1
|
Kuttappan S, Amirthalingam S, Hennebert PM, Lee Y, Ryu KM, Rajendran AK, Kim JH, So KH, Hwang NS, Jeon NL. Engineering a Whitlockite-Containing Macroporous Composite Cryogel with Silica Hybrid for Enhanced Vascularized Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40372802 DOI: 10.1021/acsami.4c20589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2025]
Abstract
Recognizing the complexity of the bone regeneration cascade and understanding the adverse effects of using growth factors, it is crucial to develop a growth factor-free scaffold with multiple functions to modulate various aspects of the regenerative process. This study explores a novel macroporous multifunctional bone graft for bone regeneration, aiming to overcome complications associated with current treatment modalities. The study reveals enhanced bone regeneration and vascularization by integrating silica hybrid and nano-whitlockite (nWH) into cryogel-based composite scaffolds. The physicochemical properties, in vitro angiogenic and osteogenic potential, three-dimensional (3D) vasculogenesis, osteoclastogenesis, and proinflammatory responses of the composite cryogels were systematically examined. Results showed augmented effects for nWH-containing silica hybrid cryogels, particularly notable in the 1:0.5 WH2.5 group. Cryogels promoted angio- and vasculogenesis, and osteogenic differentiation while reducing osteoclast formation and proinflammatory responses in vitro. Optimal composition analysis consistently favored the 1:0.5 WH2.5 group. Implantation in a critical-sized cranial defect model in mice demonstrated enhanced vascularization and new bone formation. Thus, this study demonstrates the synergistic effect of silica hybrid and nWH in critical-sized bone defects.
Collapse
Affiliation(s)
- Shruthy Kuttappan
- Institute of Advanced Machinery and Design, Seoul National University, Seoul 08826, Republic of Korea
| | - Sivashanmugam Amirthalingam
- Institute of Engineering Research, Seoul National University, Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Perrine M'Pemba Hennebert
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Yoonho Lee
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, South Korea
| | - Kyung Min Ryu
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Arun Kumar Rajendran
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Jung Hun Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyoung-Ha So
- Bio-MAX/N-Bio Institute, Institute of Bio-Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Nathaniel S Hwang
- Institute of Engineering Research, Seoul National University, Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, South Korea
- Bio-MAX/N-Bio Institute, Institute of Bio-Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Noo Li Jeon
- Institute of Advanced Machinery and Design, Seoul National University, Seoul 08826, Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, South Korea
- School of Mechanical Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Qureator, Inc., San Diego, California 92121, United States
| |
Collapse
|
2
|
Qiu Y, Wang C, Yang Y, Xu S, Huang H, Zhang L, Lei B, Zhao F. A Highly Bioactive Organic-Inorganic Nanoparticle for Activating Wnt10b Mediated Osteogenesis by Specifically Anchor CCN3 Protein. Adv Healthc Mater 2025; 14:e2404075. [PMID: 39840496 DOI: 10.1002/adhm.202404075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/12/2025] [Indexed: 01/23/2025]
Abstract
The rapid and efficient bone regeneration is still in unsatisfactory outcomes, demonstrating alternative strategy and molecular mechanism is necessary. Nanoscale biomaterials have shown some promising results in enhancing bone regeneration, however, the detailed interaction mechanism between nanomaterial and cells/tissue formation is not clear. Herein, a molecular-based inorganic-organic nanomaterial poly(citrate-siloxane) (PCS) is reported which can rapidly enhance osteogenic differentiation and bone formation through a special interaction with the cellular surface communication network factor 3 (CCN3), further activating the Wnt10b/β-catenin signaling pathway. Further studies revealed that the CCN3 is a key bridge protein for transmitting the osteoinductive effects of nano PCS into the intracellular compartment and activating Wnt10b. Specifically, the molecular mechanism studies confirmed that the inorganic silicon hydroxyl and the organic ester group can bound to the Thrombospondin-1 (TSP-1) and von Willebrand factor type C repeat module (vWC) structural domains of CCN3 respectively. The special material-protein interaction induced a conformational change of CCN3 and activated the function of the TSP-1 structural domain, which is further associated with the binding and activation of Wnt10b signaling. This study reveals the first targets of nanobiomaterials to promote tissue regeneration through cellular interactions and provides new ideas for the development of materiobiology.
Collapse
Affiliation(s)
- Yonghao Qiu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, P. R. China
| | - Chunhui Wang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, P. R. China
| | - Yulian Yang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, P. R. China
| | - Shijing Xu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, P. R. China
| | - Haohui Huang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, P. R. China
| | - Liuyang Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, P. R. China
| | - Bo Lei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, P. R. China
| | - Fujian Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, P. R. China
| |
Collapse
|
3
|
Zhang S, Liu C, Su M, Zhou D, Tao Z, Wu S, Xiao L, Li Y. Development of citric acid-based biomaterials for biomedical applications. J Mater Chem B 2024; 12:11611-11635. [PMID: 39465414 DOI: 10.1039/d4tb01666a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The development of bioactive materials with controllable preparation is of great significance for biomedical engineering. Citric acid-based biomaterials are one of the few bioactive materials with many advantages such as simple synthesis, controllable structure, biocompatibility, biomimetic viscoelastic mechanical behavior, controllable biodegradability, and further functionalization. In this paper, we review the development of multifunctional citrate-based biomaterials for biomedical applications, and summarize their multifunctional properties in terms of physical, chemical, and biological aspects, and finally the applications of citrate-based biomaterials in biomedical engineering, including bone tissue engineering, skin tissue engineering, drug/cell delivery, vascular and neural tissue engineering, and bioimaging.
Collapse
Affiliation(s)
- Shihao Zhang
- Engineering Research Center for Biomedical Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Material Science & Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Cailin Liu
- Engineering Research Center for Biomedical Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Material Science & Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Meng Su
- Wenzhou Institute of Shanghai University, Wenzhou 325000, China
| | - Dong Zhou
- Engineering Research Center for Biomedical Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Material Science & Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Ziwei Tao
- Engineering Research Center for Biomedical Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Material Science & Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Shiyong Wu
- Engineering Research Center for Biomedical Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Material Science & Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Lan Xiao
- School of Medicine and Dentistry, Griffith University, QLD 4222, Australia.
| | - Yulin Li
- Engineering Research Center for Biomedical Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Material Science & Engineering, East China University of Science and Technology, Shanghai 200237, China.
