1
|
Rodriguez-Lejarraga P, Martin-Iglesias S, Moneo-Corcuera A, Colom A, Redondo-Morata L, Giannotti MI, Petrenko V, Monleón-Guinot I, Mata M, Silvan U, Lanceros-Mendez S. The surface charge of electroactive materials governs cell behaviour through its effect on protein deposition. Acta Biomater 2024; 184:201-209. [PMID: 38950807 DOI: 10.1016/j.actbio.2024.06.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/13/2024] [Accepted: 06/25/2024] [Indexed: 07/03/2024]
Abstract
The precise mechanisms underlying the cellular response to static electric cues remain unclear, limiting the design and development of biomaterials that utilize this parameter to enhance specific biological behaviours. To gather information on this matter we have explored the interaction of collagen type-I, the most abundant mammalian extracellular protein, with poly(vinylidene fluoride) (PVDF), an electroactive polymer with great potential for tissue engineering applications. Our results reveal significant differences in collagen affinity, conformation, and interaction strength depending on the electric charge of the PVDF surface, which subsequently affects the behaviour of mesenchymal stem cells seeded on them. These findings highlight the importance of surface charge in the establishment of the material-protein interface and ultimately in the biological response to the material. STATEMENT OF SIGNIFICANCE: The development of new tissue engineering strategies relies heavily on the understanding of how biomaterials interact with biological tissues. Although several factors drive this process and their driving principles have been identified, the relevance and mechanism by which the surface potential influences cell behaviour is still unknown. In our study, we investigate the interaction between collagen, the most abundant component of the extracellular matrix, and poly(vinylidene fluoride) with varying surface charges. Our findings reveal substantial variations in the binding forces, structure and adhesion of collagen on the different surfaces, which collectively explain the differential cellular responses. By exposing these differences, our research fills a critical knowledge gap and paves the way for innovations in material design for advanced tissue regeneration strategies.
Collapse
Affiliation(s)
| | - Sara Martin-Iglesias
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, 48940 Leioa, Spain
| | - Andrea Moneo-Corcuera
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, 48940 Leioa, Spain
| | - Adai Colom
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain; Biofisika Institute (CSIC, UPV/EHU), 48940 Leioa, Spain; Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, Campus Universitario, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Lorena Redondo-Morata
- Université de Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017, CIIL-Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Marina I Giannotti
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology, 08028 Barcelona, Spain; CIBER-BBN, ISCIII, 08028 Barcelona, Spain; Department of Materials Science and Physical Chemistry, University of Barcelona, Martí i Franquès 10, 08028 Barcelona, Spain
| | - Viktor Petrenko
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, 48940 Leioa, Spain; Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Irene Monleón-Guinot
- Department of Pathology, Faculty of Medicine and Dentistry, Universitat de València, 46010 Valencia, Spain; INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
| | - Manuel Mata
- Department of Pathology, Faculty of Medicine and Dentistry, Universitat de València, 46010 Valencia, Spain; INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
| | - Unai Silvan
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, 48940 Leioa, Spain; Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain.
| | - Senentxu Lanceros-Mendez
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, 48940 Leioa, Spain; Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
2
|
Kou H, Han Q, Zhang H, Xu C, Liao L, Hou Y, Wang H, Zhang J. Impact of changes in collagen construction and molecular state on integrin - binding properties. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:1523-1536. [PMID: 38574261 DOI: 10.1080/09205063.2024.2338004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/21/2024] [Indexed: 04/06/2024]
Abstract
The interaction between the integrin and collagen is important in cell adhesion and signaling. Collagen, as the main component of extracellular matrix, is a base material for tissue engineering constructs. In tissue engineering, the collagen structure and molecule state may be altered to varying degrees in the process of processing and utilizing, thereby affecting its biological properties. In this work, the impact of changes in collagen structure and molecular state on the binding properties of collagen to integrin α2β1 and integrin specific cell adhesion were explored. The results showed that the molecular structure of collagen is destroyed under the influence of heating, freeze-grinding and irradiation, the triple helix integrity is reduced and molecular breaking degree is increased. The binding ability of collagen to integrin α2β1 is increased with the increase of triple helix integrity and decays exponentially with the increase of molecular breaking degree. The collagen molecular state can also influences the binding ability of collagen to cellular receptor. The collagen fibrils binding to integrin α2β1 and HT1080 cells is stronger than to collagen monomolecule. Meanwhile, the hybrid fibril exhibits a different cellular receptor binding performance from corresponding single species collagen fibril. These findings provide ideas for the design and development of new collagen-based biomaterials and tissue engineering research.
Collapse
Affiliation(s)
- Huizhi Kou
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Qingqiu Han
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Huihui Zhang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Chengzhi Xu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Lixia Liao
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Yuanjing Hou
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Haibo Wang
- College of Life Science and Technology, Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, Hubei Engineering University, Xiaogan, China
| | - Juntao Zhang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
3
|
Laha S, Dhar D, Adak M, Bandopadhyay A, Das S, Chatterjee J, Chakraborty S. Electric field-mediated adhesive dynamics of cells inside bio-functionalised microchannels offers important cues for active control of cell-substrate adhesion. SOFT MATTER 2024; 20:2610-2623. [PMID: 38426537 DOI: 10.1039/d4sm00083h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Adhesive dynamics of cells plays a critical role in determining different biophysical processes orchestrating health and disease in living systems. While the rolling of cells on functionalised substrates having similarity with biophysical pathways appears to be extensively discussed in the literature, the effect of an external stimulus in the form of an electric field on the same remains underemphasized. Here, we bring out the interplay of fluid shear and electric field on the rolling dynamics of adhesive cells in biofunctionalised micro-confinements. Our experimental results portray that an electric field, even restricted to low strengths within the physiologically relevant regimes, can significantly influence the cell adhesion dynamics. We quantify the electric field-mediated adhesive dynamics of the cells in terms of two key parameters, namely, the voltage-altered rolling velocity and the frequency of adhesion. The effect of the directionality of the electric field with respect to the flow direction is also analysed by studying cellular migration with electrical effects acting both along and against the flow. Our experiment, on one hand, demonstrates the importance of collagen functionalisation in the adhesive dynamics of cells through micro channels, while on the other hand, it reveals how the presence of an axial electric field can lead to significant alteration in the kinetic rate of bond breakage, thereby modifying the degree of cell-substrate adhesion and quantifying in terms of the adhesion frequency of the cells. Proceeding further forward, we offer a simple theoretical explanation towards deriving the kinetics of cellular bonding in the presence of an electric field, which corroborates favourably with our experimental outcome. These findings are likely to offer fundamental insights into the possibilities of local control of cellular adhesion via electric field mediated interactions, bearing critical implications in a wide variety of medical conditions ranging from wound healing to cancer metastasis.
