1
|
Zhang D, Chen X, Feng Y, Li L, Liu M. Adhesive thermosensitive polydopamine hydrogel containing Mn 3O 4 anchored halloysite clay for treatment of ulcerative colitis. J Colloid Interface Sci 2025; 683:147-159. [PMID: 39673927 DOI: 10.1016/j.jcis.2024.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 12/16/2024]
Abstract
Ulcerative colitis (UC), a common inflammatory bowel disease, causes ulcers of the colon and rectum. One of the important reasons for intestinal lesions caused by UC is that immune cells produce large amounts of reactive oxygen species (ROS). Herein, we developed an adhesive thermosensitive polydopamine hydrogel containing Mn3O4 nanozyme anchored halloysite nanotubes (Mn3O4@HNTs@PDA) to remove ROS produced by immune cells and treatment of UC. Halloysite nanotubes (HNTs) were used as support for the synthesis of Mn3O4 nanoparticles (∼10 nm diameter), which decreased the nanozyme size and increased the catalysis activity. Mn3O4@HNTs can simultaneously remove H2O2 and ·OH through the mutual reaction conversion between SOD-like and CAT-like enzymes. The PDA coating enables Mn3O4@HNTs to adhere well to the damaged mucosa of the inflamed colon, as an artificial mucosal barrier inhibits local oxidative stress. In the dextran sulfate sodium (DSS)-induced UC mouse model, Mn3O4@HNTs@PDA hydrogel effectively transformed the local inflammatory microenvironment and restored intestinal barrier function by scavenging ROS through enzyme-like action, promoting the expression of intestinal mucosal junction proteins. Overall, this study provided a new dosing method to remove ROS by tissue adhesive hydrogel containing nanozyme modified clay mineral, which shows promising applications in clinic gastroenteritis treatment.
Collapse
Affiliation(s)
- Di Zhang
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, PR China
| | - Xiangyu Chen
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, PR China
| | - Yue Feng
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, PR China
| | - Lihua Li
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, PR China
| | - Mingxian Liu
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, PR China.
| |
Collapse
|
2
|
Wu A, Liang C, Chen W, Lu C, Chen J, Wu B, Chen D, He L, Wang X. ZnO-Cu/Mn nanozyme for rescuing the intestinal homeostasis in Salmonella-induced colitis. J Nanobiotechnology 2025; 23:225. [PMID: 40114178 PMCID: PMC11924796 DOI: 10.1186/s12951-025-03283-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 02/28/2025] [Indexed: 03/22/2025] Open
Abstract
Salmonella is one of the most common foodborne pathogens, which can cause severe enteritis and intestinal microbiota imbalance. However, there are limited strategies currently available for preventing or treating Salmonella-induced colitis. Herein, we developed the Cu/Mn-co-doped ZnO tandem nanozyme (ZnO-CM) with pH-responsive multienzyme-mimicking activities via doping engineering for the treatment of Salmonella-induced colitis. Benefiting from the co-doping of Cu and Mn, ZnO-CM nanospheres exhibit remarkable peroxidase-like activity in acidic condition and superoxide dismutase- and catalase-like activities in neutral environment. Animal experiments show that ZnO-CM can efficiently inhibit bacterial growth, alleviate inflammation, and restore the intestinal barrier, resulting in good antibacterial and anti-inflammatory effects on Salmonella-induced colitis. Mechanistically, ZnO-CM functions through inhibiting the continuous accumulation of ROS, increasing the levels of tight junction proteins occludin and claudin-1, and decreasing the expression of pro-inflammatory cytokines IL-1β and IL-6 in intestine. This work not only presents an effective paradigm for Salmonella-induced colitis therapy, but also provides new sights into the prevention and treatment of other bacterial enteritis.
