1
|
Wang B, Wang X, Wang T, Meng K, Yu T, Xi Y, Hu S, Xiong H, Qu R, Yuan Z, Wang X, Zeng C, Zou W, Tian Y, Cai Y, Fu S, Fu X, Li L. Targeting PD-1 and CD85j can restore intratumoral CD4 + GzmB + T-cell functions to combat MHC-II-expressing tumors. J Immunother Cancer 2025; 13:e010890. [PMID: 40169283 PMCID: PMC11962805 DOI: 10.1136/jitc-2024-010890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 03/16/2025] [Indexed: 04/03/2025] Open
Abstract
BACKGROUND A subset of CD4+ T cells with cytotoxic activity has been identified, and these cells exert their effects by expressing perforin and granzymes. Despite the progress made in characterizing cytotoxic CD4+ T cells in various diseases, the status of cytotoxic CD4+ T cells in non-small cell lung cancer (NSCLC) and the underlying mechanisms involved in promoting intratumoral cytotoxic CD4+ T-cell activation remain unclear. METHODS We used flow cytometry to examine the phenotypic and functional properties of CD4+GzmB+ T cells in the peripheral blood and tumor tissues of patients with NSCLC. Loss-of-function analyses and RNA sequencing were used to identify the underlying mechanisms involved in the effects of interleukin (IL)-15 on the restoration of CD4+GzmB+ T-cell function in vitro. A patient-derived lung cancer explant model and an animal model were used to verify the effects of immune checkpoint inhibitors on CD4+GzmB+ T-cell activation. RESULTS In patients with NSCLC, impaired cytolytic function of tumor-infiltrated granzyme B (GzmB)-expressing CD4+ T cells was restored by IL-15 through activation of the AKT-FOXO1-T-bet axis. Moreover, IL-15 stimulation increased solute carrier family 7 member 5 (SLC7A5) expression in CD4+GzmB+ T cells in an Protein Kinase B (AKT)-dependent manner, and inhibition of SLC7A5 abrogated the effect of IL-15 on CD4+GzmB+ T cells. Additionally, we showed that the immune checkpoint molecules programmed cell death-1 (PD-1) and CD85j were mutually exclusively expressed in CD4+GzmB+ T cells and that dual targeting of PD-1 and CD85j enhanced the effector function of CD4+GzmB+ T cells by activating the AKT pathway. Notably, tumor cells expressing major histocompatibility complex (MHC)-II and IL-15 determine the effectiveness of CD4+GzmB+ T-cell-mediated antitumor immunity in response to immunotherapy. CONCLUSIONS Our study demonstrated that tumor-infiltrating CD4+GzmB+ T cells fail to eliminate tumors. Dual blockade of PD-1 and CD85j alongside IL-15 restores the effector function of CD4+GzmB+ T cells and drives CD4+GzmB+ T-cell transformation in the tumor microenvironment to combat MHC-II-expressing tumors.
Collapse
Affiliation(s)
- Boyu Wang
- Department of Thoracic Surgery, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, Hubei, China
| | - Xu Wang
- Department of Thoracic Surgery, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, Hubei, China
| | - Tianlai Wang
- Department of Thoracic Surgery, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, Hubei, China
| | - Kelin Meng
- Department of Thoracic Surgery, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, Hubei, China
| | - Taiyan Yu
- Department of Thoracic Surgery, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, Hubei, China
| | - Yu Xi
- Department of Thoracic Surgery, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, Hubei, China
| | - Shaojie Hu
- Department of Thoracic Surgery, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, Hubei, China
| | - Hui Xiong
- Department of Thoracic Surgery, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, Hubei, China
| | - Rirong Qu
- Department of Thoracic Surgery, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, Hubei, China
| | - Zhiwei Yuan
- Department of Thoracic Surgery, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, Hubei, China
| | - Xue Wang
- Department of Thoracic Surgery, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, Hubei, China
| | - Chenxi Zeng
- Department of Thoracic Surgery, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, Hubei, China
| | - Wenbin Zou
- Department of Thoracic Surgery, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, Hubei, China
| | - Yitao Tian
- Department of Thoracic Surgery, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, Hubei, China
| | - Yixin Cai
- Department of Thoracic Surgery, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, Hubei, China
| | - Shengling Fu
- Department of Thoracic Surgery, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, Hubei, China
| | - Xiangning Fu
- Department of Thoracic Surgery, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, Hubei, China
| | - Lequn Li
- Department of Thoracic Surgery, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, Hubei, China
| |
Collapse
|
2
|
