1
|
Ouyang S, Wang F, Liu Y, Hu Z, Li M, Wu Y, Li Z, Qian J, Wang L, Ma S. Current status of research on polysaccharide-based functional gradient gel materials: A review. Carbohydr Polym 2024; 344:122520. [PMID: 39218545 DOI: 10.1016/j.carbpol.2024.122520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/09/2024] [Accepted: 07/17/2024] [Indexed: 09/04/2024]
Abstract
Functional gradient materials with material property anisotropy are one of the hotspots of current new material research. The gradient change of material properties comes from the change of the content of one or more components in the material, which is closely related to the preparation process of the material. Meanwhile, polysaccharide materials, as an environmentally friendly and green material, have attracted extensive attention from researchers. This paper focuses on the preparation process of functional gradient gel materials based on polysaccharides, analyzes the laws affecting the distribution of substances during the molding process from the basic principles of material molding, and clarifies the advantages and disadvantages of various methods, so as to promote the innovation of the theory of the preparation method of functional gradient gel materials. At the same time, the specific applications that can be realized by the gradient materials are introduced and compared with the traditional homogeneous materials to elucidate the enhancement of the usage properties brought by their unique gradient structure or properties, which will play a certain role as a reference for the direction of the application of the subsequent materials.
Collapse
Affiliation(s)
- Shiqiang Ouyang
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Feijie Wang
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Yichi Liu
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Zihan Hu
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Mengdi Li
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Yiting Wu
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhihua Li
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Jing Qian
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Liqiang Wang
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China.
| | - Shufeng Ma
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Li Q, Jin X, Coyne B, Xiang Z. Highly Bioadaptive Scaffolds with Tuned Porous Structure Templated by Xylan Nanocrystal High Internal Phase Pickering Emulsions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:22202-22210. [PMID: 39388525 DOI: 10.1021/acs.langmuir.4c02757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Fabrication of traditional 3D cell culturing scaffolds requires synthetic polymers or additives, posing a risk of poor biocompatibility and low biodegradability. Pickering emulsions stabilized by biobased nanomaterials can be used as templates to produce scaffolds with facile tunable porous structure, excellent cytocompatibility, and biodegradability. In this study, very stable high internal phase Pickering emulsions (HIPPE) with an oil content of 80% were successfully prepared by xylan hydrate nanocrystals (XNC). The HIPPE can exist stably for more than 30 days, exhibiting a high viscosity. By adding cellulose nanofibers (CNF) and removing the oil phase, scaffolds with a tuned porous structure and enhanced cell culturing ability were successfully fabricated. In the HIPPE templated scaffolds with XNC/CNF, XNC plays a major role in stabilizing the emulsions, while CNF improves the mechanical properties of the scaffolds, both of which are vital to the successful fabrication of the scaffolds. Compared with non-HIPPE templated scaffolds, the HIPPE templated scaffold had a higher porosity and a higher median pore size. The HIPPE templated scaffold was able to maintain 80% cell activity and showed an excellent cytocompatibility. The HIPPE templated scaffolds consisting of XNC and CNF demonstrate great potential in 3D cell culturing for medical purpose.
Collapse
Affiliation(s)
- Qianlong Li
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xuchen Jin
- School of Chemistry, University of Leeds, Leeds LS2 9JT, U.K
| | - Ben Coyne
- School of Chemistry, University of Leeds, Leeds LS2 9JT, U.K
| | - Zhouyang Xiang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
3
|
Wilson KL, Joseph NI, Onweller LA, Anderson AR, Darling NJ, David-Bercholz J, Segura T. SDF-1 Bound Heparin Nanoparticles Recruit Progenitor Cells for Their Differentiation and Promotion of Angiogenesis after Stroke. Adv Healthc Mater 2024; 13:e2302081. [PMID: 38009291 PMCID: PMC11128481 DOI: 10.1002/adhm.202302081] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/22/2023] [Indexed: 11/28/2023]
Abstract
Angiogenesis after stroke is correlated with enhanced tissue repair and functional outcomes. The existing body of research in biomaterials for stroke focuses on hydrogels for the delivery of stem cells, growth factors, or small molecules or drugs. Despite the ability of hydrogels to enhance all these delivery methods, no material has significantly regrown vasculature within the translatable timeline of days to weeks after stroke. Here, two novel biomaterial formulations of granular hydrogels are developed for tissue regeneration after stroke: highly porous microgels (i.e., Cryo microgels) and microgels bound with heparin-norbornene nanoparticles with covalently bound SDF-1α. The combination of these materials results in perfused vessels throughout the stroke core in only 10 days, in addition to increased neural progenitor cell recruitment, maintenance, and increased neuronal differentiation.
