1
|
Fang K, Li P, Huang X, Wang H, Li Y, Zhu D, Luo B. Recent advancements in magnetic starch-based composites for biomedical applications: A review. Carbohydr Polym 2025; 362:123689. [PMID: 40409811 DOI: 10.1016/j.carbpol.2025.123689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/28/2025] [Accepted: 04/29/2025] [Indexed: 05/25/2025]
Abstract
The increasing demand for biomedical materials to address various diseases has highlighted the need for advanced biocompatible materials with improved biofunctionality for smart diagnostics and clinical therapies. Starch, a natural polymer, is an ideal starting material for the development of multifunctional biomedical materials due to its biocompatibility, low toxicity, and biodegradability. However, native starch lacks certain properties, particularly magnetic properties. By strategically modifying the structure of starch or its derivatives and incorporating different types of magnetic nanoparticles (MNPs), magnetic starch-based composites (MSBCs) can be developed. These composites take the advantages of both the magnetic materials and natural polysaccharides, enhancing the mechanical strength of starch and imparting additional properties, such as magneto-thermal effects, targeting ability, stimulus-responsive drug delivery, and easy separation. As a result, MSBCs have widespread applications in fields such as wound dressing and magneto-thermal therapy. This review highlights the types of MSBCs, their synthesis methods, and their current applications in biomedicine. Additionally, this review describes the major challenges faced by MSBCs in biomedical applications and provides an outlook on their potential for further development. This review aims to improve the understanding of magnetic starches and optimize their synthetic strategies, positioning MSBCs as promising platforms for biomedical applications.
Collapse
Affiliation(s)
- Kun Fang
- College of Tea and Food Science, Dabie Mountain Laboratory, Xinyang Normal University, Xinyang, Henan 464000, China; Henan Key Laboratory of Tea Plant Biology, Xinyang, Henan 464000, China.
| | - Pei Li
- College of Tea and Food Science, Dabie Mountain Laboratory, Xinyang Normal University, Xinyang, Henan 464000, China; Henan Key Laboratory of Tea Plant Biology, Xinyang, Henan 464000, China; Huaihe Campus Administrative Committee, Xinyang Normal University, Xinyang, Henan 464000, China.
| | - Xiangrui Huang
- College of Tea and Food Science, Dabie Mountain Laboratory, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Hanbing Wang
- College of Tea and Food Science, Dabie Mountain Laboratory, Xinyang Normal University, Xinyang, Henan 464000, China; Henan Key Laboratory of Tea Plant Biology, Xinyang, Henan 464000, China
| | - Yihan Li
- College of Tea and Food Science, Dabie Mountain Laboratory, Xinyang Normal University, Xinyang, Henan 464000, China; Henan Key Laboratory of Tea Plant Biology, Xinyang, Henan 464000, China
| | - Dongyang Zhu
- College of Tea and Food Science, Dabie Mountain Laboratory, Xinyang Normal University, Xinyang, Henan 464000, China; Henan Key Laboratory of Tea Plant Biology, Xinyang, Henan 464000, China
| | - Bo Luo
- College of Tea and Food Science, Dabie Mountain Laboratory, Xinyang Normal University, Xinyang, Henan 464000, China; Henan Key Laboratory of Tea Plant Biology, Xinyang, Henan 464000, China.
| |
Collapse
|
2
|
Li Y, Ge Z, Liu Z, Li L, Song J, Wang H, Tian F, Lei P, Li L, Xue J. Integrating electrospun aligned fiber scaffolds with bovine serum albumin-basic fibroblast growth factor nanoparticles to promote tendon regeneration. J Nanobiotechnology 2024; 22:799. [PMID: 39731092 DOI: 10.1186/s12951-024-03022-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 11/14/2024] [Indexed: 12/29/2024] Open
Abstract
BACKGROUND Electrospun nanofiber scaffolds have been widely used in tissue engineering because they can mimic extracellular matrix-like structures and offer advantages including high porosity, large specific surface area, and customizable structure. In this study, we prepared scaffolds composed of aligned and random electrospun polycaprolactone (PCL) nanofibers capable of delivering basic fibroblast growth factor (bFGF) in a sustained manner for repairing damaged tendons. RESULTS Aligned and random PCL fiber scaffolds containing bFGF-loaded bovine serum albumin (BSA) nanoparticles (BSA-bFGF NPs, diameter 146 ± 32 nm) were fabricated, respectively. To validate the viability of bFGF-loaded aligned PCL nanofiber scaffold (aPCL + bFGF group) in tendon tissue engineering, we assessed the in vitro differentiation of human amniotic mesenchymal stem cells (hAMSCs) towards a tenogenic lineage and the in vivo regeneration of tendons using a rat Achilles tendon defect model. The encapsulated bFGF could be delivered in a sustained manner in vitro. The aPCL + bFGF scaffold promoted the in vitro differentiation of human amniotic mesenchymal stem cells (hAMSCs) towards a tenogenic lineage. In the repair of a rat Achilles tendon defect model, the aPCL + bFGF group showed a better repair effect. The scaffold offers a promising substrate for the regeneration of tendon tissue. CONCLUSIONS The aligned and random PCL fiber scaffolds containing bFGF nanoparticles were successfully prepared, and their physical and chemical properties were characterized. The aPCL + bFGF scaffold could promote the expression of the related genes and proteins of tendon-forming, facilitating tendon differentiation. In the rat Achilles tendon defect experiments, the aPCL + bFGF exhibited excellent tendon regeneration effects.
Collapse
Affiliation(s)
- Yuwan Li
- Department of Orthopaedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China
| | - Zhen Ge
- Department of Orthopaedics, Haining People's Hospital, Haining, 314400, Zhejiang, China
- Department of Orthopaedics, the First Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Ziming Liu
- Beijing Key Laboratory of Sports Injuries, Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing, 100191, China
| | - Longfei Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jian Song
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hongde Wang
- Beijing Key Laboratory of Sports Injuries, Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing, 100191, China
| | - Feng Tian
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Pengfei Lei
- Department of Orthopaedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China.
| | - Long Li
- College of Materials and Metallurgy, Guizhou University, Guiyang, 550025, Guizhou, China.
| | - Jiajia Xue
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
3
|
Guan W, Gao H, Liu Y, Sun S, Li G. Application of magnetism in tissue regeneration: recent progress and future prospects. Regen Biomater 2024; 11:rbae048. [PMID: 38939044 PMCID: PMC11208728 DOI: 10.1093/rb/rbae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/14/2024] [Accepted: 04/25/2024] [Indexed: 06/29/2024] Open
Abstract
Tissue regeneration is a hot topic in the field of biomedical research in this century. Material composition, surface topology, light, ultrasonic, electric field and magnetic fields (MFs) all have important effects on the regeneration process. Among them, MFs can provide nearly non-invasive signal transmission within biological tissues, and magnetic materials can convert MFs into a series of signals related to biological processes, such as mechanical force, magnetic heat, drug release, etc. By adjusting the MFs and magnetic materials, desired cellular or molecular-level responses can be achieved to promote better tissue regeneration. This review summarizes the definition, classification and latest progress of MFs and magnetic materials in tissue engineering. It also explores the differences and potential applications of MFs in different tissue cells, aiming to connect the applications of magnetism in various subfields of tissue engineering and provide new insights for the use of magnetism in tissue regeneration.
Collapse
Affiliation(s)
- Wenchao Guan
- Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Hongxia Gao
- Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Yaqiong Liu
- Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Shaolan Sun
- Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Guicai Li
- Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
4
|
Camarero‐Espinosa S, Yuan H, Emans PJ, Moroni L. Mimicking the Graded Wavy Structure of the Anterior Cruciate Ligament. Adv Healthc Mater 2023; 12:e2203023. [PMID: 36914581 PMCID: PMC11469042 DOI: 10.1002/adhm.202203023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/22/2023] [Indexed: 03/16/2023]
Abstract
Anterior cruciate ligament (ACL) is the connective tissue providing mechanical stability to the knee joint. ACL reconstruction upon rupture remains a clinical challenge due to the high mechanical properties required for proper functioning. ACL owes its outstanding mechanical properties to the arrangement of the extracellular matrix (ECM) and to the cells with distinct phenotypes present along the length of the tissue. Tissue regeneration appears as an ideal alternative. In this study, a tri-phasic fibrous scaffold that mimics the structure of collagen in the native ECM is developed, presenting a wavy intermediate zone and two aligned uncurled extremes. The mechanical properties of the wavy scaffolds present a toe region, characteristic of the native ACL, and an extended yield and ultimate strain compared to aligned scaffolds. The presentation of a wavy fiber arrangement affects cell organization and the deposition of a specific ECM characteristic of fibrocartilage. Cells cultured in wavy scaffolds grow in aggregates, deposit an abundant ECM rich in fibronectin and collagen II, and express higher amounts of collagen II, X, and tenomodulin as compared to aligned scaffolds. In vivo implantation in rabbits shows a high cellular infiltration and the formation of an oriented ECM compared to aligned scaffolds.