Pan W, Wang Y, Chen G, Ma X, Min Y. A carrier-free nanovaccine combined with cancer immunotherapy overcomes gemcitabine resistance. Biomaterials 2025; 313:122788. [PMID: 39236628 DOI: 10.1016/j.biomaterials.2024.122788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/07/2024]
Abstract
Drug resistance is a significant challenge in cancer chemotherapy and is a primary factor contributing to poor recovery for cancer patients. Although drug-loaded nanoparticles have shown promise in overcoming chemotherapy resistance, they often carry a combination of drugs and require advanced design and manufacturing processes. Furthermore, they seldom approach chemotherapy-resistant tumors from an immunotherapy perspective. In this study, we developed a therapeutic nanovaccine composed solely of chemotherapy-induced resistant tumor antigens (CIRTAs) and the immune adjuvant Toll-like receptor (TLR) 7/8 agonist R848 (CIRTAs@R848). This nanovaccine does not require additional carriers and has a simple production process. It efficiently delivers antigens and immune stimulants to dendritic cells (DCs) simultaneously, promoting DCs maturation. CIRTAs@R848 demonstrated significant tumor suppression, particularly when used in combination with the immune checkpoint blockade (ICB) anti-PD-1 (αPD-1). The combined therapy increased the infiltration of T cells into the tumor while decreasing the proportion of regulatory T cells (Tregs) and modulating the tumor microenvironment, resulting in long-term immune memory. Overall, this study introduces an innovative strategy for treating chemotherapy-resistant tumors from a novel perspective, with potential applications in personalized immunotherapy and precision medicine.
Collapse
Affiliation(s)
- Wen Pan
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China; The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China; Department of Bio-X Interdisciplinary Science at Hefei National Laboratory (HFNL) for Physical Science at the Microscale, University of Science and Technology of China, Hefei, 230026, China; CAS Key Lab of Soft Matter Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Yangyi Wang
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Guiyuan Chen
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China; The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China; Department of Bio-X Interdisciplinary Science at Hefei National Laboratory (HFNL) for Physical Science at the Microscale, University of Science and Technology of China, Hefei, 230026, China; CAS Key Lab of Soft Matter Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Xiaopeng Ma
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
| | - Yuanzeng Min
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China; The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China; Department of Bio-X Interdisciplinary Science at Hefei National Laboratory (HFNL) for Physical Science at the Microscale, University of Science and Technology of China, Hefei, 230026, China; CAS Key Lab of Soft Matter Chemistry, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
3
|
Dai Y, Dong C, Wang Z, Zhou Y, Wang Y, Hao Y, Chen P, Liang C, Li G. Infiltrating T lymphocytes and tumor microenvironment within cholangiocarcinoma: immune heterogeneity, intercellular communication, immune checkpoints. Front Immunol 2025; 15:1482291. [PMID: 39845973 PMCID: PMC11750830 DOI: 10.3389/fimmu.2024.1482291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 12/17/2024] [Indexed: 01/24/2025] Open
Abstract
Cholangiocarcinoma is the second most common primary liver cancer, and its global incidence has increased in recent years. Radical surgical resection and systemic chemotherapy have traditionally been the standard treatment options. However, the complexity of cholangiocarcinoma subtypes often presents a challenge for early diagnosis. Additionally, high recurrence rates following radical treatment and resistance to late-stage chemotherapy limit the benefits for patients. Immunotherapy has emerged as an effective strategy for treating various types of cancer, and has shown efficacy when combined with chemotherapy for cholangiocarcinoma. Current immunotherapies targeting cholangiocarcinoma have predominantly focused on T lymphocytes within the tumor microenvironment, and new immunotherapies have yielded unsatisfactory results in clinical trials. Therefore, it is essential to achieve a comprehensive understanding of the unique tumor microenvironment of cholangiocarcinoma and the pivotal role of T lymphocytes within it. In this review, we describe the heterogeneous immune landscape and intercellular communication in cholangiocarcinoma and summarize the specific distribution of T lymphocytes. Finally, we review potential immune checkpoints in cholangiocarcinoma.