Collapse
Affiliation(s)
- Katrina L. Wilson
- Department of Biomedical Engineering, Duke University, Durham NC 27708-0281, USA
| | - Neica I. Joseph
- Department of Biomedical Engineering, Duke University, Durham NC 27708-0281, USA
| | - Lauren A. Onweller
- Department of Biomedical Engineering, Duke University, Durham NC 27708-0281, USA
| | - Alexa R. Anderson
- Department of Biomedical Engineering, Duke University, Durham NC 27708-0281, USA
| | - Nicole J. Darling
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | | | - Tatiana Segura
- Department of Biomedical Engineering, Duke University, Durham NC 27708-0281, USA
- Department of Neurology, Duke University, Durham, NC, 27708-0281 USA
- Department of Dermatology, Duke University, Durham, NC, 27708-0281 USA
| |
Collapse
|
4
|
Chen Q, Zou B, Wang X, Zhou X, Yang G, Lai Q, Zhao Y. SLA-3d printed building and characteristics of GelMA/HAP biomaterials with gradient porous structure. J Mech Behav Biomed Mater 2024; 155:106553. [PMID: 38640694 DOI: 10.1016/j.jmbbm.2024.106553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/07/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024]
Abstract
Developing a gradient porous scaffold similar to bone structure is gaining increasing attention in bone tissue engineering. The GelMA/HAP hydrogel has demonstrated potential in bone repair. Although 3D printing can build GelMA/HAP with porous structure, fabricating porous GelMA/HAP with gradient porosity and pore size in one step remains challenging. In this paper, a gradient porous structure with controllable pore size, based on gelatin methacryloyl (GelMA) and hydxroxyapatite (HAP), was engineered and printed using stereolithography. Firstly, the GelMA and HAP were mixed to prepare a hydrogel with a solid content ranging from 10 wt% to 50 wt% for stereolithography. Taking advantage of the sol-gel characteristics of GelMA/HAP hydrogel, GelMA/HAP was fed on the workbench through a combination of extrusion and paving to form a thin layer. During the curing of each layer, the hydrogel exposed to the curing of a single UV beam immediately solidified, forming a highly interconnected porous structure. Additionally, the hydrogel outside the scanning range could be further polymerized to form a relatively dense structure due to the residual laser energy. Finally, without gradient structural design or changing printing parameters, the gradient porous structure of bone-like could be printed in a single-step process. By adjusting the curing parameters of the single UV beam and the concentration and size of ceramic in the hydrogel, the printed pore diameter of the spongy structure could be controlled within the range of 50-260 μm, while the thickness of the compact area could be adjusted within 130-670 μm.
Collapse
Affiliation(s)
- Qinghua Chen
- Center for Advanced Jet Engineering Technologies (CaJET), School of Mechanical Engineering, Shandong University, Jinan, 250061, PR China; Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Shandong University, Ministry of Education, PR China; National Demonstration Center for Experimental Mechanical Engineering Education (Shandong University), PR China; Additive Manufacturing Research Center of Shandong University of National Engineering Research Center of Rapid Manufacturing, PR China
| | - Bin Zou
- Center for Advanced Jet Engineering Technologies (CaJET), School of Mechanical Engineering, Shandong University, Jinan, 250061, PR China; Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Shandong University, Ministry of Education, PR China; National Demonstration Center for Experimental Mechanical Engineering Education (Shandong University), PR China; Additive Manufacturing Research Center of Shandong University of National Engineering Research Center of Rapid Manufacturing, PR China.
