays (SAAs) are a group of techniques that currently support the diagnosis of prion subacute encephalopathies, namely Creutzfeldt Jakob disease. These techniques enable the detection of minimal amounts of prions in cerebrospinal fluid (CSF) and other matrices of affected patients. Recently, SAAs have been successfully applied to detect misfolded α-syn in CSF, olfactory mucosa, submandibular gland biopsies, skin and saliva, of patients with PD and other synucleinopathies. In these categories, they can differentiate PD and dementia with Lewy bodies (DLB) from control subjects, even in the prodromal stages of the disease. In terms of differential diagnosis, SAAs satisfactorily differentiated PD, DLB, and multiple system atrophy (MSA) from non-synucleinopathy parkinsonisms. The kinetic analysis of the SAA fluorescence profiles allowed the identification of synucleinopathy-dependent α-syn fibrils conformations, commonly referred to as strains, which have demonstrated diagnostic potential in differentiating among synucleinopathies, especially between Lewy body diseases (PD, DLB) and MSA. In front of these highly promising data, which make the α-syn seeding activity detected by SAAs as the most promising diagnostic biomarker for synucleinopathies, there are still preanalytical and analytical issues, mostly related to the assay standardization, which need to be solved. In this review, we discuss the key findings supporting the clinical application of α-syn SAAs to identify PD and other synucleinopathies, the unmet needs, and future perspectives.
Collapse
|
39
|
Beatino MF, De Luca C, Campese N, Belli E, Piccarducci R, Giampietri L, Martini C, Perugi G, Siciliano G, Ceravolo R, Vergallo A, Hampel H, Baldacci F. α-synuclein as an emerging pathophysiological biomarker of Alzheimer's disease. Expert Rev Mol Diagn 2022; 22:411-425. [PMID: 35443850 DOI: 10.1080/14737159.2022.2068952] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION α-syn aggregates represent the pathological hallmark of synucleinopathies as well as a frequent copathology (almost 1/3 of cases) in AD. Recent research indicates a potential role of α-syn species, measured in CSF with conventional analytical techniques, in the differential diagnosis between AD and synucleinopathies (such as DLB). Pioneering studies report the detection of α-syn in blood, however, conclusive investigations are controversial. Ultrasensitive seed amplification techniques, enabling the selective quantification of α-syn seeds, may represent an effective solution to identify the α-syn component in AD and facilitate a biomarker-guided stratification. AREAS COVERED We performed a PubMed-based review of the latest findings on α-syn-related biomarkers for AD, focusing on bodily fluids. A dissertation on the role of ultrasensitive seed amplification assays, detecting α-syn seeds from different biological samples, was conducted. EXPERT OPINION α-syn may contribute to progressive AD neurodegeneration through cross-seeding especially with tau protein. Ultrasensitive seed amplification techniques may support a biomarker-drug co-development pathway and may be a pathophysiological candidate biomarker for the evolving ATX(N) system to classify AD and the spectrum of primary NDDs. This would contribute to a precise approach to AD, aimed at implementing disease-modifying treatments.
