1
|
Nie J, Sun Y, Zhang S, Wen G, Li T, Zhao J, Li W. Dynamic hydration driven adhesiveness self-reinforcement of powdery protein for rapid artery hemostasis. Biomaterials 2025; 321:123328. [PMID: 40220566 DOI: 10.1016/j.biomaterials.2025.123328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 03/23/2025] [Accepted: 04/07/2025] [Indexed: 04/14/2025]
Abstract
Surgical adhesives with rapid and tough adhesion under wet or aqueous conditions are highly desirable for artery hemostasis yet still extremely challenging. We here explored a kind of protein powder featured with hydration-driven adhesiveness self-reinforcement in water. The protein powder, consisting of corn-derived protein (zein), sodium dodecyl sulfate (SDS), and poly-lysine (PLL), was conveniently produced via sandcastle worm-inspired multivalent ionic crosslinking between zein/SDS colloid and PLL, which showed rapidly water-contacting gelation and tough adhesion on wet surfaces. We revealed that the interfacial water removal and bulk heterogeneity of the hydrated zein/SDS-PLL powder synergistically improved both the interfacial adhesion and the bulk cohesion, resulting in tough wet adhesion within 2 min. The rapid interfacial adhesion of the zein/SDS-PLL powder is attributed to the highly hydrated propensity of the ionic complex and self-gelation via interfacial water removal, while the bulk heterogeneity resulted from the incompletely hydrated ionic domains, which functioned as rigid fillers to improve the cross-density and bulk cohesion of the hydrated adhesive matrix. This bulk heterogeneity mechanism fulfills the existing knowledge gap of adhesiveness enhancement of the hydrated powdery adhesives. The hydrated zein/SDS-PLL powdery adhesive with excellent biocompatibility and biodegradation can resist high bursting pressure (118.2-129.4 mmHg), which can achieve rapid and reliable artery hemostasis on rat, rabbit and pig models.
Collapse
Affiliation(s)
- Junlian Nie
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun, 130012, China
| | - Yingchuan Sun
- Department of Orthopedics, The Second Hospital of Jilin University, Yatai Street 4026, Nanguan District, Changchun, Jilin Province, 130022, China
| | - Shengjie Zhang
- Department of Orthopedics, The Second Hospital of Jilin University, Yatai Street 4026, Nanguan District, Changchun, Jilin Province, 130022, China
| | - Guang Wen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun, 130012, China
| | - Tong Li
- Department of Orthopedics, The Second Hospital of Jilin University, Yatai Street 4026, Nanguan District, Changchun, Jilin Province, 130022, China
| | - Jianwu Zhao
- Department of Orthopedics, The Second Hospital of Jilin University, Yatai Street 4026, Nanguan District, Changchun, Jilin Province, 130022, China.
| | - Wen Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun, 130012, China.
| |
Collapse
|
2
|
Su R, Ma C, Han B, Zhang H, Liu K. Proteins for Hyperelastic Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2406388. [PMID: 39910850 DOI: 10.1002/smll.202406388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 01/23/2025] [Indexed: 02/07/2025]
Abstract
Meticulous engineering and the yielded hyperelastic performance of structural proteins represent a new frontier in developing next-generation functional biomaterials. These materials exhibit outstanding and programmable mechanical properties, including elasticity, resilience, toughness, and active biological characteristics, such as degradability and tissue repairability, compared with their chemically synthetic counterparts. However, there are several critical issues regarding the preparation approaches of hyperelastic protein-based materials: limited natural sequence modules, non-hierarchical assembly, and imbalance between compressive and tensile elasticity, leading to unmet demands. Therefore, it is pivotal to develop an alternative strategy for biofabricating hyperelastic materials. Herein, the molecular design, engineering, and property regulation of hyperelastic structural proteins are overviewed. First, methodologies for deeper exploration of mechanical modules, including machine learning-aided de novo design, random mutations of natural sequences, and multiblock fusion techniques, are actively introduced. These methodologies facilitate the generation of elastomeric protein modules and demonstrate enhanced structural and functional versatility. Subsequently, assembly tactics of hyperelastic proteins (i.e., physical modulation, genetic adaptations, and chemical modifications) are reviewed, yielding hierarchically ordered structures. Finally, advances in biophysical techniques for more nuanced characterization of protein ensembles are discussed, unveiling the tuning mechanisms of protein elasticity across scales. Future developments in structural hyperelastic protein-based biomaterials are also envisioned.