| | - Xinfeng Wang
- Center for Advanced Jet Engineering Technologies (CaJET), School of Mechanical Engineering, Shandong University, Jinan, 250061, PR China; Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Shandong University, Ministry of Education, PR China; National Demonstration Center for Experimental Mechanical Engineering Education (Shandong University), PR China; Additive Manufacturing Research Center of Shandong University of National Engineering Research Center of Rapid Manufacturing, PR China
| | - Xingguo Zhou
- Center for Advanced Jet Engineering Technologies (CaJET), School of Mechanical Engineering, Shandong University, Jinan, 250061, PR China; Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Shandong University, Ministry of Education, PR China; National Demonstration Center for Experimental Mechanical Engineering Education (Shandong University), PR China; Additive Manufacturing Research Center of Shandong University of National Engineering Research Center of Rapid Manufacturing, PR China
| | - Gongxian Yang
- Center for Advanced Jet Engineering Technologies (CaJET), School of Mechanical Engineering, Shandong University, Jinan, 250061, PR China; Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Shandong University, Ministry of Education, PR China; National Demonstration Center for Experimental Mechanical Engineering Education (Shandong University), PR China; Additive Manufacturing Research Center of Shandong University of National Engineering Research Center of Rapid Manufacturing, PR China
| | - Qingguo Lai
- Department of Oral and Maxillofacial Surgery, The Second Hospital of Shandong University, Jinan, 250033, Shandong Province, PR China; Research Center of 3D Printing in Stomatology of Shandong University, PR China
| | - Yun Zhao
- Department of Oral and Maxillofacial Surgery, The Second Hospital of Shandong University, Jinan, 250033, Shandong Province, PR China; Research Center of 3D Printing in Stomatology of Shandong University, PR China
| |
Collapse
|
5
|
Wilson KL, Onweller LA, Joseph NI, David-Bercholz J, Darling NJ, Segura T. SDF-1 Bound Heparin Nanoparticles Recruit Progenitor Cells for Their Differentiation and Promotion of Angiogenesis After Stroke. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.05.547800. [PMID: 37461490 PMCID: PMC10349963 DOI: 10.1101/2023.07.05.547800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Angiogenesis after stroke is correlated with enhanced tissue repair and functional outcomes. The existing body of research in biomaterials for stroke focuses on hydrogels for the delivery of stem cells, growth factors, or small molecules or drugs. Despite the ability of hydrogels to enhance all these delivery methods, no material has significantly regrown vasculature within the translatable timeline of days to weeks after stroke. Here we developed 2 novel biomaterials for tissue regeneration after stroke, a highly porous granular hydrogel termed Cryo microgels, and heparin-norbornene nanoparticles with covalently bound SDF-1α. The combination of these materials resulted in fully revascularized vessels throughout the stroke core in only 10 days, as well as increased neural progenitor cell migration and maintenance and increased neurons.
Collapse
|
6
|
Jabber Al-Saady MAA, Aldujaili NH, Rabeea Banoon S, Al-Abboodi A. Antimicrobial properties of nanoparticles in biofilms. BIONATURA 2022; 7:1-9. [DOI: 10.21931/rb/2022.07.04.71] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
Biofilm is a structure in the shape of a surface adherent composed of a microbe’s community and plays a crucial role in stimulating the infection. Due to the Biofilm’s complex structure compared with the individual microbe, it occasionally develops recalcitrant to the host immune system, which may lead to antibiotic resistance. The National Institutes of Health has reported that more than 80% of bacterial infections are caused by biofilm formation. Removing biofilm-mediated infections is an immense challenge that should involve various strategies that may induce sensitive and effective antibiofilm therapy. In the last decade, nanoparticle NPs application has been employed as one of the strategies that have grown great stimulus to target antibiofilm treatment due to their unique properties. Nanobiotechnology holds promise for the future because it has various antimicrobial properties in biofilms and promising new drug delivery methods that stand out from conventional antibiotics. Studying the interaction between the Biofilm and the nanoparticles can deliver additional insights regarding the mechanism of biofilm regulation. This review article will define synthetic nanoparticle NPs, their medical applications, and their potential use against a broad range of microbial biofilms in the coming years. The motivation of the current review is to focus on NPs materials’ properties and applications and their use as antimicrobial agents to fight resistant infections, which can locally terminate bacteria without being toxic to the surrounding tissue and share its role in improving human health in the future.