Collapse
Affiliation(s)
- Aimin Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chen Liang
- College of Science, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - WenShuang Chen
- College of Science, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - ChangFang Lu
- College of Science, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - JunZhou Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bing Wu
- Sichuan Chelota Biotechnology Group Co., Ltd, Chengdu, 618302, Sichuan, China
| | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Li He
- College of Science, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Xianxiang Wang
- College of Science, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
3
|
Wang X, Zhang Z, Lei H, Zhu C, Fu R, Ma X, Duan Z, Fan D. Treatment of ulcerative colitis via the in situ restoration of local immune and microbial homeostasis by oral administration of Tremella polysaccharide drug-carrying hydrogel. Int J Biol Macromol 2024; 285:138223. [PMID: 39626817 DOI: 10.1016/j.ijbiomac.2024.138223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 11/16/2024] [Accepted: 11/29/2024] [Indexed: 12/06/2024]
Abstract
Ulcerative colitis (UC) is a prevalent inflammatory bowel disease, and conventional treatments, such as anti-inflammatory medications and surgery, often prove inadequate due to frequent recurrences and various complications. To alleviate patient suffering, there is an urgent need for a therapeutic system that specifically delivers drugs to the colon for wound healing, inflammation relief, and restoration of microbial homeostasis. In this paper, we developed a Tremella polysaccharide drug-carrying hydrogel that adheres to the inflamed colonic mucosa, forming an effective artificial barrier and releasing the drug in situ to restore local immune and microbial balance. The hydrogel backbone was synthesized through the chemical cross-linking of Tremella polysaccharide with 1,4-butanediol diglycidyl ether in an alkaline environment. During this process, Soluplus® and TPGS-encapsulated ginsenoside compound K adhered to the hydrogel backbone due to electrostatic attraction. The enhanced adhesion following cross-linking enables the hydrogel to stably attach to the inflamed colonic mucosa, releasing mixed micelles that improve drug penetration and absorption by inhibiting the cellular efflux protein P-glycoprotein. This mechanism promotes local immune recovery and eliminates harmful intestinal flora, providing significant relief from UC symptoms. This natural polysaccharide-based hydrogel represents a highly effective oral treatment for UC.
Collapse
Affiliation(s)
- Xue Wang
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech & Biomed Research Institute, Northwest University, Xi'an 710069, China
| | - Zhuo Zhang
- Plastic and Cosmetic Maxillofacial Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710069, Shaanxi, China.
| | - Huan Lei
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech & Biomed Research Institute, Northwest University, Xi'an 710069, China
| | - Chenhui Zhu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech & Biomed Research Institute, Northwest University, Xi'an 710069, China.
| | - Rongzhan Fu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech & Biomed Research Institute, Northwest University, Xi'an 710069, China.
| | - Xiaoxuan Ma
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech & Biomed Research Institute, Northwest University, Xi'an 710069, China.
| | - Zhiguang Duan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech & Biomed Research Institute, Northwest University, Xi'an 710069, China.
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech & Biomed Research Institute, Northwest University, Xi'an 710069, China.
| |
Collapse
|
4
|
Ni P, Duan D, Xiong S, Zhong M, Huang C, Shan J, Yuan T, Liang J, Fan Y, Zhang X. Bioadhesive chitosan hydrogel with ROS scavenging promotes angiogenesis and mucosal repair for the treatment of gastric ulcer. CHEMICAL ENGINEERING JOURNAL 2024; 497:154519. [DOI: 10.1016/j.cej.2024.154519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
5
|
Mamidi N, De Silva FF, Vacas AB, Gutiérrez Gómez JA, Montes Goo NY, Mendoza DR, Reis RL, Kundu SC. Multifaceted Hydrogel Scaffolds: Bridging the Gap between Biomedical Needs and Environmental Sustainability. Adv Healthc Mater 2024; 13:e2401195. [PMID: 38824416 DOI: 10.1002/adhm.202401195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/29/2024] [Indexed: 06/03/2024]
Abstract
Hydrogels are dynamically evolving 3D networks composed of hydrophilic polymer scaffolds with significant applications in the healthcare and environmental sectors. Notably, protein-based hydrogels mimic the extracellular matrix, promoting cell adhesion. Further enhancing cell proliferation within these scaffolds are matrix-metalloproteinase-triggered amino acid motifs. Integration of cell-friendly modules like peptides and proteins expands hydrogel functionality. These exceptional properties position hydrogels for diverse applications, including biomedicine, biosensors, environmental remediation, and the food industry. Despite significant progress, there is ongoing research to optimize hydrogels for biomedical and environmental applications further. Engineering novel hydrogels with favorable characteristics is crucial for regulating tissue architecture and facilitating ecological remediation. This review explores the synthesis, physicochemical properties, and biological implications of various hydrogel types and their extensive applications in biomedicine and environmental sectors. It elaborates on their potential applications, bridging the gap between advancements in the healthcare sector and solutions for environmental issues.