Collapse
Affiliation(s)
- Sampad Laha
- Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur, India.
| | - Dhruba Dhar
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, India
| | - Mainak Adak
- National Institute of Technology, Tiruchirappalli, India
| | - Aditya Bandopadhyay
- Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur, India.
| | - Soumen Das
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, India
| | - Jyotirmoy Chatterjee
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, India
| | - Suman Chakraborty
- Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur, India.
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, India
| |
Collapse
|
4
|
Ge B, Wei M, Bao B, Pan Z, Elango J, Wu W. The Role of Integrin Receptor's α and β Subunits of Mouse Mesenchymal Stem Cells on the Interaction of Marine-Derived Blacktip Reef Shark ( Carcharhinus melanopterus) Skin Collagen. Int J Mol Sci 2023; 24:ijms24119110. [PMID: 37298062 DOI: 10.3390/ijms24119110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/25/2023] [Accepted: 05/10/2023] [Indexed: 06/12/2023] Open
Abstract
Marine collagen (MC) has recently attracted more attention in tissue engineering as a biomaterial substitute due to its significant role in cellular signaling mechanisms, especially in mesenchymal stem cells (MSCs). However, the actual signaling mechanism of MC in MSC growth, which is highly influenced by their molecular pattern, is poorly understood. Hence, we investigated the integrin receptors (α1β1, α2β1, α10β1, and α11β1) binding mechanism and proliferation of MCs (blacktip reef shark collagen (BSC) and blue shark collagen (SC)) compared to bovine collagen (BC) on MSCs behavior through functionalized collagen molecule probing for the first time. The results showed that BSC and SC had higher proliferation rates and accelerated scratch wound healing by increasing migratory rates of MSCs. Cell adhesion and spreading results demonstrated that MC had a better capacity to anchor MSCs and maintain cell morphology than controls. Living cell observations showed that BSC was gradually assembled by cells into the ECM network within 24 h. Interestingly, qRT-PCR and ELISA revealed that the proliferative effect of MC was triggered by interacting with specific integrin receptors such as α2β1, α10β1, and α11β1 of MSCs. Accordingly, BSC accelerated MSCs' growth, adhesion, shape, and spreading by interacting with specific integrin subunits (α2 and β1) and thereby triggering further signaling cascade mechanisms.
Collapse
Affiliation(s)
- Baolin Ge
- Department of Marine Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Mingjun Wei
- Department of Marine Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Bin Bao
- Department of Marine Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Zhilin Pan
- Department of Marine Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jeevithan Elango
- Department of Marine Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Department of Biomaterials Engineering, Faculty of Health Sciences, UCAM-Universidad Católica San Antonio de Murcia, Guadalupe, 30107 Murcia, Spain
| | - Wenhui Wu
- Department of Marine Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
5
|
Fischer NG, Aparicio C. Junctional epithelium and hemidesmosomes: Tape and rivets for solving the "percutaneous device dilemma" in dental and other permanent implants. Bioact Mater 2022; 18:178-198. [PMID: 35387164 PMCID: PMC8961425 DOI: 10.1016/j.bioactmat.2022.03.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/14/2022] [Accepted: 03/12/2022] [Indexed: 02/06/2023] Open
Abstract
The percutaneous device dilemma describes etiological factors, centered around the disrupted epithelial tissue surrounding non-remodelable devices, that contribute to rampant percutaneous device infection. Natural percutaneous organs, in particular their extracellular matrix mediating the "device"/epithelium interface, serve as exquisite examples to inspire longer lasting long-term percutaneous device design. For example, the tooth's imperviousness to infection is mediated by the epithelium directly surrounding it, the junctional epithelium (JE). The hallmark feature of JE is formation of hemidesmosomes, cell/matrix adhesive structures that attach surrounding oral gingiva to the tooth's enamel through a basement membrane. Here, the authors survey the multifaceted functions of the JE, emphasizing the role of the matrix, with a particular focus on hemidesmosomes and their five main components. The authors highlight the known (and unknown) effects dental implant - as a model percutaneous device - placement has on JE regeneration and synthesize this information for application to other percutaneous devices. The authors conclude with a summary of bioengineering strategies aimed at solving the percutaneous device dilemma and invigorating greater collaboration between clinicians, bioengineers, and matrix biologists.
Collapse
Affiliation(s)
- Nicholas G. Fischer
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, MN, 55455, USA
| | - Conrado Aparicio
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, MN, 55455, USA
- Division of Basic Research, Faculty of Odontology, UIC Barcelona – Universitat Internacional de Catalunya, C/. Josep Trueta s/n, 08195, Sant Cugat del Valles, Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), C/. Baldiri Reixac 10-12, 08028, Barcelona, Spain
| |
Collapse
|
6
|
Fontelo R, da Costa DS, Reis RL, Novoa-Carballal R, Pashkuleva I. Block copolymer nanopatterns affect cell spreading: Stem versus cancer bone cells. Colloids Surf B Biointerfaces 2022; 219:112774. [PMID: 36067682 DOI: 10.1016/j.colsurfb.2022.112774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/05/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022]
Abstract
Bone healing after a tumor removal can be promoted by biomaterials that enhance the bone regeneration and prevent the tumor relapse. Herein, we obtained several nanopatterns by self-assembly of polystyrene-block-poly-(2-vinylpyridine) (PS-b-P2VP) with different molecular weights and investigated the adhesion and morphology of human bone marrow mesenchymal stem cells (BMMSC) and osteosarcoma cell line (SaOS-2) on these patterns aiming to identify topography and chemistry that promote bone healing. We analyzed > 2000 cells per experimental condition using imaging software and different morphometric descriptors, namely area, perimeter, aspect ratio, circularity, surface/area, and fractal dimension of cellular contour (FDC). The obtained data were used as inputs for principal component analysis, which showed distinct response of BMMSC and SaOS-2 to the surface topography and chemistry. Among the studied substrates, micellar nanopatterns assembled from the copolymer with high molecular weight promote the adhesion and spreading of BMMSC and have an opposite effect on SaOS-2. This nanopattern is thus beneficial for bone regeneration after injury or pathology, e.g. bone fracture or tumor removal.