- Wenzhou Institute of Shanghai University, Wenzhou 325000, China
| |
Collapse
|
4
|
Chu X, Xiong Y, Lu L, Wang Y, Wang J, Zeng R, Hu L, Yan C, Zhao Z, Lin S, Mi B, Liu G. Research progress of gene therapy combined with tissue engineering to promote bone regeneration. APL Bioeng 2024; 8:031502. [PMID: 39301183 PMCID: PMC11412735 DOI: 10.1063/5.0200551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024] Open
Abstract
Gene therapy has emerged as a highly promising strategy for the clinical treatment of large segmental bone defects and non-union fractures, which is a common clinical need. Meanwhile, many preclinical data have demonstrated that gene and cell therapies combined with optimal scaffold biomaterials could be used to solve these tough issues. Bone tissue engineering, an interdisciplinary field combining cells, biomaterials, and molecules with stimulatory capability, provides promising alternatives to enhance bone regeneration. To deliver and localize growth factors and associated intracellular signaling components into the defect site, gene therapy strategies combined with bioengineering could achieve a uniform distribution and sustained release to ensure mesenchymal stem cell osteogenesis. In this review, we will describe the process and cell molecular changes during normal fracture healing, followed by the advantages and disadvantages of various gene therapy vectors combined with bone tissue engineering. The growth factors and other bioactive peptides in bone regeneration will be particularly discussed. Finally, gene-activated biomaterials for bone regeneration will be illustrated through a description of characteristics and synthetic methods.
Collapse
Affiliation(s)
| | - Yuan Xiong
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | | | - Yiqing Wang
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jing Wang
- Department of Nuclear Medicine and PET, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | | | | | | | - Zhiming Zhao
- Department of Orthopedics, Suizhou Hospital, Hubei University of Medicine, Suizhou 441300, China
| | - Sien Lin
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Bobin Mi
- Authors to whom correspondence should be addressed:. Tel.: 027-85726541; ; and
| | - Guohui Liu
- Authors to whom correspondence should be addressed:. Tel.: 027-85726541; ; and
| |
Collapse
|
5
|
Xu H, Yan S, Gerhard E, Xie D, Liu X, Zhang B, Shi D, Ameer GA, Yang J. Citric Acid: A Nexus Between Cellular Mechanisms and Biomaterial Innovations. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402871. [PMID: 38801111 PMCID: PMC11309907 DOI: 10.1002/adma.202402871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/07/2024] [Indexed: 05/29/2024]
Abstract
Citrate-based biodegradable polymers have emerged as a distinctive biomaterial platform with tremendous potential for diverse medical applications. By harnessing their versatile chemistry, these polymers exhibit a wide range of material and bioactive properties, enabling them to regulate cell metabolism and stem cell differentiation through energy metabolism, metabonegenesis, angiogenesis, and immunomodulation. Moreover, the recent US Food and Drug Administration (FDA) clearance of the biodegradable poly(octamethylene citrate) (POC)/hydroxyapatite-based orthopedic fixation devices represents a translational research milestone for biomaterial science. POC joins a short list of biodegradable synthetic polymers that have ever been authorized by the FDA for use in humans. The clinical success of POC has sparked enthusiasm and accelerated the development of next-generation citrate-based biomaterials. This review presents a comprehensive, forward-thinking discussion on the pivotal role of citrate chemistry and metabolism in various tissue regeneration and on the development of functional citrate-based metabotissugenic biomaterials for regenerative engineering applications.
Collapse
Affiliation(s)
- Hui Xu
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Su Yan
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Ethan Gerhard
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Denghui Xie
- Department of Histology and Embryology, School of Basic Medical Sciences, Department of Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510515, P. R. China
- Academy of Orthopedics of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, P. R. China
| | - Xiaodong Liu
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310030, P. R. China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310030, P. R. China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310030, P. R. China
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310030, P. R. China
| | - Bing Zhang
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310030, P. R. China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310030, P. R. China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310030, P. R. China
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310030, P. R. China
| | - Dongquan Shi
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, P. R. China
| | - Guillermo A Ameer
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Jian Yang
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310030, P. R. China
- Biomedical Engineering Program, School of Engineering, Westlake University, Hangzhou, Zhejiang, 310030, P. R. China
| |
Collapse
|
6
|
Wang M, Li S, Zhang L, Tian J, Ma J, Lei B, Xu P. Injectable Bioactive Antioxidative One-Component Polycitrate Hydrogel with Anti-Inflammatory Effects for Osteoarthritis Alleviation and Cartilage Protection. Adv Healthc Mater 2024; 13:e2301953. [PMID: 37788390 DOI: 10.1002/adhm.202301953] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/19/2023] [Indexed: 10/05/2023]
Abstract
Chronic inflammation in osteoarthritis (OA) can destroy the cartilage extracellular matrix (ECM), causing cartilage damage and further exacerbating the inflammation. Effective regulation of the inflammatory microenvironment has important clinical significance for OA alleviation and cartilage protection. Polycitrate-based polymers have good antioxidant and anti-inflammatory abilities but cannot self-polymerize to form hydrogels. Herein, a one-component multifunctional polycitrate-based (PCCGA) hydrogel for OA alleviation and cartilage protection is reported. The PCCGA hydrogel is prepared using only the PCCGA polymer by self-polymerization and exhibits multifunctional properties such as injectability, adhesion, controllable pore size and elasticity, self-healing ability, and photoluminescence. Moreover, the PCCGA hydrogel exhibits good biocompatibility, biodegradability, antioxidation by scavenging intracellular reactive oxygen species, and anti-inflammatory ability by downregulating the expression of proinflammatory cytokines and promoting the proliferation and migration of stem cells. In vivo results from an OA rat model show that the PCCGA hydrogel can effectively alleviate OA and protect the cartilage by restoring uniform articular surface and cartilage ECM levels, as well as inhibiting cartilage resorption and matrix metalloproteinase-13 levels. These results indicate that the PCCGA hydrogel, as a novel bioactive material, is an effective strategy for OA treatment and has broad application prospects in inflammation-related biomedicine.