Collapse
Affiliation(s)
- Narsimha Mamidi
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Chemistry and Nanotechnology, The School of Engineering and Science, Tecnologico de Monterrey, Nuevo Leon, Monterrey, 64849, Mexico
| | - Fátima Franco De Silva
- Department of Chemistry and Nanotechnology, The School of Engineering and Science, Tecnologico de Monterrey, Nuevo Leon, Monterrey, 64849, Mexico
| | - Alejandro Bedón Vacas
- Department of Chemistry and Nanotechnology, The School of Engineering and Science, Tecnologico de Monterrey, Nuevo Leon, Monterrey, 64849, Mexico
| | - Javier Adonay Gutiérrez Gómez
- Department of Chemistry and Nanotechnology, The School of Engineering and Science, Tecnologico de Monterrey, Nuevo Leon, Monterrey, 64849, Mexico
| | - Naomi Yael Montes Goo
- Department of Chemistry and Nanotechnology, The School of Engineering and Science, Tecnologico de Monterrey, Nuevo Leon, Monterrey, 64849, Mexico
| | - Daniela Ruiz Mendoza
- Department of Chemistry and Nanotechnology, The School of Engineering and Science, Tecnologico de Monterrey, Nuevo Leon, Monterrey, 64849, Mexico
| | - Rui L Reis
- 3Bs Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Barco, Guimarães, 4805-017, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Subhas C Kundu
- 3Bs Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Barco, Guimarães, 4805-017, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
6
|
Li M, Wang L, Lin D, Liu Z, Wang H, Yang Y, Sun C, Ye J, Liu Y. Advanced Bioinspired Multifunctional Platforms Focusing on Gut Microbiota Regulation. ACS NANO 2024; 18:20886-20933. [PMID: 39080827 DOI: 10.1021/acsnano.4c05013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Gut microbiota plays a crucial role in maintaining host homeostasis, impacting the progression and therapeutic outcomes of diseases, including inflammatory bowel disease, cancer, hepatic conditions, obesity, cardiovascular pathologies, and neurologic disorders, via immune, neural, and metabolic mechanisms. Hence, the gut microbiota is a promising target for disease therapy. The safety and precision of traditional microbiota regulation methods remain a challenge, which limits their widespread clinical application. This limitation has catalyzed a shift toward the development of multifunctional delivery systems that are predicated on microbiota modulation. Guided by bioinspired strategies, an extensive variety of naturally occurring materials and mechanisms have been emulated and harnessed for the construction of platforms aimed at the monitoring and modulation of gut microbiota. This review outlines the strategies and advantages of utilizing bioinspired principles in the design of gut microbiota intervention systems based on traditional regulation methods. Representative studies on the development of bioinspired therapeutic platforms are summarized, which are based on gut microbiota modulation to confer multiple pharmacological benefits for the synergistic management of diseases. The prospective avenues and inherent challenges associated with the adoption of bioinspired strategies in the refinement of gut microbiota modulation platforms are proposed to augment the efficacy of disease treatment.