Collapse
Affiliation(s)
| | - Ciro De Luca
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Nicole Campese
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Elisabetta Belli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Linda Giampietri
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Giulio Perugi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Roberto Ceravolo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Andrea Vergallo
- GRC N° 21, Alzheimer Precision Medicine (APM), AP-HP, Sorbonne University, Pitié-Salpêtrière Hospital, Boulevard De l'Hôpital, Paris, France
| | - Harald Hampel
- GRC N° 21, Alzheimer Precision Medicine (APM), AP-HP, Sorbonne University, Pitié-Salpêtrière Hospital, Boulevard De l'Hôpital, Paris, France
| | - Filippo Baldacci
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.,GRC N° 21, Alzheimer Precision Medicine (APM), AP-HP, Sorbonne University, Pitié-Salpêtrière Hospital, Boulevard De l'Hôpital, Paris, France
| |
Collapse
|
40
|
Srivastava A, Alam P, Caughey B. RT-QuIC and Related Assays for Detecting and Quantifying Prion-like Pathological Seeds of α-Synuclein. Biomolecules 2022; 12:biom12040576. [PMID: 35454165 PMCID: PMC9030929 DOI: 10.3390/biom12040576] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 02/01/2023] Open
Abstract
Various disease-associated forms or strains of α-synuclein (αSynD) can spread and accumulate in a prion-like fashion during synucleinopathies such as Parkinson’s disease (PD), Lewy body dementia (DLB), and multiple system atrophy (MSA). This capacity for self-propagation has enabled the development of seed amplification assays (SAAs) that can detect αSynD in clinical samples. Notably, α-synuclein real-time quaking-induced conversion (RT-QuIC) and protein misfolding cyclic amplification (PMCA) assays have evolved as ultrasensitive, specific, and relatively practical methods for detecting αSynD in a variety of biospecimens including brain tissue, CSF, skin, and olfactory mucosa from synucleinopathy patients. However, αSyn SAAs still lack concordance in detecting MSA and familial forms of PD/DLB, and the assay parameters show poor correlations with various clinical measures. End-point dilution analysis in αSyn RT-QuIC assays allows for the quantitation of relative amounts of αSynD seeding activity that may correlate moderately with clinical measures and levels of other biomarkers. Herein, we review recent advancements in α-synuclein SAAs for detecting αSynD and describe in detail the modified Spearman–Karber quantification algorithm used with end-point dilutions.
Collapse
|
41
|
Brain region-specific susceptibility of Lewy body pathology in synucleinopathies is governed by α-synuclein conformations. Acta Neuropathol 2022; 143:453-469. [PMID: 35141810 PMCID: PMC8960659 DOI: 10.1007/s00401-022-02406-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/12/2022] [Accepted: 02/01/2022] [Indexed: 12/29/2022]
Abstract
The protein α-synuclein, a key player in Parkinson’s disease (PD) and other synucleinopathies, exists in different physiological conformations: cytosolic unfolded aggregation-prone monomers and helical aggregation-resistant multimers. It has been shown that familial PD-associated missense mutations within the α-synuclein gene destabilize the conformer equilibrium of physiologic α-synuclein in favor of unfolded monomers. Here, we characterized the relative levels of unfolded and helical forms of cytosolic α-synuclein in post-mortem human brain tissue and showed that the equilibrium of α-synuclein conformations is destabilized in sporadic PD and DLB patients. This disturbed equilibrium is decreased in a brain region-specific manner in patient samples pointing toward a possible “prion-like” propagation of the underlying pathology and forms distinct disease-specific patterns in the two different synucleinopathies. We are also able to show that a destabilization of multimers mechanistically leads to increased levels of insoluble, pathological α-synuclein, while pharmacological stabilization of multimers leads to a “prion-like” aggregation resistance. Together, our findings suggest that these disease-specific patterns of α-synuclein multimer destabilization in sporadic PD and DLB are caused by both regional neuronal vulnerability and “prion-like” aggregation transmission enabled by the destabilization of local endogenous α-synuclein protein.
Collapse
|
42
|
Fluid Biomarkers in Alzheimer’s Disease and Other Neurodegenerative Disorders: Toward Integrative Diagnostic Frameworks and Tailored Treatments. Diagnostics (Basel) 2022; 12:diagnostics12040796. [PMID: 35453843 PMCID: PMC9029739 DOI: 10.3390/diagnostics12040796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/09/2022] [Accepted: 03/17/2022] [Indexed: 02/05/2023] Open
Abstract
The diagnosis of neurodegenerative diseases (NDDs) represents an increasing social burden, with the unsolved issue of disease-modifying therapies (DMTs). The failure of clinical trials treating Alzheimer′s Disease (AD) so far highlighted the need for a different approach in drug design and patient selection. Identifying subjects in the prodromal or early symptomatic phase is critical to slow down neurodegeneration, but the implementation of screening programs with this aim will have an ethical and social aftermath. Novel minimally invasive candidate biomarkers (derived from blood, saliva, olfactory brush) or classical cerebrospinal fluid (CSF) biomarkers have been developed in research settings to stratify patients with NDDs. Misfolded protein accumulation, neuroinflammation, and synaptic loss are the pathophysiological hallmarks detected by these biomarkers to refine diagnosis, prognosis, and target engagement of drugs in clinical trials. We reviewed fluid biomarkers of NDDs, considering their potential role as screening, diagnostic, or prognostic tool, and their present-day use in clinical trials (phase II and III). A special focus will be dedicated to novel techniques for the detection of misfolded proteins. Eventually, an applicative diagnostic algorithm will be proposed to translate the research data in clinical practice and select prodromal or early patients to be enrolled in the appropriate DMTs trials for NDDs.
