1
|
Wang X, Yang J, Li Q, Zhang X, Zhang L. Globular Antifreeze Protein-Inspired Nanoparticle-Based Large-Scale T-Cell Cryoprotection System for Lymphoma Immunotherapy. ACS NANO 2024; 18:27372-27382. [PMID: 39327157 DOI: 10.1021/acsnano.4c06610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Large-scale biosafe T-cell cryopreservation is required to bring T-cell therapies to the market, but it remains challenging due to the cytotoxicity of common cryoprotectants [e.g., dimethyl sulfoxide (DMSO)] and unavoidable ice injuries to cells. Herein, inspired by natural globular antifreeze proteins, we establish a biocompatible zwitterionic magnetic nanoparticle (ZMNP)-based cryoprotection system, achieving large-scale cryopreservation of T cells for lymphoma immunotherapy. ZMNPs could form a globular hydration shell to inhibit water molecule aggregation as well as ice growth, and the surficial hydration strength-antifreeze performance relationship of ZMNPs was investigated. During the thawing process, ZMNPs possessed a magnetic field-mediated nanowarming property that enabled rapid heating and also facilitated easy magnetic separation for cell recovery. These combined effects resulted in a high post-thaw viability (>80%) of large-scale T-cell cryopreservation (20 mL). Notably, post-thaw T cells exhibited similar transcript profiles to fresh cells, while up- or downregulation of 1050 genes was found in the DMSO group. In a mouse E.G7-OVA lymphoma model, ZMNP-system-cryopreserved T cells achieved a tumor suppression rate of 77.5%, twice as high as the DMSO group. This work holds great promise for the application of advanced cryopreservation techniques in the development of therapeutic cellular products.
Collapse
Affiliation(s)
- Xiaodong Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| | - Jing Yang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| | - Qingsi Li
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| | - Xiangyu Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| | - Lei Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
2
|
Elsemary MT, Maritz MF, Smith LE, Warkiani ME, Thierry B. Enrichment of T-lymphocytes from leukemic blood using inertial microfluidics toward improved chimeric antigen receptor-T cell manufacturing. Cytotherapy 2024; 26:1264-1274. [PMID: 38819362 DOI: 10.1016/j.jcyt.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/30/2024] [Accepted: 05/05/2024] [Indexed: 06/01/2024]
Abstract
Chimeric antigen receptor cell therapy is a successful immunotherapy for the treatment of blood cancers. However, hurdles in their manufacturing remain including efficient isolation and purification of the T-cell starting material. Herein, we describe a one-step separation based on inertial spiral microfluidics for efficient enrichment of T-cells in B-cell acute lymphoblastic leukemia (ALL) and B-cell chronic lymphocytic leukemia patient's samples. In healthy donors used to optimize the process, the lymphocyte purity was enriched from 65% (SD ± 0.2) to 91% (SD ± 0.06) and T-cell purity was enriched from 45% (SD ± 0.1) to 73% (SD ± 0.02). Leukemic samples had higher starting B-cells compared to the healthy donor samples. Efficient enrichment and recovery of lymphocytes and T-cells were achieved in ALL samples with B-cells, monocytes and leukemic blasts depleted by 80% (SD ± 0.09), 89% (SD ± 0.1) and 74% (SD ± 0.09), respectively, and a 70% (SD ± 0.1) T-cell recovery. Chronic lymphocytic leukemia samples had lower T-cell numbers, and the separation process was less efficient compared to the ALL. This study demonstrates the use of inertial microfluidics for T-cell enrichment and depletion of B-cell blasts in ALL, suggesting its potential to address a key bottleneck of the chimeric antigen receptor-T manufacturing workflow.
