1
|
Zhang Y, Yao Y, Zhang Q, Yang B. Traditional Chinese Medicine for Inhibiting Ferroptosis in Ischemic-Related Diseases. Basic Clin Pharmacol Toxicol 2025; 136:e70039. [PMID: 40296341 DOI: 10.1111/bcpt.70039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/28/2025] [Accepted: 04/06/2025] [Indexed: 04/30/2025]
Abstract
Ischemic-related diseases, such as myocardial infarction and stroke, are primarily driven by a deficit in oxygen supply leading to cellular damage and death. Ferroptosis has emerged as an important mechanism contributing to the progression of ischemic injury, characterized by iron-dependent lipid peroxidation. This review aims to provide a comprehensive overview of the significant mechanisms underlying ferroptosis in ischemic conditions and explores the potential effects of traditional Chinese medicines (TCMs) and their extracts. Numerous compounds extracted from TCMs, including flavonoids, polyphenols and terpenes, exhibit potent antiferroptotic effects by activating nuclear factor erythroid 2-related factor 2, upregulating glutathione peroxidase 4, inhibiting lipid peroxidation and so on. These properties render TCMs a promising candidate for developing novel ferroptosis therapeutic strategies. This review underscores the importance of investigating the interactions between ferroptosis and TCMs within the context of ischemic diseases. These findings provide valuable insights for future research to identify targets associated with ferroptosis regulation, thereby expanding the pharmacological perspective of TCMs in treating ischemic diseases and revealing the potential of novel therapeutic strategies. Additionally, this highlights the relevance of integrating traditional and modern medical approaches in addressing complex health issues.
Collapse
Affiliation(s)
- Yukun Zhang
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, China
| | - Yang Yao
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, China
| | - Qiaoling Zhang
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, China
| | - Baoxue Yang
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
2
|
Ma Y, Wang X, Li Y, Zhao J, Zhou X, Wang X. Mechanisms Associated with Mitophagy and Ferroptosis in Cerebral Ischemia-reperfusion Injury. J Integr Neurosci 2025; 24:26458. [PMID: 40152564 DOI: 10.31083/jin26458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 03/29/2025] Open
Abstract
Ischemic stroke (IS) constitutes a major threat to human health. Vascular recanalization by intravenous thrombolysis and mechanical thrombolysis remain the most significant and effective methods for relief of ischemia. Key elements of these treatments include achieving blood-vessel recanalization, restoring brain-tissue reperfusion, and preserving the ischemic penumbra. However, in achieving the therapeutic goals of vascular recanalization, secondary damage to brain tissue from cerebral ischemia-reperfusion injury (CIRI) must also be addressed. Despite advancements in understanding the pathological processes associated with CIRI, effective interventions to prevent its onset and progression are still lacking. Recent research has indicated that mitophagy and ferroptosis are critical mechanisms in the development of CIRI, and significantly contribute to the onset and progression of IS and CIRI because of common targets and co-occurrence mechanisms. Therefore, exploring and summarizing the potential connections between mitophagy and ferroptosis during CIRI is crucial. In the present review, we mainly focused on the mechanisms of mitochondrial autophagy and ferroptosis, and their interaction, in the development of CIRI. We believe that the data show a strong relationship between mitochondrial autophagy and ferroptosis with interactive regulation. This information may underpin new potential approaches for the prevention and treatment of IS and subsequent CIRI.
Collapse
Affiliation(s)
- Yugang Ma
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, 250014 Jinan, Shandong, China
| | - Xuebin Wang
- Postdoctoral Research Station, Shandong University of Traditional Chinese Medicine, 250014 Jinan, Shandong, China
- Department of Neurology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 250001 Jinan, Shandong, China
| | - Yahui Li
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, 250014 Jinan, Shandong, China
- Department of Gerontology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 250001 Jinan, Shandong, China
| | - Jing Zhao
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, 250014 Jinan, Shandong, China
- Experimental Center, Shandong University of Traditional Chinese Medicine, 250399 Jinan, Shandong, China
| | - Xue Zhou
- Postdoctoral Research Station, Shandong University of Traditional Chinese Medicine, 250014 Jinan, Shandong, China
- Division of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 250014 Jinan, Shandong, China
| | - Xingchen Wang
- Department of Neurology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 250001 Jinan, Shandong, China
- The Second Clinical Medical College, Shandong University of Traditional Chinese Medicine, 250001 Jinan, Shandong, China
| |
Collapse
|
3
|
Ma Y, Fei S, Chen X, Gui Y, Zhou B, Xiang T, Liu J, Yue K, Li Q, Jiang W, Sun C, Huang X. Chemerin attenuates acute kidney injury by inhibiting ferroptosis via the AMPK/NRF2/SLC7A11 axis. Commun Biol 2024; 7:1679. [PMID: 39702678 DOI: 10.1038/s42003-024-07377-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 12/06/2024] [Indexed: 12/21/2024] Open
Abstract
Acute kidney injury (AKI) is a common and life-threatening condition associated with cell death, where ferroptosis plays a critical role. Chemerin, primarily produced in white adipose tissue, has multiple biological functions in renal pathophysiology. However, to date, whether and how chemerin regulates the progression of AKI remain unclear. Here, we found that chemerin expression was reduced in both AKI model mice and cells. Similarly, serum chemerin levels were also decreased in AKI patients. The administration of recombinant chemerin improves renal function in ischemia-reperfusion (I/R) model mice. Chemerin significantly attenuates ferroptosis in kidneys. In TCMK-1 cells, chemerin knockdown further aggravates ferroptosis. Mechanistically, chemerin activates AMP-activated protein kinase (AMPK), which induces the phosphorylation of nuclear factor erythroid 2-related factor 2 (NRF2) in renal tubular cells. Subsequently, NRF2 translocates into the nucleus, where it stimulates the expression of cystine/glutamate antiporter solute carrier (SLC7A11). As a result, cystine uptake and glutathione (GSH) biosynthesis in renal tubular cells were increased, which confers cells with higher capacity against ferroptosis. Overall, our findings indicate that chemerin plays a protective role in AKI by repressing ferroptosis in renal tubular cells, which is likely due to the activation in the AMPK/NRF2/SLC7A11 axis.