Collapse
Affiliation(s)
- Rui Su
- Engineering Research Center of Advanced Rare Earth Materials, (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Chao Ma
- Engineering Research Center of Advanced Rare Earth Materials, (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
- Xiangfu Laboratory, Building 5, No.828 Zhongxing Road, Xitang Town, Jiashan, Jiaxing, Zhejiang, 314102, China
| | - Bing Han
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, NMPA Key Laboratory for Dental Materials, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China
| | - Hongjie Zhang
- Engineering Research Center of Advanced Rare Earth Materials, (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
- Xiangfu Laboratory, Building 5, No.828 Zhongxing Road, Xitang Town, Jiashan, Jiaxing, Zhejiang, 314102, China
| | - Kai Liu
- Engineering Research Center of Advanced Rare Earth Materials, (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
- Xiangfu Laboratory, Building 5, No.828 Zhongxing Road, Xitang Town, Jiashan, Jiaxing, Zhejiang, 314102, China
| |
Collapse
|
3
|
Yu L, Liu Z, Zheng Y, Tong Z, Ding Y, Wang W, Ding Y, Mao Z. Molecular self-assembly strategy tuning a dry crosslinking protein patch for biocompatible and biodegradable haemostatic sealing. Nat Commun 2025; 16:1437. [PMID: 39920129 PMCID: PMC11806104 DOI: 10.1038/s41467-025-56726-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 01/28/2025] [Indexed: 02/09/2025] Open
Abstract
Uncontrolled haemorrhage is a leading cause of trauma-related fatalities, highlighting the critical need for rapid and effective haemostasis. Current haemostatic materials encounter limitations such as slow clotting and weak mechanical strength, while most of bioadhesives compromise their adhesion performance to wet tissues for biocompatibility and degradability. In this study, a molecular self-assembly strategy is proposed, developing a biocompatible and biodegradable protein-based patch with excellent adhesion performance. This strategy utilizes fibrinogen modified with hydrophobic groups to induce self-assembly into a hydrogel, which is converted into a dry patch. The protein patch enhances adhesion performance on the wet tissue through a dry cross-linking method and robust intra/inter-molecular interactions. This patch demonstrates excellent haemostatic efficacy in both porcine oozing wound and porcine severe acute haemorrhage. It maintains biological functionality, and ensures sustained wound sealing while gradually degrading in vivo, making it a promising candidate for clinical tissue sealing applications.
Collapse
Affiliation(s)
- Lisha Yu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, Hangzhou, 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Zhejiang, Hangzhou, 310009, China
| | - Zhaodi Liu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, Hangzhou, 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Zhejiang, Hangzhou, 310009, China
| | - Yong Zheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Zhejiang, Hangzhou, 310058, China
| | - Zongrui Tong
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, Hangzhou, 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Zhejiang, Hangzhou, 310009, China
| | - Yihang Ding
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Zhejiang, Hangzhou, 310058, China
| | - Weilin Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, Hangzhou, 310009, China.
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Zhejiang, Hangzhou, 310009, China.
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Zhejiang, Hangzhou, 310009, China.
- Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, Zhejiang, Hangzhou, 310009, China.
- Cancer Center, Zhejiang University, Zhejiang, Hangzhou, 310058, China.
| | - Yuan Ding
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, Hangzhou, 310009, China.
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Zhejiang, Hangzhou, 310009, China.
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Zhejiang, Hangzhou, 310009, China.
- Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, Zhejiang, Hangzhou, 310009, China.
- Cancer Center, Zhejiang University, Zhejiang, Hangzhou, 310058, China.
| | - Zhengwei Mao
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, Hangzhou, 310009, China.
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Zhejiang, Hangzhou, 310009, China.
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Zhejiang, Hangzhou, 310058, China.
- State Key Laboratory of Transvascular Implantation Devices, Zhejiang, Hangzhou, 310009, China.
| |
Collapse
|
4
|
Li M, Qin D, Chen J, Jia B, Wei Z, Zhang Y, Cheng W, Liu Q, Wang F, Li J, Zhang H, Liu K. Engineered Protein Fibers with Reinforced Mechanical Properties Via β-Sheet High-Order Assembly. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2410199. [PMID: 39435633 PMCID: PMC11633540 DOI: 10.1002/advs.202410199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/09/2024] [Indexed: 10/23/2024]
Abstract
Protein fibers are ideal alternatives to synthetic polymers due to their unique mechanical properties, biocompatibility, and sustainability. However, engineering biomimetic protein fibers with high mechanical properties remains challenging, particularly in mimicking the high molecular weight of natural proteins and regulating their complex hierarchical structures. Here, a modular design and multi-scale assembly strategy is developed to manufacture robust protein fibers using low- or medium-molecular-weight proteins. The distinct functional and structural properties of flexible, rigid, and cross-linked domains in modular proteins are skillfully harnessed. By regulating the ratio of rigid to flexible domains, the formation of high-order β-sheet crystals aligned along the fiber axis is promoted, enhancing both strength and toughness. Furthermore, the dynamic imine cross-linking network, formed by the aldehyde-amine condensation reaction of the cross-linked domains, further reinforces the protein fibers. Remarkably, fibers spun from modular proteins significantly smaller than natural spidroin exhibit outstanding mechanical properties, surpassing those of protein fibers with same or even higher molecular weights. This strategy offers a promising pathway for fabricating protein fibers suitable for diverse applications.
