1
|
Zhu L, Wu W. Dual/Multi-Modal Image-Guided Diagnosis and Therapy Based on Luminogens with Aggregation-Induced Emission. Molecules 2024; 29:371. [PMID: 38257284 PMCID: PMC10819122 DOI: 10.3390/molecules29020371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
The combination of multiple imaging methods has made an indelible contribution to the diagnosis, surgical navigation, treatment, and prognostic evaluation of various diseases. Due to the unique advantages of luminogens with aggregation-induced emission (AIE), their progress has been significant in the field of organic fluorescent contrast agents. Herein, this manuscript summarizes the recent advancements in AIE molecules as contrast agents for optical image-based dual/multi-modal imaging. We particularly focus on the exceptional properties of each material and the corresponding application in the diagnosis and treatment of diseases.
Collapse
Affiliation(s)
| | - Wenbo Wu
- Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China;
| |
Collapse
|
2
|
Shang L, Li Y, Xiao Y, Xu Y, Chen L, Wang H, Tao Q, Ma P, Yang S, Ding G, Dong H. Synergistic Effect of Oxygen- and Nitrogen-Containing Groups in Graphene Quantum Dots: Red Emitted Dual-Mode Magnetic Resonance Imaging Contrast Agents with High Relaxivity. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39885-39895. [PMID: 36031928 DOI: 10.1021/acsami.2c12719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Contrast agents (CAs) in magnetic resonance imaging generally involve the dissociative Gd3+. Because of the limited ligancy of Gd3+, the balance between Gd3+ coordination stability (reducing the concentration of dissociative Gd3+) and increases in the number of coordination water molecules (enhancing the relaxivity) becomes crucial. Herein, the key factor of the synergistic effect between the O- and N-containing groups of graphene quantum dots for the structural design of CAs with both high relaxivity and low toxicity was obtained. The nitrogen-doped graphene quantum dots (NGQDs) with an O/N ratio of 0.4 were selected to construct high-relaxivity magnetic resonance imaging (MRI)-fluorescence dual-mode CAs. The coordination stability of Gd3+ can be increased through the synergetic coordination of O- and N-containing groups. The synergetic coordination of O- and N-containing groups can result in the short residency time of the water ligand and achieve high relaxivity. The resulting CAs (called NGQDs-Gd) exhibit a high relaxivity of 32.04 mM-1 s-1 at 114 μT. Meanwhile, the NGQDs-Gd also emit red fluorescence (614 nm), which can enable the MRI-fluorescence dual-mode imaging as the CAs. Moreover, the bio-toxicity and tumor-targeting behavior of NGQDs-Gd were also evaluated, and NGQDs-Gd show potential in MRI-fluorescence imaging in vivo.
Collapse
Affiliation(s)
- Liuyang Shang
- State Key Laboratory of Functional Materials of Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai 200050, P. R. China
- CAS Center for ExcelleNce in Superconducting Electronics (CENSE), CAS, Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing 100049, P. R. China
| | - Yongqiang Li
- State Key Laboratory of Functional Materials of Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai 200050, P. R. China
- CAS Center for ExcelleNce in Superconducting Electronics (CENSE), CAS, Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing 100049, P. R. China
| | - Yi Xiao
- State Key Laboratory of Functional Materials of Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai 200050, P. R. China
- CAS Center for ExcelleNce in Superconducting Electronics (CENSE), CAS, Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing 100049, P. R. China
| | - Yili Xu
- State Key Laboratory of Functional Materials of Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai 200050, P. R. China
- CAS Center for ExcelleNce in Superconducting Electronics (CENSE), CAS, Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing 100049, P. R. China
| | - Liangfeng Chen
- State Key Laboratory of Functional Materials of Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing 100049, P. R. China
| | - Hang Wang
- State Key Laboratory of Functional Materials of Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai 200050, P. R. China
- CAS Center for ExcelleNce in Superconducting Electronics (CENSE), CAS, Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing 100049, P. R. China
| | - Quan Tao
- State Key Laboratory of Functional Materials of Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai 200050, P. R. China
- CAS Center for ExcelleNce in Superconducting Electronics (CENSE), CAS, Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing 100049, P. R. China
| | - Peixiang Ma
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Siwei Yang
- State Key Laboratory of Functional Materials of Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing 100049, P. R. China
| | - Guqiao Ding
- State Key Laboratory of Functional Materials of Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing 100049, P. R. China
| | - Hui Dong
- State Key Laboratory of Functional Materials of Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS), Shanghai 200050, P. R. China
- CAS Center for ExcelleNce in Superconducting Electronics (CENSE), CAS, Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing 100049, P. R. China
| |
Collapse
|
3
|
Sun B, Bte Rahmat JN, Kim HJ, Mahendran R, Esuvaranathan K, Chiong E, Ho JS, Neoh KG, Zhang Y. Wirelessly Activated Nanotherapeutics for In Vivo Programmable Photodynamic-Chemotherapy of Orthotopic Bladder Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200731. [PMID: 35393785 PMCID: PMC9165499 DOI: 10.1002/advs.202200731] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Photochemical internalization (PCI) is a promising intervention using photodynamic therapy (PDT) to enhance the activity of chemotherapeutic drugs. However, current bladder cancer treatments involve high-dose chemotherapy and high-irradiance PDT which cause debilitating side effects. Moreover, low penetration of light and drugs in target tissues and cumbersome light delivery procedures hinder the clinical utility of PDT and chemotherapy combination for PCI. To circumvent these challenges, a photodynamic-chemotherapy approach is developed comprising tumor-targeting glycosylated nanocarriers, coloaded with chlorin e6 (Ce6) and gemcitabine elaidate (GemE), and a miniaturized implantable wirelessly powered light-emitting diode (LED) as a light source. The device successfully delivers four weekly light doses to the bladder while the nanocarrier promoted the specific accumulation of drugs in tumors. This approach facilitates the combination of low-irradiance PDT (1 mW cm-2 ) and low-dose chemotherapy (≈1500× lower than clinical dose) which significantly cures and controls orthotopic disease burden (90% treated vs control, 35%) in mice, demonstrating a potential new bladder cancer treatment option.
