1
|
Bomkamp C, Skaalure SC, Fernando GF, Ben‐Arye T, Swartz EW, Specht EA. Scaffolding Biomaterials for 3D Cultivated Meat: Prospects and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102908. [PMID: 34786874 PMCID: PMC8787436 DOI: 10.1002/advs.202102908] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/12/2021] [Indexed: 05/03/2023]
Abstract
Cultivating meat from stem cells rather than by raising animals is a promising solution to concerns about the negative externalities of meat production. For cultivated meat to fully mimic conventional meat's organoleptic and nutritional properties, innovations in scaffolding technology are required. Many scaffolding technologies are already developed for use in biomedical tissue engineering. However, cultivated meat production comes with a unique set of constraints related to the scale and cost of production as well as the necessary attributes of the final product, such as texture and food safety. This review discusses the properties of vertebrate skeletal muscle that will need to be replicated in a successful product and the current state of scaffolding innovation within the cultivated meat industry, highlighting promising scaffold materials and techniques that can be applied to cultivated meat development. Recommendations are provided for future research into scaffolds capable of supporting the growth of high-quality meat while minimizing production costs. Although the development of appropriate scaffolds for cultivated meat is challenging, it is also tractable and provides novel opportunities to customize meat properties.
Collapse
Affiliation(s)
- Claire Bomkamp
- The Good Food Institute1380 Monroe St. NW #229WashingtonDC20010USA
| | | | | | - Tom Ben‐Arye
- The Good Food Institute1380 Monroe St. NW #229WashingtonDC20010USA
| | - Elliot W. Swartz
- The Good Food Institute1380 Monroe St. NW #229WashingtonDC20010USA
| | | |
Collapse
|
2
|
Human induced pluripotent stem cell-derived three-dimensional cardiomyocyte tissues ameliorate the rat ischemic myocardium by remodeling the extracellular matrix and cardiac protein phenotype. PLoS One 2021; 16:e0245571. [PMID: 33720933 PMCID: PMC7959395 DOI: 10.1371/journal.pone.0245571] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/23/2021] [Indexed: 11/30/2022] Open
Abstract
The extracellular matrix (ECM) plays a key role in the viability and survival of implanted human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). We hypothesized that coating of three-dimensional (3D) cardiac tissue-derived hiPSC-CMs with the ECM protein fibronectin (FN) would improve the survival of transplanted cells in the heart and improve heart function in a rat model of ischemic heart failure. To test this hypothesis, we first explored the tolerance of FN-coated hiPSC-CMs to hypoxia in an in vitro study. For in vivo assessments, we constructed 3D-hiPSC cardiac tissues (3D-hiPSC-CTs) using a layer-by-layer technique, and then the cells were implanted in the hearts of a myocardial infarction rat model (3D-hiPSC-CTs, n = 10; sham surgery control group (without implant), n = 10). Heart function and histology were analyzed 4 weeks after transplantation. In the in vitro assessment, cell viability and lactate dehydrogenase assays showed that FN-coated hiPSC-CMs had improved tolerance to hypoxia compared with the control cells. In vivo, the left ventricular ejection fraction of hearts implanted with 3D-hiPSC-CT was significantly better than that of the sham control hearts. Histological analysis showed clear expression of collagen type IV and plasma membrane markers such as desmin and dystrophin in vivo after implantation of 3D-hiPSC-CT, which were not detected in 3D-hiPSC-CMs in vitro. Overall, these results indicated that FN-coated 3D-hiPSC-CT could improve distressed heart function in a rat myocardial infarction model with a well-expressed cytoskeletal or basement membrane matrix. Therefore, FN-coated 3D-hiPSC-CT may serve as a promising replacement for heart transplantation and left ventricular assist devices and has the potential to improve survivability and therapeutic efficacy in cases of ischemic heart disease.