Collapse
Affiliation(s)
- Min Wang
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, China
| | - Sihua Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, China
| | - Liuyang Zhang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, China
| | - Jing Tian
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, China
| | - Junping Ma
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, China
| | - Bo Lei
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, China
| | - Peng Xu
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, China
| |
Collapse
|
7
|
Li Y, Liu J, Lian C, Yang H, Zhang M, Wang Y, Dai H. Bioactive citrate-based polyurethane tissue adhesive for fast sealing and promoted wound healing. Regen Biomater 2023; 11:rbad101. [PMID: 38173771 PMCID: PMC10761209 DOI: 10.1093/rb/rbad101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/12/2023] [Accepted: 10/26/2023] [Indexed: 01/05/2024] Open
Abstract
As a superior alternative to sutures, tissue adhesives have been developed significantly in recent years. However, existing tissue adhesives struggle to form fast and stable adhesion between tissue interfaces, bond weakly in wet environments and lack bioactivity. In this study, a degradable and bioactive citrate-based polyurethane adhesive is constructed to achieve rapid and strong tissue adhesion. The hydrophobic layer was created with polycaprolactone to overcome the bonding failure between tissue and adhesion layer in wet environments, which can effectively improve the wet bonding strength. This citrate-based polyurethane adhesive provides rapid, non-invasive, liquid-tight and seamless closure of skin incisions, overcoming the limitations of sutures and commercial tissue adhesives. In addition, it exhibits biocompatibility, biodegradability and hemostatic properties. The degradation product citrate could promote the process of angiogenesis and accelerate wound healing. This study provides a novel approach to the development of a fast-adhering wet tissue adhesive and provides a valuable contribution to the development of polyurethane-based tissue adhesives.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Jiawei Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Chenxi Lian
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - He Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Mingjiang Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Youfa Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Honglian Dai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China
- Shenzhen Research Institute of Wuhan University of Technology, Shenzhen 518000, China
| |
Collapse
|
8
|
Sun L, Bian F, Xu D, Luo Y, Wang Y, Zhao Y. Tailoring biomaterials for biomimetic organs-on-chips. MATERIALS HORIZONS 2023; 10:4724-4745. [PMID: 37697735 DOI: 10.1039/d3mh00755c] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Organs-on-chips are microengineered microfluidic living cell culture devices with continuously perfused chambers penetrating to cells. By mimicking the biological features of the multicellular constructions, interactions among organs, vascular perfusion, physicochemical microenvironments, and so on, these devices are imparted with some key pathophysiological function levels of living organs that are difficult to be achieved in conventional 2D or 3D culture systems. In this technology, biomaterials are extremely important because they affect the microstructures and functionalities of the organ cells and the development of the organs-on-chip functions. Thus, herein, we provide an overview on the advances of biomaterials for the construction of organs-on-chips. After introducing the general components, structures, and fabrication techniques of the biomaterials, we focus on the studies of the functions and applications of these biomaterials in the organs-on-chips systems. Applications of the biomaterial-based organs-on-chips as alternative animal models for pharmaceutical, chemical, and environmental tests are described and highlighted. The prospects for exciting future directions and the challenges of biomaterials for realizing the further functionalization of organs-on-chips are also presented.
Collapse
Affiliation(s)
- Lingyu Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Feika Bian
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Dongyu Xu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Yuan Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Yongan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
- Southeast University Shenzhen Research Institute, Shenzhen 518071, China
| |
Collapse
|
9
|
Han Y, Cao L, Li G, Zhou F, Bai L, Su J. Harnessing Nucleic Acids Nanotechnology for Bone/Cartilage Regeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301996. [PMID: 37116115 DOI: 10.1002/smll.202301996] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/29/2023] [Indexed: 06/19/2023]
Abstract
The effective regeneration of weight-bearing bone defects and critical-sized cartilage defects remains a significant clinical challenge. Traditional treatments such as autologous and allograft bone grafting have not been successful in achieving the desired outcomes, necessitating the need for innovative therapeutic approaches. Nucleic acids have attracted significant attention due to their ability to be designed to form discrete structures and programmed to perform specific functions at the nanoscale. The advantages of nucleic acid nanotechnology offer numerous opportunities for in-cell and in vivo applications, and hold great promise for advancing the field of biomaterials. In this review, the current abilities of nucleic acid nanotechnology to be applied in bone and cartilage regeneration are summarized and insights into the challenges and future directions for the development of this technology are provided.
Collapse
Affiliation(s)
- Yafei Han
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Liehu Cao
- Department of Orthopedics, Shanghai Luodian Hospital, Shanghai, 201908, China
| | - Guangfeng Li
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, 201941, China
| | - Fengjin Zhou
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710000, China
| | - Long Bai
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
10
|
Zhong G, Qiu M, Zhang J, Jiang F, Yue X, Huang C, Zhao S, Zeng R, Zhang C, Qu Y. Fabrication and characterization of PVA@PLA electrospinning nanofibers embedded with Bletilla striata polysaccharide and Rosmarinic acid to promote wound healing. Int J Biol Macromol 2023; 234:123693. [PMID: 36806778 DOI: 10.1016/j.ijbiomac.2023.123693] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/03/2023] [Accepted: 02/11/2023] [Indexed: 02/19/2023]
Abstract
In this study, a novel nanofiber material with Polylactic acid (PLA), natural plant polysaccharides-Bletilla striata polysaccharide (BSP) and Rosmarinic acid (RA) as the raw materials to facilitate wound healing was well prepared through coaxial electrospinning. The morphology of RA-BSP-PVA@PLA nanofibers was characterized through scanning electron microscopy (SEM), and the successful formation of core-shell structure was verified under confocal laser microscopy (CLSM) and Fourier transform infrared spectroscopy (FTIR). RA-BSP-PVA@PLA exhibited suitable air permeability for wound healing, as indicated by the result of the water vapor permeability (WVTR) study. The results of tension test results indicated the RA-BSP-PVA@PLA nanofiber exhibited excellent flexibility and better accommodates wounds. Moreover, the biocompatibility of RA-BSP-PVA@PLA was examined through MTT assay. Lastly, RA-BSP-PVA@PLA nanofibers can induce wound tissue growth, as verified by the rat dorsal skin wound models and tissue sections. Furthermore, RA-BSP-PVA@PLA can facilitate the proliferation and transformation of early wound macrophages, and down-regulate MPO+ expression of on the wound, thus facilitating wound healing, as confirmed by the result of immunohistochemical. Thus, RA-BSP-PVA@PLA nanofibers show great potential as wound dressings in wound healing.