Collapse
Affiliation(s)
- Yidan Ma
- Department of Nephrology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, China
- Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Shengnan Fei
- Department of Nephrology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, China
- Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Xu Chen
- Department of Nephrology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, China
| | - Yuanyuan Gui
- Department of Nephrology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, China
- Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Bing Zhou
- Department of Nephrology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, China
- Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Tianya Xiang
- Department of Nephrology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, China
- Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Jianhang Liu
- Department of Nephrology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, China
| | - Kun Yue
- Department of Nephrology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, China
- Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Qingxin Li
- Department of Nephrology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, China
- Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Wei Jiang
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Cheng Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory of Research and Evaluation of Tissue Engineering Technology Products, School of Medicine, Nantong University, Nantong, 226001, Jiangsu, China
| | - Xinzhong Huang
- Department of Nephrology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
4
|
Gowtham A, Chauhan C, Rahi V, Kaundal RK. An update on the role of ferroptosis in ischemic stroke: from molecular pathways to Neuroprotection. Expert Opin Ther Targets 2024; 28:1149-1175. [PMID: 39710973 DOI: 10.1080/14728222.2024.2446319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/29/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
INTRODUCTION Ischemic stroke (IS), a major cause of mortality and disability worldwide, remains a significant healthcare challenge due to limited therapeutic options. Ferroptosis, a distinct iron-dependent form of regulated cell death characterized by lipid peroxidation and oxidative stress, has emerged as a crucial mechanism in IS pathophysiology. This review explores the role of ferroptosis in IS and its potential for driving innovative therapeutic strategies. AREA COVERED This review delves into the practical implications of ferroptosis in IS, focusing on molecular mechanisms like lipid peroxidation, iron accumulation, and their interplay with inflammation, reactive oxygen species (ROS), and the Nrf2-ARE antioxidant system. It highlights ferroptotic proteins, small-molecule inhibitors, and non-coding RNA modulators as emerging therapeutic targets to mitigate neuroinflammation and neuronal cell death. Studies from PubMed (1982-2024) were identified using MeSH terms such as 'Ferroptosis' and 'Ischemic Stroke,' and only rigorously screened articles were included. EXPERT OPINION Despite preclinical evidence supporting the neuroprotective effects of ferroptosis inhibitors, clinical translation faces hurdles such as suboptimal pharmacokinetics and safety concerns. Advances in drug delivery systems, bioinformatics, and AI-driven drug discovery may optimize ferroptosis-targeting strategies, develop biomarkers, and improve therapeutic outcomes for IS patients.
Collapse
Affiliation(s)
- A Gowtham
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Lucknow, India
| | - Chandan Chauhan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Lucknow, India
| | - Vikrant Rahi
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Lucknow, India
| | - Ravinder K Kaundal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Lucknow, India
| |
Collapse
|
5
|
Liu X, Xie C, Wang Y, Xiang J, Chen L, Yuan J, Chen C, Tian H. Ferritinophagy and Ferroptosis in Cerebral Ischemia Reperfusion Injury. Neurochem Res 2024; 49:1965-1979. [PMID: 38834843 PMCID: PMC11233298 DOI: 10.1007/s11064-024-04161-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/07/2024] [Accepted: 05/22/2024] [Indexed: 06/06/2024]
Abstract
Cerebral ischemia-reperfusion injury (CIRI) is the second leading cause of death worldwide, posing a huge risk to human life and health. Therefore, investigating the pathogenesis underlying CIRI and developing effective treatments are essential. Ferroptosis is an iron-dependent mode of cell death, which is caused by disorders in iron metabolism and lipid peroxidation. Previous studies demonstrated that ferroptosis is also a form of autophagic cell death, and nuclear receptor coactivator 4(NCOA4) mediated ferritinophagy was found to regulate ferroptosis by interfering with iron metabolism. Ferritinophagy and ferroptosis are important pathogenic mechanisms in CIRI. This review mainly summarizes the link and regulation between ferritinophagy and ferroptosis and further discusses their mechanisms in CIRI. In addition, the potential treatment methods targeting ferritinophagy and ferroptosis for CIRI are presented, providing new ideas for the prevention and treatment of clinical CIRI in the future.