Collapse
|
3
|
Nakayama M, Toyoshima Y, Chinen H, Kikuchi A, Yamato M, Okano T. Water stable nanocoatings of poly(N-isopropylacrylamide)-based block copolymers on culture insert membranes for temperature-controlled cell adhesion. J Mater Chem B 2020; 8:7812-7821. [PMID: 32749431 DOI: 10.1039/d0tb01113d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This study demonstrated the spin-coating of functional diblock copolymers to develop smart culture inserts for thermoresponsive cell adhesion/detachment control. One part of the block components, the poly(n-butyl methacrylate) block, strongly supported the water stable surface-immobilization of the thermoresponsive poly(N-isopropylacrylamide) (PNIPAAm) block, regardless of temperature. The chain length of the PNIPAAm blocks was varied to regulate thermal surface functions. Immobilized PNIPAAm concentrations became larger with increasing chain length (1.0-1.6 μg cm-2) and the thicknesses of individual layers were relatively comparable at 10-odd nanometers. A nanothin coating scarcely inhibited the permeability of the original porous membrane. When human fibroblasts were cultured on each surface at 37 °C, the efficiencies of cell adhesion and proliferation decreased with longer PNIPAAm chains. Meanwhile, by reducing the temperature to 20 °C, longer PNIPAAm chains promoted cell detachment owing to the significant thermoresponsive alteration of cell-surface affinity. Consequently, we successfully produced a favorable cell sheet by choosing an appropriate PNIPAAm length for block copolymers.
Collapse
Affiliation(s)
- Masamichi Nakayama
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo 162-8666, Japan.
| | | | | | | | | | | |
Collapse
|
4
|
Noh M, Choi YH, An YH, Tahk D, Cho S, Yoon JW, Jeon NL, Park TH, Kim J, Hwang NS. Magnetic Nanoparticle-Embedded Hydrogel Sheet with a Groove Pattern for Wound Healing Application. ACS Biomater Sci Eng 2019; 5:3909-3921. [PMID: 33438430 DOI: 10.1021/acsbiomaterials.8b01307] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Endothelial progenitor cells (EPCs) can induce a pro-angiogenic response during tissue repair. Recently, EPC transplantations have been widely investigated in wound healing applications. To maximize the healing efficacy by EPCs, a unique scaffold design that allows cell retention and function would be desirable for in situ delivery. Herein, we fabricated an alginate/poly-l-ornithine/gelatin (alginate-PLO-gelatin) hydrogel sheet with a groove pattern for use as a cell delivery platform. In addition, we demonstrate the topographical modification of the hydrogel sheet surface with a groove pattern to modulate cell proliferation, alignment, and elongation. We report that the patterned substrate prompted morphological changes of endothelial cells, increased cell-cell interaction, and resulted in the active secretion of growth factors such as PDGF-BB. Additionally, we incorporated magnetic nanoparticles (MNPs) into the patterned hydrogel sheet for the magnetic field-induced transfer of cell-seeded hydrogel sheets. As a result, enhanced wound healing was observed via efficient transplantation of the EPCs with an MNP-embedded patterned hydrogel sheet (MPS). Finally, enhanced vascularization and dermal wound repair were observed with EPC seeded MPS.
