1
|
Nam US, Suh HN, Sung SK, Seo C, Lee JH, Lee JY, Kim S, Lee J. Rapid and High-Density Antibody Immobilization Using Electropolymerization of Pyrrole for Highly Sensitive Immunoassay. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30611-30621. [PMID: 38857116 PMCID: PMC11194765 DOI: 10.1021/acsami.4c00730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 06/12/2024]
Abstract
Polypyrrole (Ppy) is a biologically compatible polymer that is used as a matrix, in which drugs and enzymes can be incorporated by doping. Here, we suggest an inventive application of Ppy as a biorecognition film encapsulated with an antibody (Ab) as an alternative strategy for the on-site multistep functionalization of thiol-based self-assembled monolayers. The fabrication steps of the recognition films were followed by dropping pyrrole and Ab mixed solutions onto the electrode and obtaining a thin film by direct current electropolymerization. The efficiency of Ab immobilization was studied by using fluorescence microscopy and electrochemical (EC) methods. Finally, the Ab density was increased and immobilized in 1 min, and the sensing performance as an EC immunosensor was demonstrated using α-fetoprotein with a limit of detection of 3.13 pg/mL and sensing range from 1 pg/mL to 100 ng/mL. This study demonstrates the potential for electrochemical functionalization of biomolecules with high affinity and rapidity.
Collapse
Affiliation(s)
- USun Nam
- Department
of Medical IT Convergence, Kumoh National
Institute of Technology, Gumi, Gyeongbuk 39177, Republic of Korea
| | - Han Na Suh
- Korea
Institute of Toxicology (KIT), Jeongeup, Jeollabuk-do 56212, Republic of Korea
| | - Sang-Keun Sung
- Digital
Healthcare Research Center, Gumi Electronics
and Information Technology Research Institute (GERI), Gumi, Gyeongbuk 39253, Republic
of Korea
| | - ChaeWon Seo
- Department
of Medical IT Convergence, Kumoh National
Institute of Technology, Gumi, Gyeongbuk 39177, Republic of Korea
| | - Jung Hyun Lee
- Department
of Dermatology, School of Medicine, University
of Washington, 850 Republican Street, Seattle, Washington 98109, United States
- Institute
for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Seattle, Washington 98109, United States
| | - Jeong Yoon Lee
- The Laboratory
of Viromics and Evolution, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan-si, Jeollabuk-do 54531, Republic
of Korea
| | - SangHee Kim
- Department
of Medical IT Convergence, Kumoh National
Institute of Technology, Gumi, Gyeongbuk 39177, Republic of Korea
| | - JuKyung Lee
- Digital
Healthcare Research Center, Gumi Electronics
and Information Technology Research Institute (GERI), Gumi, Gyeongbuk 39253, Republic
of Korea
| |
Collapse
|
2
|
Lee J, Suh HN, Park HB, Park YM, Kim HJ, Kim S. Regenerative Strategy of Gold Electrodes for Long-Term Reuse of Electrochemical Biosensors. ACS OMEGA 2023; 8:1389-1400. [PMID: 36643538 PMCID: PMC9835648 DOI: 10.1021/acsomega.2c06851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Gold is of considerable interest for electrochemical active surfaces because thiol-modified chemicals and biomolecules can be easily immobilized with a simple procedure. However, most gold surfaces are damaged with repetitive measurements, so they are difficult to reuse. Here we demonstrate a novel electrochemical cleaning method of gold surfaces to reuse electrodes with a simple protocol that is easy and nontoxic. This electrochemical cleaning consists of two steps by using different solutions. The 1st step is a cyclic voltammetry sweep using a very low concentration of sulfuric acid, and the 2nd step is a cyclic voltammetry sweep using potassium ferricyanide. Different cleaning methods were also considered for comparison. Consequently, after assembling and desorption of the cell and antigen, the changes in gold electrode performance, as immunosensor and cytosensor, were investigated by electrochemical impedance and cyclic voltammetry. It was found that repetitive measurement is possible until five times while maintaining the reproducibility. It is believed that this method is capable of enabling reuse of gold electrodes and can be used for long-term and accurate monitoring of biological effects, especially at a low cost.