Collapse
Affiliation(s)
- Guofeng Zhong
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Mengyu Qiu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Junbo Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fuchen Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xuan Yue
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chi Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shiyi Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Rui Zeng
- College of Pharmacy, Southwest Minzu University, Chengdu 610041, China
| | - Chen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yan Qu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
11
|
Wang M, Xu P, Lei B. Engineering multifunctional bioactive citrate-based biomaterials for tissue engineering. Bioact Mater 2023; 19:511-537. [PMID: 35600971 PMCID: PMC9096270 DOI: 10.1016/j.bioactmat.2022.04.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 12/21/2022] Open
Abstract
Developing bioactive biomaterials with highly controlled functions is crucial to enhancing their applications in regenerative medicine. Citrate-based polymers are the few bioactive polymer biomaterials used in biomedicine because of their facile synthesis, controllable structure, biocompatibility, biomimetic viscoelastic mechanical behavior, and functional groups available for modification. In recent years, various multifunctional designs and biomedical applications, including cardiovascular, orthopedic, muscle tissue, skin tissue, nerve and spinal cord, bioimaging, and drug or gene delivery based on citrate-based polymers, have been extensively studied, and many of them have good clinical application potential. In this review, we summarize recent progress in the multifunctional design and biomedical applications of citrate-based polymers. We also discuss the further development of multifunctional citrate-based polymers with tailored properties to meet the requirements of various biomedical applications.
Collapse
Affiliation(s)
- Min Wang
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, China
| | - Peng Xu
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, China
| | - Bo Lei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710000, China
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, China
- State-Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710000, China
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710000, China
| |
Collapse
|
12
|
Mesoporous Silica Promotes Osteogenesis of Human Adipose-Derived Stem Cells Identified by a High-Throughput Microfluidic Chip Assay. Pharmaceutics 2022; 14:pharmaceutics14122730. [PMID: 36559224 PMCID: PMC9781822 DOI: 10.3390/pharmaceutics14122730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Silicon-derived biomaterials are conducive to regulating the fate of osteo-related stem cells, while their effects on the osteogenic differentiation of human adipose-derived stem cells (hADSCs) remain inconclusive. Mesoporous silica (mSiO2) is synthesized in a facile route that exhibited the capability of promoting osteogenic differentiation of hADSCs. The metabolism of SiO2 in cells is proposed according to the colocalization fluorescence analysis between lysosomes and nanoparticles. The released silicon elements promote osteogenic differentiation. The detection of secretory proteins through numerous parallel experiments performed via a microfluidic chip confirms the positive effect of SiO2 on the osteogenic differentiation of hADSCs. Moreover, constructed with superparamagnetic iron oxide (Fe3O4), the magnetic nanoparticles (MNPs) of Fe3O4@mSiO2 endow the cells with magnetic resonance imaging (MRI) properties. The MNP-regulated osteogenic differentiation of autologous adipose-derived stem cells provides considerable clinical application prospects for stem cell therapy of bone tissue repair with an effective reduction in immune rejection.
Collapse
|
13
|
Wan L, Lu L, Zhu T, Liu Z, Du R, Luo Q, Xu Q, Zhang Q, Jia X. Bulk Erosion Degradation Mechanism for Poly(1,8-octanediol- co-citrate) Elastomer: An In Vivo and In Vitro Investigation. Biomacromolecules 2022; 23:4268-4281. [PMID: 36094894 DOI: 10.1021/acs.biomac.2c00737] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
As a biodegradable elastomer, poly(1,8-octanediol-co-citrate) (POC) has been widely applied in tissue engineering and implantable electronics. However, the unclear degradation mechanism has posed a great challenge for the better application and development of POC. To reveal the degradation mechanism, here, we present a systematic investigation into in vivo and in vitro degradation behaviors of POC. Initially, critical factors, including chemical structures, hydrophilic and water-absorbency characteristics, and degradation reaction of POC, are investigated. Then, various degradation-induced changes during in vitro degradation of POC-x (POC with different cross-linking densities) are monitored and discussed. The results show that (1) cross-linking densities exponentially drop with degradation time; (2) mass loss and PBS-absorption ratio grow nonlinearly; (3) the morphology on the cross-section changes from flat to rough at a microscopic level; (4) the cubic samples keep swelling until they collapse into fragments from a macro view; and (5) the mechanical properties experience a sharp drop at the beginning of degradation. Finally, the in vivo degradation behaviors of POC-x are investigated, and the results are similar to those in vitro. The comprehensive assessment suggests that the in vitro and in vivo degradation of POC occurs primarily through bulk erosion. Inflammation responses triggered by the degradation of POC-x are comparable to poly(lactic acid), or even less obvious. In addition, the mechanical evaluation of POC in the simulated application environment is first proposed and conducted in this work for a more appropriate application. The degradation mechanism of POC revealed will greatly promote the further development and application of POC-based materials in the biomedical field.
Collapse
Affiliation(s)
- Lu Wan
- Key Laboratory of High Performance Polymer Material and Technology of MOE, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Liangliang Lu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing 210023, P R China
| | - Tangsong Zhu
- Key Laboratory of High Performance Polymer Material and Technology of MOE, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Zhichang Liu
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, P. R. China
| | - Ruichun Du
- Key Laboratory of High Performance Polymer Material and Technology of MOE, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Qiong Luo
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing 210023, P R China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing 210023, P R China
| | - Qiuhong Zhang
- Key Laboratory of High Performance Polymer Material and Technology of MOE, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Xudong Jia
- Key Laboratory of High Performance Polymer Material and Technology of MOE, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.,State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
14
|
Luo M, Wang Y, Xie C, Lei B. Multiple Coordination-Derived Bioactive Hydrogel with Proangiogenic Hemostatic Capacity for Wound Repair. Adv Healthc Mater 2022; 11:e2200722. [PMID: 35840538 DOI: 10.1002/adhm.202200722] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/01/2022] [Indexed: 01/27/2023]
Abstract
Bioactive hydrogels with multifunctional properties have shown promising potential in promoting wound repair and skin tissue regeneration. The regulation on different stages of skin wound healing (hemostasis and inflammation) is important for wound repair. Herein, a multiple coordination-derived bioactive hydrogel (SGPA) with anti-inflammatory proangiogenic hemostatic capacity for wound repair is reported. The SGPA is prepared through a facile multiple metal coordination action based on the sodium alginate, metal ions (Gd3+ ), and bisphosphate functionalized polycitrate. The SGPA exhibits a large porous structure, good injectability, and self-healing performance, as well as controlled biodegradation. Furthermore, the SGPA has good cytocompatibility and hemocompatibility, and can further promote the migration of endothelial cells. The SGPA hydrogel presents good hemostasis capacity in a liver hemorrhage model in vivo. The full-thickness cutaneous wound model demonstrates that the SGPA hydrogel can effectively accelerate the wound repair through down-regulating the inflammatory factors and stimulating the angiogenesis around the wound beds. This work suggests that the multiple metal-organic coordination may be a good strategy to construct the multifunctional bioactive hydrogel for wound repair.