Collapse
Affiliation(s)
- R Fontelo
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - D Soares da Costa
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - R L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - R Novoa-Carballal
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| | - I Pashkuleva
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
7
|
Zhang J, Liu W, Sui P, Nan J, Wei B, Xu C, He L, Zheng M, Wang H. Fabrication of a stepwise degradable hybrid bioscaffold based on the natural and partially denatured collagen. Int J Biol Macromol 2022; 213:416-426. [PMID: 35661667 DOI: 10.1016/j.ijbiomac.2022.05.184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/24/2022] [Accepted: 05/29/2022] [Indexed: 11/05/2022]
Abstract
As a major component of extracellular matrixes (ECMs), collagen is an attractive biomaterial to fabricate porous scaffold for tissue engineering due to their similarity to the in vivo static microenvironment. However, the collagen-based porous scaffolds were difficult to mimic the dynamically remolded porous structure of ECM during the cell proliferation and tissue development, and always have poor mechanical property and not easy to handle. Here, natural collagen and partially denatured collagen was used to prepare the stepwise degradable hybrid bioscaffold with suitable mechanical property and dynamically remolded inner porous structure, which is desirable for the applications of tissue engineering. The collagen-based microporous scaffold was first prepared and used as physical support, then, the mechanical strength of which was reinforced by the import of the partially denatured collagen to give the hybrid bioscaffold. The fabrication conditions of the hybrid scaffolds were optimized, of which the thermal stability, mechanical property, and swelling property was explored. The stepwise enzymatic degradation process and the corresponding porous structure variation of the hybrid scaffold was confirmed by SEM and cell culture assays.
Collapse
Affiliation(s)
- Juntao Zhang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Wei Liu
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei, 430023, China
| | - Peishan Sui
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Jie Nan
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Benmei Wei
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Chengzhi Xu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Lang He
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Mingming Zheng
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, No. 2 Xudong second Road, Wuhan, Hubei 430062, China
| | - Haibo Wang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China.
| |
Collapse
|
8
|
Ferreira LF, Giordano GF, Gobbi AL, Piazzetta MHO, Schleder GR, Lima RS. Real-Time and In Situ Monitoring of the Synthesis of Silica Nanoparticles. ACS Sens 2022; 7:1045-1057. [PMID: 35417147 DOI: 10.1021/acssensors.1c02697] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The real-time and in situ monitoring of the synthesis of nanomaterials (NMs) remains a challenging task, which is of pivotal importance by assisting fundamental studies (e.g., synthesis kinetics and colloidal phenomena) and providing optimized quality control. In fact, the lack of reproducibility in the synthesis of NMs is a bottleneck against the translation of nanotechnologies into the market toward daily practice. Here, we address an impedimetric millifluidic sensor with data processing by machine learning (ML) as a sensing platform to monitor silica nanoparticles (SiO2NPs) over a 24 h synthesis from a single measurement. The SiO2NPs were selected as a model NM because of their extensive applications. Impressively, simple ML-fitted descriptors were capable of overcoming interferences derived from SiO2NP adsorption over the signals of polarizable Au interdigitate electrodes to assure the determination of the size and concentration of nanoparticles over synthesis while meeting the trade-off between accuracy and speed/simplicity of computation. The root-mean-square errors were calculated as ∼2.0 nm (size) and 2.6 × 1010 nanoparticles mL-1 (concentration). Further, the robustness of the ML size descriptor was successfully challenged in data obtained along independent syntheses using different devices, with the global average accuracy being 103.7 ± 1.9%. Our work advances the developments required to transform a closed flow system basically encompassing the reactional flask and an impedimetric sensor into a scalable and user-friendly platform to assess the in situ synthesis of SiO2NPs. Since the sensor presents a universal response principle, the method is expected to enable the monitoring of other NMs. Such a platform may help to pave the way for translating "sense-act" systems into practice use in nanotechnology.
Collapse
Affiliation(s)
- Larissa F. Ferreira
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
- Institute of Chemistry, University of Campinas, Campinas, São Paulo 13083-970, Brazil
| | - Gabriela F. Giordano
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
| | - Angelo L. Gobbi
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
| | - Maria H. O. Piazzetta
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
| | - Gabriel R. Schleder
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Renato S. Lima
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
- Institute of Chemistry, University of Campinas, Campinas, São Paulo 13083-970, Brazil
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, São Paulo 09210-580, Brazil
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo 13566-590, Brazil
| |
Collapse
|
9
|
Dhahri W, Sadikov Valdman T, Wilkinson D, Pereira E, Ceylan E, Andharia N, Qiang B, Masoudpour H, Wulkan F, Quesnel E, Jiang W, Funakoshi S, Mazine A, Gomez-Garcia MJ, Latifi N, Jiang Y, Huszti E, Simmons CA, Keller G, Laflamme MA. In Vitro Matured Human Pluripotent Stem Cell-derived Cardiomyocytes Form Grafts With Enhanced Structure and Function in Injured Hearts. Circulation 2022; 145:1412-1426. [PMID: 35089805 DOI: 10.1161/circulationaha.121.053563] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) have tremendous promise for application in cardiac regeneration, but their translational potential is limited by an immature phenotype. We hypothesized that large-scale manufacturing of mature hPSC-CMs could be achieved via culture on polydimethylsiloxane (PDMS) lined roller bottles and that the transplantation of these cells would mediate better structural and functional outcomes than with conventional immature hPSC-CM populations. METHODS We comprehensively phenotyped hPSC-CMs after in vitro maturation for 20 and 40 days on either PDMS or standard tissue culture plastic (TCP) substrates. All hPSC-CMs were generated using a transgenic hPSC line that stably expressed a voltage-sensitive fluorescent reporter to facilitate in vitro and in vivo electrophysiological studies, and cardiomyocyte populations were also analyzed in vitro by immunocytochemistry, ultrastructure and fluorescent calcium imaging, as well as bulk and single-cell transcriptomics. We next compared outcomes after the transplantation of these populations into a guinea pig model of myocardial infarction (MI) using endpoints including histology, optical mapping of graft- and host-derived action potentials, echocardiography, and telemetric electrocardiographic (ECG) monitoring. RESULTS We demonstrated the economic generation of >1x108 mature hPSC-CMs per PDMS-lined roller bottle. Compared to their counterparts generated on TCP substrates, PDMS-matured hPSC-CMs exhibited increased cardiac gene expression and more mature structural and functional properties in vitro. More importantly, intra-cardiac grafts formed with PDMS-matured myocytes showed greatly enhanced structure and alignment, better host-graft electromechanical integration, less pro-arrhythmic behavior, and greater beneficial effects on contractile function. CONCLUSIONS In summary, we describe practical methods for the scaled generation of mature hPSC-CMs and provide the first evidence that the transplantation of more mature cardiomyocytes yields better outcomes in vivo.
