1
|
Nagasawa Y, Ueda HH, Kawabata H, Murakoshi H. LOV2-based photoactivatable CaMKII and its application to single synapses: Local Optogenetics. Biophys Physicobiol 2023; 20:e200027. [PMID: 38496236 PMCID: PMC10941968 DOI: 10.2142/biophysico.bppb-v20.0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/02/2023] [Indexed: 03/19/2024] Open
Abstract
Optogenetic techniques offer a high spatiotemporal resolution to manipulate cellular activity. For instance, Channelrhodopsin-2 with global light illumination is the most widely used to control neuronal activity at the cellular level. However, the cellular scale is much larger than the diffraction limit of light (<1 μm) and does not fully exploit the features of the "high spatial resolution" of optogenetics. For instance, until recently, there were no optogenetic methods to induce synaptic plasticity at the level of single synapses. To address this, we developed an optogenetic tool named photoactivatable CaMKII (paCaMKII) by fusing a light-sensitive domain (LOV2) to CaMKIIα, which is a protein abundantly expressed in neurons of the cerebrum and hippocampus and essential for synaptic plasticity. Combining photoactivatable CaMKII with two-photon excitation, we successfully activated it in single spines, inducing synaptic plasticity (long-term potentiation) in hippocampal neurons. We refer to this method as "Local Optogenetics", which involves the local activation of molecules and measurement of cellular responses. In this review, we will discuss the characteristics of LOV2, the recent development of its derivatives, and the development and application of paCaMKII.
Collapse
Affiliation(s)
- Yutaro Nagasawa
- Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
- Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - Hiromi H Ueda
- Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
- Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - Haruka Kawabata
- Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
- Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - Hideji Murakoshi
- Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
- Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
2
|
Global Research Status and Trends in Hair Follicle Stem Cells: a Bibliometric Analysis. Stem Cell Rev Rep 2022; 18:2002-2015. [PMID: 35802225 DOI: 10.1007/s12015-022-10404-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2022] [Indexed: 01/03/2023]
Abstract
BACKGROUND Hair follicle stem cells (HFSCs) are derived from the bulge region and are important autologous stem cell sources. Bibliometric is a statistical method that quantitatively analyses the research papers concerned about one special topic. This study aims to estimate the research status and trends of HFSCs worldwide by bibliometric analyses. METHODS Data were obtained from the Web of Science by searching keywords related to HFSCs. Publication distributions stratified by countries/regions, institutions, journals, and authors were systematically assessed. The frequency of keywords was assessed, and bibliometric mapping was employed to describe the development of HFSC research. RESULTS A total of 458 publications that met our screening criteria were included in this study, consisting of 423 (92.4%) articles and 35 (7.6%) reviews. The United States of America (USA) ranked first in the number of publications at 146 (31.9%), followed by China at 130 (28.4%), which is consistent with the rank of the H-index. Author keywords were classified into three clusters, namely, basic study, applied study, and biomarker; average publication time of keywords in applied study cluster is later than basic study cluster. The keywords "bulge", "nestin", and "skin" are the top three most frequent keywords in basic studies; "differentiation", "proliferation", and "alopecia" are the top three most frequent keywords in applied studies. With respect to the latest research hotspots, "apoptosis" and "tissue engineering" are relatively new keywords. CONCLUSIONS The USA and China were the most productive countries for research on HFSCs. The focus of keywords gradually shifted from basic study to applied study. Research on the differentiation/proliferation of HFSCs and the role of HFSCs in alopecia have been recent research focuses. Apoptosis and tissue engineering are recommended as promising research hotspots. Our study provides profound insights into the research history, current status, and future trend of HFSCs.
Collapse
|
3
|
Wang Q, Huang X, Su Y, Yin G, Wang S, Yu B, Li H, Qi J, Chen H, Zeng W, Zhang K, Verkhratsky A, Niu J, Yi C. Activation of Wnt/β-catenin pathway mitigates blood-brain barrier dysfunction in Alzheimer's disease. Brain 2022; 145:4474-4488. [PMID: 35788280 DOI: 10.1093/brain/awac236] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/29/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that causes age-dependent neurological and cognitive declines. The treatments for AD pose a significant challenge, because the mechanisms of disease are not being fully understood. Malfunction of the blood-brain barrier (BBB) is increasingly recognized as a major contributor to the pathophysiology of AD, especially at the early stages of the disease. However, the underlying mechanisms remain poorly characterized, while few molecules can directly target and improve BBB function in the context of AD. Here, we showed dysfunctional BBB in AD patients reflected by perivascular accumulation of blood-derived fibrinogen in the hippocampus and cortex, accompanied by decreased tight junction proteins Claudin-5 and glucose transporter Glut-1 in the brain endothelial cells (BECs). In the APPswe/PS1dE9 (APP/PS1) mouse model of AD, BBB dysfunction started at 4 months of age and became severe at 9 months of age. In the cerebral microvessels of APP/PS1 mice and Aβ-treated BECs, we found suppressed Wnt/β-catenin signaling triggered by an increase of GSK3β activation, but not an inhibition of the AKT pathway or switching to the Wnt/planar cell polarity pathway. Furthermore, using our newly developed optogenetic tool for controlled regulation of LRP6 (upstream regulator of the Wnt signaling) to activate Wnt/β-catenin pathway, BBB malfunction was restored by preventing Aβ-induced BEC impairments and promoting the barrier repair. In conclusion, targeting LRP6 in the Wnt/β-catenin pathway in the brain endothelium can alleviate BBB malfunction induced by Aβ, which may be a potential treatment strategy for AD.