Keywords: Biofilms, antimicrobial, nanoparticles, bio-nanotechnology, drug resistance.
Collapse
Affiliation(s)
- Mohammed Abd Ali Jabber Al-Saady
- AL Sader Teaching Hospital, Maysan Health Directorate, Ministry of Health, Maysan, Iraq, Department of Mechanical and Aerospace Engineering, Monash University, VIC 3800, Australia
| | - Nawfal H. Aldujaili
- Department of Biology, Faculty of Science, University of Kufa, Najaf, Iraq, Alameen Center for Advanced Research and Biotechnology, Imam Ali Holy Shrine, Najaf, Iraq
| | | | - Aswan Al-Abboodi
- Department of Biology, College of Science, University of Misan, Maysan, Iraq
| |
Collapse
|
7
|
Ahmed A, Mansouri M, Joshi IM, Byerley AM, Day SW, Gaborski TR, Abhyankar VV. Local extensional flows promote long-range fiber alignment in 3D collagen hydrogels. Biofabrication 2022; 14. [PMID: 35735228 DOI: 10.1088/1758-5090/ac7824] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/13/2022] [Indexed: 02/07/2023]
Abstract
Randomly oriented type I collagen (COL1) fibers in the extracellular matrix are reorganized by biophysical forces into aligned domains extending several millimeters and with varying degrees of fiber alignment. These aligned fibers can transmit traction forces, guide tumor cell migration, facilitate angiogenesis, and influence tissue morphogenesis. To create aligned COL1 domains in microfluidic cell culture models, shear flows have been used to align thin COL1 matrices (<50µm in height) in a microchannel. However, there has been limited investigation into the role of shear flows in aligning 3D hydrogels (>130µm). Here, we show that pure shear flows do not induce fiber alignment in 3D atelo COL1 hydrogels, but the simple addition of local extensional flow promotes alignment that is maintained across several millimeters, with a degree of alignment directly related to the extensional strain rate. We further advance experimental capabilities by addressing the practical challenge of accessing a 3D hydrogel formed within a microchannel by introducing a magnetically coupled modular platform that can be released to expose the microengineered hydrogel. We demonstrate the platform's capability to pattern cells and fabricate multi-layered COL1 matrices using layer-by-layer fabrication and specialized modules. Our approach provides an easy-to-use fabrication method to achieve advanced hydrogel microengineering capabilities that combine fiber alignment with biofabrication capabilities.
Collapse
Affiliation(s)
- Adeel Ahmed
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, United States of America
| | - Mehran Mansouri
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, United States of America
| | - Indranil M Joshi
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, United States of America
| | - Ann M Byerley
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, United States of America
| | - Steven W Day
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, United States of America
| | - Thomas R Gaborski
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, United States of America
| | - Vinay V Abhyankar
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, United States of America
| |
Collapse
|
8
|
Hot or cold: Bioengineering immune contextures into in vitro patient-derived tumor models. Adv Drug Deliv Rev 2021; 175:113791. [PMID: 33965462 DOI: 10.1016/j.addr.2021.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/02/2021] [Accepted: 05/04/2021] [Indexed: 02/06/2023]
Abstract
In the past decade, immune checkpoint inhibitors (ICI) have proven to be tremendously effective for a subset of cancer patients. However, it is difficult to predict the response of individual patients and efforts are now directed at understanding the mechanisms of ICI resistance. Current models of patient tumors poorly recapitulate the immune contexture, which describe immune parameters that are associated with patient survival. In this Review, we discuss parameters that influence the induction of different immune contextures found within tumors and how engineering strategies may be leveraged to recapitulate these contextures to develop the next generation of immune-competent patient-derived in vitro models.