Collapse
Affiliation(s)
- Muqing Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P.R. China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P.R. China
| | - LuLu Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P.R. China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P.R. China
| | - Demin Lin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P.R. China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P.R. China
| | - Zihan Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P.R. China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P.R. China
| | - Hongliang Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P.R. China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P.R. China
| | - Yanfang Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P.R. China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P.R. China
| | - Chunmeng Sun
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Jun Ye
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P.R. China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P.R. China
| | - Yuling Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P.R. China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P.R. China
| |
Collapse
|
7
|
Zhang G, Song D, Ma R, Li M, Liu B, He Z, Fu Q. Artificial mucus layer formed in response to ROS for the oral treatment of inflammatory bowel disease. SCIENCE ADVANCES 2024; 10:eado8222. [PMID: 39058786 PMCID: PMC11277472 DOI: 10.1126/sciadv.ado8222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024]
Abstract
The artificial mucus layer, such as hydrogels, used to repair the damaged intestinal barrier, is a promising treatment for inflammatory bowel disease (IBD). However, the currently reported hydrogel-based artificial barriers are administered via rectal injection, causing unnecessary discomfort to patients. Herein, we report an oral hydrogel precursor solution based on thiol-modified hyaluronic acid (HASH). Owing to the reactive oxygen species (ROS)-responsive gelling behavior, our precursor solution formed an artificial mucus coating over the inflamed regions of the intestines, blocking microbial invasion and reducing abnormally activated immune responses. Notably, HASH also modulated the gut microbiota, including increasing the diversity and enhancing the abundance of short-chain fatty acid-associated bacteria, which play a key role in gut homeostasis. We believe that the ROS-responsive artificial mucus layer is a promising strategy for the oral treatment of IBD.
Collapse
Affiliation(s)
- Guangshuai Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Dandan Song
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Ruilong Ma
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Mo Li
- Liaoning Institute for Drug Control, No. 7 Chongshan West Road, Shenyang 110016, China
| | - Bingyang Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China
| | - Qiang Fu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China
| |
Collapse
|
8
|
Lu P, Ruan D, Huang M, Tian M, Zhu K, Gan Z, Xiao Z. Harnessing the potential of hydrogels for advanced therapeutic applications: current achievements and future directions. Signal Transduct Target Ther 2024; 9:166. [PMID: 38945949 PMCID: PMC11214942 DOI: 10.1038/s41392-024-01852-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/02/2024] [Accepted: 04/28/2024] [Indexed: 07/02/2024] Open
Abstract
The applications of hydrogels have expanded significantly due to their versatile, highly tunable properties and breakthroughs in biomaterial technologies. In this review, we cover the major achievements and the potential of hydrogels in therapeutic applications, focusing primarily on two areas: emerging cell-based therapies and promising non-cell therapeutic modalities. Within the context of cell therapy, we discuss the capacity of hydrogels to overcome the existing translational challenges faced by mainstream cell therapy paradigms, provide a detailed discussion on the advantages and principal design considerations of hydrogels for boosting the efficacy of cell therapy, as well as list specific examples of their applications in different disease scenarios. We then explore the potential of hydrogels in drug delivery, physical intervention therapies, and other non-cell therapeutic areas (e.g., bioadhesives, artificial tissues, and biosensors), emphasizing their utility beyond mere delivery vehicles. Additionally, we complement our discussion on the latest progress and challenges in the clinical application of hydrogels and outline future research directions, particularly in terms of integration with advanced biomanufacturing technologies. This review aims to present a comprehensive view and critical insights into the design and selection of hydrogels for both cell therapy and non-cell therapies, tailored to meet the therapeutic requirements of diverse diseases and situations.
Collapse
Affiliation(s)
- Peilin Lu
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, PR China
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Dongxue Ruan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Guangzhou Institute for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, PR China
| | - Meiqi Huang
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Mi Tian
- Department of Stomatology, Chengdu Second People's Hospital, Chengdu, 610021, PR China
| | - Kangshun Zhu
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China.
| | - Ziqi Gan
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, PR China.
| | - Zecong Xiao
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, PR China.