Collapse
Affiliation(s)
- Wahiba Dhahri
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | | | | | | | - Eylül Ceylan
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - Naaz Andharia
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - Beiping Qiang
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - Hassan Masoudpour
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - Fanny Wulkan
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - Elya Quesnel
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - Wenlei Jiang
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - Shunsuke Funakoshi
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - Amine Mazine
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - M Juliana Gomez-Garcia
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Neda Latifi
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Yidi Jiang
- Biostatistics Research Unit, University Health Network, Toronto, ON, Canada
| | - Ella Huszti
- Biostatistics Research Unit, University Health Network, Toronto, ON, Canada
| | - Craig A Simmons
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Gordon Keller
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Michael A Laflamme
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada; Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
10
|
Shear-stress sensing by PIEZO1 regulates tendon stiffness in rodents and influences jumping performance in humans. Nat Biomed Eng 2021; 5:1457-1471. [PMID: 34031557 PMCID: PMC7612848 DOI: 10.1038/s41551-021-00716-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 03/17/2021] [Indexed: 01/31/2023]
Abstract
Athletic performance relies on tendons, which enable movement by transferring forces from muscles to the skeleton. Yet, how load-bearing structures in tendons sense and adapt to physical demands is not understood. Here, by performing calcium (Ca2+) imaging in mechanically loaded tendon explants from rats and in primary tendon cells from rats and humans, we show that tenocytes detect mechanical forces through the mechanosensitive ion channel PIEZO1, which senses shear stresses induced by collagen-fibre sliding. Through tenocyte-targeted loss-of-function and gain-of-function experiments in rodents, we show that reduced PIEZO1 activity decreased tendon stiffness and that elevated PIEZO1 mechanosignalling increased tendon stiffness and strength, seemingly through upregulated collagen cross-linking. We also show that humans carrying the PIEZO1 E756del gain-of-function mutation display a 13.2% average increase in normalized jumping height, presumably due to a higher rate of force generation or to the release of a larger amount of stored elastic energy. Further understanding of the PIEZO1-mediated mechanoregulation of tendon stiffness should aid research on musculoskeletal medicine and on sports performance.
Collapse
|
11
|
Monitoring fiber-like aggregation of collagen using gold nanoparticles as probes. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01935-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Priyadarshani J, Roy T, Das S, Chakraborty S. Frugal Approach toward Developing a Biomimetic, Microfluidic Network-on-a-Chip for In Vitro Analysis of Microvascular Physiology. ACS Biomater Sci Eng 2021; 7:1263-1277. [PMID: 33555875 DOI: 10.1021/acsbiomaterials.1c00070] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Several disease conditions, such as cancer metastasis and atherosclerosis, are deeply connected with the complex biophysical phenomena taking place in the complicated architecture of the tiny blood vessels in human circulatory systems. Traditionally, these diseases have been probed by devising various animal models, which are otherwise constrained by ethical considerations as well as limited predictive capabilities. Development of an engineered network-on-a-chip, which replicates not only the functional aspects of the blood-carrying microvessels of human bodies, but also its geometrical complexity and hierarchical microstructure, is therefore central to the evaluation of organ-assist devices and disease models for therapeutic assessment. Overcoming the constraints of reported resource-intensive fabrication techniques, here, we report a facile, simple yet niche combination of surface engineering and microfabrication strategy to devise a highly ordered hierarchical microtubular network embedded within a polydimethylsiloxane (PDMS) slab for dynamic cell culture on a chip, with a vision of addressing the exclusive aspects of the vascular transport processes under medically relevant paradigms. The design consists of hierarchical complexity ranging from capillaries (∼80 μm) to large arteries (∼390 μm) and a simultaneous tuning of the interfacial material chemistry. The fluid flow behavior is characterized numerically within the hierarchical network, and a confluent endothelial layer is realized on the inner wall of microfluidic device. We further explore the efficacy of the device as a vascular deposition assay of circulatory tumor cells (MG-63 osteosarcoma cells) present in whole blood. The proposed paradigm of mimicking an in vitro vascular network in a low-cost paradigm holds further potential for probing cellular dynamics as well as offering critical insights into various vascular transport processes.
Collapse
Affiliation(s)
- Jyotsana Priyadarshani
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Trina Roy
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Soumen Das
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Suman Chakraborty
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
13
|
Shinde A, Illath K, Gupta P, Shinde P, Lim KT, Nagai M, Santra TS. A Review of Single-Cell Adhesion Force Kinetics and Applications. Cells 2021; 10:577. [PMID: 33808043 PMCID: PMC8000588 DOI: 10.3390/cells10030577] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 02/06/2023] Open
Abstract
Cells exert, sense, and respond to the different physical forces through diverse mechanisms and translating them into biochemical signals. The adhesion of cells is crucial in various developmental functions, such as to maintain tissue morphogenesis and homeostasis and activate critical signaling pathways regulating survival, migration, gene expression, and differentiation. More importantly, any mutations of adhesion receptors can lead to developmental disorders and diseases. Thus, it is essential to understand the regulation of cell adhesion during development and its contribution to various conditions with the help of quantitative methods. The techniques involved in offering different functionalities such as surface imaging to detect forces present at the cell-matrix and deliver quantitative parameters will help characterize the changes for various diseases. Here, we have briefly reviewed single-cell mechanical properties for mechanotransduction studies using standard and recently developed techniques. This is used to functionalize from the measurement of cellular deformability to the quantification of the interaction forces generated by a cell and exerted on its surroundings at single-cell with attachment and detachment events. The adhesive force measurement for single-cell microorganisms and single-molecules is emphasized as well. This focused review should be useful in laying out experiments which would bring the method to a broader range of research in the future.
Collapse
Affiliation(s)
- Ashwini Shinde
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India; (A.S.); (K.I.); (P.G.); (P.S.)
| | - Kavitha Illath
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India; (A.S.); (K.I.); (P.G.); (P.S.)
| | - Pallavi Gupta
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India; (A.S.); (K.I.); (P.G.); (P.S.)
| | - Pallavi Shinde
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India; (A.S.); (K.I.); (P.G.); (P.S.)
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon-Si, Gangwon-Do 24341, Korea;
| | - Moeto Nagai
- Department of Mechanical Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan;
| | - Tuhin Subhra Santra
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India; (A.S.); (K.I.); (P.G.); (P.S.)
| |
Collapse
|
14
|
Zhu W, Li K, Liu Q, Zhong H, Xu C, Zhang J, Kou H, Wei B, Wang H. Effect of molecular chirality on the collagen self-assembly. NEW J CHEM 2021. [DOI: 10.1039/d1nj02242c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The function of molecular chirality in collagen self-assembly was presented.