Collapse
MESH Headings
- Humans
- T-Lymphocytes/immunology
- Receptors, Chimeric Antigen/immunology
- Immunotherapy, Adoptive/methods
- Microfluidics/methods
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Cell Separation/methods
- B-Lymphocytes/immunology
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/immunology
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
Collapse
Affiliation(s)
- Mona T Elsemary
- Future Industries Institute, University of South Australia Mawson Lakes Campus, Mawson Lakes, SA, Australia
| | - Michelle F Maritz
- Future Industries Institute, University of South Australia Mawson Lakes Campus, Mawson Lakes, SA, Australia
| | - Louise E Smith
- Future Industries Institute, University of South Australia Mawson Lakes Campus, Mawson Lakes, SA, Australia
| | | | - Benjamin Thierry
- Future Industries Institute, University of South Australia Mawson Lakes Campus, Mawson Lakes, SA, Australia.
| |
Collapse
|
3
|
Jeon H, Perez C, Kyung T, Birnbaum ME, Han J. Separation of Activated T Cells Using Multidimensional Double Spiral (MDDS) Inertial Microfluidics for High-Efficiency CAR T Cell Manufacturing. Anal Chem 2024; 96:10780-10790. [PMID: 38889002 PMCID: PMC11818483 DOI: 10.1021/acs.analchem.4c01981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
This study introduces a T cell enrichment process, capitalizing on the size differences between activated and unactivated T cells to facilitate the isolation of activated, transducible T cells. By employing multidimensional double spiral (MDDS) inertial sorting, our approach aims to remove unactivated or not fully activated T cells post-activation, consequently enhancing the efficiency of chimeric antigen receptor (CAR) T cell manufacturing. Our findings reveal that incorporating a simple, label-free, and continuous MDDS sorting step yields a purer T cell population, exhibiting significantly enhanced viability and CAR-transducibility (with up to 85% removal of unactivated T cells and approximately 80% recovery of activated T cells); we found approximately 2-fold increase in CAR transduction efficiency for a specific sample, escalating from ∼10% to ∼20%, but this efficiency highly depends on the original T cell sample as MDDS sorting would be more effective for samples possessing a higher proportion of unactivated T cells. This new cell separation process could augment the efficiency, yield, and cost-effectiveness of CAR T cell manufacturing, potentially broadening the accessibility of this transformative therapy and contributing to improved patient outcomes.
Collapse
Affiliation(s)
- Hyungkook Jeon
- Research Laboratory of Electronics, Massachusetts Institute of Technology (MIT), 77 Massachusetts avenue, Cambridge, Massachusetts, 02139, USA
- Department of Manufacturing Systems and Design Engineering (MSDE), Seoul National University of Science and Technology (SEOULTECH), 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
| | - Caleb Perez
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), 77 Massachusetts avenue, Cambridge, Massachusetts, 02139, USA
| | - Taeyoon Kyung
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), 77 Massachusetts avenue, Cambridge, Massachusetts, 02139, USA
| | - Michael E. Birnbaum
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), 77 Massachusetts avenue, Cambridge, Massachusetts, 02139, USA
- Singapore-MIT Alliance for Research and Technology (SMART) Centre, Critical Analytics for Manufacturing Personalized-Medicine (CAMP) IRG, 1 CREATE way, #04-13/14 Enterprise Wing, 138602, Singapore
| | - Jongyoon Han
- Research Laboratory of Electronics, Massachusetts Institute of Technology (MIT), 77 Massachusetts avenue, Cambridge, Massachusetts, 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), 77 Massachusetts avenue, Cambridge, Massachusetts, 02139, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology (MIT), 77 Massachusetts avenue, Cambridge, Massachusetts, 02139, USA
- Singapore-MIT Alliance for Research and Technology (SMART) Centre, Critical Analytics for Manufacturing Personalized-Medicine (CAMP) IRG, 1 CREATE way, #04-13/14 Enterprise Wing, 138602, Singapore
| |
Collapse
|
4
|
Zhuang C, Gould JE, Enninful A, Shao S, Mak M. Biophysical and mechanobiological considerations for T-cell-based immunotherapy. Trends Pharmacol Sci 2023; 44:366-378. [PMID: 37172572 PMCID: PMC10188210 DOI: 10.1016/j.tips.2023.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 05/15/2023]
Abstract
Immunotherapies modulate the body's defense system to treat cancer. While these therapies have shown efficacy against multiple types of cancer, patient response rates are limited, and the off-target effects can be severe. Typical approaches in developing immunotherapies tend to focus on antigen targeting and molecular signaling, while overlooking biophysical and mechanobiological effects. Immune cells and tumor cells are both responsive to biophysical cues, which are prominent in the tumor microenvironment. Recent studies have shown that mechanosensing - including through Piezo1, adhesions, and Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) - influences tumor-immune interactions and immunotherapeutic efficacy. Furthermore, biophysical methods such as fluidic systems and mechanoactivation schemes can improve the controllability and manufacturing of engineered T cells, with potential for increasing therapeutic efficacy and specificity. This review focuses on leveraging advances in immune biophysics and mechanobiology toward improving chimeric antigen receptor (CAR) T-cell and anti-programmed cell death protein 1 (anti-PD-1) therapies.