Collapse
|
43
|
Vascellari S, Orrù CD, Caughey B. Real-Time Quaking- Induced Conversion Assays for Prion Diseases, Synucleinopathies, and Tauopathies. Front Aging Neurosci 2022; 14:853050. [PMID: 35360213 PMCID: PMC8960852 DOI: 10.3389/fnagi.2022.853050] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/14/2022] [Indexed: 12/31/2022] Open
Abstract
Prion diseases, synucleinopathies and tauopathies are neurodegenerative disorders characterized by deposition of abnormal protein aggregates in brain and other tissues. These aggregates consist of misfolded forms of prion, α-synuclein (αSyn), or tau proteins that cause neurodegeneration and represent hallmarks of these disorders. A main challenge in the management of these diseases is the accurate detection and differentiation of these abnormal proteins during the early stages of disease before the onset of severe clinical symptoms. Unfortunately, many clinical manifestations may occur only after neuronal damage is already advanced and definite diagnoses typically require post-mortem neuropathological analysis. Over the last decade, several methods have been developed to increase the sensitivity of prion detection with the aim of finding reliable assays for the accurate diagnosis of prion disorders. Among these, the real-time quaking-induced conversion (RT-QuIC) assay now provides a validated diagnostic tool for human patients, with positive results being accepted as an official criterion for a diagnosis of probable prion disease in multiple countries. In recent years, applications of this approach to the diagnosis of other prion-like disorders, such as synucleinopathies and tauopathies, have been developed. In this review, we summarize the current knowledge on the use of the RT-QuIC assays for human proteopathies.
Collapse
Affiliation(s)
- Sarah Vascellari
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Christina D. Orrù
- Laboratory of Persistent Viral Diseases (LPVD), Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID), National Institute of Health (NIH), Hamilton, MT, United States
| | - Byron Caughey
- Laboratory of Persistent Viral Diseases (LPVD), Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID), National Institute of Health (NIH), Hamilton, MT, United States
| |
Collapse
|
44
|
Standke HG, Kraus A. Seed amplification and RT-QuIC assays to investigate protein seed structures and strains. Cell Tissue Res 2022; 392:323-335. [PMID: 35258712 DOI: 10.1007/s00441-022-03595-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 01/27/2022] [Indexed: 12/13/2022]
Abstract
The accumulation of misfolded proteins as amyloid fibrils in the brain is characteristic of most neurodegenerative disorders. These misfolded proteins are capable of self-amplifying through protein seeding mechanisms, leading to accumulation in the host. First shown for PrP prions and prion diseases, it is now recognized that self-propagating misfolded proteins occur broadly in neurodegenerative diseases and include amyloid-β (Aβ) and tau in Alzheimer's disease (AD), tau in chronic traumatic encephalopathy (CTE), Pick's disease (PiD), corticobasal degeneration (CBD), and progressive supranuclear palsy (PSP), and α-synuclein (α-syn) in Parkinson's disease (PD) and Lewy body dementias (LBD). Techniques able to directly measure these bioactive protein seeds include the real-time quaking-induced conversion (RT-QuIC) assays. Initially developed for the detection of PrP prions and subsequently for the detection of other misfolded protein seeds, these assays take advantage of the mechanism of protein-based self-propagation to result in exponential amplification of the initial protein seeds from biospecimens. Disease-specific "protein seeds" recruit and template the misfolding of native recombinant protein substrates to elongate amyloid fibrils. The amplification power of these assays allows for detection of minute amounts of disease-specific protein seeds to better support early and accurate diagnosis. In addition to the diagnostic capabilities, assay readouts have been shown to reveal biochemical, structural, and kinetic information of protein seed self-propagation. This review examines the various protein seed amplification assays currently available for distinct neurodegenerative diseases, with a focus on RT-QuIC assays, along with the insights their readouts provide into protein seed structures and strain differences.