Collapse
Affiliation(s)
- Yunyan Dai
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Chenyang Dong
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Zhiming Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yunpeng Zhou
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yi Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yi Hao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Pinggui Chen
- Department of Nuclear Medicine, Nanyang First People’s Hospital, Nanyang, Henan, China
| | - Chaojie Liang
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
- Department of biliary and Pancreatic Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Gaopeng Li
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Department of Hepatobiliary Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China
| |
Collapse
|
4
|
Yang GH, Ma XD, Wei XF, Liu RL, Wang C. A Novel KIF4A-related Model for Predicting Immunotherapy Response and Prognosis in Kidney Renal Clear Cell Carcinoma. Comb Chem High Throughput Screen 2025; 28:691-710. [PMID: 38357945 DOI: 10.2174/0113862073296897240212114403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND The efficacy of chemotherapy in treating Kidney Renal Clear Cell Carcinoma (KIRC) is limited, whereas immunotherapy has shown some promising clinical outcomes. In this context, KIF4A is considered a potential therapeutic target for various cancers. Therefore, identifying the mechanism of KIF4A that can predict the prognosis and immunotherapy response of KIRC would be of significant importance. METHODS Based on the TCGA Pan-Cancer dataset, the prognostic significance of the KIF4A expression across 33 cancer types was analyzed by univariate Cox algorithm. Furthermore, overlapping differentially expressed genes (DEGs1) between the KIF4A high- and lowexpression groups and DEGs2 between the KIRC and normal groups were also analyzed. Machine learning and Cox regression algorithms were performed to obtain biomarkers and construct a prognostic model. Finally, the role of KIF4A in KIRC was analyzed using quantitative real-time PCR, transwell assay, and EdU experiment. RESULTS Our analysis revealed that KIF4A was significant for the prognosis of 13 cancer types. The highest correlation with KIF4A was found for KICH among the tumour mutation burden (TMB) indicators. Subsequently, a prognostic model developed with UBE2C, OTX1, PPP2R2C, and RFLNA was obtained and verified with the Renal Cell Cancer-EU/FR dataset. There was a positive correlation between risk score and immunotherapy. Furthermore, the experiment results indicated that KIF4A expression was considerably increased in the KIRC group. Besides, the proliferation, migration, and invasion abilities of KIRC tumor cells were significantly weakened after KIF4A was knocked out. CONCLUSION We identified four KIF4A-related biomarkers that hold potential for prognostic assessment in KIRC. Specifically, early implementation of immunotherapy targeting these biomarkers may yield improved outcomes for patients with KIRC.
Collapse
Affiliation(s)
- Guang Hua Yang
- Department of Urology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, People's Republic of China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xu Dong Ma
- Department of Urology, Baotou Central Hospital, Inner Mongolia Medical University, Baotou, China
| | - Xi Feng Wei
- Department of Urology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Ran Lu Liu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Chao Wang
- Department of Urology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, People's Republic of China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
5
|
Zeng X, Yang D, Zhang J, Li K, Wang X, Ma F, Liao X, Wang Z, Zeng X, Zhang P. Integrating machine learning, bioinformatics and experimental verification to identify a novel prognostic marker associated with tumor immune microenvironment in head and neck squamous carcinoma. Front Immunol 2024; 15:1501486. [PMID: 39720726 PMCID: PMC11666523 DOI: 10.3389/fimmu.2024.1501486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/25/2024] [Indexed: 12/26/2024] Open
Abstract
Head and neck squamous carcinoma (HNSC), characterized by a high degree of malignancy, develops in close association with the tumor immune microenvironment (TIME). Therefore, identifying effective targets related to HNSC and TIME is of paramount importance. Here, we employed the ESTIMATE algorithm to compute immune and stromal cell scores for HNSC samples from the TCGA database and identified differentially expressed genes (DEGs) based on these scores. Subsequently, we utilized four machine learning algorithms to identify four key genes: ITM2A, FOXP3, WIPF1, and RSPO1 from DEGs. Through a comprehensive pan-cancer analysis, our study identified aberrant expression of ITM2A across various tumor types, with a significant association with the TIME. Specifically, ITM2A expression was markedly reduced and correlated with poor prognosis in HNSC. Functional enrichment analysis revealed that ITM2A is implicated in multiple immune-related pathways, including immune-infiltrating cells, immune checkpoints, and immunotherapeutic responses. ITM2A expression was observed in various immune cell populations through single-cell analysis. Furthermore, we showed that ITM2A overexpression inhibited the growth of HNSC cells. Our results suggest that ITM2A may be a novel prognostic marker associated with TIME.