Collapse
Affiliation(s)
- Bowen Sun
- Department of Chemical and Biomolecular EngineeringCollege of Design and EngineeringNational University of SingaporeSingapore117585Singapore
| | - Juwita Norasmara Bte Rahmat
- Department of Biomedical EngineeringCollege of Design and EngineeringNational University of SingaporeSingapore117583Singapore
| | - Han Joon Kim
- Department of Electrical and Computer EngineeringCollege of Design and EngineeringNational University of SingaporeSingapore117583Singapore
| | - Ratha Mahendran
- Department of SurgeryYong Loo Lin School of MedicineNational University of SingaporeSingapore119228Singapore
| | - Kesavan Esuvaranathan
- Department of SurgeryYong Loo Lin School of MedicineNational University of SingaporeSingapore119228Singapore
- Department of UrologyNational University Health SystemSingapore119228Singapore
| | - Edmund Chiong
- Department of SurgeryYong Loo Lin School of MedicineNational University of SingaporeSingapore119228Singapore
- Department of UrologyNational University Health SystemSingapore119228Singapore
| | - John S. Ho
- Department of Electrical and Computer EngineeringCollege of Design and EngineeringNational University of SingaporeSingapore117583Singapore
- Institute for Health Innovation and TechnologyNational University of SingaporeSingapore119276Singapore
- The N.1 Institute for HealthNational University of SingaporeSingapore117456Singapore
| | - Koon Gee Neoh
- Department of Chemical and Biomolecular EngineeringCollege of Design and EngineeringNational University of SingaporeSingapore117585Singapore
| | - Yong Zhang
- Department of Biomedical EngineeringCollege of Design and EngineeringNational University of SingaporeSingapore117583Singapore
| |
Collapse
|
4
|
Hu X, Yu S, Yang G, Long W, Guo T, Tian J, Liu M, Li X, Zhang X, Wei Y. Facile synthesis of inorganic–organic hybrid fluorescent nanoparticles with AIE feature using hexachlorocyclotriphosphazene as the bridge. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117693] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Sun L, Ouyang J, Ma Y, Zeng Z, Zeng C, Zeng F, Wu S. An Activatable Probe with Aggregation-Induced Emission for Detecting and Imaging Herbal Medicine Induced Liver Injury with Optoacoustic Imaging and NIR-II Fluorescence Imaging. Adv Healthc Mater 2021; 10:e2100867. [PMID: 34160144 DOI: 10.1002/adhm.202100867] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/06/2021] [Indexed: 12/15/2022]
Abstract
Whilte herbal medicines are widely used for health promotion and therapy for chronic conditions, inappropriate use of them may cause adverse effects like liver injury, and accurately evaluating their hepatotoxicity is of great significance for public health. Herein, an activatable probe QY-N for diagnosing herbal-medicine-induced liver injury by detecting hepatic NO with NIR-II fluorescence and multispectral optoacoustic tomography (MSOT) imaging is demonstrated. The probe includes a bismethoxyphenyl-amine-containing dihydroxanthene serving as electron donor, a quinolinium as electron acceptor, and a butylamine as recognition group and fluorescence quencher. The hepatic level of NO reacts with butylamine, thereby generating the activated probe QY-NO which exhibits a red-shifted absorption band (700-850 nm) for optoacoustic imaging and generates strong emission (910-1110 nm) for NIR-II fluorescence imaging. QY-NO is aggregation-induced-emission (AIE) active, which ensures strong emission in aggregated state. QY-N is utilized in the triptolide-induced liver injury mouse model, and experimental results demonstrate the QY-N can be activated by hepatic NO and thus be used in detecting herbal-medicine-induced liver injury. The temporal and spatial information provided by three-dimensional MSOT images well delineates the site and size of liver injury. Moreover, QY-N has also been employed to monitor rehabilitation of liver injury during treatment process.
Collapse
Affiliation(s)
- Lihe Sun
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates College of Materials Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Juan Ouyang
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates College of Materials Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Yunqing Ma
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates College of Materials Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Zhuo Zeng
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates College of Materials Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Cheng Zeng
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates College of Materials Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Fang Zeng
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates College of Materials Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Shuizhu Wu
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates College of Materials Science and Engineering South China University of Technology Guangzhou 510640 China
| |
Collapse
|
6
|
Cook AB, Clemons TD. Bottom‐Up versus Top‐Down Strategies for Morphology Control in Polymer‐Based Biomedical Materials. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Alexander B. Cook
- Laboratory of Nanotechnology for Precision Medicine Istituto Italiano di Tecnologia Via Morego 30 Genova 16163 Italy
| | - Tristan D. Clemons
- School of Polymer Science and Engineering University of Southern Mississippi Hattiesburg MS 39406 USA
| |
Collapse
|
7
|
Wang J, Li T, Ni J, Guo H, Kang T, Li Z, Zha M, Lu S, Zhang C, Qi W, Xi L, Li K. Photoacoustic Force-Guided Precise and Fast Delivery of Nanomedicine with Boosted Therapeutic Efficacy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100228. [PMID: 34081400 PMCID: PMC8373104 DOI: 10.1002/advs.202100228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/12/2021] [Indexed: 05/05/2023]
Abstract
Precise and efficient delivery of nanomedicine to the target site has remained as a major roadblock in advanced cancer treatment. Here, a novel photoacoustic force (PAF)-guided nanotherapeutic system is reported based on a near-infrared (NIR)-absorbing semiconducting polymer (SP), showing significantly improved tumor accumulation and deep tissue penetration for enhanced phototherapeutic efficacy. The accumulation of nanoparticles in 4T1 tumor-bearing mice induced by the PAF strategy displays a fivefold enhancement in comparison with that of the traditional passive targeting pathway, in a significantly shortened time (45 min vs 24 h) with an enhanced penetration depth in tumors. Additionally, a tumor-bearing mouse model is rationally designed to unveil the mechanism, indicating that the nanoparticles enter solid tumors through enhanced transportation across blood vessel barriers via both inter-endothelial gaps and active trans-endothelial pathways. This process is specifically driven by PAF generated from the nanoparticles under NIR laser irradiation. The study thus demonstrates a new nanotherapeutic strategy with low dose, enhanced delivery efficiency in tumor, and boosted therapeutic efficacy, opening new doors for designing novel nanocarriers.
Collapse
Affiliation(s)
- Jun Wang
- Department of Biomedical EngineeringSouthern University of Science and Technology (SUSTech)Shenzhen518055China
| | - Tingting Li
- Department of Biomedical EngineeringSouthern University of Science and Technology (SUSTech)Shenzhen518055China
| | - Jen‐Shyang Ni
- Department of Biomedical EngineeringSouthern University of Science and Technology (SUSTech)Shenzhen518055China
| | - Heng Guo
- Department of Biomedical EngineeringSouthern University of Science and Technology (SUSTech)Shenzhen518055China
| | - Tianyi Kang
- Department of Biomedical EngineeringSouthern University of Science and Technology (SUSTech)Shenzhen518055China
| | - Zeshun Li
- Department of Biomedical EngineeringSouthern University of Science and Technology (SUSTech)Shenzhen518055China
| | - Menglei Zha
- Department of Biomedical EngineeringSouthern University of Science and Technology (SUSTech)Shenzhen518055China
| | - Songbo Lu
- Department of Biomedical EngineeringSouthern University of Science and Technology (SUSTech)Shenzhen518055China
| | - Chen Zhang
- Department of Biomedical EngineeringSouthern University of Science and Technology (SUSTech)Shenzhen518055China
| | - Weizhi Qi
- Department of Biomedical EngineeringSouthern University of Science and Technology (SUSTech)Shenzhen518055China
| | - Lei Xi
- Department of Biomedical EngineeringSouthern University of Science and Technology (SUSTech)Shenzhen518055China
| | - Kai Li
- Department of Biomedical EngineeringSouthern University of Science and Technology (SUSTech)Shenzhen518055China
| |
Collapse
|
8
|
Mao L, Jiang Y, Ouyang H, Feng Y, Li R, Zhang X, Nie Z, Wei Y. Revealing the Distribution of Aggregation-Induced Emission Nanoparticles via Dual-Modality Imaging with Fluorescence and Mass Spectrometry. RESEARCH (WASHINGTON, D.C.) 2021; 2021:9784053. [PMID: 34250495 PMCID: PMC8237597 DOI: 10.34133/2021/9784053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/03/2021] [Indexed: 11/21/2022]
Abstract
Aggregation-induced emission nanoparticles (AIE NPs) are widely used in the biomedical field. However, understanding the biological process of AIE NPs via fluorescence imaging is challenging because of the strong background and poor penetration depth. Herein, we present a novel dual-modality imaging strategy that combines fluorescence imaging and label-free laser desorption/ionization mass spectrometry imaging (LDI MSI) to map and quantify the biodistribution of AIE NPs (TPAFN-F127 NPs) by monitoring the intrinsic photoluminescence and mass spectrometry signal of the AIE molecule. We discovered that TPAFN-F127 NPs were predominantly distributed in the liver and spleen, and most gradually excreted from the body after 5 days. The accumulation and retention of TPAFN-F127 NPs in tumor sites were also confirmed in a tumor-bearing mouse model. As a proof of concept, the suborgan distribution of TPAFN-F127 NPs in the spleen was visualized by LDI MSI, and the results revealed that TPAFN-F127 NPs were mainly distributed in the red pulp of the spleen with extremely high concentrations within the marginal zone. The in vivo toxicity test demonstrated that TPAFN-F127 NPs are nontoxic for a long-term exposure. This dual-modality imaging strategy provides some insights into the fine distribution of AIE NPs and might also be extended to other polymeric NPs to evaluate their distribution and drug release behaviors in vivo.