Collapse
Affiliation(s)
- Sandra Camarero‐Espinosa
- MERLN Institute for Technology‐Inspired Regenerative MedicineComplex Tissue Regeneration DepartmentMaastricht UniversityP.O. Box 616Maastricht6200 MDThe Netherlands
- POLYMATUniversity of the Basque Country UPV/EHUAvenida Tolosa 72Donostia/San SebastiánGipuzkoa20018Spain
- IKERBASQUEBasque Foundation for ScienceEuskadi Pl. 5Bilbao48009Spain
| | - Huipin Yuan
- MERLN Institute for Technology‐Inspired Regenerative MedicineComplex Tissue Regeneration DepartmentMaastricht UniversityP.O. Box 616Maastricht6200 MDThe Netherlands
| | - Pieter J. Emans
- Department of Orthopaedic SurgeryJoint‐Preserving Clinic, CAPHRI Research SchoolMaastricht University Medical CentreP. Debyelaan 25Maastricht6229 HXThe Netherlands
| | - Lorenzo Moroni
- MERLN Institute for Technology‐Inspired Regenerative MedicineComplex Tissue Regeneration DepartmentMaastricht UniversityP.O. Box 616Maastricht6200 MDThe Netherlands
| |
Collapse
|
5
|
Nanocomposite Hydrogels as Functional Extracellular Matrices. Gels 2023; 9:gels9020153. [PMID: 36826323 PMCID: PMC9957407 DOI: 10.3390/gels9020153] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/31/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
Over recent years, nano-engineered materials have become an important component of artificial extracellular matrices. On one hand, these materials enable static enhancement of the bulk properties of cell scaffolds, for instance, they can alter mechanical properties or electrical conductivity, in order to better mimic the in vivo cell environment. Yet, many nanomaterials also exhibit dynamic, remotely tunable optical, electrical, magnetic, or acoustic properties, and therefore, can be used to non-invasively deliver localized, dynamic stimuli to cells cultured in artificial ECMs in three dimensions. Vice versa, the same, functional nanomaterials, can also report changing environmental conditions-whether or not, as a result of a dynamically applied stimulus-and as such provide means for wireless, long-term monitoring of the cell status inside the culture. In this review article, we present an overview of the technological advances regarding the incorporation of functional nanomaterials in artificial extracellular matrices, highlighting both passive and dynamically tunable nano-engineered components.
Collapse
|
6
|
Nam S, Seo BR, Najibi AJ, McNamara SL, Mooney DJ. Active tissue adhesive activates mechanosensors and prevents muscle atrophy. NATURE MATERIALS 2023; 22:249-259. [PMID: 36357687 PMCID: PMC10411688 DOI: 10.1038/s41563-022-01396-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
While mechanical stimulation is known to regulate a wide range of biological processes at the cellular and tissue levels, its medical use for tissue regeneration and rehabilitation has been limited by the availability of suitable devices. Here we present a mechanically active gel-elastomer-nitinol tissue adhesive (MAGENTA) that generates and delivers muscle-contraction-mimicking stimulation to a target tissue with programmed strength and frequency. MAGENTA consists of a shape memory alloy spring that enables actuation up to 40% strain, and an adhesive that efficiently transmits the actuation to the underlying tissue. MAGENTA activates mechanosensing pathways involving yes-associated protein and myocardin-related transcription factor A, and increases the rate of muscle protein synthesis. Disuse muscles treated with MAGENTA exhibit greater size and weight, and generate higher forces compared to untreated muscles, demonstrating the prevention of atrophy. MAGENTA thus has promising applications in the treatment of muscle atrophy and regenerative medicine.
Collapse
Affiliation(s)
- Sungmin Nam
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Bo Ri Seo
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Alexander J Najibi
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Stephanie L McNamara
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
| |
Collapse
|
7
|
Three-dimensional printing of hyaluronate-based self-healing ferrogel with enhanced stretchability. Colloids Surf B Biointerfaces 2022; 221:113004. [DOI: 10.1016/j.colsurfb.2022.113004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/21/2022] [Accepted: 11/01/2022] [Indexed: 11/07/2022]
|
8
|
Del Bianco L, Spizzo F, Yang Y, Greco G, Gatto ML, Barucca G, Pugno NM, Motta A. Silk fibroin films with embedded magnetic nanoparticles: evaluation of the magneto-mechanical stimulation effect on osteogenic differentiation of stem cells. NANOSCALE 2022; 14:14558-14574. [PMID: 36149382 DOI: 10.1039/d2nr03167a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We report about a biomaterial in the form of film ∼10 μm thick, consisting of a silk fibroin matrix with embedded iron oxide superparamagnetic nanoparticles, for prospective applications as bioactive coating in regenerative medicine. Films with different load of magnetic nanoparticles are produced (nanoparticles/silk fibroin nominal ratio = 5, 0.5 and 0 wt%) and the structural, mechanical and magnetic properties are studied. The nanoparticles form aggregates in the silk fibroin matrix and the film stiffness, as tested by nanoindentation, is spatially inhomogeneous, but the protein structure is not altered. In vitro biological tests are carried out on human bone marrow-derived mesenchymal stem cells cultured on the films up to 21 days, with and without an applied static uniform magnetic field. The sample with the highest nanoparticles/silk fibroin ratio shows the best performance in terms of cell proliferation and adhesion. Moreover, it promotes a faster and better osteogenic differentiation, particularly under magnetic field, as indicated by the gene expression level of typical osteogenic markers. These findings are explained in light of the results of the physical characterization, combined with numerical calculations. It is established that the applied magnetic field triggers a virtuous magneto-mechanical mechanism in which dipolar magnetic forces between the nanoparticle aggregates give rise to a spatial distribution of mechanical stresses in the silk fibroin matrix. The film with the largest nanoparticle load, under cell culture conditions (i.e. in aqueous environment), undergoes matrix deformations large enough to be sensed by the seeded cells as mechanical stimuli favoring the osteogenic differentiation.
Collapse
Affiliation(s)
- Lucia Del Bianco
- Department of Physics and Earth Science, University of Ferrara, I-44122 Ferrara, Italy.
| | - Federico Spizzo
- Department of Physics and Earth Science, University of Ferrara, I-44122 Ferrara, Italy.
| | - Yuejiao Yang
- BIOtech Research Center, Department of Industrial Engineering, University of Trento, I-38123 Trento, Italy.
| | - Gabriele Greco
- Laboratory for Bioinspired, Bionic, Nano, Meta, Materials & Mechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, I-38123 Trento, Italy
| | - Maria Laura Gatto
- Department SIMAU, Università Politecnica delle Marche, I-60131 Ancona, Italy
| | - Gianni Barucca
- Department SIMAU, Università Politecnica delle Marche, I-60131 Ancona, Italy
| | - Nicola M Pugno
- Laboratory for Bioinspired, Bionic, Nano, Meta, Materials & Mechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, I-38123 Trento, Italy
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Antonella Motta
- BIOtech Research Center, Department of Industrial Engineering, University of Trento, I-38123 Trento, Italy.
| |
Collapse
|
9
|
Naghdi M, Ghovvati M, Rabiee N, Ahmadi S, Abbariki N, Sojdeh S, Ojaghi A, Bagherzadeh M, Akhavan O, Sharifi E, Rabiee M, Saeb MR, Bolouri K, Webster TJ, Zare EN, Zarrabi A. Magnetic nanocomposites for biomedical applications. Adv Colloid Interface Sci 2022; 308:102771. [PMID: 36113311 DOI: 10.1016/j.cis.2022.102771] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/19/2022] [Accepted: 08/31/2022] [Indexed: 11/28/2022]
Abstract
Tissue engineering and regenerative medicine have solved numerous problems related to the repair and regeneration of damaged organs and tissues arising from aging, illnesses, and injuries. Nanotechnology has further aided tissue regeneration science and has provided outstanding opportunities to help disease diagnosis as well as treat damaged tissues. Based on the most recent findings, magnetic nanostructures (MNSs), in particular, have emerged as promising materials for detecting, directing, and supporting tissue regeneration. There have been many reports concerning the role of these nano-building blocks in the regeneration of both soft and hard tissues, but the subject has not been extensively reviewed. Here, we review, classify, and discuss various synthesis strategies for novel MNSs used in medicine. Advanced applications of magnetic nanocomposites (MG-NCs), specifically magnetic nanostructures, are further systematically reviewed. In addition, the scientific and technical aspects of MG-NC used in medicine are discussed considering the requirements for the field. In summary, this review highlights the numerous opportunities and challenges associated with the use of MG-NCs as smart nanocomposites (NCs) in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Mina Naghdi
- Department of Chemistry, Isfahan University of Technology, 84156-83111 Isfahan, Iran
| | - Mahsa Ghovvati
- Department of Radiological Sciences, David Geffen School of Medicine, University of California - Los Angeles, Los Angeles, CA 90095, USA
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia; Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran, Iran; Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea.