Collapse
Affiliation(s)
- Xiaoxia Zeng
- Department of Otolaryngology, Longgang Otolaryngology hospital & Shenzhen Key Laboratory of Otolaryngology, Shenzhen Institute of Otolaryngology, Shenzhen, Guangdong, China
| | - Dunhui Yang
- Department of Otolaryngology, Longgang Otolaryngology hospital & Shenzhen Key Laboratory of Otolaryngology, Shenzhen Institute of Otolaryngology, Shenzhen, Guangdong, China
| | - Jin Zhang
- Department of Otolaryngology, The Second People’s Hospital of Yibin, Yibin, Sichuan, China
| | - Kang Li
- Department of Otolaryngology, Longgang Otolaryngology hospital & Shenzhen Key Laboratory of Otolaryngology, Shenzhen Institute of Otolaryngology, Shenzhen, Guangdong, China
| | - Xijia Wang
- Department of Otolaryngology, Longgang Otolaryngology hospital & Shenzhen Key Laboratory of Otolaryngology, Shenzhen Institute of Otolaryngology, Shenzhen, Guangdong, China
| | - Fang Ma
- Department of Otolaryngology, Longgang Otolaryngology hospital & Shenzhen Key Laboratory of Otolaryngology, Shenzhen Institute of Otolaryngology, Shenzhen, Guangdong, China
| | - Xianqin Liao
- Department of Otolaryngology, Longgang Otolaryngology hospital & Shenzhen Key Laboratory of Otolaryngology, Shenzhen Institute of Otolaryngology, Shenzhen, Guangdong, China
| | - Zhen Wang
- Department of Otolaryngology, Longgang Otolaryngology hospital & Shenzhen Key Laboratory of Otolaryngology, Shenzhen Institute of Otolaryngology, Shenzhen, Guangdong, China
| | - Xianhai Zeng
- Department of Otolaryngology, Longgang Otolaryngology hospital & Shenzhen Key Laboratory of Otolaryngology, Shenzhen Institute of Otolaryngology, Shenzhen, Guangdong, China
| | - Peng Zhang
- Department of Otolaryngology, Longgang Otolaryngology hospital & Shenzhen Key Laboratory of Otolaryngology, Shenzhen Institute of Otolaryngology, Shenzhen, Guangdong, China
| |
Collapse
|
6
|
Lin F, Zhu LX, Ye ZM, Peng F, Chen MC, Li XM, Zhu ZH, Zhu Y. Computed Tomography-Based Intratumor Heterogeneity Predicts Response to Immunotherapy Plus Chemotherapy in Esophageal Squamous Cell Carcinoma. Acad Radiol 2024; 31:4886-4899. [PMID: 38981774 DOI: 10.1016/j.acra.2024.06.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/11/2024]
Abstract
RATIONALE AND OBJECTIVES This study explored the intratumor heterogeneity (ITH) of esophageal squamous cell carcinoma (ESCC) using computed tomography (CT) and investigated the value of CT-based ITH in predicting the response to immune checkpoint inhibitor (ICI) plus chemotherapy in patients with ESCC. MATERIALS AND METHODS This retrospective study included 416 patients with ESCC who received ICI plus chemotherapy at two independent hospitals between January 2019 and July 2022. Multiparametric CT features were extracted from ESCC lesions and screened using hierarchical clustering and dimensionality reduction algorithms. Logistic regression and machine learning models based on selected features were developed to predict treatment response and validated in separate datasets. ITH was quantified using the score calculated by the best-performing model and visualized through feature clustering and feature contribution heatmaps. A gene set enrichment analysis (GSEA) was performed to identify the biological pathways underlying the CT-based ITH. RESULTS The extreme gradient boosting model based on CT-derived ITH had higher discriminative power, with areas under the receiver operating characteristic curve of 0.864 (95% confidence interval [CI]: 0.774-0.954) and 0.796 (95% CI: 0.698-0.893) in the internal and external validation sets. The CT-based ITH pattern differed significantly between responding and non-responding patients. The GSEA indicated that CT-based ITH was associated with immunity-, keratinization-, and epidermal cell differentiation-related pathways. CONCLUSION CT-based ITH is an effective biomarker for identifying patients with ESCC who could benefit from ICI plus chemotherapy. Immunity-, keratinization-, and epidermal cell differentiation-related pathways may influence the patient's response to ICI plus chemotherapy.
Collapse
Affiliation(s)
- Fangzeng Lin
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, People's Republic of China (F.L., M.C.C., Y.Z.)
| | - Lian-Xin Zhu
- Medical College of Nanchang University, Nanchang 330000, Jiangxi Province, People's Republic of China (L.X.Z.); Queen Mary University of London, London, United Kingdom (L.X.Z.)
| | - Zi-Ming Ye
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou 510060, Guangdong Province, People's Republic of China (Z.M.Y., Z.H.Z.)
| | - Fang Peng
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, People's Republic of China (F.P.)
| | - Mei-Cheng Chen
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, People's Republic of China (F.L., M.C.C., Y.Z.)