Collapse
Affiliation(s)
- Weizhe Zhu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Ke Li
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Qi Liu
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Huaying Zhong
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Chengzhi Xu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Juntao Zhang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Huizhi Kou
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Benmei Wei
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Haibo Wang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| |
Collapse
|
15
|
Zhang J, Yang W, Xie L, Tu X, Wang W, Xu C, Wang H, Li S. Fibrillogenesis of acrylic acid-grafted-collagen without self-assembly property inspired by the hybrid fibrils of xenogeneic collagen. Int J Biol Macromol 2020; 163:2127-2133. [PMID: 32946937 DOI: 10.1016/j.ijbiomac.2020.09.058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/27/2020] [Accepted: 09/09/2020] [Indexed: 01/14/2023]
Abstract
Along with advancements in both protein and chemistry science, the chemical modification of proteins is attracting more and more attention. More specifically, the attachment of polymers or reactive moieties into collagen offers a method to add novel functions to this protein. However, the fibrillogenesis of the modified collagen with high grafting density cannot always be achieved. Here, inspired by the hybrid fibrils of xenogeneic collagen, fibrillogenesis of acrylic acid-grafted-collagen (AAc-g-Col) without self-assembly property was achieved by the induction of natural collagen (Col). The step-by-step co-assembly process of AAc-g-Col and Col was confirmed by turbidity assay. The formation of Col/AAc-g-Col hybrid fibrils was verified by TEM since the acryloyl groups of the hybrid fibrils were labelled using HS-AuNPs based on the Michael addition. Moreover, rheology, SEM, and MTT assays revealed that the fibrillary structures and biocompatibility of the Col/AAc-g-Col hydrogel were comparable to that of the Col hydrogel, although they presented a lower viscoelasticity.
Collapse
Affiliation(s)
- Juntao Zhang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Wendian Yang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Lvqin Xie
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Xiao Tu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Wenxin Wang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Chengzhi Xu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Haibo Wang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China.
| | - Sheng Li
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China.
| |
Collapse
|
16
|
Siddique A, Pause I, Narayan S, Kruse L, Stark RW. Endothelialization of PDMS-based microfluidic devices under high shear stress conditions. Colloids Surf B Biointerfaces 2020; 197:111394. [PMID: 33075662 DOI: 10.1016/j.colsurfb.2020.111394] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/02/2020] [Accepted: 09/28/2020] [Indexed: 10/23/2022]
Abstract
Microfluidic systems made out of polydimethylsiloxane (PDMS) offer a platform to mimic vascular flow conditions in model systems at well-defined shear stresses. However, extracellular matrix (ECM) proteins that are physisorbed on the PDMS are not reliably attached under high shear stress conditions, which makes long-term experiments difficult. To overcome this limitation, we functionalized PDMS surfaces with 3-aminopropyltriethoxysilane (APTES) by using different surface activation methods to develop a stable linkage between the PDMS surface and collagen, which served as a model ECM protein. The stability of the protein coating inside the microfluidic devices was evaluated in perfusion experiments with phosphate-buffered saline (PBS) at 10-40 dynes/cm2 wall shear stress. To assess the stability of cell adhesion, endothelial cells were grown in a multi-shear device over a shear stress range of 20-150 dynes/cm2. Cells on the APTES-mediated collagen coating were stable over the entire shear stress range in PBS (pH 9) for 48 h. The results suggest that at high pH values, the electrostatic interaction between APTES-coated surfaces and collagen molecules offer a very promising tool to modify PDMS-based microfluidic devices for long-term endothelialization under high shear stress conditions.
Collapse
Affiliation(s)
- Asma Siddique
- Physics of Surfaces, Institute of Materials Science, Technische Universität Darmstadt, Alarich-Weiss-Str. 16, 64287, Darmstadt, Germany
| | - Isabelle Pause
- Physics of Surfaces, Institute of Materials Science, Technische Universität Darmstadt, Alarich-Weiss-Str. 16, 64287, Darmstadt, Germany
| | - Suman Narayan
- Physics of Surfaces, Institute of Materials Science, Technische Universität Darmstadt, Alarich-Weiss-Str. 16, 64287, Darmstadt, Germany
| | - Larissa Kruse
- Macromolecular Chemistry and Paper Chemistry, Department of Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Str. 4, 64287, Darmstadt, Germany
| | - Robert W Stark
- Physics of Surfaces, Institute of Materials Science, Technische Universität Darmstadt, Alarich-Weiss-Str. 16, 64287, Darmstadt, Germany.
| |
Collapse
|
17
|
A facile surface modification of poly(dimethylsiloxane) with amino acid conjugated self-assembled monolayers for enhanced osteoblast cell behavior. Colloids Surf B Biointerfaces 2020; 196:111343. [PMID: 32896827 DOI: 10.1016/j.colsurfb.2020.111343] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/12/2020] [Accepted: 08/19/2020] [Indexed: 01/09/2023]
Abstract
Polydimethylsiloxane (PDMS) is a biocompatible synthetic polymer and used in various applications due to its low toxicity and tunable surface properties. However, PDMS does not have any chemical cues for cell binding. Plasma treatment, protein coating or surface modification with various molecules have been used to improve its surface characteristics. Still, these techniques are either last for a very limited time or have very complicated experimental procedures. In the present study, simple and one-step surface modification of PDMS is successfully accomplished by the preparation of hydrophilic and hydrophobic amino acid conjugated self-assembled monolayers (SAMs) for enhanced interactions at the cell-substrate interface. Synthesis of histidine and leucine conjugated (3-aminopropyl)-triethoxysilane (His-APTES and Leu-APTES) were confirmed with proton nuclear magnetic resonance spectroscopy (1H NMR) and optimum conditions for the modification of PDMS with SAMs were investigated by X-ray photoelectron spectroscopy (XPS) analysis, combined with water contact angle (WCA) measurements. Results indicated that both SAMs enhanced cellular behavior in vitro. Furthermore, hydrophilic His-APTES modification provides a superior environment for the osteoblast maturation with higher alkaline phosphatase activity and mineralization. As histidine, leucine, and functional groups of these SAMs are naturally found in biological systems, modification of PDMS with them increases its cell-substrate surface biomimetic properties. This study establishes a successful modification of PDMS for in vitro cell studies, offering a biomimetic and easy procedure for potential applications in microfluidics, cell-based therapies, or drug investigations.