| | - Sepideh Ahmadi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran
| | - Nikzad Abbariki
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Soheil Sojdeh
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | | | | | - Omid Akhavan
- Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran, Iran
| | - Esmaeel Sharifi
- Institute for Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Naples 80125, Italy
| | - Mohammad Rabiee
- Biomaterial Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Keivan Bolouri
- Department of Radiological Sciences, David Geffen School of Medicine, University of California - Los Angeles, Los Angeles, CA 90095, USA
| | - Thomas J Webster
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, China
| | | | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey
| |
Collapse
|
10
|
Tai Y, Banerjee A, Goodrich R, Jin L, Nam J. Development and Utilization of Multifunctional Polymeric Scaffolds for the Regulation of Physical Cellular Microenvironments. Polymers (Basel) 2021; 13:3880. [PMID: 34833179 PMCID: PMC8624881 DOI: 10.3390/polym13223880] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 10/30/2021] [Accepted: 11/06/2021] [Indexed: 12/11/2022] Open
Abstract
Polymeric biomaterials exhibit excellent physicochemical characteristics as a scaffold for cell and tissue engineering applications. Chemical modification of the polymers has been the primary mode of functionalization to enhance biocompatibility and regulate cellular behaviors such as cell adhesion, proliferation, differentiation, and maturation. Due to the complexity of the in vivo cellular microenvironments, however, chemical functionalization alone is usually insufficient to develop functionally mature cells/tissues. Therefore, the multifunctional polymeric scaffolds that enable electrical, mechanical, and/or magnetic stimulation to the cells, have gained research interest in the past decade. Such multifunctional scaffolds are often combined with exogenous stimuli to further enhance the tissue and cell behaviors by dynamically controlling the microenvironments of the cells. Significantly improved cell proliferation and differentiation, as well as tissue functionalities, are frequently observed by applying extrinsic physical stimuli on functional polymeric scaffold systems. In this regard, the present paper discusses the current state-of-the-art functionalized polymeric scaffolds, with an emphasis on electrospun fibers, that modulate the physical cell niche to direct cellular behaviors and subsequent functional tissue development. We will also highlight the incorporation of the extrinsic stimuli to augment or activate the functionalized polymeric scaffold system to dynamically stimulate the cells.
Collapse
Affiliation(s)
| | | | | | | | - Jin Nam
- Department of Bioengineering, University of California, Riverside, CA 92521, USA; (Y.T.); (A.B.); (R.G.); (L.J.)
| |
Collapse
|
11
|
Multifunctional Electrospun Nanofibers Based on Biopolymer Blends and Magnetic Tubular Halloysite for Medical Applications. Polymers (Basel) 2021; 13:polym13223870. [PMID: 34833169 PMCID: PMC8624944 DOI: 10.3390/polym13223870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 11/17/2022] Open
Abstract
Tubular halloysite (HNT) is a naturally occurring aluminosilicate clay with a unique combination of natural availability, good biocompatibility, high mechanical strength, and functionality. This study explored the effects of magnetically responsive halloysite (MHNT) on the structure, morphology, chemical composition, and magnetic and mechanical properties of electrospun nanofibers based on polycaprolactone (PCL) and gelatine (Gel) blends. MHNT was prepared via a simple modification of HNT with a perchloric-acid-stabilized magnetic fluid–methanol mixture. PCL/Gel nanofibers containing 6, 9, and 12 wt.% HNT and MHNT were prepared via an electrospinning process, respecting the essential rules for medical applications. The structure and properties of the prepared nanofibers were studied using infrared spectroscopy (ATR-FTIR) and electron microscopy (SEM, STEM) along with energy-dispersive X-ray spectroscopy (EDX), magnetometry, and mechanical analysis. It was found that the incorporation of the studied concentrations of MHNT into PCL/Gel nanofibers led to soft magnetic biocompatible materials with a saturation magnetization of 0.67 emu/g and coercivity of 15 Oe for nanofibers with 12 wt.% MHNT. Moreover, by applying both HNT and MHNT, an improvement of the nanofibers structure was observed, together with strong reinforcing effects. The greatest improvement was observed for nanofibers containing 9 wt.% MHNT when increases in tensile strength reached more than two-fold and the elongation at break reached a five-fold improvement.
Collapse
|
12
|
Awada H, Sene S, Laurencin D, Lemaire L, Franconi F, Bernex F, Bethry A, Garric X, Guari Y, Nottelet B. Long-term in vivo performances of polylactide/iron oxide nanoparticles core-shell fibrous nanocomposites as MRI-visible magneto-scaffolds. Biomater Sci 2021; 9:6203-6213. [PMID: 34350906 DOI: 10.1039/d1bm00186h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
There is a growing interest in magnetic nanocomposites in biomaterials science. In particular, nanocomposites that combine poly(lactide) (PLA) nanofibers and superparamagnetic iron oxide nanoparticles (SPIONs), which can be obtained by either electrospinning of a SPION suspension in PLA or by precipitating SPIONs at the surface of PLA, are well documented in the literature. However, these two classical processes yield nanocomposites with altered materials properties, and their long-term in vivo fate and performances have in most cases only been evaluated over short periods of time. Recently, we reported a new strategy to prepare well-defined PLA@SPION nanofibers with a quasi-monolayer of SPIONs anchored at the surface of PLA electrospun fibers. Herein, we report on a 6-month in vivo rat implantation study with the aim of evaluating the long-term magnetic resonance imaging (MRI) properties of this new class of magnetic nanocomposites, as well as their tissue integration and degradation. Using clinically relevant T2-weighted MRI conditions, we show that the PLA@SPION nanocomposites are clearly visible up to 6 months. We also evaluate here by histological analyses the slow degradation of the PLA@SPIONs, as well as their biocompatibility. Overall, these results make these nanocomposites attractive for the development of magnetic biomaterials for biomedical applications.
Collapse
Affiliation(s)
- Hussein Awada
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France. .,ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Saad Sene
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | | | - Laurent Lemaire
- Micro & Nanomédecines Translationnelles-MINT, UNIV Angers, INSERM U1066, CNRS UMR 6021, Angers, France.,PRISM Plate-forme de recherche en imagerie et spectroscopie multi-modales, PRISM-Icat, Angers, France
| | - Florence Franconi
- Micro & Nanomédecines Translationnelles-MINT, UNIV Angers, INSERM U1066, CNRS UMR 6021, Angers, France.,PRISM Plate-forme de recherche en imagerie et spectroscopie multi-modales, PRISM-Icat, Angers, France
| | - Florence Bernex
- RHEM, BioCampus Montpellier, CNRS, INSERM, Univ Montpellier, Montpellier, France.,IRCM, U1194 INSERM, Univ Montpellier, Montpellier, France
| | - Audrey Bethry
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France.
| | - Xavier Garric
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France.
| | - Yannick Guari
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | | |
Collapse
|
13
|
Friedrich RP, Cicha I, Alexiou C. Iron Oxide Nanoparticles in Regenerative Medicine and Tissue Engineering. NANOMATERIALS 2021; 11:nano11092337. [PMID: 34578651 PMCID: PMC8466586 DOI: 10.3390/nano11092337] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022]
Abstract
In recent years, many promising nanotechnological approaches to biomedical research have been developed in order to increase implementation of regenerative medicine and tissue engineering in clinical practice. In the meantime, the use of nanomaterials for the regeneration of diseased or injured tissues is considered advantageous in most areas of medicine. In particular, for the treatment of cardiovascular, osteochondral and neurological defects, but also for the recovery of functions of other organs such as kidney, liver, pancreas, bladder, urethra and for wound healing, nanomaterials are increasingly being developed that serve as scaffolds, mimic the extracellular matrix and promote adhesion or differentiation of cells. This review focuses on the latest developments in regenerative medicine, in which iron oxide nanoparticles (IONPs) play a crucial role for tissue engineering and cell therapy. IONPs are not only enabling the use of non-invasive observation methods to monitor the therapy, but can also accelerate and enhance regeneration, either thanks to their inherent magnetic properties or by functionalization with bioactive or therapeutic compounds, such as drugs, enzymes and growth factors. In addition, the presence of magnetic fields can direct IONP-labeled cells specifically to the site of action or induce cell differentiation into a specific cell type through mechanotransduction.
Collapse
|
14
|
Hou J, Yang R, Vuong I, Li F, Kong J, Mao HQ. Biomaterials strategies to balance inflammation and tenogenesis for tendon repair. Acta Biomater 2021; 130:1-16. [PMID: 34082095 DOI: 10.1016/j.actbio.2021.05.043] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 05/15/2021] [Accepted: 05/24/2021] [Indexed: 12/17/2022]
Abstract
Adult tendon tissue demonstrates a limited regenerative capacity, and the natural repair process leaves fibrotic scar tissue with inferior mechanical properties. Surgical treatment is insufficient to provide the mechanical, structural, and biochemical environment necessary to restore functional tissue. While numerous strategies including biodegradable scaffolds, bioactive factor delivery, and cell-based therapies have been investigated, most studies have focused exclusively on either suppressing inflammation or promoting tenogenesis, which includes tenocyte proliferation, ECM production, and tissue formation. New biomaterials-based approaches represent an opportunity to more effectively balance the two processes and improve regenerative outcomes from tendon injuries. Biomaterials applications that have been explored for tendon regeneration include formation of biodegradable scaffolds presenting topographical, mechanical, and/or immunomodulatory cues conducive to tendon repair; delivery of immunomodulatory or tenogenic biomolecules; and delivery of therapeutic cells such as tenocytes and stem cells. In this review, we provide the biological context for the challenges in tendon repair, discuss biomaterials approaches to modulate the immune and regenerative environment during the healing process, and consider the future development of comprehensive biomaterials-based strategies that can better restore the function of injured tendon. STATEMENT OF SIGNIFICANCE: Current strategies for tendon repair focus on suppressing inflammation or enhancing tenogenesis. Evidence indicates that regulated inflammation is beneficial to tendon healing and that excessive tissue remodeling can cause fibrosis. Thus, it is necessary to adopt an approach that balances the benefits of regulated inflammation and tenogenesis. By reviewing potential treatments involving biodegradable scaffolds, biological cues, and therapeutic cells, we contrast how each strategy promotes or suppresses specific repair steps to improve the healing outcome, and highlight the advantages of a comprehensive approach that facilitates the clearance of necrotic tissue and recruitment of cells during the inflammatory stage, followed by ECM synthesis and organization in the proliferative and remodeling stages with the goal of restoring function to the tendon.