| | - Xiang-Min Li
- Department of Radiology, Hui Ya Hospital of The First Affiliated Hospital, Sun Yat-sen University, Huizhou 516080, Guangdong Province, People's Republic of China (X.M.L.)
| | - Zhi-Hua Zhu
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou 510060, Guangdong Province, People's Republic of China (Z.M.Y., Z.H.Z.)
| | - Ying Zhu
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, People's Republic of China (F.L., M.C.C., Y.Z.).
| |
Collapse
|
7
|
Arcas VC, Fratila AM, Moga DFC, Roman-Filip I, Arcas AMC, Roman-Filip C, Sava M. A Literature Review and Meta-Analysis on the Potential Use of miR-150 as a Novel Biomarker in the Detection and Progression of Multiple Sclerosis. J Pers Med 2024; 14:815. [PMID: 39202006 PMCID: PMC11355600 DOI: 10.3390/jpm14080815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 09/03/2024] Open
Abstract
BACKGROUND MicroRNA-150 (miR-150) plays a critical role in immune regulation and has been implicated in autoimmune diseases like Multiple Sclerosis (MS). This review aims to evaluate miR-150's potential as a biomarker for MS, necessitating this review to consolidate current evidence and highlight miR-150's utility in improving diagnostic accuracy and monitoring disease progression. METHODS A comprehensive literature search was conducted in databases like PubMed, Scopus, Google Scholar, SciSpace, MDPI and Web of Science, adhering to PRISMA guidelines. Studies focusing on miR-150 implications in MS were included. Data extraction was conducted, while quality assessment was done using the NOS and AMSTAR 2 tools. With the extracted data a statistical analyses conducted. RESULTS 10 eligible articles were included in review. Findings show that miR-150 levels were consistently deregulated in MS patients compared to healthy controls, correlating with disease severity and clinical parameters such as (EDSS) scores and disease activity. Additionally, miR-150 is implicated in the inflammatory pathogenesis of MS, affecting immune cell regulation and inflammatory pathways. CONCLUSIONS MiR-150 is a promising biomarker for MS, showing significant potential for improving diagnostic accuracy and monitoring disease progression. Its consistent deregulation in MS patients and correlation with clinical parameters underscore its clinical utility. Further research should validate miR-150's salivary presence and its possible usage as a novel biomarker and therapeutic potential in the development of MS.
Collapse
Affiliation(s)
- Vasile Calin Arcas
- Doctoral School, Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania;
| | - Anca Maria Fratila
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (C.R.-F.); (M.S.)
- Military Clinical Emergency Hospital of Sibiu, 550024 Sibiu, Romania
| | - Doru Florian Cornel Moga
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (C.R.-F.); (M.S.)
- Military Clinical Emergency Hospital of Sibiu, 550024 Sibiu, Romania
| | - Iulian Roman-Filip
- Department of Neurology, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology, 540136 Targu Mures, Romania;
| | - Ana-Maria Cristina Arcas
- Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy of Cluj-Napoca, 400012 Cluj-Napoca, Romania;
| | - Corina Roman-Filip
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (C.R.-F.); (M.S.)
- Emergency County Clinical Hospital Sibiu, 550245 Sibiu, Romania
| | - Mihai Sava
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (C.R.-F.); (M.S.)
- Emergency County Clinical Hospital Sibiu, 550245 Sibiu, Romania
| |
Collapse
|
8
|
Peng S, Lin A, Jiang A, Zhang C, Zhang J, Cheng Q, Luo P, Bai Y. CTLs heterogeneity and plasticity: implications for cancer immunotherapy. Mol Cancer 2024; 23:58. [PMID: 38515134 PMCID: PMC10956324 DOI: 10.1186/s12943-024-01972-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 02/26/2024] [Indexed: 03/23/2024] Open
Abstract
Cytotoxic T lymphocytes (CTLs) play critical antitumor roles, encompassing diverse subsets including CD4+, NK, and γδ T cells beyond conventional CD8+ CTLs. However, definitive CTLs biomarkers remain elusive, as cytotoxicity-molecule expression does not necessarily confer cytotoxic capacity. CTLs differentiation involves transcriptional regulation by factors such as T-bet and Blimp-1, although epigenetic regulation of CTLs is less clear. CTLs promote tumor killing through cytotoxic granules and death receptor pathways, but may also stimulate tumorigenesis in some contexts. Given that CTLs cytotoxicity varies across tumors, enhancing this function is critical. This review summarizes current knowledge on CTLs subsets, biomarkers, differentiation mechanisms, cancer-related functions, and strategies for improving cytotoxicity. Key outstanding questions include refining the CTLs definition, characterizing subtype diversity, elucidating differentiation and senescence pathways, delineating CTL-microbe relationships, and enabling multi-omics profiling. A more comprehensive understanding of CTLs biology will facilitate optimization of their immunotherapy applications. Overall, this review synthesizes the heterogeneity, regulation, functional roles, and enhancement strategies of CTLs in antitumor immunity, highlighting gaps in our knowledge of subtype diversity, definitive biomarkers, epigenetic control, microbial interactions, and multi-omics characterization. Addressing these questions will refine our understanding of CTLs immunology to better leverage cytotoxic functions against cancer.