Collapse
Affiliation(s)
- Liucheng Mao
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yuming Jiang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Hui Ouyang
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China
| | - Yulin Feng
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China
| | - Ruoxin Li
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xiaoyong Zhang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Zongxiu Nie
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
9
|
Yang X, Luo Y, Li S, Xu X, Bao Y, Yang J, Ouyang D, Fan X, Gong P, Cai L. Small Molecular Prodrug Amphiphile Self-Assembled AIE Dots for Cancer Theranostics. Front Bioeng Biotechnol 2020; 8:903. [PMID: 33117772 PMCID: PMC7566912 DOI: 10.3389/fbioe.2020.00903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/13/2020] [Indexed: 11/16/2022] Open
Abstract
A simple and facile one-step method was developed to construct a small molecular prodrug amphiphile self-assembled organic dots CPPG with aggregation-induced emission (AIE) characteristics. Diphenylalanine peptide (FF), which is the essential moiety of the self-assembling peptide-drug conjugate and as its core recognition motifs for molecular self-assembly. In addition, the D-glucose transported protein (GLUT), which is one of the important nutrient transporters and is overexpressed in cancer cells. The conjugation of glycosyl further endues the nanoparticle with good biocompatibility and tumor-targeting ability. Taking advantages of both the cancer cell-targeting capability of small molecular prodrug amphiphile CPPG and the AIE aggregates with strong emission, the prepared CPPG AIE dots can target cancer cells specifically and inhibit the proliferation of cancer cells with good biocompatibility and photostability. Based on the general approach, types of universal organic fluorescent nanoprobes could be facilely constructed for imaging applications and biological therapeutics, which possess the properties of specific recognition and high brightness.
Collapse
Affiliation(s)
- Xing Yang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Luo
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Sanpeng Li
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiuli Xu
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Nano Science and Technology Institute, University of Science and Technology of China, Hefei, China
| | - Yingxia Bao
- Guangzhou Baiyunshan Pharmaceutical Co., Ltd., Baiyunshan Pharmaceutical General Factory, Guangzhou, China
| | | | - Defang Ouyang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau, China
| | - Xingxing Fan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Ping Gong
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
10
|
Fu S, Cai Z, Liu L, Yang L, Jin R, Lu Z, Ai H. Controlled aggregation of amphiphilic aggregation‐induced emission polycation and superparamagnetic iron oxide nanoparticles as fluorescence/magnetic resonance imaging probes. J Appl Polym Sci 2020. [DOI: 10.1002/app.48760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Shengxiang Fu
- National Engineering Research Center for BiomaterialsSichuan University Chengdu China
| | - Zhongyuan Cai
- National Engineering Research Center for BiomaterialsSichuan University Chengdu China
| | - Li Liu
- National Engineering Research Center for BiomaterialsSichuan University Chengdu China
| | - Li Yang
- National Engineering Research Center for BiomaterialsSichuan University Chengdu China
| | - Rongrong Jin
- National Engineering Research Center for BiomaterialsSichuan University Chengdu China
| | - Zhiyun Lu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of ChemistrySichuan University Chengdu China
| | - Hua Ai
- National Engineering Research Center for BiomaterialsSichuan University Chengdu China
- Department of Radiology, West China HospitalSichuan University Chengdu China
| |
Collapse
|
11
|
Yang CT, Hattiholi A, Selvan ST, Yan SX, Fang WW, Chandrasekharan P, Koteswaraiah P, Herold CJ, Gulyás B, Aw SE, He T, Ng DCE, Padmanabhan P. Gadolinium-based bimodal probes to enhance T1-Weighted magnetic resonance/optical imaging. Acta Biomater 2020; 110:15-36. [PMID: 32335310 DOI: 10.1016/j.actbio.2020.03.047] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/29/2022]
Abstract
Gd3+-based contrast agents have been extensively used for signal enhancement of T1-weighted magnetic resonance imaging (MRI) due to the large magnetic moment and long electron spin relaxation time of the paramagnetic Gd3+ ion. The key requisites for the development of Gd3+-based contrast agents are their relaxivities and stabilities which can be achieved by chemical modifications. These modifications include coordinating Gd3+ with a chelator such as diethylenetriamine pentaacetic acid (DTPA) or 1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), encapsulating Gd3+ in nanoparticles, conjugation to biomacromolecules such as polymer micelles and liposomes, or non-covalent binding to plasma proteins. In order to have a coherent diagnostic and therapeutic approach and to understand diseases better, the combination of MRI and optical imaging (OI) techniques into one technique entity has been developed to overcome the conventional boundaries of either imaging modality used alone through bringing the excellent spatial resolution of MRI and high sensitivity of OI into full play. Novel MRI and OI bimodal probes have been extensively studied in this regard. This review is an attempt to shed some light on the bimodal imaging probes by summarizing all recent noteworthy publications involving Gd3+ containing MR-optical imaging probes. The several key elements such as novel synthetic strategy, high sensitivity, biocompatibility, and targeting of the probes are highlighted in the review. STATEMENT OF SIGNIFICANCE: The present article aims at giving an overview of the existing bimodal MRI and OI imaging probes. The review structured as a series of examples of paramagnetic Gd3+ ions, either as ions in the crystalline structure of inorganic materials or chelates for contrast enhancement in MRI, while they are used as optical imaging probes in different modes. The comprehensive review focusing on the synthetic strategies, characterizations and properties of these bimodal imaging probes will be helpful in a way to prepare related work.