Collapse
|
9
|
Gomez-Florit M, Pardo A, Domingues RMA, Graça AL, Babo PS, Reis RL, Gomes ME. Natural-Based Hydrogels for Tissue Engineering Applications. Molecules 2020; 25:E5858. [PMID: 33322369 PMCID: PMC7763437 DOI: 10.3390/molecules25245858] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 12/27/2022] Open
Abstract
In the field of tissue engineering and regenerative medicine, hydrogels are used as biomaterials to support cell attachment and promote tissue regeneration due to their unique biomimetic characteristics. The use of natural-origin materials significantly influenced the origin and progress of the field due to their ability to mimic the native tissues' extracellular matrix and biocompatibility. However, the majority of these natural materials failed to provide satisfactory cues to guide cell differentiation toward the formation of new tissues. In addition, the integration of technological advances, such as 3D printing, microfluidics and nanotechnology, in tissue engineering has obsoleted the first generation of natural-origin hydrogels. During the last decade, a new generation of hydrogels has emerged to meet the specific tissue necessities, to be used with state-of-the-art techniques and to capitalize the intrinsic characteristics of natural-based materials. In this review, we briefly examine important hydrogel crosslinking mechanisms. Then, the latest developments in engineering natural-based hydrogels are investigated and major applications in the field of tissue engineering and regenerative medicine are highlighted. Finally, the current limitations, future challenges and opportunities in this field are discussed to encourage realistic developments for the clinical translation of tissue engineering strategies.
Collapse
Affiliation(s)
- Manuel Gomez-Florit
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal; (M.G.-F.); (A.P.); (R.M.A.D.); (A.L.G.); (P.S.B.); (R.L.R.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Guimarães, Portugal
| | - Alberto Pardo
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal; (M.G.-F.); (A.P.); (R.M.A.D.); (A.L.G.); (P.S.B.); (R.L.R.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Guimarães, Portugal
| | - Rui M. A. Domingues
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal; (M.G.-F.); (A.P.); (R.M.A.D.); (A.L.G.); (P.S.B.); (R.L.R.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Guimarães, Portugal
| | - Ana L. Graça
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal; (M.G.-F.); (A.P.); (R.M.A.D.); (A.L.G.); (P.S.B.); (R.L.R.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Guimarães, Portugal
| | - Pedro S. Babo
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal; (M.G.-F.); (A.P.); (R.M.A.D.); (A.L.G.); (P.S.B.); (R.L.R.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Guimarães, Portugal
| | - Rui L. Reis
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal; (M.G.-F.); (A.P.); (R.M.A.D.); (A.L.G.); (P.S.B.); (R.L.R.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Guimarães, Portugal
| | - Manuela E. Gomes
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal; (M.G.-F.); (A.P.); (R.M.A.D.); (A.L.G.); (P.S.B.); (R.L.R.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Guimarães, Portugal
| |
Collapse
|
10
|
A three-dimensional bioprinted model to evaluate the effect of stiffness on neuroblastoma cell cluster dynamics and behavior. Sci Rep 2020; 10:6370. [PMID: 32286364 PMCID: PMC7156444 DOI: 10.1038/s41598-020-62986-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 03/19/2020] [Indexed: 12/20/2022] Open
Abstract
Three-dimensional (3D) bioprinted culture systems allow to accurately control microenvironment components and analyze their effects at cellular and tissue levels. The main objective of this study was to identify, quantify and localize the effects of physical-chemical communication signals between tumor cells and the surrounding biomaterial stiffness over time, defining how aggressiveness increases in SK-N-BE(2) neuroblastoma (NB) cell line. Biomimetic hydrogels with SK-N-BE(2) cells, methacrylated gelatin and increasing concentrations of methacrylated alginate (AlgMA 0%, 1% and 2%) were used. Young's modulus was used to define the stiffness of bioprinted hydrogels and NB tumors. Stained sections of paraffin-embedded hydrogels were digitally quantified. Human NB and 1% AlgMA hydrogels presented similar Young´s modulus mean, and orthotopic NB mice tumors were equally similar to 0% and 1% AlgMA hydrogels. Porosity increased over time; cell cluster density decreased over time and with stiffness, and cell cluster occupancy generally increased with time and decreased with stiffness. In addition, cell proliferation, mRNA metabolism and antiapoptotic activity advanced over time and with stiffness. Together, this rheological, optical and digital data show the potential of the 3D in vitro cell model described herein to infer how intercellular space stiffness patterns drive the clinical behavior associated with NB patients.