Collapse
|
15
|
Elahi N, Rizwan M. Progress and prospects of magnetic iron oxide nanoparticles in biomedical applications: A review. Artif Organs 2021; 45:1272-1299. [PMID: 34245037 DOI: 10.1111/aor.14027] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/09/2021] [Accepted: 06/14/2021] [Indexed: 12/26/2022]
Abstract
Nanoscience has been considered as one of the most substantial research in modern science. The utilization of nanoparticle (NP) materials provides numerous advantages in biomedical applications due to their unique properties. Among various types of nanoparticles, the magnetic nanoparticles (MNPs) of iron oxide possess intrinsic features, which have been efficiently exploited for biomedical purposes including drug delivery, magnetic resonance imaging, Magnetic-activated cell sorting, nanobiosensors, hyperthermia, and tissue engineering and regenerative medicine. The size and shape of nanostructures are the main factors affecting the physicochemical features of superparamagnetic iron oxide nanoparticles, which play an important role in the improvement of MNP properties, and can be controlled by appropriate synthesis strategies. On the other hand, the proper modification and functionalization of the surface of iron oxide nanoparticles have significant effects on the improvement of physicochemical and mechanical features, biocompatibility, stability, and surface activity of MNPs. This review focuses on popular methods of fabrication, beneficial surface coatings with regard to the main required features for their biomedical use, as well as new applications.
Collapse
Affiliation(s)
- Narges Elahi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advance Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran.,Department of Medical Nanotechnology, School of Advance Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Muhammad Rizwan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
16
|
Almeida AF, Vinhas A, Gonçalves AI, Miranda MS, Rodrigues MT, Gomes ME. Magnetic triggers in biomedical applications - prospects for contact free cell sensing and guidance. J Mater Chem B 2021; 9:1259-1271. [PMID: 33410453 DOI: 10.1039/d0tb02474k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In recent years, the inputs from magnetically assisted strategies have been contributing to the development of more sensitive screening methods and precise means of diagnosis to overcome existing and emerging treatment challenges. The features of magnetic materials enabling in vivo traceability, specific targeting and space- and time-controlled delivery of nanomedicines have highlighted the resourcefulness of the magnetic toolbox for biomedical applications and theranostic strategies. The breakthroughs in magnetically assisted technologies for contact-free control of cell and tissue fate opens new perspectives to improve healing and instruct regeneration reaching a wide range of diseases and disorders. In this review, the contribution of magnetic nanoparticles (MNPs) will be explored as sophisticated and versatile nanotriggers, evidencing their unique cues to probe and control cell function. As cells detect and engage external magnetic features, these approaches will be overviewed considering molecular engineering and cell programming perspectives as well as cell and tissue targeting modalities. The therapeutic relevance of MNPs will be also emphasized as key components of nanostructured systems to control the release of nanomedicines and in the context of new therapy technologies.
Collapse
Affiliation(s)
- Ana F Almeida
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal. and ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Adriana Vinhas
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal. and ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana I Gonçalves
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal. and ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Margarida S Miranda
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal. and ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Márcia T Rodrigues
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal. and ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Manuela E Gomes
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal. and ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
17
|
Pardo A, Gómez-Florit M, Barbosa S, Taboada P, Domingues RMA, Gomes ME. Magnetic Nanocomposite Hydrogels for Tissue Engineering: Design Concepts and Remote Actuation Strategies to Control Cell Fate. ACS NANO 2021; 15:175-209. [PMID: 33406360 DOI: 10.1021/acsnano.0c08253] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Most tissues of the human body are characterized by highly anisotropic physical properties and biological organization. Hydrogels have been proposed as scaffolding materials to construct artificial tissues due to their water-rich composition, biocompatibility, and tunable properties. However, unmodified hydrogels are typically composed of randomly oriented polymer networks, resulting in homogeneous structures with isotropic properties different from those observed in biological systems. Magnetic materials have been proposed as potential agents to provide hydrogels with the anisotropy required for their use on tissue engineering. Moreover, the intrinsic properties of magnetic nanoparticles enable their use as magnetomechanic remote actuators to control the behavior of the cells encapsulated within the hydrogels under the application of external magnetic fields. In this review, we combine a detailed summary of the main strategies to prepare magnetic nanoparticles showing controlled properties with an analysis of the different approaches available to their incorporation into hydrogels. The application of magnetically responsive nanocomposite hydrogels in the engineering of different tissues is also reviewed.
Collapse
Affiliation(s)
- Alberto Pardo
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciencia e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco-Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Manuel Gómez-Florit
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciencia e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco-Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Silvia Barbosa
- Colloids and Polymers Physics Group, Condensed Matter Physics Area, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Pablo Taboada
- Colloids and Polymers Physics Group, Condensed Matter Physics Area, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Rui M A Domingues
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciencia e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco-Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Manuela E Gomes
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciencia e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco-Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| |
Collapse
|
18
|
Özkale B, Sakar MS, Mooney DJ. Active biomaterials for mechanobiology. Biomaterials 2021; 267:120497. [PMID: 33129187 PMCID: PMC7719094 DOI: 10.1016/j.biomaterials.2020.120497] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 02/06/2023]
Abstract
Active biomaterials offer novel approaches to study mechanotransduction in mammalian cells. These material systems probe cellular responses by dynamically modulating their resistance to endogenous forces or applying exogenous forces on cells in a temporally controlled manner. Stimuli-responsive molecules, polymers, and nanoparticles embedded inside cytocompatible biopolymer networks transduce external signals such as light, heat, chemicals, and magnetic fields into changes in matrix elasticity (few kPa to tens of kPa) or forces (few pN to several μN) at the cell-material interface. The implementation of active biomaterials in mechanobiology has generated scientific knowledge and therapeutic potential relevant to a variety of conditions including but not limited to cancer metastasis, fibrosis, and tissue regeneration. We discuss the repertoire of cellular responses that can be studied using these platforms including receptor signaling as well as downstream events namely, cytoskeletal organization, nuclear shuttling of mechanosensitive transcriptional regulators, cell migration, and differentiation. We highlight recent advances in active biomaterials and comment on their future impact.
Collapse
Affiliation(s)
- Berna Özkale
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA; Wyss Institute for Biologically Inspired Engineering, Cambridge, MA, 02138, USA
| | - Mahmut Selman Sakar
- Institute of Mechanical Engineering and Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland.
| | - David J Mooney
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA; Wyss Institute for Biologically Inspired Engineering, Cambridge, MA, 02138, USA.
| |
Collapse
|
19
|
Bettini S, Bonfrate V, Valli L, Giancane G. Paramagnetic Functionalization of Biocompatible Scaffolds for Biomedical Applications: A Perspective. Bioengineering (Basel) 2020; 7:E153. [PMID: 33260520 PMCID: PMC7711469 DOI: 10.3390/bioengineering7040153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/09/2020] [Accepted: 11/24/2020] [Indexed: 01/15/2023] Open
Abstract
The burst of research papers focused on the tissue engineering and regeneration recorded in the last years is justified by the increased skills in the synthesis of nanostructures able to confer peculiar biological and mechanical features to the matrix where they are dispersed. Inorganic, organic and hybrid nanostructures are proposed in the literature depending on the characteristic that has to be tuned and on the effect that has to be induced. In the field of the inorganic nanoparticles used for decorating the bio-scaffolds, the most recent contributions about the paramagnetic and superparamagnetic nanoparticles use was evaluated in the present contribution. The intrinsic properties of the paramagnetic nanoparticles, the possibility to be triggered by the simple application of an external magnetic field, their biocompatibility and the easiness of the synthetic procedures for obtaining them proposed these nanostructures as ideal candidates for positively enhancing the tissue regeneration. Herein, we divided the discussion into two macro-topics: the use of magnetic nanoparticles in scaffolds used for hard tissue engineering for soft tissue regeneration.