Collapse
Affiliation(s)
- Chang-Tong Yang
- Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, 169608, Singapore; Duke-NUS Medical School, 8 College Road, 169857, Singapore.
| | - Aishwarya Hattiholi
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, 636921, Singapore; School of Biological Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Subramanian Tamil Selvan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, 636921, Singapore
| | - Sean Xuexian Yan
- Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, 169608, Singapore; Duke-NUS Medical School, 8 College Road, 169857, Singapore
| | - Wei-Wei Fang
- School of Chemistry and Chemical Engineering, HeFei University of Technology, HeFei, AnHui 230009, PR China
| | | | - Podili Koteswaraiah
- School of Biological Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Christian J Herold
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna General Hospital, Austria
| | - Balázs Gulyás
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, 636921, Singapore; Karolinska Institutet, Department of Clinical Neuroscience, S-171 76, Stockholm, Sweden
| | - Swee Eng Aw
- Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, 169608, Singapore
| | - Tao He
- School of Chemistry and Chemical Engineering, HeFei University of Technology, HeFei, AnHui 230009, PR China
| | - David Chee Eng Ng
- Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, 169608, Singapore; Duke-NUS Medical School, 8 College Road, 169857, Singapore
| | - Parasuraman Padmanabhan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, 636921, Singapore
| |
Collapse
|
12
|
Yang H, He Y, Wang Y, Yang R, Wang N, Zhang LM, Gao M, Jiang X. Theranostic Nanoparticles with Aggregation-Induced Emission and MRI Contrast Enhancement Characteristics as a Dual-Modal Imaging Platform for Image-Guided Tumor Photodynamic Therapy. Int J Nanomedicine 2020; 15:3023-3038. [PMID: 32431499 PMCID: PMC7200263 DOI: 10.2147/ijn.s244541] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 04/09/2020] [Indexed: 01/10/2023] Open
Abstract
Introduction Advanced tumor-targeted theranostic nanoparticles play a key role in tumor diagnosis and treatment research. In this study, we developed a multifunctional theranostic platform based on an amphiphilic hyaluronan/poly-(N-ε-carbobenzyloxy-L-lysine) derivative (HA-g-PZLL), superparamagnetic iron oxide (SPIO) and aggregation-induced emission (AIE) nanoparticles for tumor-targeted magnetic resonance (MR) and fluorescence (FL) dual-modal image-guided photodynamic therapy (PDT). Materials and Methods The amphiphilic hyaluronan acid (HA) derivative HA-g-PZLL was synthesized by grafting hydrophobic poly-(N-ε-carbobenzyloxy-L-lysine) (PZLL) blocks onto hyaluronic acid by a click conjugation reaction. The obtained HA-g-PZLLs self-assembled into nanoparticles in the presence of AIE molecules and SPIO nanoparticles to produce tumor-targeted theranostic nanoparticles (SPIO/AIE@HA-g-PZLLs) with MR/FL dual-modal imaging ability. Cellular uptake of the theranostic nanoparticles was traced by confocal laser scanning microscopy (CLSM), flow cytometry and Prussian blue staining. The intracellular reactive oxygen species (ROS) generation characteristics of the theranostic nanoparticles were evaluated with CLSM and flow cytometry. The effect of PDT was evaluated by cytotoxicity assay. The dual-mode imaging ability of the nanoparticles was evaluated by a real-time near-infrared fluorescence imaging system and magnetic resonance imaging scanning. Results The resulting theranostic nanoparticles not only emit red fluorescence for high-quality intracellular tracing but also effectively produce singlet oxygen for photodynamic tumor therapy. In vitro cytotoxicity experiments showed that these theranostic nanoparticles can be efficiently taken up and are mainly present in the cytoplasm of HepG2 cells. After internalization, these theranostic nanoparticles showed serious cytotoxicity to the growth of HepG2 cells after white light irradiation. Discussion This work provides a simple method for the preparation of theranostic nanoparticles with AIE characteristics and MR contrast enhancement, and serves as a dual-modal imaging platform for image-guided tumor PDT.
Collapse
Affiliation(s)
- Huikang Yang
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong Province 510640, People's Republic of China
| | - Yufang He
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong Province 510640, People's Republic of China
| | - Yan Wang
- Department of Urology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong Province 510640, People's Republic of China
| | - Ruimeng Yang
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong Province 510640, People's Republic of China
| | - Nianhua Wang
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong Province 510640, People's Republic of China
| | - Li-Ming Zhang
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong Province 510275, People's Republic of China
| | - Meng Gao
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong Province 510006, People's Republic of China
| | - Xinqing Jiang
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong Province 510640, People's Republic of China
| |
Collapse
|
13
|
Xia B, Yan X, Fang WW, Chen S, Jiang Z, Wang J, Sun TC, Li Q, Li Z, Lu Y, He T, Cao B, Yang CT. Activatable Cell-Penetrating Peptide Conjugated Polymeric Nanoparticles with Gd-Chelation and Aggregation-Induced Emission for Bimodal MR and Fluorescence Imaging of Tumors. ACS APPLIED BIO MATERIALS 2020; 3:1394-1405. [DOI: 10.1021/acsabm.9b01049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Bin Xia
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, People’s Republic of China
| | - Xu Yan
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, People’s Republic of China
| | - Wei-Wei Fang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, People’s Republic of China
| | - Sheng Chen
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, People’s Republic of China
| | - ZhiLin Jiang
- Centre for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, People’s Republic of China
| | - JinChen Wang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, People’s Republic of China
| | - Tian-Ci Sun
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, People’s Republic of China
| | - Qing Li
- The Central Laboratory of Medical Research Centre, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230009, People’s Republic of China
| | - Zhen Li
- Centre for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, People’s Republic of China
| | - Yang Lu
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, People’s Republic of China
| | - Tao He
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, People’s Republic of China
| | - BaoQiang Cao
- Department of General Surgery, Anhui No. 2 Provincial People’s Hospital, Hefei, Anhui 230041, People’s Republic of China
| | - Chang-Tong Yang
- Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, Singapore 169608
- Duke-NUS Medical School, 8 College Road, Singapore 169857
| |
Collapse
|
14
|
Zhang H, Sun Y, Zhou T, Yu Q, Yang Z, Cai Z, Cang H. Poly(2-oxazoline)-based nanoparticles with aggregation-induced emission (AIE) for targeted cell imaging. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2018.1525550] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Huaihong Zhang
- School of Chemistry and Biology, Yancheng Institute of Technology, Yancheng, China
- College of Chemistry and Chemical Engineering, Southeast University, Nanjing, China
| | - Yu Sun
- College of Chemistry and Chemical Engineering, Southeast University, Nanjing, China
| | - Tao Zhou
- School of Chemistry and Biology, Yancheng Institute of Technology, Yancheng, China
| | - Qing Yu
- School of Chemistry and Biology, Yancheng Institute of Technology, Yancheng, China
| | - Zhenqing Yang
- School of Chemistry and Biology, Yancheng Institute of Technology, Yancheng, China
| | - Zhaosheng Cai
- School of Chemistry and Biology, Yancheng Institute of Technology, Yancheng, China
| | - Hui Cang
- School of Chemistry and Biology, Yancheng Institute of Technology, Yancheng, China
| |
Collapse
|
15
|
Meng L, Ma X, Jiang S, Ji G, Han W, Xu B, Tian J, Tian W. High-efficiency fluorescent and magnetic multimodal probe for long-term monitoring and deep penetration imaging of tumors. J Mater Chem B 2019; 7:5345-5351. [DOI: 10.1039/c9tb00638a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
High-quality multimodal imaging requires exogenous contrast agents with high sensitivity, spatial–temporal resolution, and high penetration depth for the accurate diagnosis and surveillance of cancer.