Collapse
Affiliation(s)
- Meng Luo
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, P. R. China
| | - Yidan Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, P. R. China
| | - Chenxi Xie
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, P. R. China
| | - Bo Lei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, P. R. China
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710054, P. R. China
- Instrument Analysis Center, Xi'an Jiaotong University, Xi'an, 710054, P. R. China
| |
Collapse
|
15
|
Zheng S, Zhong H, Cheng H, Li X, Zeng G, Chen T, Zou Y, Liu W, Sun C. Engineering Multifunctional Hydrogel With Osteogenic Capacity for Critical-Size Segmental Bone Defect Repair. Front Bioeng Biotechnol 2022; 10:899457. [PMID: 35615472 PMCID: PMC9124794 DOI: 10.3389/fbioe.2022.899457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/01/2022] [Indexed: 12/15/2022] Open
Abstract
Treating critical-size segmental bone defects is an arduous challenge in clinical work. Preparation of bone graft substitutes with notable osteoinductive properties is a feasible strategy for critical-size bone defects. Herein, a biocompatible hydrogel was designed by dynamic supramolecular assembly of polyvinyl alcohol (PVA), sodium tetraborate (Na2B4O7), and tetraethyl orthosilicate (TEOS). The characteristics of the supramolecular hydrogel were evaluated by rheological analysis, swelling ratio, degradation experiments, and scanning electron microscopy (SEM). In in vitro experiments, this TEOS-hydrogel had self-healing property, low swelling rate, degradability, good biocompatibility, and induced osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) by upregulating the expression of Runx-2, Col-1, OCN, and osteopontin (OPN). In segmental bone defect rabbit models, the TEOS-containing hydrogel accelerated bone regeneration, thus restoring the continuity of bone and recanalization of the medullary cavity. The abovementioned results demonstrated that this TEOS-hydrogel has the potential to realize bone healing in critical-size segmental bone defects.
Collapse
Affiliation(s)
- Shaowei Zheng
- Department of Orthopaedic, Huizhou First Hospital, Guangdong Medical University, Huizhou, China
- Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haobo Zhong
- Department of Orthopaedic, Huizhou First Hospital, Guangdong Medical University, Huizhou, China
| | - Hao Cheng
- Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xu Li
- Department of Orthopaedic, Huizhou First Hospital, Guangdong Medical University, Huizhou, China
| | - Guowei Zeng
- Graduate School, Guangdong Medical University, Zhanjiang, China
| | - Tianyu Chen
- Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Yucong Zou
- Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Weile Liu
- Department of Orthopaedic, Huizhou First Hospital, Guangdong Medical University, Huizhou, China
| | - Chunhan Sun
- Department of Orthopaedic, Huizhou First Hospital, Guangdong Medical University, Huizhou, China
| |
Collapse
|
16
|
Nayl AA, Abd-Elhamid AI, Awwad NS, Abdelgawad MA, Wu J, Mo X, Gomha SM, Aly AA, Bräse S. Recent Progress and Potential Biomedical Applications of Electrospun Nanofibers in Regeneration of Tissues and Organs. Polymers (Basel) 2022; 14:polym14081508. [PMID: 35458258 PMCID: PMC9029721 DOI: 10.3390/polym14081508] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 01/27/2023] Open
Abstract
Electrospun techniques are promising and flexible technologies to fabricate ultrafine fiber/nanofiber materials from diverse materials with unique characteristics under optimum conditions. These fabricated fibers/nanofibers via electrospinning can be easily assembled into several shapes of three-dimensional (3D) structures and can be combined with other nanomaterials. Therefore, electrospun nanofibers, with their structural and functional advantages, have gained considerable attention from scientific communities as suitable candidates in biomedical fields, such as the regeneration of tissues and organs, where they can mimic the network structure of collagen fiber in its natural extracellular matrix(es). Due to these special features, electrospinning has been revolutionized as a successful technique to fabricate such nanomaterials from polymer media. Therefore, this review reports on recent progress in electrospun nanofibers and their applications in various biomedical fields, such as bone cell proliferation, nerve regeneration, and vascular tissue, and skin tissue, engineering. The functionalization of the fabricated electrospun nanofibers with different materials furnishes them with promising properties to enhance their employment in various fields of biomedical applications. Finally, we highlight the challenges and outlooks to improve and enhance the application of electrospun nanofibers in these applications.
Collapse
Affiliation(s)
- AbdElAziz A. Nayl
- Department of Chemistry, College of Science, Jouf University, P.O. Box 2014, Sakaka 72341, Al Jouf, Saudi Arabia
- Correspondence: or (A.A.N.); (S.B.)
| | - Ahmed I. Abd-Elhamid
- Composites and Nanostructured Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab, Alexandria 21934, Egypt;
| | - Nasser S. Awwad
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Al Jouf, Saudi Arabia;
| | - Jinglei Wu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China; (J.W.); (X.M.)
| | - Xiumei Mo
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China; (J.W.); (X.M.)
| | - Sobhi M. Gomha
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt;
- Chemistry Department, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
| | - Ashraf A. Aly
- Chemistry Department, Faculty of Science, Organic Division, Minia University, El-Minia 61519, Egypt;
| | - Stefan Bräse
- Institute of Organic Chemistry, Organic Chemistry I, 76131 Karlsruhe, Germany
- Institute of Biological and Chemical Systems—Functional Molecular Systems (IBCS-FMS), 76344 Eggenstein-Leopoldshafen, Germany
- Correspondence: or (A.A.N.); (S.B.)