Collapse
Affiliation(s)
- Heidi G Standke
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Allison Kraus
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
45
|
Horsager J, Knudsen K, Sommerauer M. Clinical and imaging evidence of brain-first and body-first Parkinson's disease. Neurobiol Dis 2022; 164:105626. [PMID: 35031485 DOI: 10.1016/j.nbd.2022.105626] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 12/17/2022] Open
Abstract
Braak's hypothesis has been extremely influential over the last two decades. However, neuropathological and clinical evidence suggest that the model does not conform to all patients with Parkinson's disease (PD). To resolve this controversy, a new model was recently proposed; in brain-first PD, the initial α-synuclein pathology arise inside the central nervous system, likely rostral to the substantia nigra pars compacta, and spread via interconnected structures - eventually affecting the autonomic nervous system; in body-first PD, the initial pathological α-synuclein originates in the enteric nervous system with subsequent caudo-rostral propagation to the autonomic and central nervous system. By using REM-sleep behavior disorder (RBD) as a clinical identifier to distinguish between body-first PD (RBD-positive at motor symptom onset) and brain-first PD (RBD-negative at motor symptom onset), we explored the literature to evaluate clinical and imaging differences between these proposed subtypes. Body-first PD patients display: 1) a larger burden of autonomic symptoms - in particular orthostatic hypotension and constipation, 2) more frequent pathological α-synuclein in peripheral tissues, 3) more brainstem and autonomic nervous system involvement in imaging studies, 4) more symmetric striatal dopaminergic loss and motor symptoms, and 5) slightly more olfactory dysfunction. In contrast, only minor cortical metabolic alterations emerge before motor symptoms in body-first. Brain-first PD is characterized by the opposite clinical and imaging patterns. Patients with pathological LRRK2 genetic variants mostly resemble a brain-first PD profile whereas patients with GBA variants typically conform to a body-first profile. SNCA-variant carriers are equally distributed between both subtypes. Overall, the literature indicates that body-first and brain-first PD might be two distinguishable entities on some clinical and imaging markers.
Collapse
Affiliation(s)
- Jacob Horsager
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark.
| | - Karoline Knudsen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| | - Michael Sommerauer
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark; Department of Neurology, University Hospital Cologne, Faculty of Medicine, University of Cologne, Köln, Germany; Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
46
|
Cognitive Impairment in Genetic Parkinson's Disease. PARKINSON'S DISEASE 2022; 2021:8610285. [PMID: 35003622 PMCID: PMC8739522 DOI: 10.1155/2021/8610285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 12/08/2021] [Indexed: 11/24/2022]
Abstract
Cognitive impairment is common in idiopathic Parkinson's disease (PD). Knowledge of the contribution of genetics to cognition in PD is increasing in the last decades. Monogenic forms of genetic PD show distinct cognitive profiles and rate of cognitive decline progression. Cognitive impairment is higher in GBA- and SNCA-associated PD, lower in Parkin- and PINK1-PD, and possibly milder in LRRK2-PD. In this review, we summarize data regarding cognitive function on clinical studies, neuroimaging, and biological markers of cognitive decline in autosomal dominant PD linked to mutations in LRRK2 and SNCA, autosomal recessive PD linked to Parkin and PINK1, and also PD linked to GBA mutations.