Collapse
Affiliation(s)
- Shengkun Peng
- Department of Radiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Anqi Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Aimin Jiang
- Department of Urology, Changhai hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Cangang Zhang
- Department of Pathogenic Microbiology and ImmunologySchool of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South University, Hunan, China.
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China.
| | - Yifeng Bai
- Department of Oncology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
9
|
Wang YX, Zhou CP, Wang DT, Ma J, Sun XH, Wang Y, Zhang YM. Unraveling the causal role of immune cells in gastrointestinal tract cancers: insights from a Mendelian randomization study. Front Immunol 2024; 15:1343512. [PMID: 38533503 PMCID: PMC10963466 DOI: 10.3389/fimmu.2024.1343512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/21/2024] [Indexed: 03/28/2024] Open
Abstract
Background Despite early attempts, the relationship between immune characteristics and gastrointestinal tract cancers remains incompletely elucidated. Hence, rigorous and further investigations in this domain hold significant clinical relevance for the development of novel potential immunotherapeutic targets. Methods We conducted a two-sample Mendelian randomization (MR) analysis using the tools available in the "TwoSampleMR" R package. The GWAS data for these 731 immune traits were sourced from the GWAS Catalog database. Concurrently, data on gastrointestinal tract cancers, encompassing malignant tumors in the esophagus, stomach, small intestine, colon, and rectum, were extracted from the FinnGen database. The immune traits subjected to MR analysis predominantly fall into four categories: median fluorescence intensities (MFI), relative cell (RC), absolute cell (AC), and morphological parameters (MP). To ensure the reliability of our findings, sensitivity analyses were implemented to address robustness, account for heterogeneity, and alleviate the impact of horizontal pleiotropy. Results A total of 78 immune traits causally linked to gastrointestinal tract cancers were identified, encompassing esophageal cancer (12 traits), gastric cancer (13 traits), small intestine cancer (22 traits), colon cancer (12 traits), and rectal cancer (19 traits). Additionally, 60 immune traits were recognized as protective factors associated with gastrointestinal tract cancers, distributed across esophageal cancer (14 traits), gastric cancer (16 traits), small intestine cancer (7 traits), colon cancer (14 traits), and rectal cancer (9 traits). Furthermore, it was observed that seven immune traits are causally related to gastrointestinal tract cancers in at least two locations. These traits include "CCR2 on CD14- CD16+ monocyte," "CD19 on IgD+ CD38-," "CD19 on IgD+ CD38- naive," "CD25hi CD45RA+ CD4 not Treg AC," "CD27 on unsw mem," "CD28 on CD39+ activated Treg," and "CD45 on CD4+." Conclusion This study elucidates a causal link between immune cells and gastrointestinal tract cancers at various sites through genetic investigation. The findings of this research open up new perspectives and resources for exploring tumor prevention strategies and immunotherapeutic targets.
Collapse
Affiliation(s)
- Yu-xiang Wang
- Department of General Surgery, Anqing Municipal Hospital, Anqing, Anhui, China
| | - Chao-ping Zhou
- Department of General Surgery, Anqing Municipal Hospital, Anqing, Anhui, China
| | - Da-tian Wang
- Department of General Surgery, Anqing Municipal Hospital, Anqing, Anhui, China
| | - Jun Ma
- Department of General Surgery, Anqing Municipal Hospital, Anqing, Anhui, China
| | - Xue-hu Sun
- Department of Emergency Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yao Wang
- Department of Digestive Endoscopy, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ya-ming Zhang
- Department of General Surgery, Anqing Municipal Hospital, Anqing, Anhui, China
| |
Collapse
|
10
|
Li C, Bie L, Chen M, Ying J. Therapeutic significance of tumor microenvironment in cholangiocarcinoma: focus on tumor-infiltrating T lymphocytes. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:1310-1327. [PMID: 38213535 PMCID: PMC10776604 DOI: 10.37349/etat.2023.00199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/09/2023] [Indexed: 01/13/2024] Open
Abstract
Cholangiocarcinoma (CCA) is a highly aggressive type of adenocarcinoma distinguished by its invasiveness. Depending on specific anatomical positioning within the biliary tree, CCA can be categorized into intrahepatic CCA (ICCA), perihilar CCA (pCCA) and distal CCA (dCCA). In recent years, there has been a significant increase in the global prevalence of CCA. Unfortunately, many CCA patients are diagnosed at an advanced stage, which makes surgical resection impossible. Although systemic chemotherapy is frequently used as the primary treatment for advanced or recurrent CCA, its effectiveness is relatively low. Therefore, immunotherapy has emerged as a promising avenue for advancing cancer treatment research. CCA exhibits a complex immune environment within the stromal tumor microenvironment (TME), comprising a multifaceted immune landscape and a tumor-reactive stroma. A deeper understanding of this complex TME is indispensable for identifying potential therapeutic targets. Thus, targeting tumor immune microenvironment holds promise as an effective therapeutic strategy.