| |
Collapse
|
17
|
Luo M, Dorothy Winston D, Niu W, Wang Y, Zhao H, Qu X, Lei B. Bioactive therapeutics-repair-enabled citrate-iron hydrogel scaffolds for efficient post-surgical skin cancer treatment. CHEMICAL ENGINEERING JOURNAL 2022; 431:133596. [DOI: 10.1016/j.cej.2021.133596] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
|
18
|
Liu P, Bao T, Sun L, Wang Z, Sun J, Peng W, Gan D, Yin G, Liu P, Zhang WB, Shen J. In situ mineralized PLGA/zwitterionic hydrogel composite scaffold enables high-efficiency rhBMP-2 release for critical-sized bone healing. Biomater Sci 2022; 10:781-793. [PMID: 34988571 DOI: 10.1039/d1bm01521d] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Osteoconductive and osteoinductive scaffolds are highly desirable for functional restoration of large bone defects. Here, we report an in situ mineralized poly(lactic-co-glycolic acid)/poly[2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide hydrogel (PLGA/PSBMA) scaffold as a novel high-efficiency carrier for recombinant human bone morphogenetic protein-2 (rhBMP-2) for bone tissue regeneration. By virtue of the oppositely charged structure, the zwitterionic PSBMA component is able to template well-integrated dense mineralization of calcium phosphate throughout the PLGA/PSBMA scaffold. The high affinity between rhBMP-2 and the mineralized matrix, combined with the capability of the zwitterionic hydrogel to sequester and to enable sustained release of ionic proteins, endows the mineralized PLGA/PSBMA scaffolds with high-efficiency sustained release of rhBMP-2 (only 1.7% release within 35 days), thus enabling robust healing of critical-sized (5 mm) nonunion calvarial defects in rats at an ultralow dosage of rhBMP-2 (150 ng per scaffold), at which level successful healing of critical-sized bone defects has never been reported. These findings show that the mineralized PLGA/PSBMA scaffold is promising for bone defect repair.
Collapse
Affiliation(s)
- Peiming Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China. .,Changzhou Institute of Materia Medica Co., Ltd., Changzhou, Jiangsu 213000, China
| | - Tianyi Bao
- Department of Orthopedics, Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, P. R. China
| | - Lian Sun
- Department of Orthopedics, Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, P. R. China
| | - Zeyi Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Jin Sun
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Wan Peng
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Donglin Gan
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Guoyong Yin
- Department of Orthopedics, Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, P. R. China
| | - Pingsheng Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Wei-Bing Zhang
- Department of Orthopedics, Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, P. R. China.,Department of Stomatology, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, China.
| | - Jian Shen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China. .,Jiangsu Engineering Research Center of Interfacial Chemistry, Nanjing University, Nanjing 210093, P. R. China.
| |
Collapse
|
19
|
Chen M, Wang M, Li B, Winston DD, Cheng W, Han Y, Lei B. Visual and antibacterial magnesium implants with low biocorrosion and bioactive surface for in vivo tracking and treating MRSA infection. CHEMICAL ENGINEERING JOURNAL 2021; 417:129198. [DOI: 10.1016/j.cej.2021.129198] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
|
20
|
Niu W, Guo Y, Xue Y, Wang M, Chen M, Winston DD, Cheng W, Lei B. Biodegradable multifunctional bioactive Eu-Gd-Si-Ca glass nanoplatform for integrative imaging-targeted tumor therapy-recurrence inhibition-tissue repair. NANO TODAY 2021; 38:101137. [DOI: 10.1016/j.nantod.2021.101137] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
|
21
|
Zhou L, Ge J, Wang M, Chen M, Cheng W, Ji W, Lei B. Injectable muscle-adhesive antioxidant conductive photothermal bioactive nanomatrix for efficiently promoting full-thickness skeletal muscle regeneration. Bioact Mater 2021; 6:1605-1617. [PMID: 33294737 PMCID: PMC7691551 DOI: 10.1016/j.bioactmat.2020.11.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/20/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022] Open
Abstract
The completed skeletal muscle regeneration resulted from severe injury and muscle-related disease is still a challenge. Here, we developed an injectable muscle-adhesive antioxidant conductive bioactive photothermo-responsive nanomatrix for regulating the myogenic differentiation and promoting the skeletal muscle regeneration in vivo. The multifunctional nanomatrix was composed of polypyrrole@polydopamine (PPy@PDA, 342 ± 5.6 nm) nanoparticles-crosslinked Pluronic F-127 (F127)-polycitrate matrix (FPCP). The FPCP nanomatrix demonstrated inherent multifunctional properties including excellent photothermo-responsive and shear-thinning behavior, muscle-adhesive feature, injectable ability, electronic conductivity (0.48 ± 0.03 S/m) and antioxidant activity and photothermal function. The FPCP nanomatrix displayed better photothermal performance with near-infrared irradiation, which could provide the photo-controlled release of protein (91% ± 2.6% of BSA was released after irradiated 3 times). Additionally, FPCP nanomatrix could significantly enhance the cell proliferation and myogenic differentiation of mouse myoblast cells (C2C12) by promoting the expressions of myogenic genes (MyoD and MyoG) and myosin heavy chain (MHC) protein with negligible cytotoxicity. Based on the multifunctional properties, FPCP nanomatrix efficiently promoted the full-thickness skeletal muscle repair and regeneration in vivo, through stimulating the angiogenesis and myotube formation. This study firstly indicated the vital role of multifunctional PPy@PDA nanoparticles in regulating myogenic differentiation and skeletal muscle regeneration. This work also suggests that rational design of bioactive matrix with multifunctional feature would greatly enhance the development of regenerative medicine.