Collapse
Affiliation(s)
- Simona Bettini
- Department of Innovation Engineering, University Campus Ecotekne, University of Salento, Via per Monteroni, 73100 Lecce, Italy;
- National Interuniversity Consortium of Materials Science and Technology, INSTM, Via G. Giusti, 9, 50121 Firenze, Italy
| | - Valentina Bonfrate
- Department of Cultural Heritage, University of Salento, via D. Birago, 64, 73100 Lecce, Italy;
| | - Ludovico Valli
- National Interuniversity Consortium of Materials Science and Technology, INSTM, Via G. Giusti, 9, 50121 Firenze, Italy
- Department of Biological and Environmental Sciences and Technology (DiSTeBA), University Campus Ecotekne, University of Salento, Via per Monteroni, 73100 Lecce, Italy
| | - Gabriele Giancane
- National Interuniversity Consortium of Materials Science and Technology, INSTM, Via G. Giusti, 9, 50121 Firenze, Italy
- Department of Cultural Heritage, University of Salento, via D. Birago, 64, 73100 Lecce, Italy;
| |
Collapse
|
20
|
Sheng R, Jiang Y, Backman LJ, Zhang W, Chen J. The Application of Mechanical Stimulations in Tendon Tissue Engineering. Stem Cells Int 2020; 2020:8824783. [PMID: 33029149 PMCID: PMC7532391 DOI: 10.1155/2020/8824783] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/22/2020] [Accepted: 08/25/2020] [Indexed: 12/18/2022] Open
Abstract
Tendon injury is the most common disease in the musculoskeletal system. The current treatment methods have many limitations, such as poor therapeutic effects, functional loss of donor site, and immune rejection. Tendon tissue engineering provides a new treatment strategy for tendon repair and regeneration. In this review, we made a retrospective analysis of applying mechanical stimulation in tendon tissue engineering, and its potential as a direction of development for future clinical treatment strategies. For this purpose, the following topics are discussed; (1) the context of tendon tissue engineering and mechanical stimulation; (2) the applications of various mechanical stimulations in tendon tissue engineering, as well as their inherent mechanisms; (3) the application of magnetic force and the synergy of mechanical and biochemical stimulation. With this, we aim at clarifying some of the main questions that currently exist in the field of tendon tissue engineering and consequently gain new knowledge that may help in the development of future clinical application of tissue engineering in tendon injury.
Collapse
Affiliation(s)
- Renwang Sheng
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Yujie Jiang
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Ludvig J. Backman
- Department of Integrative Medical Biology, Anatomy, Umeå University, SE-901 87 Umeå, Sweden
| | - Wei Zhang
- School of Medicine, Southeast University, 210009 Nanjing, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096 Nanjing, China
- China Orthopedic Regenerative Medicine Group (CORMed), China
| | - Jialin Chen
- School of Medicine, Southeast University, 210009 Nanjing, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096 Nanjing, China
- China Orthopedic Regenerative Medicine Group (CORMed), China
| |
Collapse
|
21
|
Matos AM, Gonçalves AI, Rodrigues MT, Miranda MS, Haj AJE, Reis RL, Gomes ME. Remote triggering of TGF-β/Smad2/3 signaling in human adipose stem cells laden on magnetic scaffolds synergistically promotes tenogenic commitment. Acta Biomater 2020; 113:488-500. [PMID: 32652226 DOI: 10.1016/j.actbio.2020.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/29/2022]
Abstract
Injuries affecting load bearing tendon tissues are a significant clinical burden and efficient treatments are still unmet. Tackling tendon regeneration, tissue engineering strategies aim to develop functional substitutes that recreate native tendon milieu. Tendon mimetic scaffolds capable of remote magnetic responsiveness and functionalized magnetic nanoparticles (MNPs) targeting cellular mechanosensitive receptors are potential instructive tools to mediate mechanotransduction in guiding tenogenic responses. In this work, we combine magnetically responsive scaffolds and targeted Activin A type II receptor in human adipose stem cells (hASCs), under alternating magnetic field (AMF), to synergistically facilitate external control over signal transduction. The combination of remote triggering TGF-β/Smad2/3 using MNPs tagged hASCs, through magnetically actuated scaffolds, stimulates overall expression of tendon related genes and the deposition of tendon related proteins, in comparison to non-stimulated conditions. Moreover, the phosphorylation of Smad2/3 proteins and their nuclear co-localization was also more evident. Overall, biophysical stimuli resulting from magnetic scaffolds and magnetically triggered cells under AMF stimulation modulate the mechanosensing response of hASCs towards tenogenesis, holding therapeutic promise. STATEMENT OF SIGNIFICANCE: The concept of magnetically-assisted tissue engineering may assist the development of innovative solutions to treat tendon disorders upon remote control of biological processes as cell migration or differentiation. Herein, we originally combine a fibrous aligned superparamagnetic scaffold, based on a biodegradable polymeric blend of starch and poly-ɛ-caprolactone incorporating magnetic nanoparticles (MNPs), and human adipose stem cells (hASCs) labelled with MNPs functionalized with anti-activin receptor type IIA (ActRIIA). Constructs were stimulated using alternating magnetic field (AMF), to activate the ActRIIA and subsequent induction of TGF-β signaling, through Smad2/3 phosphorylation cascade, enhancing the expression of tendon-related markers. Altogether, these findings contribute with powerful bio-magnetic approaches to activate key tenogenic pathways, envisioning future translation of magnetic biomaterials into regenerative platforms for tendon repair.
Collapse
|
22
|
Huebner P, Warren PB, Chester D, Spang JT, Brown AC, Fisher MB, Shirwaiker RA. Mechanical properties of tissue formed in vivo are affected by 3D-bioplotted scaffold microarchitecture and correlate with ECM collagen fiber alignment. Connect Tissue Res 2020; 61:190-204. [PMID: 31345062 DOI: 10.1080/03008207.2019.1624733] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose: Musculoskeletal soft tissues possess highly aligned extracellular collagenous networks that provide structure and strength. Such an organization dictates tissue-specific mechanical properties but can be difficult to replicate by engineered biological substitutes. Nanofibrous electrospun scaffolds have demonstrated the ability to control cell-secreted collagen alignment, but concerns exist regarding their scalability for larger and anatomically relevant applications. Additive manufacturing processes, such as melt extrusion-based 3D-Bioplotting, allow fabrication of structurally relevant scaffolds featuring highly controllable porous microarchitectures.Materials and Methods: In this study, we investigate the effects of 3D-bioplotted scaffold design on the compressive elastic modulus of neotissue formed in vivo in a subcutaneous rat model and its correlation with the alignment of ECM collagen fibers. Polycaprolactone scaffolds featuring either 100 or 400 µm interstrand spacing were implanted for 4 or 12 weeks, harvested, cryosectioned, and characterized using atomic-force-microscopy-based force mapping.Results: The compressive elastic modulus of the neotissue formed within the 100 µm design was significantly higher at 4 weeks (p < 0.05), but no differences were observed at 12 weeks. In general, the tissue stiffness was within the same order of magnitude and range of values measured in native musculoskeletal soft tissues including the porcine meniscus and anterior cruciate ligament. Finally, a significant positive correlation was noted between tissue stiffness and the degree of ECM collagen fiber alignment (p < 0.05) resulting from contact guidance provided by scaffold strands.Conclusion: These findings demonstrate the significant effects of 3D-bioplotted scaffold microarchitectures in the organization and sub-tissue-level mechanical properties of ECM in vivo.
Collapse
Affiliation(s)
- Pedro Huebner
- Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, NC, USA.,Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
| | - Paul B Warren
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA.,Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC, USA
| | - Daniel Chester
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA.,Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC, USA
| | - Jeffrey T Spang
- Department of Orthopaedics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ashley C Brown
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA.,Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC, USA
| | - Matthew B Fisher
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA.,Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC, USA.,Department of Orthopaedics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rohan A Shirwaiker
- Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, NC, USA.,Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA.,Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC, USA
| |
Collapse
|
23
|
Matos AM, Gonçalves AI, El Haj AJ, Gomes ME. Magnetic biomaterials and nano-instructive tools as mediators of tendon mechanotransduction. NANOSCALE ADVANCES 2020; 2:140-148. [PMID: 36133967 PMCID: PMC9417540 DOI: 10.1039/c9na00615j] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/29/2019] [Indexed: 05/29/2023]
Abstract
Tendon tissues connect muscle to bone allowing the transmission of forces resulting in joint movement. Tendon injuries are prevalent in society and the impact on public health is of utmost concern. Thus, clinical options for tendon treatments are in demand, and tissue engineering aims to provide reliable and successful long-term regenerative solutions. Moreover, the possibility of regulating cell fate by triggering intracellular pathways is a current challenge in regenerative medicine. In the last decade, the use of magnetic nanoparticles as nano-instructive tools has led to great advances in diagnostics and therapeutics. Recent advances using magnetic nanomaterials for regenerative medicine applications include the incorporation of magnetic biomaterials within 3D scaffolds resulting in mechanoresponsive systems with unprecedented properties and the use of nanomagnetic actuators to control cell signaling. Mechano-responsive scaffolds and nanomagnetic systems can act as mechanostimulation platforms to apply forces directly to single cells and multicellular biological tissues. As transmitters of forces in a localized manner, the approaches enable the downstream activation of key tenogenic signaling pathways. In this minireview, we provide a brief outlook on the tenogenic signaling pathways which are most associated with the conversion of mechanical input into biochemical signals, the novel bio-magnetic approaches which can activate these pathways, and the efforts to translate magnetic biomaterials into regenerative platforms for tendon repair.