Collapse
Affiliation(s)
- Qi Wang
- Research Centre, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China.,Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing, China
| | - Xiaomin Huang
- Research Centre, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yixun Su
- Research Centre, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China.,Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing, China
| | - Guowei Yin
- Research Centre, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Shouyu Wang
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing, China
| | - Bin Yu
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing, China
| | - Hui Li
- Research Centre, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China.,Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing, China
| | - Junhua Qi
- Research Centre, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Hui Chen
- School of Life Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Wen Zeng
- Department of Cell Biology, State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing, China
| | - Kai Zhang
- Department of Biochemistry, School of Molecular and Cellular Biology, the University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
| | - Jianqin Niu
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing, China
| | - Chenju Yi
- Research Centre, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
4
|
Huang T, Huang X, Li H, Qi J, Wang N, Xu Y, Zeng Y, Xiao X, Liu R, Chan YL, Oliver BG, Yi C, Li D, Chen H. Maternal Cigarette Smoke Exposure Exaggerates the Behavioral Defects and Neuronal Loss Caused by Hypoxic-Ischemic Brain Injury in Female Offspring. Front Cell Neurosci 2022; 16:818536. [PMID: 35250486 PMCID: PMC8894648 DOI: 10.3389/fncel.2022.818536] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveHypoxic-ischemic encephalopathy affects ∼6 in 1,000 preterm neonates, leading to significant neurological sequela (e.g., cognitive deficits and cerebral palsy). Maternal smoke exposure (SE) is one of the common causes of neurological disorders; however, female offspring seems to be less affected than males in our previous study. We also showed that maternal SE exaggerated neurological disorders caused by neonatal hypoxic-ischemic brain injury in adolescent male offspring. Here, we aimed to examine whether female littermates of these males are protected from such insult.MethodsBALB/c dams were exposed to cigarette smoke generated from 2 cigarettes twice daily for 6 weeks before mating, during gestation and lactation. To induce hypoxic-ischemic brain injury, half of the pups from each litter underwent left carotid artery occlusion, followed by exposure to 8% oxygen (92% nitrogen) at postnatal day (P) 10. Behavioral tests were performed at P40–44, and brain tissues were collected at P45.ResultsMaternal SE worsened the defects in short-term memory and motor function in females with hypoxic-ischemic injury; however, reduced anxiety due to injury was observed in the control offspring, but not the SE offspring. Both hypoxic-ischemic injury and maternal SE caused significant loss of neuronal cells and synaptic proteins, along with increased oxidative stress and inflammatory responses.ConclusionOxidative stress and inflammatory response due to maternal SE may be the mechanism of worsened neurological outcomes by hypoxic-ischemic brain injury in females, which was similar to their male littermates shown in our previous study.
Collapse
Affiliation(s)
- Taida Huang
- Department of Pathology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Xiaomin Huang
- Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Hui Li
- Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Junhua Qi
- Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Nan Wang
- Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yi Xu
- Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yunxin Zeng
- Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Xuewen Xiao
- Department of Pathology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Ruide Liu
- Department of Pathology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yik Lung Chan
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Brian G. Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
- Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Chenju Yi
- Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- *Correspondence: Chenju Yi,
| | - Dan Li
- Department of Pathology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Dan Li,
| | - Hui Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| |
Collapse
|
5
|
Huang P, Zhao Z, Duan L. Optogenetic activation of intracellular signaling based on light-inducible protein-protein homo-interactions. Neural Regen Res 2022; 17:25-30. [PMID: 34100422 PMCID: PMC8451544 DOI: 10.4103/1673-5374.314293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dynamic protein-protein interactions are essential for proper cell functioning. Homo-interaction events—physical interactions between the same type of proteins—represent a pivotal subset of protein-protein interactions that are widely exploited in activating intracellular signaling pathways. Capacities of modulating protein-protein interactions with spatial and temporal resolution are greatly desired to decipher the dynamic nature of signal transduction mechanisms. The emerging optogenetic technology, based on genetically encoded light-sensitive proteins, provides promising opportunities to dissect the highly complex signaling networks with unmatched specificity and spatiotemporal precision. Here we review recent achievements in the development of optogenetic tools enabling light-inducible protein-protein homo-interactions and their applications in optical activation of signaling pathways.
Collapse
Affiliation(s)
- Peiyuan Huang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong Special Administrative Region, China
| | - Zhihao Zhao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong Special Administrative Region, China
| | - Liting Duan
- Department of Biomedical Engineering; Shun Hing Institute of Advanced Engineering (SHIAE), The Chinese University of Hong Kong, Sha Tin, Hong Kong Special Administrative Region, China
| |
Collapse
|