Collapse
|
11
|
Cheng KW, Alhasan L, Rezk AR, Al-Abboodi A, Doran PM, Yeo LY, Chan PPY. Fast three-dimensional micropatterning of PC12 cells in rapidly crosslinked hydrogel scaffolds using ultrasonic standing waves. Biofabrication 2019; 12:015013. [DOI: 10.1088/1758-5090/ab4cca] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
12
|
Kurashina Y, Sato R, Onoe H. Microfiber-shaped building-block tissues with endothelial networks for constructing macroscopic tissue assembly. APL Bioeng 2019; 3:046101. [PMID: 31737859 PMCID: PMC6853801 DOI: 10.1063/1.5109966] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/28/2019] [Indexed: 12/19/2022] Open
Abstract
We describe a microfiber-shaped hepatic tissue for in vitro macroscopic tissue assembly, fabricated using a double coaxial microfluidic device and composed of cocultured Hep-G2 cells and human umbilical vein endothelial cells (HUVECs). The appropriate coculture conditions for Hep-G2 cells and HUVECs in the microfiber-shaped tissue were optimized by changing the thickness of the core and the cell ratio. The HUVEC networks were formed in the microfiber-shaped tissue following culture for 3 days. Using this microfiber-shaped tissue as a building block, two types of macroscopic assembled tissues were constructed-parallel and reeled tissues. In both tissue types, the connection of the HUVEC network across the adjacent microfiber-shaped tissues was established after 2 days, because the calcium alginate shell of the microfiber-shaped tissue was enzymatically removed. Our approach could facilitate the generation of complex and heterogeneous macroscopic tissues mimicking the major organs including the liver, kidney, and heart for the treatment of critically ill patients.
Collapse
Affiliation(s)
| | - Ryo Sato
- School of Integrated Design Engineering, Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Hiroaki Onoe
- Author to whom correspondence should be addressed:
| |
Collapse
|
13
|
Al-Abboodi A, Zhang S, Al-Saady M, Ong JW, Chan PPY, Fu J. Printing
in situ
tissue sealant with visible-light-crosslinked porous hydrogel. Biomed Mater 2019; 14:045010. [DOI: 10.1088/1748-605x/ab19fe] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
14
|
Shang M, Soon RH, Lim CT, Khoo BL, Han J. Microfluidic modelling of the tumor microenvironment for anti-cancer drug development. LAB ON A CHIP 2019; 19:369-386. [PMID: 30644496 DOI: 10.1039/c8lc00970h] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Cancer is the leading cause of death worldwide. The complex and disorganized tumor microenvironment makes it very difficult to treat this disease. The most common in vitro drug screening method now is based on 2D culture models which poorly represent actual tumors. Therefore, many 3D tumor models which are more physiologically relevant have been developed to conduct in vitro drug screening and alleviate this situation. Among all these models, the microfluidic tumor model has the unique advantage of recapitulating the tumor microenvironment in a comparatively easier and representative fashion. While there are many review papers available on the related topic of microfluidic tumor models, in this review we aim to focus more on the possibility of generating "clinically actionable information" from these microfluidic systems, besides scientific insight. Our topics cover the tumor microenvironment, conventional 2D and 3D cultures, animal models, and microfluidic tumor models, emphasizing their link to anti-cancer drug discovery and personalized medicine.