Collapse
Affiliation(s)
- Ana M Matos
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine Avepark - Zona Industrial da Gandra, 4805-017 Barco Guimarães Portugal
- ICVS/3B's - PT Government Associate Laboratory Braga/Guimarães Portugal
| | - Ana I Gonçalves
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine Avepark - Zona Industrial da Gandra, 4805-017 Barco Guimarães Portugal
- ICVS/3B's - PT Government Associate Laboratory Braga/Guimarães Portugal
| | - Alicia J El Haj
- Healthcare Technologies Institute, Birmingham University B15 2TT Birmingham UK
| | - Manuela E Gomes
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine Avepark - Zona Industrial da Gandra, 4805-017 Barco Guimarães Portugal
- ICVS/3B's - PT Government Associate Laboratory Braga/Guimarães Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at the University of Minho Avepark, 4805-017 Barco Guimarães Portugal
| |
Collapse
|
24
|
Tomás AR, Gonçalves AI, Paz E, Freitas P, Domingues RMA, Gomes ME. Magneto-mechanical actuation of magnetic responsive fibrous scaffolds boosts tenogenesis of human adipose stem cells. NANOSCALE 2019; 11:18255-18271. [PMID: 31566629 DOI: 10.1039/c9nr04355a] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Tendons are highly specialized load-bearing tissues with very limited healing capacity. Given their mechanosensitive nature, the combination of tendon mimetic scaffolds with remote mechanical actuation could synergistically contribute to the fabrication of improved tissue engineered alternatives for the functional regeneration of tendons. Here, hybrids of cellulose nanocrystals decorated with magnetic nanoparticles were produced to simultaneously reinforce and confer magnetic responsiveness to tendon mimetic hierarchical fibrous scaffolds, resulting in a system that enables remote stimulation of cells in vitro and, potentially, in vivo after construct transplantation. The biological performance and functionality of these scaffolds were evaluated using human adipose stem cells (hASCs) cultured under or in the absence of magnetic actuation. It was demonstrated that magneto-mechanical stimulation of hASCs promotes higher degrees of cell cytoskeleton anisotropic organization and steers the mechanosensitive YAP/TAZ signaling pathway. As feedback, stimulated cells show increased expression of tendon-related markers, as well as a pro-healing profile in genes related to their inflammatory secretome. Overall, these results support the use of the proposed magnetic responsive fibrous scaffolds as remote biointegrated actuators that can synergistically boost hASC tenogenesis through mechanosensing mechanisms and may modulate their pro-healing paracrine signaling, thus collectively contributing to the improvement of the regenerative potential of engineered tendon grafts.
Collapse
Affiliation(s)
- Ana R Tomás
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia Zona Industrial da Gandra, Barco, Guimarães 4805-017, Portugal.
| | | | | | | | | | | |
Collapse
|
25
|
Ambekar RS, Kandasubramanian B. Progress in the Advancement of Porous Biopolymer Scaffold: Tissue Engineering Application. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.8b05334] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Rushikesh S. Ambekar
- Rapid Prototype & Electrospinning Lab, Department of Metallurgical and Materials Engineering, DIAT (DU), Ministry of Defence, Girinagar, Pune 411025, India
| | - Balasubramanian Kandasubramanian
- Rapid Prototype & Electrospinning Lab, Department of Metallurgical and Materials Engineering, DIAT (DU), Ministry of Defence, Girinagar, Pune 411025, India
| |
Collapse
|
26
|
Araújo-Custódio S, Gomez-Florit M, Tomás AR, Mendes BB, Babo PS, Mithieux SM, Weiss A, Domingues RMA, Reis RL, Gomes ME. Injectable and Magnetic Responsive Hydrogels with Bioinspired Ordered Structures. ACS Biomater Sci Eng 2019; 5:1392-1404. [PMID: 33405615 DOI: 10.1021/acsbiomaterials.8b01179] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Injectable hydrogels are particularly interesting for applications in minimally invasive tissue engineering and regenerative medicine strategies. However, the typical isotropic microstructure of these biomaterials limits their potential for the regeneration of ordered tissues. In the present work, we decorated rod-shaped cellulose nanocrystals with magnetic nanoparticles and coated these with polydopamine and polyethylene glycol polymer brushes to obtain chemical and colloidal stable nanoparticles. Then, these nanoparticles (0.1-0.5 wt %) were incorporated within gelatin hydrogels, creating injectable and magnetically responsive materials with potential for various biomedical applications. Nanoparticle alignment within the hydrogel matrix was achieved under exposure to uniform low magnetic fields (108 mT), resulting in biomaterials with directional microstructure and anisotropic mechanical properties. The biological performance of these nanocomposite hydrogels was studied using adipose tissue derived human stem cells. Cells encapsulated in the nanocomposite hydrogels showed high rates of viability demonstrating that the nanocomposite biomaterials are not cytotoxic. Remarkably, the microstructural patterns stemming from nanoparticle alignment induced the directional growth of seeded and, to a lower extent, encapsulated cells in the hydrogels, suggesting that this injectable system might find application in both cellular and acellular strategies targeting the regeneration of anisotropic tissues.
Collapse
Affiliation(s)
- Sandra Araújo-Custódio
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Manuel Gomez-Florit
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana R Tomás
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Bárbara B Mendes
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Pedro S Babo
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Suzanne M Mithieux
- Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales 2006, Australia.,School of Molecular Bioscience, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Anthony Weiss
- Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales 2006, Australia.,School of Molecular Bioscience, The University of Sydney, Sydney, New South Wales 2006, Australia.,Bosch Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Rui M A Domingues
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal
| | - Manuela E Gomes
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal
| |
Collapse
|
27
|
Zhang H, Liu MF, Liu RC, Shen WL, Yin Z, Chen X. Physical Microenvironment-Based Inducible Scaffold for Stem Cell Differentiation and Tendon Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2018; 24:443-453. [PMID: 29724151 DOI: 10.1089/ten.teb.2018.0018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tendon injuries are common musculoskeletal system disorders, but the tendons have poor regeneration ability. To address this issue, tendon tissue engineering provides potential strategies for future therapeutic treatment. Elements of the physical microenvironment, such as the mechanical force and surface topography, play a vital role in regulating stem cell fate, enhancing the differentiation efficiency of seed cells in tendon tissue engineering. Various inducible scaffolds have been widely explored for tendon regeneration, and scaffold-enhancing modifications have been extensively studied. In this review, we systematically summarize the effects of the physical microenvironment on stem cell differentiation and tendon regeneration; we also provide an overview of the inducible scaffolds for stem cell tenogenic differentiation. Finally, we suggest some potential scaffold-based therapies for tendon injuries, presenting an interesting perspective on tendon regenerative medicine.
Collapse
Affiliation(s)
- Hong Zhang
- 1 School of Basic Medical Sciences, and Department of Orthopedic Surgery of The Second Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou, China .,2 Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University , Hangzhou, China .,3 Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University , Hangzhou, China
| | - Meng-Fei Liu
- 1 School of Basic Medical Sciences, and Department of Orthopedic Surgery of The Second Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou, China .,2 Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University , Hangzhou, China .,3 Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University , Hangzhou, China
| | - Ri-Chun Liu
- 4 Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University , Nanning, China
| | - Wei-Liang Shen
- 2 Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University , Hangzhou, China .,5 Department of Sports Medicine, School of Medicine, Zhejiang University , Hangzhou, China .,6 China Orthopedic Regenerative Medicine Group (CORMed) , Hangzhou, China .,7 State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou, China
| | - Zi Yin
- 1 School of Basic Medical Sciences, and Department of Orthopedic Surgery of The Second Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou, China .,2 Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University , Hangzhou, China .,3 Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University , Hangzhou, China .,6 China Orthopedic Regenerative Medicine Group (CORMed) , Hangzhou, China
| | - Xiao Chen
- 1 School of Basic Medical Sciences, and Department of Orthopedic Surgery of The Second Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou, China .,2 Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University , Hangzhou, China .,3 Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University , Hangzhou, China .,4 Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University , Nanning, China .,5 Department of Sports Medicine, School of Medicine, Zhejiang University , Hangzhou, China .,6 China Orthopedic Regenerative Medicine Group (CORMed) , Hangzhou, China
| |
Collapse
|
28
|
Gonçalves AI, Miranda MS, Rodrigues MT, Reis RL, Gomes ME. Magnetic responsive cell-based strategies for diagnostics and therapeutics. Biomed Mater 2018; 13:054001. [DOI: 10.1088/1748-605x/aac78b] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
29
|
Pesqueira T, Costa‐Almeida R, Gomes ME. Magnetotherapy: The quest for tendon regeneration. J Cell Physiol 2018; 233:6395-6405. [DOI: 10.1002/jcp.26637] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 03/30/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Tamagno Pesqueira
- 3B's Research Group − Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine Zona Industrial da Gandra Barco Guimarães Portugal
- ICVS/3B's − PT Government Associate Laboratory Guimarães Portugal
| | - Raquel Costa‐Almeida
- 3B's Research Group − Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine Zona Industrial da Gandra Barco Guimarães Portugal
- ICVS/3B's − PT Government Associate Laboratory Guimarães Portugal
| | - Manuela E. Gomes
- 3B's Research Group − Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine Zona Industrial da Gandra Barco Guimarães Portugal
- ICVS/3B's − PT Government Associate Laboratory Guimarães Portugal
- The Discoveries Centre for Regenerative and Precision Medicine Headquarters at University of Minho Barco Guimarães Portugal
| |
Collapse
|
30
|
Chouhan D, Mehrotra S, Majumder O, Mandal BB. Magnetic Actuator Device Assisted Modulation of Cellular Behavior and Tuning of Drug Release on Silk Platform. ACS Biomater Sci Eng 2018; 5:92-105. [DOI: 10.1021/acsbiomaterials.8b00240] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Dimple Chouhan
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Shreya Mehrotra
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Omkar Majumder
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Biman B. Mandal
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
31
|
Bacakova L, Zarubova J, Travnickova M, Musilkova J, Pajorova J, Slepicka P, Kasalkova NS, Svorcik V, Kolska Z, Motarjemi H, Molitor M. Stem cells: their source, potency and use in regenerative therapies with focus on adipose-derived stem cells - a review. Biotechnol Adv 2018; 36:1111-1126. [PMID: 29563048 DOI: 10.1016/j.biotechadv.2018.03.011] [Citation(s) in RCA: 372] [Impact Index Per Article: 53.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 03/12/2018] [Accepted: 03/15/2018] [Indexed: 02/08/2023]
Abstract
Stem cells can be defined as units of biological organization that are responsible for the development and the regeneration of organ and tissue systems. They are able to renew their populations and to differentiate into multiple cell lineages. Therefore, these cells have great potential in advanced tissue engineering and cell therapies. When seeded on synthetic or nature-derived scaffolds in vitro, stem cells can be differentiated towards the desired phenotype by an appropriate composition, by an appropriate architecture, and by appropriate physicochemical and mechanical properties of the scaffolds, particularly if the scaffold properties are combined with a suitable composition of cell culture media, and with suitable mechanical, electrical or magnetic stimulation. For cell therapy, stem cells can be injected directly into damaged tissues and organs in vivo. Since the regenerative effect of stem cells is based mainly on the autocrine production of growth factors, immunomodulators and other bioactive molecules stored in extracellular vesicles, these structures can be isolated and used instead of cells for a novel therapeutic approach called "stem cell-based cell-free therapy". There are four main sources of stem cells, i.e. embryonic tissues, fetal tissues, adult tissues and differentiated somatic cells after they have been genetically reprogrammed, which are referred to as induced pluripotent stem cells (iPSCs). Although adult stem cells have lower potency than the other three stem cell types, i.e. they are capable of differentiating into only a limited quantity of specific cell types, these cells are able to overcome the ethical and legal issues accompanying the application of embryonic and fetal stem cells and the mutational effects associated with iPSCs. Moreover, adult stem cells can be used in autogenous form. These cells are present in practically all tissues in the organism. However, adipose tissue seems to be the most advantageous tissue from which to isolate them, because of its abundancy, its subcutaneous location, and the need for less invasive techniques. Adipose tissue-derived stem cells (ASCs) are therefore considered highly promising in present-day regenerative medicine.