Collapse
Affiliation(s)
- Chaoqun Li
- Department of Hepato-Pancreato-Biliary & Gastric Medical Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
- Postgraduate training base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou 310022, Zhejiang, China
| | - Lei Bie
- Department of Thoracic Surgery, Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Muhua Chen
- Department of Hepato-Pancreato-Biliary & Gastric Medical Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
| | - Jieer Ying
- Department of Hepato-Pancreato-Biliary & Gastric Medical Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
| |
Collapse
|
11
|
Zhong ZH, Liang L, Fu TW, Dai MG, Cheng J, Liu SY, Ye TW, Shen GL, Zhang CW, Huang DS, Liu JW. Prognostic value of platelet distribution width to lymphocyte ratio in patients with hepatocellular carcinoma following hepatectomy. BMC Cancer 2023; 23:1116. [PMID: 37974129 PMCID: PMC10655313 DOI: 10.1186/s12885-023-11621-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Platelet distribution width (PDW), but not platelet count, was found to more comprehensively reflect platelet activity. The present study, thus, aimed to evaluate the prognostic value of PDW to lymphocyte ratio (PDWLR) in patients with hepatocellular carcinoma (HCC) following hepatectomy. METHODS Patients following hepatectomy were analyzed retrospectively. The Kaplan-Meier survival curves and Cox regression model were used to determine the prognostic value of PDWLR. RESULTS 241 patients were analyzed eventually, and stratified into low and high PDWLR groups (≤ 9.66 vs. > 9.66). Results of comparing the baseline characteristics showed that high PDWLR was significantly associated with cirrhosis, and intraoperative blood loss (all P < 0.05). In multivariate COX regression analysis, PDWLR was demonstrated as an independent risk factor for OS (HR: 1.549, P = 0.041) and RFS (HR: 1.655, P = 0.005). Moreover, PDWLR demonstrated a superior capacity for predicting prognosis compared to other indicators. CONCLUSION Preoperative PDWLR has a potential value in predicting the prognosis of HCC patients following hepatectomy, which may help in clinical decision-making for individual treatment.
Collapse
Affiliation(s)
- Zhi-Han Zhong
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Lei Liang
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
| | - Tian-Wei Fu
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Mu-Gen Dai
- Department of Gastroenterology, The Fifth Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jian Cheng
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Si-Yu Liu
- Department of Laboratory Medicine, The Key Laboratory of Imaging Diagnosis and Minimally Invasive Interventional Research of Zhejiang Province, Zhejiang University Lishui Hospital, Lishui, Zhejiang, China
| | - Tai-Wei Ye
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- Department of the Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Guo-Liang Shen
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Cheng-Wu Zhang
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Dong-Sheng Huang
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Jun-Wei Liu
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
| |
Collapse
|
12
|
He C, Ding H, Li L, Chen J, Mo X, Ding Y, Chen W, Tang Q, Wang Y. Gold Nanoparticles Enhance the Ability of Radiotherapy to Induce Immunogenic Cell Death in Glioblastoma. Int J Nanomedicine 2023; 18:5701-5712. [PMID: 37841022 PMCID: PMC10573392 DOI: 10.2147/ijn.s419712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023] Open
Abstract
Background Radiation therapy (RT) is commonly used to treat glioblastoma, but its immunomodulatory effect on tumors, through mechanisms such as immunogenic cell death (ICD), is relatively weak. Gold nanoparticles (AuNPs) have been suggested as potential radio-sensitizers, but it is unclear if they can enhance radiation-induced ICD. This study aimed to investigate the potential of AuNPs to improve the effectiveness of radiation-induced ICD. Methods G422 cells were treated with a combination of AuNPs and RT to induce cell death. Various assays were conducted to assess cell death, surface expression of CRT, and release of HMGB1 and ATP. In vitro co-culture experiments with bone marrow-derived dendritic cells (BMDCs) were performed to analyze the immunogenicity of dying cancer cells. Flow cytometry was used to measure the maturation rate of BMDCs. An in vivo mouse tumor prophylactic vaccination model was employed to assess immunogenicity. Results The study findings presented here confirm that the combination of radiotherapy (RT) with AuNPs can induce a stronger ICD effect on glioblastoma cells compared to using RT alone. Specifically, treatment with AuNPs combined with RT resulted in the emission of crucial damage-associated molecular patterns (DAMPs) such as CRT, HMGB1 (479.41±165.34pg/mL vs 216.04±178.16 pg/mL, *P<0.05) and ATP (The release of ATP in the AuNPs + RT group was 1.2 times higher than in the RT group, *P<0.05). The proportion of BMDC maturation rate was higher in the group treated with AuNPs and RT compared to the group treated with RT alone. (32.53±0.52% vs 25.03±0.28%,***P < 0.001). In the tumor vaccine experiment, dying tumor cells treated with AuNPs and RT effectively inhibited tumor growth in mice when exposed to living tumor cells. Conclusion These results indicate that AuNPs have the ability to enhance RT-induced ICD.