Collapse
|
18
|
Cai L, Liu W, Cui Y, Liu Y, Du W, Zheng L, Pi C, Zhang D, Xie J, Zhou X. Biomaterial Stiffness Guides Cross-talk between Chondrocytes: Implications for a Novel Cellular Response in Cartilage Tissue Engineering. ACS Biomater Sci Eng 2020; 6:4476-4489. [PMID: 33455172 DOI: 10.1021/acsbiomaterials.0c00367] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The exquisite cartilage architecture maintains an orderly dynamic equilibrium as a result of the interplay between chondrocyte functions and the unique extracellular matrix (ECM) microenvironment. Numerous studies have demonstrated that extracellular cues, including topological, mechanical, and biochemical properties of the underlying substrates, dictate the chondrocyte behaviors. Consequently, developing advanced biomaterials with the desired characteristics which could achieve the biointerface between cells and the surrounded matrix close to the physiological conditions becomes a great hotspot in bioengineering. However, how the substrate stiffness influences the intercellular communication among chondrocytes is still poorly reported. We used polydimethylsiloxane with varied stiffnesses as a cell culture substrate to elucidate a novel cell-to-cell communication in a collective of chondrocytes. First, morphological images collected using scanning electron microscopy revealed that the tunable substrate stiffnesses directed the changes in intercellular links among chondrocytes. Next, fibronectin, which played a vital role in the connection of ECM components or linkage of ECM to chondrocytes, was shown to be gathered along cell-cell contact areas and was changed with the tunable substrate stiffnesses. Furthermore, transmembrane junctional proteins including connexin 43 (Cx43) and pannexin 1 (Panx1), which are responsible for gap junction formation in cell-to-cell communication, were mediated by the tunable substrate stiffnesses. Finally, through a scrape loading/dye transfer assay, we revealed cell-to-cell communication changes in a living chondrocyte population in response to the tunable substrate stiffnesses via cell-to-cell fluorescent molecule transport. Taken together, this novel cell-to-cell communication regulated by biomaterial stiffness could help us to increase the understanding of cell behaviors under biomechanical control and may ultimately lead to refining cell-based cartilage tissue engineering.
Collapse
Affiliation(s)
- Linyi Cai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wenjing Liu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yujia Cui
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yang Liu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wei Du
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Liwei Zheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Caixia Pi
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
19
|
Hur SS, Jeong JH, Ban MJ, Park JH, Yoon JK, Hwang Y. Traction force microscopy for understanding cellular mechanotransduction. BMB Rep 2020. [PMID: 31964473 PMCID: PMC7061206 DOI: 10.5483/bmbrep.2020.53.2.308] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Under physiological and pathological conditions, mechanical forces generated from cells themselves or transmitted from extracellular matrix (ECM) through focal adhesions (FAs) and adherens junctions (AJs) are known to play a significant role in regulating various cell behaviors. Substantial progresses have been made in the field of mechanobiology towards novel methods to understand how cells are able to sense and adapt to these mechanical forces over the years. To address these issues, this review will discuss recent advancements of traction force microscopy (TFM), intracellular force microscopy (IFM), and monolayer stress microscopy (MSM) to measure multiple aspects of cellular forces exerted by cells at cell-ECM and cell-cell junctional intracellular interfaces. We will also highlight how these methods can elucidate the roles of mechanical forces at interfaces of cell-cell/cell-ECM in regulating various cellular functions. [BMB Reports 2020; 53(2): 74-81].
Collapse
Affiliation(s)
- Sung Sik Hur
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan 31151; Department of Integrated Biomedical Science, Soonchunhyang University, Asan 31538, Korea
| | - Ji Hoon Jeong
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan 31151; Department of Integrated Biomedical Science, Soonchunhyang University, Asan 31538, Korea
| | - Myung Jin Ban
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea
| | - Jae Hong Park
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea
| | - Jeong Kyo Yoon
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan 31151; Department of Integrated Biomedical Science, Soonchunhyang University, Asan 31538, Korea
| | - Yongsung Hwang
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan 31151; Department of Integrated Biomedical Science, Soonchunhyang University, Asan 31538, Korea
| |
Collapse
|
20
|
Zhou C, Zhang D, Zou J, Li X, Zou S, Xie J. Substrate Compliance Directs the Osteogenic Lineages of Stem Cells from the Human Apical Papilla via the Processes of Mechanosensing and Mechanotransduction. ACS APPLIED MATERIALS & INTERFACES 2019; 11:26448-26459. [PMID: 31251564 DOI: 10.1021/acsami.9b07147] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Chenchen Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610064, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610064, China
| | - Jing Zou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610064, China
| | - Xiaobing Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610064, China
| | - Shujuan Zou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610064, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
21
|
Portone A, Sciancalepore AG, Melle G, Netti GS, Greco G, Persano L, Gesualdo L, Pisignano D. Quasi-3D morphology and modulation of focal adhesions of human adult stem cells through combinatorial concave elastomeric surfaces with varied stiffness. SOFT MATTER 2019; 15:5154-5162. [PMID: 31192342 DOI: 10.1039/c9sm00481e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In vivo cell niches are complex architectures that provide a wide range of biochemical and mechanical stimuli to control cell behavior and fate. With the aim to provide in vitro microenvironments mimicking physiological niches, microstructured substrates have been exploited to support cell adhesion and to control cell shape as well as three dimensional morphology. At variance with previous methods, we propose a simple and rapid protein subtractive soft lithographic method to obtain microstructured polydimethylsiloxane substrates for studying stem cell adhesion and growth. The shape of adult renal stem cells and nuclei is found to depend predominantly on micropatterning of elastomeric surfaces and only weakly on the substrate mechanical properties. Differently, focal adhesions in their shape and density but not in their alignment mainly depend on the elastomer stiffness almost regardless of microscale topography. Local surface topography with concave microgeometry enhancing adhesion drives stem cells in a quasi-three dimensional configuration where stiffness might significantly steer mechanosensing as highlighted by focal adhesion properties.
Collapse
Affiliation(s)
- A Portone
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza S. Silvestro 12, I-56127 Pisa, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Wei B, Wang L, Zhong H, Zhang J, Xu C, Xu Y, He L, Li S, Wang H. Telopeptide-dependent xenogeneic collagen co-assembly. NEW J CHEM 2019. [DOI: 10.1039/c9nj01169b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The function of telopeptide in xenogeneic collagen co-assembly was shown.