Collapse
Affiliation(s)
- Lucie Bacakova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, 4-Krc, Czech Republic.
| | - Jana Zarubova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, 4-Krc, Czech Republic
| | - Martina Travnickova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, 4-Krc, Czech Republic
| | - Jana Musilkova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, 4-Krc, Czech Republic
| | - Julia Pajorova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague, 4-Krc, Czech Republic
| | - Petr Slepicka
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague, 6-Dejvice, Czech Republic
| | - Nikola Slepickova Kasalkova
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague, 6-Dejvice, Czech Republic
| | - Vaclav Svorcik
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague, 6-Dejvice, Czech Republic
| | - Zdenka Kolska
- Faculty of Science, J.E. Purkyne University, Ceske mladeze 8, 400 96 Usti nad Labem, Czech Republic
| | - Hooman Motarjemi
- Clinic of Plastic Surgery, Faculty Hospital Na Bulovce, Budinova 67/2, 180 81 Prague, 8-Liben, Czech Republic
| | - Martin Molitor
- Clinic of Plastic Surgery, Faculty Hospital Na Bulovce, Budinova 67/2, 180 81 Prague, 8-Liben, Czech Republic
| |
Collapse
|
32
|
Smith WR, Hudson PW, Ponce BA, Rajaram Manoharan SR. Nanotechnology in orthopedics: a clinically oriented review. BMC Musculoskelet Disord 2018; 19:67. [PMID: 29499666 PMCID: PMC5833027 DOI: 10.1186/s12891-018-1990-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 02/23/2018] [Indexed: 12/15/2022] Open
Abstract
The utility of nanotechnology in medicine, specifically within the field of orthopedics, is a topic of extensive research. Our review provides a unique comprehensive overview of the current and potential future uses of nanotechnology with respect to orthopedic sub-specialties. Nanotechnology offers an immense assortment of novel applications, most notably the use of nanomaterials as scaffolds to induce a more favorable interaction between orthopedic implants and native bone. Nanotechnology has the capability to revolutionize the diagnostics and treatment of orthopedic surgery, however the long-term health effects of nanomaterials are poorly understood and extensive research is needed regarding clinical safety.
Collapse
Affiliation(s)
- Walter Ryan Smith
- Department of Orthopaedic Surgery, University of Alabama at Birmingham, 1313 13 St. South, Birmingham, AL 35205 USA
| | - Parke William Hudson
- Department of Orthopaedic Surgery, University of Alabama at Birmingham, 1313 13 St. South, Birmingham, AL 35205 USA
| | - Brent Andrew Ponce
- Department of Orthopaedic Surgery, University of Alabama at Birmingham, 1313 13 St. South, Birmingham, AL 35205 USA
| | | |
Collapse
|
33
|
Cardoso VF, Francesko A, Ribeiro C, Bañobre-López M, Martins P, Lanceros-Mendez S. Advances in Magnetic Nanoparticles for Biomedical Applications. Adv Healthc Mater 2018; 7. [PMID: 29280314 DOI: 10.1002/adhm.201700845] [Citation(s) in RCA: 330] [Impact Index Per Article: 47.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/28/2017] [Indexed: 12/17/2022]
Abstract
Magnetic nanoparticles (NPs) are emerging as an important class of biomedical functional nanomaterials in areas such as hyperthermia, drug release, tissue engineering, theranostic, and lab-on-a-chip, due to their exclusive chemical and physical properties. Although some works can be found reviewing the main application of magnetic NPs in the area of biomedical engineering, recent and intense progress on magnetic nanoparticle research, from synthesis to surface functionalization strategies, demands for a work that includes, summarizes, and debates current directions and ongoing advancements in this research field. Thus, the present work addresses the structure, synthesis, properties, and the incorporation of magnetic NPs in nanocomposites, highlighting the most relevant effects of the synthesis on the magnetic and structural properties of the magnetic NPs and how these effects limit their utilization in the biomedical area. Furthermore, this review next focuses on the application of magnetic NPs on the biomedical field. Finally, a discussion of the main challenges and an outlook of the future developments in the use of magnetic NPs for advanced biomedical applications are critically provided.
Collapse
Affiliation(s)
- Vanessa Fernandes Cardoso
- Centro de Física; Universidade do Minho; 4710-057 Braga Portugal
- MEMS-Microelectromechanical Systems Research Unit; Universidade do Minho; 4800-058 Guimarães Portugal
| | | | - Clarisse Ribeiro
- Centro de Física; Universidade do Minho; 4710-057 Braga Portugal
- CEB-Centre of Biological Engineering; University of Minho; Campus de Gualtar 4710-057 Braga Portugal
| | | | - Pedro Martins
- Centro de Física; Universidade do Minho; 4710-057 Braga Portugal
| | - Senentxu Lanceros-Mendez
- BCMaterials; Parque Científico y Tecnológico de Bizkaia; 48160 Derio Spain
- IKERBASQUE; Basque Foundation for Science; 48013 Bilbao Spain
| |
Collapse
|
34
|
Pesqueira T, Costa-Almeida R, Mithieux SM, Babo PS, Franco AR, Mendes BB, Domingues RMA, Freitas P, Reis RL, Gomes ME, Weiss AS. Engineering magnetically responsive tropoelastin spongy-like hydrogels for soft tissue regeneration. J Mater Chem B 2018; 6:1066-1075. [DOI: 10.1039/c7tb02035j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Magnetic biomaterials are a key focus in medical research.
Collapse
|
35
|
Gonçalves AI, Rodrigues MT, Gomes ME. Tissue-engineered magnetic cell sheet patches for advanced strategies in tendon regeneration. Acta Biomater 2017; 63:110-122. [PMID: 28919507 DOI: 10.1016/j.actbio.2017.09.014] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 08/29/2017] [Accepted: 09/13/2017] [Indexed: 02/06/2023]
Abstract
Tendons are powerful 3D biomechanically structures combining a few cells in an intrincated and highly hierarchical niche environment. When tendon homeostasis is compromised, restoration of functionality upon injury is limited and requires alternatives to current augmentation or replacement strategies. Cell sheet technologies are a powerful tool for the fabrication of living extracellular-rich patches towards regeneration of tenotopic defects. Thus, we originally propose the development of magnetically responsive tenogenic patches through magnetic cell sheet (magCSs) technology that enable the remote control upon implantation of the tendon-mimicking constructs. A Tenomodulin positive (TNMD+) subpopulation of cells sorted from a crude population of human adipose stem cells (hASCs) previously identified as being prone to tenogenesis was selected for the magCSs patch construction. We investigated the stability, the cellular co-location of the iron oxide nanoparticles (MNPs), as well as the morphology and mechanical properties of the developed magCSs. Moreover, the expression of tendon markers and collagenous tendon-like matrix were further assessed under the actuation of an external magnetic field. Overall, this study confirms the potential to bioengineer tendon patches using a magnetic cell sheet construction with magnetic responsiveness, good mechanoelastic properties and a tenogenic prone stem cell population envisioning cell-based functional therapies towards tendon regeneration. STATEMENT OF SIGNIFICANCE The concept of magnetic force-based tissue engineering may assist the development of innovative solutions to treat tendon (or other tissues) disorders upon remote control of biological processes as cell migration or differentiation. Herein, we originally fabricated magnetic responsive cell sheets (magCSs) with a Tenomodulin positive subpopulation of adipose tissue derived stem cells identified to commit to the tenogenic lineage. To the best of authors knowledge, this is the first time a tendon oriented strategy resorting on magCSsis reported. Moreover, the promising role of tenogenic living constructs fabricated as magnetically responsive ECM-rich patches is highlighted, envisioning the stimulation of endogenous regenerative mechanisms. Altogether, these findings contribute to future stem cell studies and their translation toward tendon therapies.