Collapse
Affiliation(s)
- Menglin Shang
- BioSystems and Micromechanics (BioSyM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, 1, Create Way, Enterprise Wing, 138602, Singapore.
| | | | | | | | | |
Collapse
|
15
|
Ahadian S, Civitarese R, Bannerman D, Mohammadi MH, Lu R, Wang E, Davenport-Huyer L, Lai B, Zhang B, Zhao Y, Mandla S, Korolj A, Radisic M. Organ-On-A-Chip Platforms: A Convergence of Advanced Materials, Cells, and Microscale Technologies. Adv Healthc Mater 2018; 7. [PMID: 29034591 DOI: 10.1002/adhm.201700506] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/15/2017] [Indexed: 12/11/2022]
Abstract
Significant advances in biomaterials, stem cell biology, and microscale technologies have enabled the fabrication of biologically relevant tissues and organs. Such tissues and organs, referred to as organ-on-a-chip (OOC) platforms, have emerged as a powerful tool in tissue analysis and disease modeling for biological and pharmacological applications. A variety of biomaterials are used in tissue fabrication providing multiple biological, structural, and mechanical cues in the regulation of cell behavior and tissue morphogenesis. Cells derived from humans enable the fabrication of personalized OOC platforms. Microscale technologies are specifically helpful in providing physiological microenvironments for tissues and organs. In this review, biomaterials, cells, and microscale technologies are described as essential components to construct OOC platforms. The latest developments in OOC platforms (e.g., liver, skeletal muscle, cardiac, cancer, lung, skin, bone, and brain) are then discussed as functional tools in simulating human physiology and metabolism. Future perspectives and major challenges in the development of OOC platforms toward accelerating clinical studies of drug discovery are finally highlighted.
Collapse
Affiliation(s)
- Samad Ahadian
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Robert Civitarese
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Dawn Bannerman
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Mohammad Hossein Mohammadi
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Rick Lu
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Erika Wang
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Locke Davenport-Huyer
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Ben Lai
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Boyang Zhang
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Yimu Zhao
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Serena Mandla
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Anastasia Korolj
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Milica Radisic
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| |
Collapse
|
16
|
Lee JM, Yeong WY. Design and Printing Strategies in 3D Bioprinting of Cell-Hydrogels: A Review. Adv Healthc Mater 2016; 5:2856-2865. [PMID: 27767258 DOI: 10.1002/adhm.201600435] [Citation(s) in RCA: 173] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/21/2016] [Indexed: 01/17/2023]
Abstract
Bioprinting is an emerging technology that allows the assembling of both living and non-living biological materials into an ideal complex layout for further tissue maturation. Bioprinting aims to produce engineered tissue or organ in a mechanized, organized, and optimized manner. Various biomaterials and techniques have been utilized to bioprint biological constructs in different shapes, sizes and resolutions. There is a need to systematically discuss and analyze the reported strategies employed to fabricate these constructs. We identified and discussed important design factors in bioprinting, namely shape and resolution, material heterogeneity, and cellular-material remodeling dynamism. Each design factors are represented by the corresponding process capabilities and printing parameters. The process-design map will inspire future biomaterials research in these aspects. Design considerations such as data processing, bio-ink formulation and process selection are discussed. Various printing and crosslinking strategies, with relevant applications, are also systematically reviewed. We categorized them into 5 general bioprinting strategies, including direct bioprinting, in-process crosslinking, post-process crosslinking, indirect bioprinting and hybrid bioprinting. The opportunities and outlook in 3D bioprinting are highlighted. This review article will serve as a framework to advance computer-aided design in bioprinting technologies.