| |
Collapse
|
9
|
Yang R, Zhang H, Chen Y, Zhang L, Chu J, Sun K, Yuan C, Tao K. Hemostatic and Ultrasound-Controlled Bactericidal Silk Fibroin Hydrogel via Integrating a Perfluorocarbon Nanoemulsion. ACS APPLIED MATERIALS & INTERFACES 2024; 16:21582-21594. [PMID: 38634578 DOI: 10.1021/acsami.4c01686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Excessive blood loss and infections are the prominent risks accounting for mortality and disability associated with acute wounds. Consequently, wound dressings should encompass adequate adhesive, hemostatic, and bactericidal attributes, yet their development remains challenging. This investigation presented the benefits of incorporating a perfluorocarbon nanoemulsion (PPP NE) into a silk-fibroin (SF)-based hydrogel. By stimulating the β-sheet conformation of the SF chains, PPP NEs drastically shortened the gelation time while augmenting the elasticity, mechanical stability, and viscosity of the hydrogel. Furthermore, the integration of PPP NEs improved hemostatic competence by boosting the affinity between cells and biomacromolecules. It also endowed the hydrogel with ultrasound-controlled bactericidal ability through the inducement of inner cavitation by perfluorocarbon and reactive oxygen species (ROS) generated by the sonosensitizer protoporphyrin. Ultimately, we employed a laparotomy bleeding model and a Staphylococcus aureus-infected trauma wound to demonstrate the first-aid efficacy. Thus, our research suggested an emulsion-incorporating strategy for managing emergency wounds.
Collapse
Affiliation(s)
- Ruihao Yang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Haoran Zhang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yumo Chen
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Linxuan Zhang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jing Chu
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Kang Sun
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Congli Yuan
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Ke Tao
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
10
|
Gao F, Yang X, Song W. Bioinspired Supramolecular Hydrogel from Design to Applications. SMALL METHODS 2024; 8:e2300753. [PMID: 37599261 DOI: 10.1002/smtd.202300753] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Indexed: 08/22/2023]
Abstract
Nature offers a wealth of opportunities to solve scientific and technological issues based on its unique structures and function. The dynamic non-covalent interaction is considered to be the main base of living functions of creatures including humans, animals, and plants. Supramolecular hydrogels formed by non-covalent bonding interactions has become a unique platform for constructing promising materials for medicine, energy, electronic, and biological substitute. In this review, the self-assemble principle of supramolecular hydrogels is summarized. Next, the stimulation of external environment that triggers the assembly or disassembly of supramolecular hydrogels are recapitulated, including temperature, mechanics, light, pH, ions, etc. The main applications of bioinspired supramolecular hydrogels in terms of bionic objects including humans, animals, and plants are also described. Although so many efforts are done for revealing the synergized mechanism of the function and non-covalent interactions on the supramolecular hydrogel, the complexity and variability between stimulus and non-covalent bonding in the supramolecular system still require impeccable theories. As an outlook, the bioinspired supramolecular hydrogel is just beginning to exhibit its great potential in human life, offering significant opportunities in drug delivery and screening, implantable devices and substitutions, tissue engineering, micro-fluidic devices, and biosensors.
Collapse
Affiliation(s)
- Feng Gao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xuhao Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Wenlong Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
11
|
Xu T, Ning X, Wu J, Wang Q, Wang Z, Chen Z, Tang X, Bai P, Pu K, Li L, Zhang R. Metabolic Nanoregulator Remodels Gut Microenvironment for Treatment of Inflammatory Bowel Disease. ACS NANO 2024; 18:7123-7135. [PMID: 38390866 DOI: 10.1021/acsnano.3c11496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Inflammatory bowel disease (IBD) is strongly related to the occurrence of accumulation of toxic reactive oxygen species (ROS), inflammation of the mucosa, and an imbalance of intestinal microbes. However, current treatments largely focus on a single factor, yielding unsatisfactory clinical outcomes. Herein, we report a biocompatible and IBD-targeted metabolic nanoregulator (TMNR) that synergistically regulates cellular and bacterial metabolism. The TMNR comprises a melanin-gallium complex (MNR) encapsulated within a thermosensitive and colitis-targeting hydrogel, all composed of natural and FDA-approved components. The TMNR confers superior broad-spectrum antioxidant properties, effectively scavenging reactive oxygen species (ROS) and blocking inflammatory signaling pathways. The presence of Ga3+ in TMNR selectively disrupts iron metabolism in pathogenic microorganisms due to its structural resemblance to the iron atom. Additionally, incorporating a thermosensitive injectable hydrogel enables targeted delivery of TMNR to inflammatory regions, prolonging their retention time and providing a physical barrier function for optimizing IBD treatment efficacy. Collectively, TMNR effectively modulates the redox balance of inflamed colonic epithelial tissue and disrupts iron metabolism in pathogenic microorganisms, thereby eliminating inflammation and restoring intestinal homeostasis against IBD. Hence, this work presents a comprehensive approach for precise spatiotemporal regulation of the intestinal microenvironmental metabolism for IBD treatment.