Collapse
|
36
|
Pesqueira T, Costa-Almeida R, Gomes ME. Uncovering the effect of low-frequency static magnetic field on tendon-derived cells: from mechanosensing to tenogenesis. Sci Rep 2017; 7:10948. [PMID: 28887547 PMCID: PMC5591251 DOI: 10.1038/s41598-017-11253-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/21/2017] [Indexed: 01/29/2023] Open
Abstract
Magnetotherapy has been receiving increased attention as an attractive strategy for modulating cell physiology directly at the site of injury, thereby providing the medical community with a safe and non-invasive therapy. Yet, how magnetic field influences tendon cells both at the cellular and molecular levels remains unclear. Thus, the influence of a low-frequency static magnetic field (2 Hz, 350 mT) on human tendon-derived cells was studied using different exposure times (4 and 8 h; short-term studies) and different regimens of exposure to an 8h-period of magnetic stimulation (continuous, every 24 h or every 48 h; long-term studies). Herein, 8 h stimulation in short-term studies significantly upregulated the expression of tendon-associated genes SCX, COL1A1, TNC and DCN (p < 0.05) and altered intracellular Ca2+ levels (p < 0.05). Additionally, every 24 h regimen of stimulation significantly upregulated COL1A1, COL3A1 and TNC at day 14 in comparison to control (p < 0.05), whereas continuous exposure differentially regulated the release of the immunomodulatory cytokines IL-1β and IL-10 (p < 0.001) but only at day 7 in comparison to controls. Altogether, these results provide new insights on how low-frequency static magnetic field fine-tune the behaviour of tendon cells according to the magnetic settings used, which we foresee to represent an interesting candidate to guide tendon regeneration.
Collapse
Affiliation(s)
- Tamagno Pesqueira
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal
| | - Raquel Costa-Almeida
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal
| | - Manuela E Gomes
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal.
- ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal.
| |
Collapse
|
37
|
Silva ED, Babo PS, Costa-Almeida R, Domingues RMA, Mendes BB, Paz E, Freitas P, Rodrigues MT, Granja PL, Gomes ME. Multifunctional magnetic-responsive hydrogels to engineer tendon-to-bone interface. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 14:2375-2385. [PMID: 28614734 DOI: 10.1016/j.nano.2017.06.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 04/18/2017] [Accepted: 06/01/2017] [Indexed: 10/19/2022]
Abstract
Photocrosslinkable magnetic hydrogels are attracting great interest for tissue engineering strategies due to their versatility and multifunctionality, including their remote controllability ex vivo, thus enabling engineering complex tissue interfaces. This study reports the development of a photocrosslinkable magnetic responsive hydrogel made of methacrylated chondroitin sulfate (MA-CS) enriched with platelet lysate (PL) with tunable features, envisioning their application in tendon-to-bone interface. MA-CS coated iron-based magnetic nanoparticles were incorporated to provide magnetic responsiveness to the hydrogel. Osteogenically differentiated adipose-derived stem cells and/or tendon-derived cells were encapsulated within the hydrogel, proliferating and expressing bone- and tendon-related markers. External magnetic field (EMF) application modulated the swelling, degradation and release of PL-derived growth factors, and impacted both cell morphology and the expression and synthesis of tendon- and bone-like matrix with a more evident effect in co-cultures. Overall, the developed magnetic responsive hydrogel represents a potential cell carrier system for interfacial tissue engineering with EMF-controlled properties.
Collapse
Affiliation(s)
- Elsa D Silva
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Pedro S Babo
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Raquel Costa-Almeida
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui M A Domingues
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Bárbara B Mendes
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Elvira Paz
- INL-International Iberian Nanotechnology Laboratory, Braga, Portugal
| | - Paulo Freitas
- INL-International Iberian Nanotechnology Laboratory, Braga, Portugal
| | - Márcia T Rodrigues
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Pedro L Granja
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Manuela E Gomes
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
38
|
Gomes ME, Rodrigues MT, Domingues RM, Reis RL. Tissue Engineering and Regenerative Medicine: New Trends and Directions—A Year in Review. TISSUE ENGINEERING PART B-REVIEWS 2017; 23:211-224. [DOI: 10.1089/ten.teb.2017.0081] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Manuela E. Gomes
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Guimarães, Portugal
| | - Márcia T. Rodrigues
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Guimarães, Portugal
| | - Rui M.A. Domingues
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Guimarães, Portugal
| | - Rui L. Reis
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Guimarães, Portugal
| |
Collapse
|
39
|
Liu Y, Suen CW, Zhang JF, Li G. Current concepts on tenogenic differentiation and clinical applications. J Orthop Translat 2017; 9:28-42. [PMID: 29662797 PMCID: PMC5822963 DOI: 10.1016/j.jot.2017.02.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/21/2017] [Accepted: 02/23/2017] [Indexed: 12/16/2022] Open
Abstract
Tendon is a tissue that transmits force from muscle to bone. Chronic or acute tendon injuries are very common, and are always accompanied by pain and a limited range of motion in patients. In clinical settings, management of tendon injuries still remains a big challenge. Cell therapies, such as the application of stem cells for tenogenic differentiation, were suggested to be an ideal strategy for clinical translation. However, there is still a lack of specific methods for tenogenic differentiation due to the limited understanding of tendon biology currently. This review focuses on the summary of current published strategies for tenogenic differentiation, such as the application of growth factors, mechanical stimulation, biomaterials, coculture, or induced pluripotent stem cells. Current clinical applications of stem cells for treatment of tendon injuries and their limitations have also been discussed in this review.
Collapse
Affiliation(s)
- Yang Liu
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Chun-Wai Suen
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Jin-fang Zhang
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Gang Li
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Stem Cells and Regenerative Medicine Laboratory, Lui Che Woo Institute of Innovative Medicine, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- Corresponding author. Department of Orthopaedics and Traumatology and Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, 30-32 Ngan Shing Street, Shatin, New Territories, Hong Kong, China.Department of Orthopaedics and Traumatology and Li Ka Shing Institute of Health SciencesPrince of Wales HospitalThe Chinese University of Hong Kong30-32 Ngan Shing StreetShatinNew TerritoriesHong Kong, China
| |
Collapse
|
40
|
Santos L, Silva M, Gonçalves AI, Pesqueira T, Rodrigues MT, Gomes ME. In vitro and in vivo assessment of magnetically actuated biomaterials and prospects in tendon healing. Nanomedicine (Lond) 2016; 11:1107-22. [DOI: 10.2217/nnm-2015-0014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Aim: To expand our understanding on the effect of magnetically actuated biomaterials in stem cells, inflammation and fibrous tissue growth. Materials & methods: Magnetic biomaterials were obtained by doping iron oxide particles into starch poly-ϵ-caprolactone (SPCL) to create two formulations, magSPCL-1.8 and 3.6. Stem cell behavior was assessed in vitro and the inflammatory response, subcutaneously in Wistar rats. Results: Metabolic activity and proliferation increased significantly overtime in SPCL and magSPCL-1.8. Electromagnetic fields attenuated the presence of mast cells and macrophages in tissues surrounding SPCL and magSPCL-1.8, between weeks 1 and 9. Macrophage reduction was more pronounced for magSPCL-1.8, which could explain why this material prevented growth of fibrous tissue overtime. Conclusion: Magnetically actuated biomaterials have potential to modulate inflammation and the growth of fibrous tissue.
Collapse
Affiliation(s)
- Lívia Santos
- 3B’s Research Group, Biomaterials, Biodegradables & Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering & Regenerative Medicine, Portugal
- ICVS/3B’s, PT Government Associate Laboratory, Portugal
| | - Marta Silva
- 3B’s Research Group, Biomaterials, Biodegradables & Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering & Regenerative Medicine, Portugal
- ICVS/3B’s, PT Government Associate Laboratory, Portugal
| | - Ana I. Gonçalves
- 3B’s Research Group, Biomaterials, Biodegradables & Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering & Regenerative Medicine, Portugal
- ICVS/3B’s, PT Government Associate Laboratory, Portugal
| | - Tamagno Pesqueira
- 3B’s Research Group, Biomaterials, Biodegradables & Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering & Regenerative Medicine, Portugal
- ICVS/3B’s, PT Government Associate Laboratory, Portugal
| | - Márcia T. Rodrigues
- 3B’s Research Group, Biomaterials, Biodegradables & Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering & Regenerative Medicine, Portugal
- ICVS/3B’s, PT Government Associate Laboratory, Portugal
| | - Manuela E. Gomes
- 3B’s Research Group, Biomaterials, Biodegradables & Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering & Regenerative Medicine, Portugal
- ICVS/3B’s, PT Government Associate Laboratory, Portugal
| |
Collapse
|