Collapse
Affiliation(s)
- Benmei Wei
- School of Chemical and Environmental Engineering
- Wuhan Polytechnic University
- Wuhan
- P. R. China
| | - Linjie Wang
- School of Chemical and Environmental Engineering
- Wuhan Polytechnic University
- Wuhan
- P. R. China
| | - Huaying Zhong
- School of Chemical and Environmental Engineering
- Wuhan Polytechnic University
- Wuhan
- P. R. China
| | - Juntao Zhang
- School of Chemical and Environmental Engineering
- Wuhan Polytechnic University
- Wuhan
- P. R. China
| | - Chengzhi Xu
- School of Chemical and Environmental Engineering
- Wuhan Polytechnic University
- Wuhan
- P. R. China
| | - Yuling Xu
- School of Chemical and Environmental Engineering
- Wuhan Polytechnic University
- Wuhan
- P. R. China
| | - Lang He
- School of Chemical and Environmental Engineering
- Wuhan Polytechnic University
- Wuhan
- P. R. China
| | - Sheng Li
- School of Chemical and Environmental Engineering
- Wuhan Polytechnic University
- Wuhan
- P. R. China
| | - Haibo Wang
- School of Chemical and Environmental Engineering
- Wuhan Polytechnic University
- Wuhan
- P. R. China
| |
Collapse
|
23
|
Substrate elasticity regulates adipose-derived stromal cell differentiation towards osteogenesis and adipogenesis through β-catenin transduction. Acta Biomater 2018; 79:83-95. [PMID: 30134207 DOI: 10.1016/j.actbio.2018.08.018] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 08/03/2018] [Accepted: 08/17/2018] [Indexed: 02/05/2023]
Abstract
It is generally recognised that mesenchymal stem cells (MSCs) can differentiate into multiple lineages through guidance from the biophysical properties of the substrates. However, the precise biophysical mechanism that enables MSCs to respond to substrate properties remains unclear. In the current study, polydimethylsiloxane (PDMS) substrates with different stiffnesses were fabricated and the way in which the elastic modulus of the substrate regulated differentiation towards osteogenesis and adipogenesis in adipose-derived stromal cells (ASCs) was explored. Initially, a cell morphology change by SEM was observed between the stiff and soft substrates. The cytoskeleton stains including microfilament by F-actin and microtubule by α- and β-tubulin further showed a larger cell spreading area on the stiff substrate. Then the expression of vinculin, in charge for the linkage of adhesion molecules to the actin cytoskeleton, was enhanced on the stiff substrate. This change in focal adhesion plaque further triggered intracellular β-catenin signaling and promoted its nuclear translocation especially on the stiff substrate. The influence of β-catenin signaling on direct differentiation to osteogenic lineages was through direct binding between its downstream protein, Lef-1, and the osteogenic transcriptional factors, Runx2 and Osx, while on differentiation to adipogenic lineages was through modulating the expression of PPARγ. The imbalance of stiffness-induced β-catenin signaling finally induced a stronger osteogenesis and a weaker adipogenesis on the stiff substrate relative to those on the soft substrate. This study indicates the importance of stiffness on ASC differentiation and could help to increase understanding of the mechanism underlying molecular signal transduction from mechanosensing, mechanotransducing to stem cell differentiation. STATEMENT OF SIGNIFICANCE Mesenchymal stem cells can differentiate into multiple lineages, such as adipogenesis, myogenesis, neurogenesis, angiogenesis and osteogenesis, through influence of biophysical properties of the extracellular matrix. However, the precise bio-mechanism that triggers stem cell differentiation in response to matrix biophysical properties remains unclear. In the current study, we provide a series of experiments involving the characterization of cell morphology, microfilament, microtubule and adhesion capacity of adipose-derived stromal cells (ASCs) in response to substrate stiffness, and further elucidation of cytoplasmic β-catenin-dependent signal transduction, nuclear translocation and resultant promoter activation of transcriptional factors for osteogenesis and adipogenesis. This study provides an explanation on deeper understanding of bio-mechanism underlying substrate stiffness-triggered β-catenin signal transduction from active mechanosensing, mechanotransducing to stem cell differentiation.
Collapse
|
24
|
Wei B, Zhai Z, Wang H, Zhang J, Xu C, Xu Y, He L, Xie D. Graphene-Oxide-Based FRET Platform for Sensing Xenogeneic Collagen Coassembly. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:9080-9086. [PMID: 30044632 DOI: 10.1021/acs.jafc.8b02554] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Xenogeneic collagen coassembly (XCCA) offers a new view for the design and performance regulation of novel collagen-based biomaterials. But there is still a lack of accurate and sensitive method for monitoring XCCA. In this study, a simple and efficient graphene-oxide (GO)-based fluorescence resonance energy transfer (FRET) platform has been developed to sense XCCA. We first designed a fluorescein isothiocyanate (FITC)-labeled porcine skin collagen (PSC) that adsorbed on the GO surface and effectively quenched its fluorescence. Upon the addition of grass carp skin collagen (GCSC), the XCCA between PSC and GCSC resulted in desorption of FITC-PSC from GO surface and thus caused an increase in fluorescence signal. Under the optimal conditions, the fluorescence signal linearly increased with the increase in the GCSC concentration in the range of 50-1000 μg/mL, with a sensitivity of 22 μg/mL (S/N = 3). Furthermore, the developed strategy also exhibited excellent specificity and anti-interference ability. More interestingly, the thermal stability of collagen fibrils formed by XCCA is linearly related to the GCSC concentration. These results open a facile, effective, and sensitive approach for sensing XCCA and provide a new strategy for arbitrarily regulating the thermal stability of collagen fibrils.
Collapse
Affiliation(s)
- Benmei Wei
- School of Chemical and Environmental Engineering , Wuhan Polytechnic University , Wuhan 430023 , P. R. China
| | - Zhongwei Zhai
- School of Chemical and Environmental Engineering , Wuhan Polytechnic University , Wuhan 430023 , P. R. China
| | - Haibo Wang
- School of Chemical and Environmental Engineering , Wuhan Polytechnic University , Wuhan 430023 , P. R. China
| | - Juntao Zhang
- School of Chemical and Environmental Engineering , Wuhan Polytechnic University , Wuhan 430023 , P. R. China
| | - Chengzhi Xu
- School of Chemical and Environmental Engineering , Wuhan Polytechnic University , Wuhan 430023 , P. R. China
| | - Yuling Xu
- School of Chemical and Environmental Engineering , Wuhan Polytechnic University , Wuhan 430023 , P. R. China
| | - Lang He
- School of Chemical and Environmental Engineering , Wuhan Polytechnic University , Wuhan 430023 , P. R. China
| | - Dong Xie
- School of Chemical and Environmental Engineering , Wuhan Polytechnic University , Wuhan 430023 , P. R. China
| |
Collapse
|
25
|
Xie J, Zhou C, Zhang D, Cai L, Du W, Li X, Zhou X. Compliant Substratum Changes Osteocyte Functions: The Role of ITGB3/FAK/β-Catenin Signaling Matters. ACS APPLIED BIO MATERIALS 2018; 1:792-801. [PMID: 34996170 DOI: 10.1021/acsabm.8b00246] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610064, China
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610064, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610064, China
| | - Linyi Cai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610064, China
| | - Wei Du
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610064, China
| | - Xiaobing Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610064, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
26
|
Biomaterial surface energy-driven ligand assembly strongly regulates stem cell mechanosensitivity and fate on very soft substrates. Proc Natl Acad Sci U S A 2018; 115:4631-4636. [PMID: 29666253 PMCID: PMC5939054 DOI: 10.1073/pnas.1704543115] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Cell instructive biomaterial cues are a major topic of interest in both basic and applied research. In this work, we clarify how surface energy of soft biomaterials can dramatically affect mesenchymal stem cell receptor recruitment and downstream signaling related to cell fate. We elucidate how surface protein self-assembly and the resulting surface topology can act to steer mechanotransduction and related biological response of attached cells. These findings fill a critical gap in our basic understanding of cell–biomaterial interaction and highlight soft biomaterial surface energy as a dominant design factor that should not be neglected. Although mechanisms of cell–material interaction and cellular mechanotransduction are increasingly understood, the mechanical insensitivity of mesenchymal cells to certain soft amorphous biomaterial substrates has remained largely unexplained. We reveal that surface energy-driven supramolecular ligand assembly can regulate mesenchymal stem cell (MSC) sensing of substrate mechanical compliance and subsequent cell fate. Human MSCs were cultured on collagen-coated hydrophobic polydimethylsiloxane (PDMS) and hydrophilic polyethylene-oxide-PDMS (PEO-PDMS) of a range of stiffnesses. Although cell contractility was similarly diminished on soft substrates of both types, cell spreading and osteogenic differentiation occurred only on soft PDMS and not hydrophilic PEO-PDMS (elastic modulus <1 kPa). Substrate surface energy yields distinct ligand topologies with accordingly distinct profiles of recruited transmembrane cell receptors and related focal adhesion signaling. These differences did not differentially regulate Rho-associated kinase activity, but nonetheless regulated both cell spreading and downstream differentiation.