Collapse
Affiliation(s)
- Chuzhi Zhuang
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Jared E Gould
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Archibald Enninful
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Stephanie Shao
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Michael Mak
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
5
|
Li X, Li M, Huang M, Lin Q, Fang Q, Liu J, Chen X, Liu L, Zhan X, Shan H, Lu D, Li Q, Li Z, Zhu X. The multi-molecular mechanisms of tumor-targeted drug resistance in precision medicine. Biomed Pharmacother 2022; 150:113064. [PMID: 35658234 DOI: 10.1016/j.biopha.2022.113064] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 11/02/2022] Open
Abstract
Clinically, cancer drug therapy is still dominated by chemotherapy drugs. Although the emergence of targeted drugs has greatly improved the survival rate of patients with advanced cancer, drug resistance has always been a difficult problem in clinical cancer treatment. At the current level of medicine, most drugs cannot escape the fate of drug resistance. With the emergence and development of gene detection, liquid biopsy ctDNA technology, and single-cell sequencing technology, the molecular mechanism of tumor drug resistance has gradually emerged. Drugs can also be updated in response to drug resistance mechanisms and bring higher survival benefits. The use of new drugs often leads to new mechanisms of resistance. In this review, the multi-molecular mechanisms of drug resistance are introduced, and the overcoming of drug resistance is discussed from the perspective of the tumor microenvironment.
Collapse
Affiliation(s)
- Xinming Li
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China; Cancer Research Center, Guangdong Medical University, Zhanjiang, China
| | - Mingdong Li
- Department of Gastroenterology, Zibo Central Hospital, Zibo, China
| | - Meiying Huang
- Cancer Research Center, Guangdong Medical University, Zhanjiang, China
| | - Qianyi Lin
- Cancer Research Center, Guangdong Medical University, Zhanjiang, China
| | - Qiuping Fang
- Cancer Research Center, Guangdong Medical University, Zhanjiang, China
| | - Jianjiang Liu
- Cancer Research Center, Guangdong Medical University, Zhanjiang, China
| | - Xiaohui Chen
- Cancer Research Center, Guangdong Medical University, Zhanjiang, China
| | - Lin Liu
- Cancer Research Center, Guangdong Medical University, Zhanjiang, China
| | - Xuliang Zhan
- Cancer Research Center, Guangdong Medical University, Zhanjiang, China
| | - Huisi Shan
- Cancer Research Center, Guangdong Medical University, Zhanjiang, China
| | - Deshuai Lu
- Cancer Research Center, Guangdong Medical University, Zhanjiang, China
| | - Qinlan Li
- Cancer Research Center, Guangdong Medical University, Zhanjiang, China
| | - Zesong Li
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors,Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, China.
| | - Xiao Zhu
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China; Cancer Research Center, Guangdong Medical University, Zhanjiang, China.
| |
Collapse
|