Collapse
Affiliation(s)
- Ting Xu
- The Radiology Department of Shanxi Provincial People's Hospital, The Fifth Hospital of Shanxi Medical University, Taiyuan, 030012, China
| | - Xiaogang Ning
- School of Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, 030619, China
| | - Jiayan Wu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637457, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 637457, Singapore
| | - Qian Wang
- The Radiology Department of Shanxi Provincial People's Hospital, The Fifth Hospital of Shanxi Medical University, Taiyuan, 030012, China
| | - Zhifei Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Zhiqing Chen
- The Radiology Department of Shanxi Provincial People's Hospital, The Fifth Hospital of Shanxi Medical University, Taiyuan, 030012, China
| | - Xiaoxian Tang
- The Radiology Department of Shanxi Provincial People's Hospital, The Fifth Hospital of Shanxi Medical University, Taiyuan, 030012, China
| | - Peirong Bai
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637457, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 637457, Singapore
| | - Liping Li
- The Fifth Hospital of Shanxi Medical University, Taiyuan, 030012, China
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, China
| | - Ruiping Zhang
- The Radiology Department of Shanxi Provincial People's Hospital, The Fifth Hospital of Shanxi Medical University, Taiyuan, 030012, China
| |
Collapse
|
12
|
Liu Y, Huang J, Li S, Li Z, Chen C, Qu G, Chen K, Teng Y, Ma R, Wu X, Ren J. Advancements in hydrogel-based drug delivery systems for the treatment of inflammatory bowel disease: a review. Biomater Sci 2024; 12:837-862. [PMID: 38196386 DOI: 10.1039/d3bm01645e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Inflammatory bowel disease (IBD) is a chronic disorder that affects millions of individuals worldwide. However, current drug therapies for IBD are plagued by significant side effects, low efficacy, and poor patient compliance. Consequently, there is an urgent need for novel therapeutic approaches to alleviate IBD. Hydrogels, three-dimensional networks of hydrophilic polymers with the ability to swell and retain water, have emerged as promising materials for drug delivery in the treatment of IBD due to their biocompatibility, tunability, and responsiveness to various stimuli. In this review, we summarize recent advancements in hydrogel-based drug delivery systems for the treatment of IBD. We first identify three pathophysiological alterations that need to be addressed in the current treatment of IBD: damage to the intestinal mucosal barrier, dysbiosis of intestinal flora, and activation of inflammatory signaling pathways leading to disequilibrium within the intestines. Subsequently, we discuss in depth the processes required to prepare hydrogel drug delivery systems, from the selection of hydrogel materials, types of drugs to be loaded, methods of drug loading and drug release mechanisms to key points in the preparation of hydrogel drug delivery systems. Additionally, we highlight the progress and impact of the hydrogel-based drug delivery system in IBD treatment through regulation of physical barrier immune responses, promotion of mucosal repair, and improvement of gut microbiota. In conclusion, we analyze the challenges of hydrogel-based drug delivery systems in clinical applications for IBD treatment, and propose potential solutions from our perspective.
Collapse
Affiliation(s)
- Ye Liu
- School of Medicine, Southeast University, Nanjing, 210009, China
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China.
| | - Jinjian Huang
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China.
| | - Sicheng Li
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China.
| | - Ze Li
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China.
| | - Canwen Chen
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China.
| | - Guiwen Qu
- School of Medicine, Southeast University, Nanjing, 210009, China
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China.
| | - Kang Chen
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China.
| | - Yitian Teng
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China.
| | - Rui Ma
- School of Medicine, Southeast University, Nanjing, 210009, China
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China.
| | - Xiuwen Wu
- School of Medicine, Southeast University, Nanjing, 210009, China
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China.
| | - Jianan Ren
- School of Medicine, Southeast University, Nanjing, 210009, China
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China.