Collapse
|
47
|
Koga S, Sekiya H, Kondru N, Ross OA, Dickson DW. Neuropathology and molecular diagnosis of Synucleinopathies. Mol Neurodegener 2021; 16:83. [PMID: 34922583 PMCID: PMC8684287 DOI: 10.1186/s13024-021-00501-z] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/10/2021] [Indexed: 12/11/2022] Open
Abstract
Synucleinopathies are clinically and pathologically heterogeneous disorders characterized by pathologic aggregates of α-synuclein in neurons and glia, in the form of Lewy bodies, Lewy neurites, neuronal cytoplasmic inclusions, and glial cytoplasmic inclusions. Synucleinopathies can be divided into two major disease entities: Lewy body disease and multiple system atrophy (MSA). Common clinical presentations of Lewy body disease are Parkinson's disease (PD), PD with dementia, and dementia with Lewy bodies (DLB), while MSA has two major clinical subtypes, MSA with predominant cerebellar ataxia and MSA with predominant parkinsonism. There are currently no disease-modifying therapies for the synucleinopathies, but information obtained from molecular genetics and models that explore mechanisms of α-synuclein conversion to pathologic oligomers and insoluble fibrils offer hope for eventual therapies. It remains unclear how α-synuclein can be associated with distinct cellular pathologies (e.g., Lewy bodies and glial cytoplasmic inclusions) and what factors determine neuroanatomical and cell type vulnerability. Accumulating evidence from in vitro and in vivo experiments suggests that α-synuclein species derived from Lewy body disease and MSA are distinct "strains" having different seeding properties. Recent advancements in in vitro seeding assays, such as real-time quaking-induced conversion (RT-QuIC) and protein misfolding cyclic amplification (PMCA), not only demonstrate distinct seeding activity in the synucleinopathies, but also offer exciting opportunities for molecular diagnosis using readily accessible peripheral tissue samples. Cryogenic electron microscopy (cryo-EM) structural studies of α-synuclein derived from recombinant or brain-derived filaments provide new insight into mechanisms of seeding in synucleinopathies. In this review, we describe clinical, genetic and neuropathologic features of synucleinopathies, including a discussion of the evolution of classification and staging of Lewy body disease. We also provide a brief discussion on proposed mechanisms of Lewy body formation, as well as evidence supporting the existence of distinct α-synuclein strains in Lewy body disease and MSA.
Collapse
Affiliation(s)
- Shunsuke Koga
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, FL 32224 Jacksonville, USA
| | - Hiroaki Sekiya
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, FL 32224 Jacksonville, USA
| | - Naveen Kondru
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, FL 32224 Jacksonville, USA
| | - Owen A. Ross
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, FL 32224 Jacksonville, USA
| | - Dennis W. Dickson
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, FL 32224 Jacksonville, USA
| |
Collapse
|
48
|
Russo MJ, Orru CD, Concha-Marambio L, Giaisi S, Groveman BR, Farris CM, Holguin B, Hughson AG, LaFontant DE, Caspell-Garcia C, Coffey CS, Mollon J, Hutten SJ, Merchant K, Heym RG, Soto C, Caughey B, Kang UJ. High diagnostic performance of independent alpha-synuclein seed amplification assays for detection of early Parkinson's disease. Acta Neuropathol Commun 2021; 9:179. [PMID: 34742348 PMCID: PMC8572469 DOI: 10.1186/s40478-021-01282-8] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/22/2021] [Indexed: 01/14/2023] Open
Abstract