Collapse
Affiliation(s)
- JuKyung Lee
- Department
of Medical IT Convergence, Kumoh National
Institute of Technology, Gumi, Gyeongbuk39177, Korea
| | - Han Na Suh
- Korea
Institute of Toxicology, Jeongeup, Jeollabuk-do56212, Korea
| | - Hye-bin Park
- Digital
Health Care Research Center, Gumi Electronics
and Information Technology Research Institute (GERI), Gumi, Gyeongbuk39253, Korea
| | - Yoo Min Park
- Division
of Nano-Bio sensors/Chips development, National
NanoFab Center, Daejeon34141, Korea
| | - Hyung Jin Kim
- Digital
Health Care Research Center, Gumi Electronics
and Information Technology Research Institute (GERI), Gumi, Gyeongbuk39253, Korea
| | - SangHee Kim
- Department
of Medical IT Convergence, Kumoh National
Institute of Technology, Gumi, Gyeongbuk39177, Korea
| |
Collapse
|
3
|
Lee J, Suh HN, Ahn S, Park HB, Lee JY, Kim HJ, Kim SH. Disposable electrocatalytic sensor for whole blood NADH monitoring. Sci Rep 2022; 12:16716. [PMID: 36202932 PMCID: PMC9537416 DOI: 10.1038/s41598-022-20995-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/21/2022] [Indexed: 11/10/2022] Open
Abstract
Monitoring nicotinamide adenine dinucleotide (NADH) is important because NADH is involved in cellular redox reactions and cellular energy production. Currently, few biosensors quantify NADH in whole blood. However, they still have limitations due to several defects, including poor repeatability, long analysis time, and their requirement of extra sample pretreatment. In this study, we developed electrocatalytic sensors using screen-printed electrodes with a redox-active monolayer 4′-mercapto-N-phenylquinone diamine formed by a self-assembled monolayer of a 4-aminothiophenol (4-ATP). We exhibited their behavior as electrocatalysts toward the oxidation of NADH in whole blood. Finally, the electrocatalytic sensors maintained stability and exhibited 3.5 µM limit of detection, with 0.0076 ± 0.0006 µM/µA sensitivity in a mouse’s whole blood. As proof of concept, a polyhexamethylene guanidine phosphate–treated mouse model was used to induce inflammatory and fibrotic responses, and NADH level was measured for 45 days. This work demonstrates the potential of electrocatalytic sensors to analyze NADH in whole blood and to be developed for extensive applications.
Collapse
|
4
|
Wang X, Zhang W, Wang S, Liu W, Liu N, Zhang D. A visual cardiovascular biomarker detection strategy based on distance as readout by the coffee-ring effect on microfluidic paper. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
5
|
Rodrigues RO, Sousa PC, Gaspar J, Bañobre-López M, Lima R, Minas G. Organ-on-a-Chip: A Preclinical Microfluidic Platform for the Progress of Nanomedicine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003517. [PMID: 33236819 DOI: 10.1002/smll.202003517] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/13/2020] [Indexed: 06/11/2023]
Abstract
Despite the progress achieved in nanomedicine during the last decade, the translation of new nanotechnology-based therapeutic systems into clinical applications has been slow, especially due to the lack of robust preclinical tissue culture platforms able to mimic the in vivo conditions found in the human body and to predict the performance and biotoxicity of the developed nanomaterials. Organ-on-a-chip (OoC) platforms are novel microfluidic tools that mimic complex human organ functions at the microscale level. These integrated microfluidic networks, with 3D tissue engineered models, have been shown high potential to reduce the discrepancies between the results derived from preclinical and clinical trials. However, there are many challenges that still need to be addressed, such as the integration of biosensor modules for long-time monitoring of different physicochemical and biochemical parameters. In this review, recent advances on OoC platforms, particularly on the preclinical validation of nanomaterials designed for cancer, as well as the current challenges and possible future directions for an end-use perspective are discussed.