Collapse
Affiliation(s)
- Li Zhou
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Natural and Applied Sciences, Northwestern Polytechnical University, Xi'an, 710129, China
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Juan Ge
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Min Wang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Mi Chen
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Wei Cheng
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Wenchen Ji
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, China
| | - Bo Lei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710000, China
- Instrument Analysis Center, Xi'an Jiaotong University, Xi'an, 710054, China
| |
Collapse
|
22
|
Luo M, Wang M, Niu W, Chen M, Cheng W, Zhang L, Xie C, Wang Y, Guo Y, Leng T, Zhang X, Lin C, Lei B. Injectable self-healing anti-inflammatory europium oxide-based dressing with high angiogenesis for improving wound healing and skin regeneration. CHEMICAL ENGINEERING JOURNAL 2021; 412:128471. [DOI: 10.1016/j.cej.2021.128471] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
|
23
|
Cheng W, Wang M, Chen M, Niu W, Li Y, Wang Y, Luo M, Xie C, Leng T, Lei B. Injectable antibacterial antiinflammatory molecular hybrid hydrogel dressing for rapid MDRB-infected wound repair and therapy. CHEMICAL ENGINEERING JOURNAL 2021; 409:128140. [DOI: 10.1016/j.cej.2020.128140] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
|
24
|
Andrée L, Yang F, Brock R, Leeuwenburgh SCG. Designing biomaterials for the delivery of RNA therapeutics to stimulate bone healing. Mater Today Bio 2021; 10:100105. [PMID: 33912824 PMCID: PMC8063862 DOI: 10.1016/j.mtbio.2021.100105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/18/2021] [Accepted: 02/27/2021] [Indexed: 12/11/2022] Open
Abstract
Ribonucleic acids (small interfering RNA, microRNA, and messenger RNA) have been emerging as a promising new class of therapeutics for bone regeneration. So far, however, research has mostly focused on stability and complexation of these oligonucleotides for systemic delivery. By comparison, delivery of RNA nanocomplexes from biomaterial carriers can facilitate a spatiotemporally controlled local delivery of osteogenic oligonucleotides. This review provides an overview of the state-of-the-art in the design of biomaterials which allow for temporal and spatial control over RNA delivery. We correlate this concept of spatiotemporally controlled RNA delivery to the most relevant events that govern bone regeneration to evaluate to which extent tuning of release kinetics is required. In addition, inspired by the physiological principles of bone regeneration, potential new RNA targets are presented. Finally, considerations for clinical translation and upscaled production are summarized to stimulate the design of clinically relevant RNA-releasing biomaterials.
Collapse
Affiliation(s)
- L Andrée
- Department of Dentistry - Regenerative Biomaterials, Radboud Institute for Molecular Life Sciences, Radboudumc, Philips van Leydenlaan 25, Nijmegen, 6525 EX, the Netherlands
| | - F Yang
- Department of Dentistry - Regenerative Biomaterials, Radboud Institute for Molecular Life Sciences, Radboudumc, Philips van Leydenlaan 25, Nijmegen, 6525 EX, the Netherlands
| | - R Brock
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboudumc, Geert Grooteplein 28, Nijmegen, 6525 GA, the Netherlands
| | - S C G Leeuwenburgh
- Department of Dentistry - Regenerative Biomaterials, Radboud Institute for Molecular Life Sciences, Radboudumc, Philips van Leydenlaan 25, Nijmegen, 6525 EX, the Netherlands
| |
Collapse
|
25
|
Zhang L, Wang M, Chen M, Niu W, Liu W, Leng T, Ji W, Lei B. A safe and efficient bioactive citrate-lysine/miRNA33 agonist nanosystem for high fat diet-induced obesity therapy. CHEMICAL ENGINEERING JOURNAL 2021; 408:127304. [DOI: 10.1016/j.cej.2020.127304] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
|
26
|
Yu M, Lei B. MicroRNA-5106-based nanodelivery to enhance osteogenic differentiation and bone regeneration of bone mesenchymal stem cells through targeting of Gsk-3α. MATERIALS CHEMISTRY FRONTIERS 2021; 5:8138-8150. [DOI: 10.1039/d1qm00367d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
Abstract
This work reports the intracellular delivery of miRNA-5106 into stem cells. The intracellular delivery could efficiently enhance the osteogenic differentiation andin vivobone regeneration through the targeting the Gsk-3α signaling pathway.
Collapse
Affiliation(s)
- Meng Yu
- State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, China
- Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710054, China
| | - Bo Lei
- State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, China
- Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710054, China
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710000, China
| |
Collapse
|
27
|
Wang M, Chen M, Niu W, Winston DD, Cheng W, Lei B. Injectable biodegradation-visual self-healing citrate hydrogel with high tissue penetration for microenvironment-responsive degradation and local tumor therapy. Biomaterials 2020; 261:120301. [PMID: 32871470 DOI: 10.1016/j.biomaterials.2020.120301] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/27/2020] [Accepted: 08/04/2020] [Indexed: 12/20/2022]
Abstract
Local tumor therapy through injectable biodegradable hydrogels with controlled drug release has attracted much attention recently, due to their easy operation, low side effect and efficiency. However, most of the reported therapeutic hydrogel system showed a lack of biodegradation tracking and tumor environment-responsive degradation/therapy. Herein, we developed a multifunctional injectable biodegradation-visual citric acid-based self-healing scaffolds with microenvironment-responsive degradation and drug release for safe and efficient skin tumor therapy (FPRC hydrogel). FPRC scaffolds possess multifunctional properties including thermosensitive, injectable, self-healing, photoluminescent and pH-responsive degradation/drug release. The FPRC scaffolds with strong red fluorescence which has good photostability, tissue penetration and biocompatibility can be tracked and monitored to evaluate the degradation of the scaffolds in vivo. Moreover, the FPRC scaffolds showed pH-responsive doxorubicin (DOX) release, efficiently killed the A375 cancer cell in vitro and suppressed the tumor growth in vivo. Compared to the free drug (DOX), the FPRC@DOX scaffolds displayed a significantly high therapeutic effect and less biotoxicity. This work provides an alternative strategy to design smart visual scaffolds for tumor therapy and regenerative medicine.