Collapse
Affiliation(s)
- Lingchen Meng
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun
- China
| | - Xibo Ma
- Key Laboratory of Molecular Imaging
- Institute of Automation
- Chinese Academy of Sciences
- Beijing
- China
| | - Shan Jiang
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun
- China
| | - Guang Ji
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun
- China
| | - Wenkun Han
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun
- China
| | - Bin Xu
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun
- China
| | - Jie Tian
- Key Laboratory of Molecular Imaging
- Institute of Automation
- Chinese Academy of Sciences
- Beijing
- China
| | - Wenjing Tian
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun
- China
| |
Collapse
|
16
|
Li D. AIEgen functionalized inorganic–organic hybrid nanomaterials for cancer diagnosis and therapy. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00411d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AIEgen functionalized inorganic–organic hybrid nanomaterials with multifunctions can be used for cancer diagnosis and imaging-guided synergistic therapy.
Collapse
Affiliation(s)
- Dongdong Li
- Key Laboratory of Automobile Materials of MOE
- Department of Materials Science and Engineering
- Jilin University
- Changchun 130012
- China
| |
Collapse
|
17
|
Zhu C, Kwok RTK, Lam JWY, Tang BZ. Aggregation-Induced Emission: A Trailblazing Journey to the Field of Biomedicine. ACS APPLIED BIO MATERIALS 2018; 1:1768-1786. [DOI: 10.1021/acsabm.8b00600] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Chunlei Zhu
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ryan T. K. Kwok
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jacky W. Y. Lam
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ben Zhong Tang
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Centre for Aggregation-Induced Emission, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing First RD, South Area, Hi-Tech Park, Nanshan, Shenzhen 518057, China
| |
Collapse
|
18
|
Mei J, Huang Y, Tian H. Progress and Trends in AIE-Based Bioprobes: A Brief Overview. ACS APPLIED MATERIALS & INTERFACES 2018; 10:12217-12261. [PMID: 29140079 DOI: 10.1021/acsami.7b14343] [Citation(s) in RCA: 218] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Luminescent bioprobes are powerful analytical means for biosensing and optical imaging. Luminogens featured with aggregation-induced emission (AIE) attributes have emerged as ideal building blocks for high-performance bioprobes. Bioprobes constructed with AIE luminogens have been identified to be a novel class of FL light-up probing tools. In contrast to conventional bioprobes based on the luminophores with aggregation-caused quenching (ACQ) effect, the AIE-based bioprobes enjoy diverse superiorities, such as lower background, higher signal-to-noise ratio and sensitivity, better accuracy, and more outstanding resistance to photobleaching. AIE-based bioprobes have been tailored for a vast variety of purposes ranging from biospecies sensing to bioimaging to theranostics (i.e., image-guided therapies). In this review, recent five years' advances in AIE-based bioprobes are briefly overviewed in a perspective distinct from other reviews, focusing on the most appealing trends and progresses in this flourishing research field. There are altogether 11 trends outlined, which have been classified into four aspects: the probe composition and form (bioconjugtes, nanoprobes), the output signal of probe (far-red/near-infrared luminescence, two/three-photon excited fluorescence, phosphorescence), the modality and functionality of probing system (dual-modality, dual/multifunctionality), the probing object and application outlet (specific organelles, cancer cells, bacteria, real samples). Typical examples of each trend are presented and specifically demonstrated. Some important prospects and challenges are pointed out as well in the hope of intriguing more interests from researchers working in diverse areas into this exciting research field.
Collapse
Affiliation(s)
- Ju Mei
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering , East China University of Science & Technology , No. 130 Meilong Road , Shanghai 200237 , China
| | - Youhong Huang
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering , East China University of Science & Technology , No. 130 Meilong Road , Shanghai 200237 , China
| | - He Tian
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering , East China University of Science & Technology , No. 130 Meilong Road , Shanghai 200237 , China
| |
Collapse
|
19
|
Gao H, Zhao X, Chen S. AIEgen-Based Fluorescent Nanomaterials: Fabrication and Biological Applications. Molecules 2018; 23:E419. [PMID: 29443927 PMCID: PMC6017469 DOI: 10.3390/molecules23020419] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 12/21/2022] Open
Abstract
In recent years, luminogens with the feature of aggregation-induced emission (AIEgen) have emerged as advanced luminescent materials for fluorescent nanomaterial preparation. AIEgen-based nanomaterials show enhanced fluorescence efficiency and superior photostability, which thusly offer unique advantages in biological applications. In this review, we will summarize the fabrication methods of AIEgen-based nanomaterials and their applications in in vitro/in vivo imaging, cell tracing, photodynamic therapy and drug delivery, focusing on the recent progress.
Collapse
Affiliation(s)
- Hui Gao
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong, China.
| | - Xin Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Sijie Chen
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong, China.
| |
Collapse
|
20
|
Feng G, Liu B. Multifunctional AIEgens for Future Theranostics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:6528-6535. [PMID: 27608414 DOI: 10.1002/smll.201601637] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 06/27/2016] [Indexed: 06/06/2023]
Abstract
The combination of diagnosis and therapeutics into one theranostics system has attracted great interest in life science and biomedical fields. The current theranostic platform largely relies on the integration of multiple materials with different functionalities. The all-in-one approach has the risk of high complicity with reduced reproducibility. Smart design of simple molecules born with multifunctions should represent one of the future directions in theranostics. Fluorogens with aggregation-induced emission (AIEgens) are one type of such smart materials, which have attracted increasing attentions in recent years. In this concept, the key frontier developments of simple AIEgens with multifunctions for imaging and therapy are presented, which include fluorescence-photoacoustic imaging, fluorescence-magnetic resonance imaging, fluorescence image-guided photodynamic therapy, fluorescence image-guided chemotherapy and photoacoustic image-guided photothermal therapy. The smart molecular design to endow each AIEgen with strong capability to simultaneously offer two or more theranostic functions should attract more scientists into this exciting research direction.