Collapse
Affiliation(s)
- Xiaoyue Liu
- School of Acupuncture-moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Canming Xie
- School of Acupuncture-moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yao Wang
- School of Acupuncture-moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Jing Xiang
- School of Acupuncture-moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Litong Chen
- School of Acupuncture-moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Jia Yuan
- School of Acupuncture-moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Chutao Chen
- School of Acupuncture-moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Haomei Tian
- School of Acupuncture-moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China.
| |
Collapse
|
6
|
Zhu L, Bao Y, Liu Z, Liu J, Li Z, Sun X, Zhou A, Wu H. Gualou-Xiebai herb pair ameliorate atherosclerosis in HFD-induced ApoE -/- mice and inhibit the ox-LDL-induced injury of HUVECs by regulating the Nrf2-mediated ferroptosis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117892. [PMID: 38350505 DOI: 10.1016/j.jep.2024.117892] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 02/15/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Atherosclerosis (AS) is a chronic vascular ailment characterized by inflammatory and lipid deposition in the arterial wall caused by endothelial injury. Ferroptosis is a novel type of cell death, and endothelial ferroptosis is a significant contributor to the progression of AS. Gualou-Xiebai (GLXB) is a renowned Chinese herb pair that serves a crucial function in treating AS. However, whether the underlying mechanism of GLXB plays a role in anti-atherosclerotic effects by inhibiting ferroptosis in endothelial cells has not been determined. AIM OF THE STUDY To explore the influence of GLXB on endothelial ferroptosis and determine its underlying mechanism of action in AS. MATERIALS AND METHODS In ApoE-/- mice, ultrasound was performed in mice fed a high-fat diet (HFD) for 12 weeks to assess the success of AS establishment. Then, ApoE-/- mice were treated with GLXB and Simvastatin (positive control) for 4 weeks. The effects of GLXB on AS pathology were assessed through aorta imaging and hematoxylin-eosin (HE) staining. To confirm the presence of ferroptosis, mitochondrial damage was observed using transmission electron microscope (TEM), along with analysis of free iron and lipid peroxidation levels. In vitro: ox-LDL-induced human vascular endothelial cells (HUVECs) injury and treated with GLXB, the ferroptosis inducer Erastin and an Nrf2 inhibitor ML385. Cell viability was evaluated using the CCK-8 assay in all groups. Flow cytometry was employed to detect lipid peroxidation and intracellular ferrous iron levels. Immunofluorescence staining microscopy verified Nrf2 nuclear translocation. Protein expression were measured by Western blot analysis. RESULTS GLXB improved atherosclerotic aortic lesions and vascular plaques. GLXB inhibited endothelial injury in the aorta by decreasing the levels of inflammatory factors and adhesion factors, and by decreasing the shedding of endothelial cells. GLXB suppressed ferroptosis in ApoE-/- mice by attenuating mitochondrial damage in ECs, increasing the levels of glutathione (GSH) and superoxide dismutase (SOD) in aortic tissues and down-regulating the levels of levels of lipid peroxide (LPO) and malondialdehyde (MDA). Interestingly, Erastin was used to demonstrate in vitro that GLXB inhibition of ferroptosis attenuated ox-LDL-induced injuring effects on HUVECs that were reversed by Erastin. Mechanistically, GLXB activates the Nrf2 signaling pathway to inhibit ferroptosis by increasing downstream anti-ferroptosis target proteins and promoting the interaction between Nrf2 and SLC7A11. More convincingly, ML385 (Nrf2 inhibitor) reversed the anti-ferroptosis effect of GLXB. CONCLUSION GLXB inhibits ferroptosis-mediated endothelial cell injury via activating the Nrf2 signaling pathway and further alleviates AS pathological damage.
Collapse
Affiliation(s)
- Li Zhu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; The Experimental Research Center, Anhui University of Chinese Medicine, Hefei, 230038, China
| | - Youli Bao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; The Experimental Research Center, Anhui University of Chinese Medicine, Hefei, 230038, China
| | - Zijian Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; The Experimental Research Center, Anhui University of Chinese Medicine, Hefei, 230038, China
| | - Jiahui Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; The Experimental Research Center, Anhui University of Chinese Medicine, Hefei, 230038, China
| | - Zhenglong Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; The Experimental Research Center, Anhui University of Chinese Medicine, Hefei, 230038, China
| | - Xin Sun
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; The Experimental Research Center, Anhui University of Chinese Medicine, Hefei, 230038, China
| | - An Zhou
- The Experimental Research Center, Anhui University of Chinese Medicine, Hefei, 230038, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China.
| | - Hongfei Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; The Experimental Research Center, Anhui University of Chinese Medicine, Hefei, 230038, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China.
| |
Collapse
|