Collapse
Affiliation(s)
- Ming Li
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefei230026China
| | - Dawen Qin
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
| | - Jing Chen
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
| | - Bo Jia
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
| | - Zheng Wei
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
| | - Yi Zhang
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
| | - Wenhao Cheng
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
| | - Qianqian Liu
- Fuwai HospitalNational Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100084China
| | - Fan Wang
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefei230026China
| | - Jingjing Li
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefei230026China
- Engineering Research Center of Advanced Rare Earth Materials(Ministry of Education)Department of ChemistryTsinghua UniversityBeijing100084China
- Xiangfu LaboratoryBuilding 5, No.828 Zhongxing Road, Xitang Town, JiashanJiaxingZhejiang314102China
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefei230026China
- Engineering Research Center of Advanced Rare Earth Materials(Ministry of Education)Department of ChemistryTsinghua UniversityBeijing100084China
- Xiangfu LaboratoryBuilding 5, No.828 Zhongxing Road, Xitang Town, JiashanJiaxingZhejiang314102China
| |
Collapse
|
5
|
Lu X, Zhang W. Recyclable thermo-responsive elastin-based adhesives with tough underwater adhesion and rapid hemostasis ability. Colloids Surf A Physicochem Eng Asp 2024; 702:135086. [DOI: 10.1016/j.colsurfa.2024.135086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
6
|
Dong L, Li L, Chen H, Cao Y, Lei H. Mechanochemistry: Fundamental Principles and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2403949. [PMID: 39206931 DOI: 10.1002/advs.202403949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/30/2024] [Indexed: 09/04/2024]
Abstract
Mechanochemistry is an emerging research field at the interface of physics, mechanics, materials science, and chemistry. Complementary to traditional activation methods in chemistry, such as heat, electricity, and light, mechanochemistry focuses on the activation of chemical reactions by directly or indirectly applying mechanical forces. It has evolved as a powerful tool for controlling chemical reactions in solid state systems, sensing and responding to stresses in polymer materials, regulating interfacial adhesions, and stimulating biological processes. By combining theoretical approaches, simulations and experimental techniques, researchers have gained intricate insights into the mechanisms underlying mechanochemistry. In this review, the physical chemistry principles underpinning mechanochemistry are elucidated and a comprehensive overview of recent significant achievements in the discovery of mechanically responsive chemical processes is provided, with a particular emphasis on their applications in materials science. Additionally, The perspectives and insights into potential future directions for this exciting research field are offered.
Collapse
Affiliation(s)
- Liang Dong
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| | - Luofei Li
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| | - Huiyan Chen
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| | - Hai Lei
- School of Physics, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
- Institute of Advanced Physics, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
| |
Collapse
|
7
|
Chen H, Song G, Xu T, Meng C, Zhang Y, Xin T, Yu T, Lin Y, Han B. Biomaterial Scaffolds for Periodontal Tissue Engineering. J Funct Biomater 2024; 15:233. [PMID: 39194671 DOI: 10.3390/jfb15080233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/29/2024] [Accepted: 08/18/2024] [Indexed: 08/29/2024] Open
Abstract
Advanced periodontitis poses a significant threat to oral health, causing extensive damage and loss of both hard and soft periodontal tissues. While traditional therapies such as scaling and root planing can effectively halt the disease's progression, they often fail to fully restore the original architecture and function of periodontal tissues due to the limited capacity for spontaneous regeneration. To address this challenge, periodontal tissue engineering has emerged as a promising approach. This technology centers on the utilization of biomaterial scaffolds, which function as three-dimensional (3D) templates or frameworks, supporting and guiding the regeneration of periodontal tissues, including the periodontal ligament, cementum, alveolar bone, and gingival tissue. These scaffolds mimic the extracellular matrix (ECM) of native periodontal tissues, aiming to foster cell attachment, proliferation, differentiation, and, ultimately, the formation of new, functional periodontal structures. Despite the inherent challenges associated with preclinical testing, the intensification of research on biomaterial scaffolds, coupled with the continuous advancement of fabrication technology, leads us to anticipate a significant expansion in their application for periodontal tissue regeneration. This review comprehensively covers the recent advancements in biomaterial scaffolds engineered specifically for periodontal tissue regeneration, aiming to provide insights into the current state of the field and potential directions for future research.