Collapse
Affiliation(s)
- Guangxue Feng
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, 136834, Singapore
| |
Collapse
|
21
|
Long Z, Liu M, Wang K, Deng F, Xu D, Liu L, Wan Y, Zhang X, Wei Y. Facile synthesis of AIE-active amphiphilic polymers: Self-assembly and biological imaging applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 66:215-220. [DOI: 10.1016/j.msec.2016.04.081] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 03/31/2016] [Accepted: 04/24/2016] [Indexed: 10/21/2022]
|
22
|
Long Z, Liu M, Wan Q, Mao L, Huang H, Zeng G, Wan Y, Deng F, Zhang X, Wei Y. Facile Fabrication of PEGylated Fluorescent Organic Nanoparticles with Aggregation-Induced Emission Feature via Formation of Dynamic Bonds and Their Biological Imaging Applications. Macromol Rapid Commun 2016; 37:1657-1661. [DOI: 10.1002/marc.201600253] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 06/02/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Zi Long
- College of Chemistry; Nanchang University; 999 Xuefu Avenue Nanchang 330031 China
| | - Meiying Liu
- College of Chemistry; Nanchang University; 999 Xuefu Avenue Nanchang 330031 China
| | - Qing Wan
- College of Chemistry; Nanchang University; 999 Xuefu Avenue Nanchang 330031 China
| | - Liucheng Mao
- College of Chemistry; Nanchang University; 999 Xuefu Avenue Nanchang 330031 China
| | - Hongye Huang
- College of Chemistry; Nanchang University; 999 Xuefu Avenue Nanchang 330031 China
| | - Guangjian Zeng
- College of Chemistry; Nanchang University; 999 Xuefu Avenue Nanchang 330031 China
| | - Yiqun Wan
- College of Chemistry; Nanchang University; 999 Xuefu Avenue Nanchang 330031 China
| | - Fengjie Deng
- College of Chemistry; Nanchang University; 999 Xuefu Avenue Nanchang 330031 China
| | - Xiaoyong Zhang
- College of Chemistry; Nanchang University; 999 Xuefu Avenue Nanchang 330031 China
| | - Yen Wei
- Department of Chemistry and the Tsinghua, Center for Frontier Polymer Research; Tsinghua University; Beijing 100084 China
| |
Collapse
|
23
|
Yan L, Zhang Y, Xu B, Tian W. Fluorescent nanoparticles based on AIE fluorogens for bioimaging. NANOSCALE 2016; 8:2471-2487. [PMID: 26478255 DOI: 10.1039/c5nr05051k] [Citation(s) in RCA: 170] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Fluorescent nanoparticles (FNPs) have recently attracted increasing attention in the biomedical field because of their unique optical properties, easy fabrication and outstanding performance in imaging. Compared with conventional molecular probes including small organic dyes and fluorescent proteins, FNPs based on aggregation-induced emission (AIE) fluorogens have shown significant advantages in tunable emission and brightness, good biocompatibility, superb photo- and physical stability, potential biodegradability and facile surface functionalization. In this review, we summarize the latest advances in the development of fluorescent nanoparticles based on AIE fluorogens including polymer nanoparticles and silica nanoparticles over the past few years, and the various biomedical applications based on these fluorescent nanoparticles are also elaborated.
Collapse
Affiliation(s)
- Lulin Yan
- State Key Lab of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, China.
| | - Yan Zhang
- State Key Lab of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, China.
| | - Bin Xu
- State Key Lab of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, China.
| | - Wenjing Tian
- State Key Lab of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, China.
| |
Collapse
|
24
|
Yang D, Li F, Luo Z, Bao B, Hu Y, Weng L, Cheng Y, Wang L. Conjugated polymer nanoparticles with aggregation induced emission characteristics for intracellular Fe3+
sensing. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/pola.28024] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Dongliang Yang
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications; 9 Wenyuan Road Nanjing 210023 China
| | - Fei Li
- Key Lab of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University; 22 Hankou Road Nanjing 210093 China
| | - Zhimin Luo
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications; 9 Wenyuan Road Nanjing 210023 China
| | - Biqing Bao
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications; 9 Wenyuan Road Nanjing 210023 China
| | - Yanling Hu
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications; 9 Wenyuan Road Nanjing 210023 China
| | - Lixing Weng
- College of Geography and Biological Information, Nanjing University of Posts and Telecommunications; 9 Wenyuan Road Nanjing 210023 China
| | - Yixiang Cheng
- Key Lab of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University; 22 Hankou Road Nanjing 210093 China
| | - Lianhui Wang
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications; 9 Wenyuan Road Nanjing 210023 China
| |
Collapse
|
25
|
Yan L, Zhang Y, Ji G, Ma L, Chen J, Xu B, Tian W. Multifunctional polymer nanoparticles: ultra bright near-infrared fluorescence and strong magnetization and their biological applications. RSC Adv 2016. [DOI: 10.1039/c6ra07520g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Magnetic fluorescent multifunctional polymer NPs Fe3O4/DPPBPA@F-127 and their application in MRI and NIR imaging.
Collapse
Affiliation(s)
- Lulin Yan
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun
- P. R. China
| | - Yan Zhang
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun
- P. R. China
| | - Guang Ji
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun
- P. R. China
| | - Lian Ma
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun
- P. R. China
| | - Jinlong Chen
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun
- P. R. China
| | - Bin Xu
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun
- P. R. China
| | - Wenjing Tian
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun
- P. R. China
| |
Collapse
|
26
|
Yang CT, Padmanabhan P, Gulyás BZ. Gadolinium(iii) based nanoparticles for T1-weighted magnetic resonance imaging probes. RSC Adv 2016. [DOI: 10.1039/c6ra07782j] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This review summarized the recent progress on Gd(iii)-based nanoparticles asT1-weighted MRI contrast agents and multimodal contrast agents.