Alpha-synuclein seed amplification assays (αSyn-SAAs) are promising diagnostic tools for Parkinson's disease (PD) and related synucleinopathies. They enable detection of seeding-competent alpha-synuclein aggregates in living patients and have shown high diagnostic accuracy in several PD and other synucleinopathy patient cohorts. However, there has been confusion about αSyn-SAAs for their methodology, nomenclature, and relative accuracies when performed by various laboratories. We compared αSyn-SAA results obtained from three independent laboratories to evaluate reproducibility across methodological variations. We utilized the Parkinson's Progression Markers Initiative (PPMI) cohort, with DATSCAN data available for comparison, since clinical diagnosis of early de novo PD is critical for neuroprotective trials, which often use dopamine transporter imaging to enrich their cohorts. Blinded cerebrospinal fluid (CSF) samples for a randomly selected subset of PPMI subjects (30 PD, 30 HC, and 20 SWEDD), from both baseline and year 3 collections for the PD and HC groups (140 total CSF samples) were analyzed in parallel by each lab according to their own established and optimized αSyn-SAA protocols. The αSyn-SAA results were remarkably similar across laboratories, displaying high diagnostic performance (sensitivity ranging from 86 to 96% and specificity from 93 to 100%). The assays were also concordant for samples with results that differed from clinical diagnosis, including 2 PD patients determined to be clinically inconsistent with PD at later time points. All three assays also detected 2 SWEDD subjects as αSyn-SAA positive who later developed PD with abnormal DAT-SPECT. These multi-laboratory results confirm the reproducibility and value of αSyn-SAA as diagnostic tools, illustrate reproducibility of the assay in expert hands, and suggest that αSyn-SAA has potential to provide earlier diagnosis with comparable or superior accuracy to existing methods.
Collapse
Affiliation(s)
- Marco J. Russo
- grid.137628.90000 0004 1936 8753The Marlene and Paolo Fresco Institute for Parkinson’s & Movement Disorders, Department of Neurology, Department of Neuroscience and Physiology, Neuroscience Institute, The Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York, NY USA
| | - Christina D. Orru
- grid.419681.30000 0001 2164 9667Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT USA
| | | | - Simone Giaisi
- grid.467162.00000 0004 4662 2788AbbVie Deutschland GmbH & Co. KG, Ludwigshafen, Germany
| | - Bradley R. Groveman
- grid.419681.30000 0001 2164 9667Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT USA
| | | | - Bret Holguin
- grid.504117.6R&D Unit, Amprion Inc., San Diego, CA USA
| | - Andrew G. Hughson
- grid.419681.30000 0001 2164 9667Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT USA
| | - David-Erick LaFontant
- grid.214572.70000 0004 1936 8294Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA USA
| | - Chelsea Caspell-Garcia
- grid.214572.70000 0004 1936 8294Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA USA
| | - Christopher S. Coffey
- grid.214572.70000 0004 1936 8294Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA USA
| | - Jennifer Mollon
- grid.467162.00000 0004 4662 2788AbbVie Deutschland GmbH & Co. KG, Ludwigshafen, Germany
| | - Samantha J. Hutten
- grid.430781.90000 0004 5907 0388Michael J. Fox Foundation for Parkinson’s Research, New York, NY USA
| | - Kalpana Merchant
- grid.16753.360000 0001 2299 3507Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Roland G. Heym
- grid.467162.00000 0004 4662 2788AbbVie Deutschland GmbH & Co. KG, Ludwigshafen, Germany
| | - Claudio Soto
- grid.504117.6R&D Unit, Amprion Inc., San Diego, CA USA ,grid.267308.80000 0000 9206 2401Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, University of Texas Houston Medical School, Houston, TX USA
| | - Byron Caughey
- grid.419681.30000 0001 2164 9667Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT USA
| | - Un Jung Kang
- grid.137628.90000 0004 1936 8753The Marlene and Paolo Fresco Institute for Parkinson’s & Movement Disorders, Department of Neurology, Department of Neuroscience and Physiology, Neuroscience Institute, The Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York, NY USA
| |
Collapse
|
49
|
Brockmann K, Quadalti C, Lerche S, Rossi M, Wurster I, Baiardi S, Roeben B, Mammana A, Zimmermann M, Hauser AK, Deuschle C, Schulte C, Waniek K, Lachmann I, Sjödin S, Brinkmalm A, Blennow K, Zetterberg H, Gasser T, Parchi P. Association between CSF alpha-synuclein seeding activity and genetic status in Parkinson's disease and dementia with Lewy bodies. Acta Neuropathol Commun 2021; 9:175. [PMID: 34717775 PMCID: PMC8556894 DOI: 10.1186/s40478-021-01276-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/13/2021] [Indexed: 12/25/2022] Open