Collapse
|
27
|
Zhai Z, Wang H, Wei B, Yu P, Xu C, He L, Zhang J, Xu Y. Effect of Ionic Liquids on the Fibril-Formation and Gel Properties of Grass Carp (Ctenopharyngodon idellus) Skin Collagen. Macromol Res 2018. [DOI: 10.1007/s13233-018-6081-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
28
|
Zhu S, Yuan Q, Yin T, You J, Gu Z, Xiong S, Hu Y. Self-assembly of collagen-based biomaterials: preparation, characterizations and biomedical applications. J Mater Chem B 2018; 6:2650-2676. [DOI: 10.1039/c7tb02999c] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
By combining regulatory parameters with characterization methods, researchers can selectively fabricate collagenous biomaterials with various functional responses for biomedical applications.
Collapse
Affiliation(s)
- Shichen Zhu
- College of Food Science and Technology and MOE Key Laboratory of Environment Correlative Dietology
- Huazhong Agricultural University
- Wuhan 430070
- P. R. China
- Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province
| | - Qijuan Yuan
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument
- School of Engineering
- Sun Yat-sen University
- Guangzhou 510006
- P. R. China
| | - Tao Yin
- College of Food Science and Technology and MOE Key Laboratory of Environment Correlative Dietology
- Huazhong Agricultural University
- Wuhan 430070
- P. R. China
| | - Juan You
- College of Food Science and Technology and MOE Key Laboratory of Environment Correlative Dietology
- Huazhong Agricultural University
- Wuhan 430070
- P. R. China
| | - Zhipeng Gu
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument
- School of Engineering
- Sun Yat-sen University
- Guangzhou 510006
- P. R. China
| | - Shanbai Xiong
- College of Food Science and Technology and MOE Key Laboratory of Environment Correlative Dietology
- Huazhong Agricultural University
- Wuhan 430070
- P. R. China
- Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province
| | - Yang Hu
- College of Food Science and Technology and MOE Key Laboratory of Environment Correlative Dietology
- Huazhong Agricultural University
- Wuhan 430070
- P. R. China
- Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province
| |
Collapse
|
29
|
Wei B, Nan J, Jiang Y, Wang H, Zhang J, He L, Xu C, Zhai Z, Xie D, Xie S. In Vitro Fabrication and Physicochemical Properties of a Hybrid Fibril from Xenogeneic Collagens. FOOD BIOPHYS 2017. [DOI: 10.1007/s11483-017-9498-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Yang Y, Wang K, Gu X, Leong KW. Biophysical Regulation of Cell Behavior-Cross Talk between Substrate Stiffness and Nanotopography. ENGINEERING (BEIJING, CHINA) 2017; 3:36-54. [PMID: 29071164 PMCID: PMC5653318 DOI: 10.1016/j.eng.2017.01.014] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The stiffness and nanotopographical characteristics of the extracellular matrix (ECM) influence numerous developmental, physiological, and pathological processes in vivo. These biophysical cues have therefore been applied to modulate almost all aspects of cell behavior, from cell adhesion and spreading to proliferation and differentiation. Delineation of the biophysical modulation of cell behavior is critical to the rational design of new biomaterials, implants, and medical devices. The effects of stiffness and topographical cues on cell behavior have previously been reviewed, respectively; however, the interwoven effects of stiffness and nanotopographical cues on cell behavior have not been well described, despite similarities in phenotypic manifestations. Herein, we first review the effects of substrate stiffness and nanotopography on cell behavior, and then focus on intracellular transmission of the biophysical signals from integrins to nucleus. Attempts are made to connect extracellular regulation of cell behavior with the biophysical cues. We then discuss the challenges in dissecting the biophysical regulation of cell behavior and in translating the mechanistic understanding of these cues to tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Yong Yang
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, USA
| | - Kai Wang
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, USA
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Kam W. Leong
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| |
Collapse
|
31
|
Aravamudhan A, Ramos DM, Jenkins NA, Dyment NA, Sanders MM, Rowe DW, Kumbar SG. Collagen nanofibril self-assembly on a natural polymeric material for the osteoinduction of stem cells in vitro and biocompatibility in vivo. RSC Adv 2016. [DOI: 10.1039/c6ra15363a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This manuscript reports the characterization of molecularly self-assembled collagen nanofibers on a natural polymeric microporous structure and their ability to support stem cell differentiation in vitro and host tissue response in vivo.
Collapse
Affiliation(s)
- A. Aravamudhan
- Institute for Regenerative Engineering
- University of Connecticut Health Center
- Farmington
- USA
- Department of Orthopaedic Surgery
| | - D. M. Ramos
- Institute for Regenerative Engineering
- University of Connecticut Health Center
- Farmington
- USA
- Department of Orthopaedic Surgery
| | - N. A. Jenkins
- Institute for Regenerative Engineering
- University of Connecticut Health Center
- Farmington
- USA
- Department of Orthopaedic Surgery
| | - N. A. Dyment
- Department of Reconstructive Sciences
- School of Dental Medicine
- University of Connecticut School of Medicine
- Farmington
- USA
| | - M. M. Sanders
- Division of Pathology
- University of Connecticut Health Center
- Farmington
- USA
| | - D. W. Rowe
- Department of Reconstructive Sciences
- School of Dental Medicine
- University of Connecticut School of Medicine
- Farmington
- USA
| | - S. G. Kumbar
- Institute for Regenerative Engineering
- University of Connecticut Health Center
- Farmington
- USA
- Department of Orthopaedic Surgery
| |
Collapse
|