Collapse
Affiliation(s)
- Chen He
- Department of Nuclear Medicine, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, People’s Republic of China
- Institute of Clinical Translation of Nuclear Medicine and Molecular Imaging, Soochow University, Changzhou, Jiangsu Province, People’s Republic of China
- Changzhou Clinical Medical Center, Changzhou, Jiangsu, People’s Republic of China
| | - Huiyan Ding
- Medical School of Southeast University, Nanjing, People’s Republic of China
| | - Lubo Li
- The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, People’s Republic of China
| | - Jing Chen
- Taikang Xianlin Drum Tower Hospital, Nanjing, People’s Republic of China
| | - Xiaofei Mo
- Department of Nuclear Medicine, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, People’s Republic of China
- Institute of Clinical Translation of Nuclear Medicine and Molecular Imaging, Soochow University, Changzhou, Jiangsu Province, People’s Republic of China
- Changzhou Clinical Medical Center, Changzhou, Jiangsu, People’s Republic of China
| | - Yinan Ding
- Medical School of Southeast University, Nanjing, People’s Republic of China
| | - Wenjing Chen
- Medical School of Southeast University, Nanjing, People’s Republic of China
| | - Qiusha Tang
- Medical School of Southeast University, Nanjing, People’s Republic of China
| | - Yuetao Wang
- Department of Nuclear Medicine, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, People’s Republic of China
- Institute of Clinical Translation of Nuclear Medicine and Molecular Imaging, Soochow University, Changzhou, Jiangsu Province, People’s Republic of China
- Changzhou Clinical Medical Center, Changzhou, Jiangsu, People’s Republic of China
| |
Collapse
|
13
|
Hagen M, Pangrazzi L, Rocamora-Reverte L, Weinberger B. Legend or Truth: Mature CD4 +CD8 + Double-Positive T Cells in the Periphery in Health and Disease. Biomedicines 2023; 11:2702. [PMID: 37893076 PMCID: PMC10603952 DOI: 10.3390/biomedicines11102702] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
The expression of CD4 and CD8 co-receptors defines two distinct T cell populations with specialized functions. While CD4+ T cells support and modulate immune responses through different T-helper (Th) and regulatory subtypes, CD8+ T cells eliminate cells that might threaten the organism, for example, virus-infected or tumor cells. However, a paradoxical population of CD4+CD8+ double-positive (DP) T cells challenging this paradigm has been found in the peripheral blood. This subset has been observed in healthy as well as pathological conditions, suggesting unique and well-defined functions. Furthermore, DP T cells express activation markers and exhibit memory-like features, displaying an effector memory (EM) and central memory (CM) phenotype. A subset expressing high CD4 (CD4bright+) and intermediate CD8 (CD8dim+) levels and a population of CD8bright+CD4dim+ T cells have been identified within DP T cells, suggesting that this small subpopulation may be heterogeneous. This review summarizes the current literature on DP T cells in humans in health and diseases. In addition, we point out that strategies to better characterize this minor T cell subset's role in regulating immune responses are necessary.
Collapse
Affiliation(s)
- Magdalena Hagen
- Institute for Biomedical Aging Research, University of Innsbruck, 6020 Innsbruck, Austria
| | | | | | | |
Collapse
|