Collapse
Affiliation(s)
- Huanhuan Chen
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Guangying Song
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Tianmin Xu
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Chenda Meng
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Yunfan Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Tianyi Xin
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Tingting Yu
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Yifan Lin
- Division of Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Bing Han
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| |
Collapse
|
8
|
Yang M, Wang Y, Xu P, Yang J, Zhao Z, Liu Y. Facile Solvent-Free Fabrication of All-Small-Molecule Supramolecular Photothermal Bioadhesive for Sutureless Wound Closure. ACS Biomater Sci Eng 2024; 10:3935-3945. [PMID: 38741453 DOI: 10.1021/acsbiomaterials.4c00296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Achieving underwater adhesion possesses a significant challenge, primarily due to the presence of interfacial water, which restricts the potential applications of adhesives. In this study, we present a straightforward and environmentally friendly one-pot approach for synthesizing a solvent-free supramolecular TPFe bioadhesive composed of thioctic acid, proanthocyanidins, and FeCl3. The bioadhesive exhibits excellent biocompatibility and photothermal antibacterial properties and demonstrates effective adhesion on various substrates in both wet and dry environments. Importantly, the adhesive strength of this bioadhesive on steel exceeds 1.2 MPa and that on porcine skin exceeds 100 kPa, which is greater than the adhesive strength of most reported bioadhesives. In addition, the bioadhesive exhibits the ability to effectively halt bleeding, close wounds promptly, and promote wound healing in the rat skin wound model. Therefore, the TPFe bioadhesive has potential as a medical bioadhesive for halting bleeding quickly and promoting wound healing in the biomedical field. This study provides a new idea for the development of bioadhesives with firm wet adhesion.
Collapse
Affiliation(s)
- Mingrui Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Yan Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Peng Xu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Jingyi Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Zheng Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
- Hainan Institute of Wuhan University of Technology, Sanya 572000, China
| | - Yichao Liu
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430070, China
| |
Collapse
|
9
|
Li M, Li J, Liu K, Zhang H. Artificial structural proteins: Synthesis, assembly and material applications. Bioorg Chem 2024; 144:107162. [PMID: 38308999 DOI: 10.1016/j.bioorg.2024.107162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/14/2024] [Accepted: 01/27/2024] [Indexed: 02/05/2024]
Abstract
Structural proteins have evolved over billions of years and offer outstanding mechanical properties, such as resilience, toughness and stiffness. Advances in modular protein engineering, polypeptide modification, and synthetic biology have led to the development of novel biomimetic structural proteins to perform in biomedical and military fields. However, the development of customized structural proteins and assemblies with superior performance remains a major challenge, due to the inherent limitations of biosynthesis, difficulty in mimicking the complexed macroscale assembly, etc. This review summarizes the approaches for the design and production of biomimetic structural proteins, and their chemical modifications for multiscale assembly. Furthermore, we discuss the function tailoring and current applications of biomimetic structural protein assemblies. A perspective of future research is to reveal how the mechanical properties are encoded in the sequences and conformations. This review, therefore, provides an important reference for the development of structural proteins-mimetics from replication of nature to even outperforming nature.
Collapse
Affiliation(s)
- Ming Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jingjing Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China; Engineering Research Center of Advanced Rare Earth Materials, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China; Engineering Research Center of Advanced Rare Earth Materials, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
10
|
Han GY, Kwack HW, Kim YH, Je YH, Kim HJ, Cho CS. Progress of polysaccharide-based tissue adhesives. Carbohydr Polym 2024; 327:121634. [PMID: 38171653 DOI: 10.1016/j.carbpol.2023.121634] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 01/05/2024]
Abstract
Recently, polymer-based tissue adhesives (TAs) have gained the attention of scientists and industries as alternatives to sutures for sealing and closing wounds or incisions because of their ease of use, low cost, minimal tissue damage, and short application time. However, poor mechanical properties and weak adhesion strength limit the application of TAs, although numerous studies have attempted to develop new TAs with enhanced performance. Therefore, next-generation TAs with improved multifunctional properties are required. In this review, we address the requirements of polymeric TAs, adhesive characteristics, adhesion strength assessment methods, adhesion mechanisms, applications, advantages and disadvantages, and commercial products of polysaccharide (PS)-based TAs, including chitosan (CS), alginate (AL), dextran (DE), and hyaluronic acid (HA). Additionally, future perspectives are discussed.
Collapse
Affiliation(s)
- Gi-Yeon Han
- Program in Environmental Materials Science, Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Republic of Korea
| | - Ho-Wook Kwack
- Program in Environmental Materials Science, Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Republic of Korea
| | - Yo-Han Kim
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yeon Ho Je
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyun-Joong Kim
- Program in Environmental Materials Science, Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Republic of Korea.
| | - Chong-Su Cho
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|