| |
Collapse
|
13
|
Cheng J, Zhang Y, Ma L, Du W, Zhang Q, Gao R, Zhao X, Chen Y, Jiang L, Li X, Li B, Zhou Y. Macrophage-Derived Extracellular Vesicles-Coated Palladium Nanoformulations Modulate Inflammatory and Immune Homeostasis for Targeting Therapy of Ulcerative Colitis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304002. [PMID: 37807805 PMCID: PMC10667822 DOI: 10.1002/advs.202304002] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/27/2023] [Indexed: 10/10/2023]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease mainly involving the colon and rectum, which features recurrent mucosal inflammation. The excessive production of reactive oxygen species (ROS) is a trigger for pathological changes such as cell apoptosis and disordered immune microenvironments, which are crucial for the progression of UC and can be a promising therapeutic target. Nowadays, the development of targeted therapeutic strategies for UC is still in its infancy. Thus, developing effective therapies based on ROS scavenging and elucidating their molecular pathways are urgently needed. Herein, a biomimetic nanoformulation (Pd@M) with cubic palladium (Pd) as the core and macrophage-derived extracellular vesicles (MEVs) as the shell is synthesized for the treatment of UC. These Pd@M nanoformulations exhibit multienzyme-like activities for effective ROS scavenging, excellent targeting ability as well as good biocompatibility. It is verified that Pd@M can regulate the polarization state of macrophages by inhibiting glycolysis, and decrease neutrophil infiltration and recruitment. In this way, the colonic inflammatory and immune microenvironment is remodeled, and apoptosis is prevented, ultimately improving colonic mucosal barrier function and alleviating colitis in the mouse model. This finding provides a promising alternative option for the treatment of UC patients.
Collapse
Affiliation(s)
- Jiahui Cheng
- Department of RadiologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityNo. 160, Pujian Road, Pudong DistrictShanghai200127China
| | - Yiming Zhang
- Department of RadiologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityNo. 160, Pujian Road, Pudong DistrictShanghai200127China
| | - Liang Ma
- Department of RadiologyNational Children's Medical CenterChildren's Hospital of Fudan UniversityNo. 399, Wanyuan Road, Minhang DistrictShanghai201102China
| | - Wenxian Du
- Institute of Diagnostic and Interventional RadiologyShanghai Sixth People's HospitalSchool of MedicineShanghai Jiao Tong UniversityNo. 600, Yishan Road, Xuhui DistrictShanghai200233China
| | - Qiang Zhang
- Institute of Diagnostic and Interventional RadiologyShanghai Sixth People's HospitalSchool of MedicineShanghai Jiao Tong UniversityNo. 600, Yishan Road, Xuhui DistrictShanghai200233China
| | - Rifeng Gao
- Department of CardiologyZhongshan HospitalFudan UniversityNo. 180, Fenglin Road, Xuhui DistrictShanghai200025China
| | - Xinxin Zhao
- Department of RadiologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityNo. 160, Pujian Road, Pudong DistrictShanghai200127China
| | - Yujie Chen
- Morphology and Spatial Multi‐Omics Technology PlatformShanghai Institute of Nutrition and HealthChinese Academy of SciencesNo. 320, Yueyang RoadShanghai200031China
| | - Lixian Jiang
- Department of Ultrasound in MedicineShanghai Sixth People's HospitalSchool of MedicineShanghai Jiao Tong UniversityNo. 600, Yishan Road, Xuhui DistrictShanghai200233China
| | - Xiaoyang Li
- Department of Food Science and TechnologySchool of Agriculture and BiologyShanghai Jiao Tong UniversityNo. 800, Dongchuan Road, Minhang DistrictShanghai200240China
| | - Bo Li
- Department of RadiologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityNo. 160, Pujian Road, Pudong DistrictShanghai200127China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University)Ministry of EducationNo. 160, Pujian Road, Pudong DistrictShanghai200127China
| | - Yan Zhou
- Department of RadiologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityNo. 160, Pujian Road, Pudong DistrictShanghai200127China
- College of Health Science and TechnologyShanghai Jiao Tong University School of MedicineNo. 227, Chongqingnan RoadHuangpu DistrictShanghai200025China
| |
Collapse
|