Collapse
Affiliation(s)
- Chang-Tong Yang
- Lee Kong Chian School of Medicine
- Nanyang Technological University
- Singapore 636921
| | | | - Balázs Z. Gulyás
- Lee Kong Chian School of Medicine
- Nanyang Technological University
- Singapore 636921
| |
Collapse
|
27
|
Mei J, Leung NLC, Kwok RTK, Lam JWY, Tang BZ. Aggregation-Induced Emission: Together We Shine, United We Soar! Chem Rev 2015; 115:11718-940. [DOI: 10.1021/acs.chemrev.5b00263] [Citation(s) in RCA: 5139] [Impact Index Per Article: 513.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ju Mei
- HKUST-Shenzhen Research Institute, Hi-Tech
Park, Nanshan, Shenzhen 518057, China
- Department of Chemistry,
HKUST Jockey Club Institute for Advanced Study, Institute of Molecular
Functional Materials, Division of Biomedical Engineering, State Key
Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Nelson L. C. Leung
- HKUST-Shenzhen Research Institute, Hi-Tech
Park, Nanshan, Shenzhen 518057, China
- Department of Chemistry,
HKUST Jockey Club Institute for Advanced Study, Institute of Molecular
Functional Materials, Division of Biomedical Engineering, State Key
Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ryan T. K. Kwok
- HKUST-Shenzhen Research Institute, Hi-Tech
Park, Nanshan, Shenzhen 518057, China
- Department of Chemistry,
HKUST Jockey Club Institute for Advanced Study, Institute of Molecular
Functional Materials, Division of Biomedical Engineering, State Key
Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jacky W. Y. Lam
- HKUST-Shenzhen Research Institute, Hi-Tech
Park, Nanshan, Shenzhen 518057, China
- Department of Chemistry,
HKUST Jockey Club Institute for Advanced Study, Institute of Molecular
Functional Materials, Division of Biomedical Engineering, State Key
Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ben Zhong Tang
- HKUST-Shenzhen Research Institute, Hi-Tech
Park, Nanshan, Shenzhen 518057, China
- Department of Chemistry,
HKUST Jockey Club Institute for Advanced Study, Institute of Molecular
Functional Materials, Division of Biomedical Engineering, State Key
Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Guangdong
Innovative Research Team, SCUT-HKUST Joint Research Laboratory, State
Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
28
|
Liang J, Feng G, Kwok RTK, Ding D, Tang B, Liu B. AIEgen based light-up probes for live cell imaging. Sci China Chem 2015. [DOI: 10.1007/s11426-015-5470-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Zhang X, Wang K, Liu M, Zhang X, Tao L, Chen Y, Wei Y. Polymeric AIE-based nanoprobes for biomedical applications: recent advances and perspectives. NANOSCALE 2015; 7:11486-508. [PMID: 26010238 DOI: 10.1039/c5nr01444a] [Citation(s) in RCA: 339] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The development of polymeric luminescent nanomaterials for biomedical applications has recently attracted a large amount of attention due to the remarkable advantages of these materials compared with small organic dyes and fluorescent inorganic nanomaterials. Among these polymeric luminescent nanomaterials, polymeric luminescent nanomaterials based on dyes with aggregation-induced emission (AIE) properties should be of great research interest due to their unique AIE properties, the designability of polymers and their multifunctional potential. In this review, the recent advances in the design and biomedical applications of polymeric luminescent nanomaterials based on AIE dyes is summarized. Various design strategies for incorporation of these AIE dyes into polymeric systems are included. The potential biomedical applications such as biological imaging, and use in biological sensors and theranostic systems of these polymeric AIE-based nanomaterials have also been highlighted. We trust this review will attract significant interest from scientists from different research fields in chemistry, materials, biology and interdisciplinary areas.
Collapse
Affiliation(s)
- Xiaoyong Zhang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | | | | | | | | | | | | |
Collapse
|
30
|
Li K, Liu B. Polymer-encapsulated organic nanoparticles for fluorescence and photoacoustic imaging. Chem Soc Rev 2015; 43:6570-97. [PMID: 24792930 DOI: 10.1039/c4cs00014e] [Citation(s) in RCA: 680] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Polymer encapsulated organic nanoparticles have recently attracted increasing attention in the biomedical field because of their unique optical properties, easy fabrication and outstanding performance as imaging and therapeutic agents. Of particular importance is the polymer encapsulated nanoparticles containing conjugated polymers (CP) or fluorogens with aggregation induced emission (AIE) characteristics as the core, which have shown significant advantages in terms of tunable brightness, superb photo- and physical stability, good biocompatibility, potential biodegradability and facile surface functionalization. In this review, we summarize the latest advances in the development of polymer encapsulated CP and AIE fluorogen nanoparticles, including preparation methods, material design and matrix selection, nanoparticle fabrication and surface functionalization for fluorescence and photoacoustic imaging. We also discuss their specific applications in cell labeling, targeted in vitro and in vivo imaging, blood vessel imaging, cell tracing, inflammation monitoring and molecular imaging. We specially focus on strategies to fine-tune the nanoparticle property (e.g. size and fluorescence quantum yield) through precise engineering of the organic cores and careful selection of polymer matrices. The review also highlights the merits and limitations of these nanoparticles as well as strategies used to overcome the limitations. The challenges and perspectives for the future development of polymer encapsulated organic nanoparticles are also discussed.
Collapse
Affiliation(s)
- Kai Li
- Institute of Materials Research and Engineering, A*STAR, 3 Research Link, Singapore 117602.
| | | |
Collapse
|
31
|
Liu F, He X, Lei Z, Liu L, Zhang J, You H, Zhang H, Wang Z. Facile preparation of doxorubicin-loaded upconversion@polydopamine nanoplatforms for simultaneous in vivo multimodality imaging and chemophotothermal synergistic therapy. Adv Healthc Mater 2015; 4:559-68. [PMID: 25471617 DOI: 10.1002/adhm.201400676] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 11/12/2014] [Indexed: 12/12/2022]
Abstract
The development of biosafe nanoplatforms with diagnostic and therapeutic multifunction is extremely demanded for designing cancer theranostic medicines. Here, a facile methodology is developed to construct a multifunctional nanotheranostic that gathers five functions, upconversion luminescence (UCL) imaging, T1-weighted magnetic resonance imaging (MRI), X-ray computed tomography (CT) imaging, photothermal therapy (PTT), and chemotherapy, into one single nanoprobe (named as UCNP@PDA5-PEG-DOX). For generating the UCNP@PDA5-PEG-DOX, a near-infrared light (NIR)-absorbing polydopamine (PDA) shell is directly coated on oleic-acid-capped β-NaGdF4:Yb(3+),Er(3+)@β-NaGdF4 upconverting nanoparticle (UCNP) core for the first time to form monodisperse, ultrastable, and noncytotoxic core-shell-structured nanosphere via water-in-oil microemulsion approach. When combined with 808 nm NIR laser irradiation, the UCNP@PDA5-PEG-DOX shows great synergistic interaction between PTT and the enhanced chemotherapy, resulting in completely eradicated mouse-bearing SW620 tumor without regrowth. In addition, leakage study, hemolysis assay, histology analysis, and blood biochemistry assay unambiguously reveal that the UCNP@PDA5-PEG has inappreciable cytotoxicity and negligible organ toxicity. The results provide explicit strategy for fabricating multifunctional nanoplatforms from the integration of UCNP with NIR-absorbing polymers, important for developing multi-mode nanoprobes for biomedical applications.
Collapse
Affiliation(s)
- Fuyao Liu
- State Key Laboratory of Electroanalytical Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P.R. China
- University of Chinese Academy of Sciences; Beijing 100039 P.R. China
| | - Xiuxia He
- School of Life Science and Technology; Changchun University of Science and Technology; Changchun 130022 P. R. China
| | - Zhen Lei
- State Key Laboratory of Electroanalytical Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P.R. China
- University of Chinese Academy of Sciences; Beijing 100039 P.R. China
| | - Liang Liu
- Department of Radiology; The First Hospital of Jilin University; Changchun 130033 P.R. China
| | - Junping Zhang
- School of Life Science and Technology; Changchun University of Science and Technology; Changchun 130022 P. R. China
| | - Hongpeng You
- State Key laboratory of Rare Earth Resource Utilization; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P.R. China
| | - Huimao Zhang
- Department of Radiology; The First Hospital of Jilin University; Changchun 130033 P.R. China
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P.R. China
| |
Collapse
|
32
|
Geng J, Goh CC, Qin W, Liu R, Tomczak N, Ng LG, Tang BZ, Liu B. Silica shelled and block copolymer encapsulated red-emissive AIE nanoparticles with 50% quantum yield for two-photon excited vascular imaging. Chem Commun (Camb) 2015. [DOI: 10.1039/c5cc03603h] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A polymer and silica co-protection strategy has been developed to encapsulate organic fluorogens with aggregation-induced emission and charge transfer characteristics into small nanoparticles (NPs).