Abstract
The clinicopathological heterogeneity in Lewy-body diseases (LBD) highlights the need for pathology-driven biomarkers in-vivo. Misfolded alpha-synuclein (α-Syn) is a lead candidate based on its crucial role in disease pathophysiology. Real-time quaking-induced conversion (RT-QuIC) analysis of CSF has recently shown high sensitivity and specificity for the detection of misfolded α-Syn in patients with Parkinson's disease (PD) and dementia with Lewy bodies (DLB). In this study we performed the CSF RT-QuIC assay in 236 PD and 49 DLB patients enriched for different genetic forms with mutations in GBA, parkin, PINK1, DJ1, and LRRK2. A subgroup of 100 PD patients was also analysed longitudinally. We correlated kinetic seeding parameters of RT-QuIC with genetic status and CSF protein levels of molecular pathways linked to α-Syn proteostasis. Overall, 85% of PD and 86% of DLB patients showed positive RT-QuIC α-Syn seeding activity. Seeding profiles were significantly associated with mutation status across the spectrum of genetic LBD. In PD patients, we detected positive α-Syn seeding in 93% of patients carrying severe GBA mutations, in 78% with LRRK2 mutations, in 59% carrying heterozygous mutations in recessive genes, and in none of those with bi-allelic mutations in recessive genes. Among PD patients, those with severe GBA mutations showed the highest seeding activity based on RT-QuIC kinetic parameters and the highest proportion of samples with 4 out of 4 positive replicates. In DLB patients, 100% with GBA mutations showed positive α-Syn seeding compared to 79% of wildtype DLB. Moreover, we found an association between α-Syn seeding activity and reduced CSF levels of proteins linked to α-Syn proteostasis, specifically lysosome-associated membrane glycoprotein 2 and neurosecretory protein VGF. These findings highlight the value of α-Syn seeding activity as an in-vivo marker of Lewy-body pathology and support its use for patient stratification in clinical trials targeting α-Syn.
Collapse
|
50
|
Nakagaki T, Nishida N, Satoh K. Development of α-Synuclein Real-Time Quaking-Induced Conversion as a Diagnostic Method for α-Synucleinopathies. Front Aging Neurosci 2021; 13:703984. [PMID: 34650422 PMCID: PMC8510559 DOI: 10.3389/fnagi.2021.703984] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 09/06/2021] [Indexed: 11/18/2022] Open
Abstract
Parkinson’s disease, dementia with Lewy bodies, and multiple system atrophy are characterized by aggregation of abnormal α-synuclein (α-syn) and collectively referred to as α-synucleinopathy. Because these diseases have different prognoses and treatments, it is desirable to diagnose them early and accurately. However, it is difficult to accurately diagnose these diseases by clinical symptoms because symptoms such as muscle rigidity, postural dysreflexia, and dementia sometimes overlap among these diseases. The process of conformational conversion and aggregation of α-syn has been thought similar to that of abnormal prion proteins that cause prion diseases. In recent years, in vitro conversion methods, such as real-time quaking-induced conversion (RT-QuIC), have been developed. This method has succeeded in amplifying and detecting trace amounts of abnormal prion proteins in tissues and central spinal fluid of patients by inducing conversion of recombinant prion proteins via shaking. Additionally, it has been used for antemortem diagnosis of prion diseases. Recently, aggregated α-syn has also been amplified and detected in patients by applying this method and many clinical studies have examined diagnosis using tissues or cerebral spinal fluid from patients. In this review, we discuss the utility and problems of α-syn RT-QuIC for antemortem diagnosis of α-synucleinopathies.
Collapse
Affiliation(s)
- Takehiro Nakagaki
- Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Noriyuki Nishida
- Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Katsuya Satoh
- Department of Health Sciences, Unit of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|