Collapse
Affiliation(s)
- Jia Min Lee
- Singapore Centre for 3D Printing; School of Mechanical and Aerospace Engineering; Nanyang Technological University; 50 Nanyang Avenue 639798 Singapore
| | - Wai Yee Yeong
- Singapore Centre for 3D Printing; School of Mechanical and Aerospace Engineering; Nanyang Technological University; 50 Nanyang Avenue 639798 Singapore
| |
Collapse
|
17
|
Ramesan S, Rezk AR, Cheng KW, Chan PPY, Yeo LY. Acoustically-driven thread-based tuneable gradient generators. LAB ON A CHIP 2016; 16:2820-2828. [PMID: 27334420 DOI: 10.1039/c5lc00937e] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Thread-based microfluidics offer a simple, easy to use, low-cost, disposable and biodegradable alternative to conventional microfluidic systems. While it has recently been shown that such thread networks facilitate manipulation of fluid samples including mixing, flow splitting and the formation of concentration gradients, the passive capillary transport of fluid through the thread does not allow for precise control due to the random orientation of cellulose fibres that make up the thread, nor does it permit dynamic manipulation of the flow. Here, we demonstrate the use of high frequency sound waves driven from a chip-scale device that drives rapid, precise and uniform convective transport through the thread network. In particular, we show that it is not only possible to generate a stable and continuous concentration gradient in a serial dilution and recombination network, but also one that can be dynamically tuned, which cannot be achieved solely with passive capillary transport. Additionally, we show a proof-of-concept in which such spatiotemporal gradient generation can be achieved with the entire thread network embedded in a three-dimensional hydrogel construct to more closely mimic the in vivo tissue microenvironment in microfluidic chemotaxis studies and cell culture systems, which is then employed to demonstrate the effect of such gradients on the proliferation of cells within the hydrogel.
Collapse
Affiliation(s)
- Shwathy Ramesan
- Micro/Nanophysics Research Laboratory, RMIT University, Melbourne, VIC 3000, Australia.
| | | | | | | | | |
Collapse
|
18
|
Mishina M, Minamihata K, Moriyama K, Nagamune T. Peptide Tag-Induced Horseradish Peroxidase-Mediated Preparation of a Streptavidin-Immobilized Redox-Sensitive Hydrogel. Biomacromolecules 2016; 17:1978-84. [DOI: 10.1021/acs.biomac.6b00149] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Masahiro Mishina
- Department
of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku,
Tokyo 113-8656, Japan
| | - Kosuke Minamihata
- Department
of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku,
Tokyo 113-8656, Japan
| | - Kousuke Moriyama
- Biotechnology
Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Center fifth, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Teruyuki Nagamune
- Department
of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku,
Tokyo 113-8656, Japan
- Department
of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
19
|
Development of crosslinked methylcellulose hydrogels for soft tissue augmentation using an ammonium persulfate-ascorbic acid redox system. Carbohydr Polym 2015; 134:497-507. [DOI: 10.1016/j.carbpol.2015.07.101] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 07/28/2015] [Accepted: 07/31/2015] [Indexed: 12/25/2022]
|
20
|
Ahadian S, Sadeghian RB, Salehi S, Ostrovidov S, Bae H, Ramalingam M, Khademhosseini A. Bioconjugated Hydrogels for Tissue Engineering and Regenerative Medicine. Bioconjug Chem 2015; 26:1984-2001. [PMID: 26280942 DOI: 10.1021/acs.bioconjchem.5b00360] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Samad Ahadian
- WPI-Advanced
Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Ramin Banan Sadeghian
- WPI-Advanced
Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Sahar Salehi
- WPI-Advanced
Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Serge Ostrovidov
- WPI-Advanced
Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Hojae Bae
- College
of Animal Bioscience and Technology, Department of Bioindustrial Technologies, Konkuk University, Hwayang-dong,
Kwangjin-gu, Seoul 143-701, Republic of Korea
| | - Murugan Ramalingam
- WPI-Advanced
Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
- Centre
for Stem Cell Research, Institute for Stem Cell Biology and Regenerative Medicine, Christian Medical College Campus, Vellore 632002, India
| | - Ali Khademhosseini
- WPI-Advanced
Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
- College
of Animal Bioscience and Technology, Department of Bioindustrial Technologies, Konkuk University, Hwayang-dong,
Kwangjin-gu, Seoul 143-701, Republic of Korea
- Department
of Medicine, Center for Biomedical Engineering, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
| |
Collapse
|
21
|
Abstract
This chapter describes the preparation of tissue engineered constructs by immobilizing chondrocytes in hydrogel with independently tunable porosity and mechanical properties. This chapter also presents the methods to characterize these tissue engineered constructs. The resulting tissue engineered constructs can be useful for the generation of cartilage tissue both in vitro and in vivo.
Collapse
|