Collapse
Affiliation(s)
- Miyeon Noh
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Young Hwan Choi
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Young-Hyeon An
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Dongha Tahk
- School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 08826, Republic of Korea.,Institute of Advanced Machinery and Design, Seoul National University, Seoul 08826, Republic of Korea
| | - Sungwoo Cho
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Jung Won Yoon
- Department of Physiology, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Noo Li Jeon
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea.,School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 08826, Republic of Korea.,Institute of Advanced Machinery and Design, Seoul National University, Seoul 08826, Republic of Korea
| | - Tai Hyun Park
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Jaeho Kim
- Department of Physiology, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Nathaniel S Hwang
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
5
|
Rose JC, De Laporte L. Hierarchical Design of Tissue Regenerative Constructs. Adv Healthc Mater 2018; 7:e1701067. [PMID: 29369541 DOI: 10.1002/adhm.201701067] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 12/01/2017] [Indexed: 02/05/2023]
Abstract
The worldwide shortage of organs fosters significant advancements in regenerative therapies. Tissue engineering and regeneration aim to supply or repair organs or tissues by combining material scaffolds, biochemical signals, and cells. The greatest challenge entails the creation of a suitable implantable or injectable 3D macroenvironment and microenvironment to allow for ex vivo or in vivo cell-induced tissue formation. This review gives an overview of the essential components of tissue regenerating scaffolds, ranging from the molecular to the macroscopic scale in a hierarchical manner. Further, this review elaborates about recent pivotal technologies, such as photopatterning, electrospinning, 3D bioprinting, or the assembly of micrometer-scale building blocks, which enable the incorporation of local heterogeneities, similar to most native extracellular matrices. These methods are applied to mimic a vast number of different tissues, including cartilage, bone, nerves, muscle, heart, and blood vessels. Despite the tremendous progress that has been made in the last decade, it remains a hurdle to build biomaterial constructs in vitro or in vivo with a native-like structure and architecture, including spatiotemporal control of biofunctional domains and mechanical properties. New chemistries and assembly methods in water will be crucial to develop therapies that are clinically translatable and can evolve into organized and functional tissues.
Collapse
Affiliation(s)
- Jonas C. Rose
- DWI—Leibniz Institute for Interactive Materials Forckenbeckstr. 50 Aachen D‐52074 Germany
| | - Laura De Laporte
- DWI—Leibniz Institute for Interactive Materials Forckenbeckstr. 50 Aachen D‐52074 Germany
| |
Collapse
|
6
|
Lee YB, Lee JY, Byun H, Ahmad T, Akashi M, Matsusaki M, Shin H. One-step delivery of a functional multi-layered cell sheet using a thermally expandable hydrogel with controlled presentation of cell adhesive proteins. Biofabrication 2018; 10:025001. [DOI: 10.1088/1758-5090/aa9d43] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
7
|
Takeda M, Miyagawa S, Fukushima S, Saito A, Ito E, Harada A, Matsuura R, Iseoka H, Sougawa N, Mochizuki-Oda N, Matsusaki M, Akashi M, Sawa Y. Development of In Vitro Drug-Induced Cardiotoxicity Assay by Using Three-Dimensional Cardiac Tissues Derived from Human Induced Pluripotent Stem Cells. Tissue Eng Part C Methods 2017; 24:56-67. [PMID: 28967302 PMCID: PMC5757089 DOI: 10.1089/ten.tec.2017.0247] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
An in vitro drug-induced cardiotoxicity assay is a critical step in drug discovery for clinical use. The use of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) is promising for this purpose. However, single hiPSC-CMs are limited in their ability to mimic native cardiac tissue structurally and functionally, and the generation of artificial cardiac tissue using hiPSC-CMs is an ongoing challenging. We therefore developed a new method of constructing three-dimensional (3D) artificial tissues in a short time by coating extracellular matrix (ECM) components on cell surfaces. We hypothesized that 3D cardiac tissues derived from hiPSC-CMs (3D-hiPSC-CT) could be used for an in vitro drug-induced cardiotoxicity assay. 3D-hiPSC-CT were generated by fibronectin and gelatin nanofilm coated single hiPSC-CMs. Histologically, 3D-hiPSC-CT exhibited a sarcomere structure in the myocytes and ECM proteins, such as fibronectin, collagen type I/III, and laminin. The administration of cytotoxic doxorubicin at 5.0 μM induced the release of lactate dehydrogenase, while that at 2.0 μM reduced the cell viability. E-4031, human ether-a-go-go related gene (hERG)-type potassium channel blocker, and isoproterenol induced significant changes both in the Ca transient parameters and contractile parameters in a dose-dependent manner. The 3D-hiPSC-CT exhibited doxorubicin-sensitive cytotoxicity and hERG channel blocker/isoproterenol-sensitive electrical activity in vitro, indicating its usefulness for drug-induced cardiotoxicity assays or drug screening systems for drug discovery.