Collapse
Affiliation(s)
- Junlong Geng
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore 117585
- Singapore Immunology Network (SIgN)
- A*STAR (Agency for Science, Technology and Research)
| | - Chi Ching Goh
- Institute of Materials Research and Engineering
- Singapore 117602
| | - Wei Qin
- Department of Chemistry
- Division of Biomedical Engineering
- The Hong Kong University of Science and Technology
- Kowloon
- China
| | - Rongrong Liu
- Singapore Immunology Network (SIgN)
- A*STAR (Agency for Science, Technology and Research)
- Singapore 138648
| | - Nikodem Tomczak
- Singapore Immunology Network (SIgN)
- A*STAR (Agency for Science, Technology and Research)
- Singapore 138648
| | - Lai Guan Ng
- Institute of Materials Research and Engineering
- Singapore 117602
| | - Ben Zhong Tang
- Department of Chemistry
- Division of Biomedical Engineering
- The Hong Kong University of Science and Technology
- Kowloon
- China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore 117585
- Singapore Immunology Network (SIgN)
- A*STAR (Agency for Science, Technology and Research)
| |
Collapse
|
33
|
Jin G, Li K. The electrically conductive scaffold as the skeleton of stem cell niche in regenerative medicine. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 45:671-81. [DOI: 10.1016/j.msec.2014.06.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 04/18/2014] [Accepted: 06/09/2014] [Indexed: 12/13/2022]
|
34
|
Jing L, Ding K, Kershaw SV, Kempson IM, Rogach AL, Gao M. Magnetically engineered semiconductor quantum dots as multimodal imaging probes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:6367-86. [PMID: 25178258 DOI: 10.1002/adma.201402296] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 06/25/2014] [Indexed: 05/27/2023]
Abstract
Light-emitting semiconductor quantum dots (QDs) combined with magnetic resonance imaging contrast agents within a single nanoparticle platform are considered to perform as multimodal imaging probes in biomedical research and related clinical applications. The principles of their rational design are outlined and contemporary synthetic strategies are reviewed (heterocrystalline growth; co-encapsulation or assembly of preformed QDs and magnetic nanoparticles; conjugation of magnetic chelates onto QDs; and doping of QDs with transition metal ions), identifying the strengths and weaknesses of different approaches. Some of the opportunities and benefits that arise through in vivo imaging using these dual-mode probes are highlighted where tumor location and delineation is demonstrated in both MRI and fluorescence modality. Work on the toxicological assessments of QD/magnetic nanoparticles is also reviewed, along with progress in reducing their toxicological side effects for eventual clinical use. The review concludes with an outlook for future biomedical imaging and the identification of key challenges in reaching clinical applications.
Collapse
Affiliation(s)
- Lihong Jing
- Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing, 100190, China
| | | | | | | | | | | |
Collapse
|
35
|
Liu M, Zhang X, Yang B, Deng F, Yang Y, Li Z, Zhang X, Wei Y. Preparation and Bioimaging Applications of AIE Dye Cross-linked Luminescent Polymeric Nanoparticles. Macromol Biosci 2014; 14:1712-8. [DOI: 10.1002/mabi.201400262] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/18/2014] [Indexed: 01/13/2023]
Affiliation(s)
- Meiying Liu
- Department of Chemistry/Institute of Polymers; Nanchang University; 999 Xuefu Avenue Nanchang 330031 PR China
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Organic Solids, Laboratory of New Materials, Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 PR China
| | - Xiqi Zhang
- Department of Chemistry and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education); Tsinghua University; Beijing 100084 PR China
| | - Bin Yang
- Department of Chemistry and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education); Tsinghua University; Beijing 100084 PR China
| | - Fengjie Deng
- Department of Chemistry/Institute of Polymers; Nanchang University; 999 Xuefu Avenue Nanchang 330031 PR China
| | - Yang Yang
- Department of Chemistry and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education); Tsinghua University; Beijing 100084 PR China
| | - Zhen Li
- Department of Chemistry and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education); Tsinghua University; Beijing 100084 PR China
| | - Xiaoyong Zhang
- Department of Chemistry/Institute of Polymers; Nanchang University; 999 Xuefu Avenue Nanchang 330031 PR China
- Department of Chemistry and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education); Tsinghua University; Beijing 100084 PR China
| | - Yen Wei
- Department of Chemistry and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education); Tsinghua University; Beijing 100084 PR China
| |
Collapse
|
36
|
Li K, Yamamoto M, Chan SJ, Chiam MY, Qin W, Wong PTH, Yim EKF, Tang BZ, Liu B. Organic nanoparticles with aggregation-induced emission for tracking bone marrow stromal cells in the rat ischemic stroke model. Chem Commun (Camb) 2014; 50:15136-9. [DOI: 10.1039/c4cc06921h] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Fluorescent nanoparticles with aggregation-induced emission were successfully used for tracking bone marrow-derived mesenchymal stromal cells in rats with ischemic stroke.
Collapse
Affiliation(s)
- Kai Li
- Institute of Materials Research and Engineering
- A*STAR
- , Singapore 117602
| | - Mie Yamamoto
- Department of Pharmacology
- Center for Translational Medicine
- Yong Loo Lin School of Medicine
- National University Health System
- National University of Singapore
| | - Su Jing Chan
- Department of Pharmacology
- Center for Translational Medicine
- Yong Loo Lin School of Medicine
- National University Health System
- National University of Singapore
| | - Mun Yee Chiam
- Department of Biomedical Engineering
- National University of Singapore
- , Singapore 117575
| | - Wei Qin
- Department of Chemistry
- Division of Biomedical Engineering
- Institute for Advanced Study
- State Key Laboratory of Molecular Neuroscience, and Institute of Molecular Functional Materials
- The Hong Kong University of Science & Technology
| | - Peter Tsun Hon Wong
- Department of Pharmacology
- Center for Translational Medicine
- Yong Loo Lin School of Medicine
- National University Health System
- National University of Singapore
| | - Evelyn King Fai Yim
- Department of Biomedical Engineering
- National University of Singapore
- , Singapore 117575
- Mechanobiology Institute Singapore
- National University of Singapore
| | - Ben Zhong Tang
- Department of Chemistry
- Division of Biomedical Engineering
- Institute for Advanced Study
- State Key Laboratory of Molecular Neuroscience, and Institute of Molecular Functional Materials
- The Hong Kong University of Science & Technology
| | - Bin Liu
- Institute of Materials Research and Engineering
- A*STAR
- , Singapore 117602
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
| |
Collapse
|
37
|
Zhang X, Zhang X, Tao L, Chi Z, Xu J, Wei Y. Aggregation induced emission-based fluorescent nanoparticles: fabrication methodologies and biomedical applications. J Mater Chem B 2014; 2:4398-4414. [DOI: 10.1039/c4tb00291a] [Citation(s) in RCA: 296] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|