Collapse
Affiliation(s)
- Min Wang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, China
| | - Mi Chen
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, China
| | - Wen Niu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, China
| | - Dagogo Dorothy Winston
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, China
| | - Wei Cheng
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, China
| | - Bo Lei
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, China; Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710054, China; National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710000, China; Instrument Analysis Center, Xi'an Jiaotong University, Xi'an, 710054, China.
| |
Collapse
|
28
|
Guo Y, Wang M, Ge J, Niu W, Chen M, Cheng W, Lei B. Bioactive biodegradable polycitrate nanoclusters enhances the myoblast differentiation and in vivo skeletal muscle regeneration via p38 MAPK signaling pathway. Bioact Mater 2020; 5:486-495. [PMID: 32322759 PMCID: PMC7162996 DOI: 10.1016/j.bioactmat.2020.04.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/23/2022] Open
Abstract
Complete skeletal muscle repair and regeneration due to severe large injury or disease is still a challenge. Biochemical cues are critical to control myoblast cell function and can be utilized to develop smart biomaterials for skeletal muscle engineering. Citric acid-based biodegradable polymers have received much attention on tissue engineering, however, their regulation on myoblast cell differentiation and mechanism was few investigated. Here, we find that citrate-based polycitrate-polyethylene glycol-polyethylenimine (POCG-PEI600) nanoclusters can significantly enhance the in vitro myoblast proliferation by probably reinforcing the mitochondrial number, promote the myotube formation and full-thickness skeletal muscle regeneration in vivo by activating the myogenic biomarker genes expression of Myod and Mhc. POCG-PEI600 nanoclusters could also promote the phosphorylation of p38 in MAP kinases (MAPK) signaling pathway, which led to the promotion of the myoblast differentiation. The in vivo skeletal muscle loss rat model also confirmed that POCG-PEI600 nanoclusters could significantly improve the angiogenesis, myofibers formation and complete skeletal muscle regeneration. POCG-PEI600 nanocluster could be also biodegraded into small molecules and eliminated in vivo, suggesting their high biocompatibility and biosafety. This study could provide a bioactive biomaterial-based strategy to repair and regenerate skeletal muscle tissue.
Collapse
Affiliation(s)
- Yi Guo
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Min Wang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Juan Ge
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Wen Niu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Mi Chen
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Wei Cheng
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Bo Lei
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710054, China
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710000, China
- Instrument Analysis Center, Xi'an Jiaotong University, Xi'an, 710054, China
| |
Collapse
|
29
|
Guo Y, Xue Y, Ge J, Lei B. Monodispersed β‐Glycerophosphate‐Decorated Bioactive Glass Nanoparticles Reinforce Osteogenic Differentiation of Adipose Stem Cells and Bone Regeneration In Vivo. PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION 2020; 37. [DOI: 10.1002/ppsc.201900462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Indexed: 01/27/2025]
Abstract
AbstractDesign and development of highly bioactive nanoscale biomaterials with enhanced osteogenic differentiation on adipose stem cells is rather important for bone regeneration and attracting much attention. Herein, monodispersed glycerophosphate‐decorated bioactive glass nanoparticles (BGN@GP) are designed and their effect is investigated on the osteogenic differentiation of adipose mesenchymal stem cells (ADMSCs) and in vivo bone regeneration. The surface‐modified BGN@GP can be efficiently taken by ADMSCs and shows negligible cytotoxicity. The in vitro results reveal that BGN@GP significantly enhances the alkaline phosphatase activity and calcium biominerialization of ADMSCs either under normal or osteoinductive medium as compared to BGNs. Further studies find that the osteogenic genes and proteins including Runx2 and Bsp in ADMSCs are significantly improved by BGN@GP even under normal culture medium. The in vivo animal experiment confirms that BGN@GP significantly promotes the new bone formation in a rat skull defect model. This study suggests that bioactive small molecule decorating is an efficient strategy to improve the osteogenesis capacity of inorganic ceramics nanomaterials.
Collapse
Affiliation(s)
- Yi Guo
- Frontier Institute of Science and Technology Xi'an Jiaotong University Xi'an 710054 China
- Department of Biologic and Materials Sciences University of Michigan Ann Arbor MI 48109 USA
| | - Yumeng Xue
- Frontier Institute of Science and Technology Xi'an Jiaotong University Xi'an 710054 China
| | - Juan Ge
- Frontier Institute of Science and Technology Xi'an Jiaotong University Xi'an 710054 China
| | - Bo Lei
- Frontier Institute of Science and Technology Xi'an Jiaotong University Xi'an 710054 China
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy The Second Affiliated Hospital of Xi'an Jiaotong University Xi'an 710004 China
- Instrument Analysis Center Xi'an Jiaotong University Xi'an 710054 China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research College of Stomatology Xi'an Jiaotong University Xi'an 710000 China
| |
Collapse
|
30
|
Xi Y, Ge J, Wang M, Chen M, Niu W, Cheng W, Xue Y, Lin C, Lei B. Bioactive Anti-inflammatory, Antibacterial, Antioxidative Silicon-Based Nanofibrous Dressing Enables Cutaneous Tumor Photothermo-Chemo Therapy and Infection-Induced Wound Healing. ACS NANO 2020; 14:2904-2916. [PMID: 32031782 DOI: 10.1021/acsnano.9b07173] [Citation(s) in RCA: 221] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Traditional skin tumor surgery and chronic bacterial-infection-induced wound healing/skin regeneration is still a challenge. The ideal strategy should eliminate the tumor, enhance wound healing/skin formation, and be anti-infection. Herein, we designed a multifunctional elastomeric poly(l-lactic acid)-poly(citrate siloxane)-curcumin@polydopamine hybrid nanofibrous scaffold (denoted as PPCP matrix) for tumor-infection therapy and infection-induced wound healing. The PPCP matrix showed intrinsically multifunctional properties including antioxidative, anti-inflammatory, photothermal, antibacterial, anticancer, and angiogenesis bioactivities. The polydopamine/curcumin presented an excellent near-infrared photothermal/cancer cell toxicity capacity, respectively, which supported PPCP for synergetic skin tumor therapy and antibacterial properties in vitro/in vivo. Additionally, the PPCP nanofibrous matrix significantly promotes the adhesion and proliferation of normal skin cells and accelerates the cutaneous wound healing in normal mice and bacterial-infected mice by enhancing the early angiogenesis. The PPCP nanofibrous matrix with multifunctional bioactivities provides a competitive strategy for skin tumor and bacterial-infection-induced wound healing.
Collapse
Affiliation(s)
- Yuewei Xi
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710000, China
| | - Juan Ge
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710000, China
| | - Min Wang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Mi Chen
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Wen Niu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Wei Cheng
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yumeng Xue
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
- Department of Bioengineering, Department of Chemical and Biomolecular Engineering, Henry Samueli School of Engineering and Applied Sciences, University of California at Los Angeles, Los Angeles, California 90095, United States
| | - Cai Lin
- Department of Burn, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Bo Lei
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710000, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
- Instrumental Analysis Center, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|