Collapse
Affiliation(s)
- Maki Takeda
- 1 Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine , Suita, Osaka, Japan
| | - Shigeru Miyagawa
- 1 Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine , Suita, Osaka, Japan
| | - Satsuki Fukushima
- 1 Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine , Suita, Osaka, Japan
| | - Atsuhiro Saito
- 1 Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine , Suita, Osaka, Japan
| | - Emiko Ito
- 1 Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine , Suita, Osaka, Japan
| | - Akima Harada
- 1 Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine , Suita, Osaka, Japan
| | - Ryohei Matsuura
- 1 Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine , Suita, Osaka, Japan
| | - Hiroko Iseoka
- 1 Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine , Suita, Osaka, Japan
| | - Nagako Sougawa
- 1 Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine , Suita, Osaka, Japan
| | - Noriko Mochizuki-Oda
- 1 Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine , Suita, Osaka, Japan
| | - Michiya Matsusaki
- 2 Department of Applied Chemistry, Osaka University Graduate School of Engineering , Osaka, Japan
| | - Mitsuru Akashi
- 3 Building Block Science Joint Research Chair, Graduate School of Frontier Biosciences, Osaka University , Suita, Japan
| | - Yoshiki Sawa
- 1 Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine , Suita, Osaka, Japan
| |
Collapse
|
8
|
Lee YB, Shin YM, Kim EM, Lim J, Lee JY, Shin H. Facile Cell Sheet Harvest and Translocation Mediated by a Thermally Expandable Hydrogel with Controlled Cell Adhesion. Adv Healthc Mater 2016; 5:2320-4. [PMID: 27186718 DOI: 10.1002/adhm.201600210] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/05/2016] [Indexed: 12/26/2022]
Abstract
Facile cell sheet translocation system is developed based on a thermally expandable hydrogel with modular cell adhesion favorable for both robust cell sheet formation and harvest. Efficient translocation is achieved at moderate cell-substrate interaction, which can be tuned by two-step reactions of mussel-inspired coating.
Collapse
Affiliation(s)
- Yu Bin Lee
- Department of Bioengineering; Hanyang University; 17 Haengdang-dong Seongdong-gu Seoul 133-791 South Korea
- BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team; Hanyang University; 17 Haengdang-dong Seongdong-gu Seoul 133-791 South Korea
| | - Young Min Shin
- Department of Bioengineering; Hanyang University; 17 Haengdang-dong Seongdong-gu Seoul 133-791 South Korea
| | - Eun Mi Kim
- Department of Bioengineering; Hanyang University; 17 Haengdang-dong Seongdong-gu Seoul 133-791 South Korea
- BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team; Hanyang University; 17 Haengdang-dong Seongdong-gu Seoul 133-791 South Korea
| | - Jangsoo Lim
- Department of Bioengineering; Hanyang University; 17 Haengdang-dong Seongdong-gu Seoul 133-791 South Korea
- BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team; Hanyang University; 17 Haengdang-dong Seongdong-gu Seoul 133-791 South Korea
| | - Joong-Yup Lee
- Department of Bioengineering; Hanyang University; 17 Haengdang-dong Seongdong-gu Seoul 133-791 South Korea
- BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team; Hanyang University; 17 Haengdang-dong Seongdong-gu Seoul 133-791 South Korea
| | - Heungsoo Shin
- Department of Bioengineering; Hanyang University; 17 Haengdang-dong Seongdong-gu Seoul 133-791 South Korea
- BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team; Hanyang University; 17 Haengdang-dong Seongdong-gu Seoul 133-791 South Korea
| |
Collapse
|