Collapse
Affiliation(s)
- Raquel O Rodrigues
- Center for MicroElectromechanical Systems (CMEMS-UMinho), University of Minho, Campus de Azurém, Guimarães, 4800-058, Portugal
- Microfabrication and Exploratory Nanotechnology, INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, Braga, 4715-330, Portugal
| | - Patrícia C Sousa
- Microfabrication and Exploratory Nanotechnology, INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, Braga, 4715-330, Portugal
| | - João Gaspar
- Microfabrication and Exploratory Nanotechnology, INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, Braga, 4715-330, Portugal
| | - Manuel Bañobre-López
- Advanced (magnetic) Theranostic Nanostructures Lab, Nanomedicine Unit, INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, Braga, 4715-330, Portugal
| | - Rui Lima
- Transport Phenomena Research Center (CEFT), Faculdade de Engenharia da Universidade do Porto (FEUP), R. Dr. Roberto Frias, Porto, 4200-465, Portugal
- Mechanical Engineering and Resource Sustainability Center (MEtRICs), Mechanical Engineering Department, University of Minho, Campus de Azurém, Guimarães, 4800-058, Portugal
| | - Graça Minas
- Center for MicroElectromechanical Systems (CMEMS-UMinho), University of Minho, Campus de Azurém, Guimarães, 4800-058, Portugal
| |
Collapse
|
6
|
Jodat YA, Kiaee K, Vela Jarquin D, De la Garza Hernández RL, Wang T, Joshi S, Rezaei Z, de Melo BAG, Ge D, Mannoor MS, Shin SR. A 3D-Printed Hybrid Nasal Cartilage with Functional Electronic Olfaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1901878. [PMID: 32154068 PMCID: PMC7055567 DOI: 10.1002/advs.201901878] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/18/2019] [Indexed: 05/05/2023]
Abstract
Advances in biomanufacturing techniques have opened the doors to recapitulate human sensory organs such as the nose and ear in vitro with adequate levels of functionality. Such advancements have enabled simultaneous targeting of two challenges in engineered sensory organs, especially the nose: i) mechanically robust reconstruction of the nasal cartilage with high precision and ii) replication of the nose functionality: odor perception. Hybrid nasal organs can be equipped with remarkable capabilities such as augmented olfactory perception. Herein, a proof-of-concept for an odor-perceptive nose-like hybrid, which is composed of a mechanically robust cartilage-like construct and a biocompatible biosensing platform, is proposed. Specifically, 3D cartilage-like tissue constructs are created by multi-material 3D bioprinting using mechanically tunable chondrocyte-laden bioinks. In addition, by optimizing the composition of stiff and soft bioinks in macro-scale printed constructs, the competence of this system in providing improved viability and recapitulation of chondrocyte cell behavior in mechanically robust 3D constructs is demonstrated. Furthermore, the engineered cartilage-like tissue construct is integrated with an electrochemical biosensing system to bring functional olfactory sensations toward multiple specific airway disease biomarkers, explosives, and toxins under biocompatible conditions. Proposed hybrid constructs can lay the groundwork for functional bionic interfaces and humanoid cyborgs.
Collapse
Affiliation(s)
- Yasamin A. Jodat
- Division of Engineering in MedicineDepartment of MedicineHarvard Medical SchoolBrigham and Women's HospitalCambridgeMA02139USA
- Department of Mechanical EngineeringStevens Institute of TechnologyHobokenNJ07030USA
| | - Kiavash Kiaee
- Division of Engineering in MedicineDepartment of MedicineHarvard Medical SchoolBrigham and Women's HospitalCambridgeMA02139USA
- Department of Mechanical EngineeringStevens Institute of TechnologyHobokenNJ07030USA
| | - Daniel Vela Jarquin
- Division of Engineering in MedicineDepartment of MedicineHarvard Medical SchoolBrigham and Women's HospitalCambridgeMA02139USA
- Instituto Tecnológico y de Estudios Superiores de MonterreyCalle del Puente #222 Col. Ejidos de Huipulco, Tlalpan C.P.14380MéxicoD.F.Mexico
| | - Rosakaren Ludivina De la Garza Hernández
- Division of Engineering in MedicineDepartment of MedicineHarvard Medical SchoolBrigham and Women's HospitalCambridgeMA02139USA
- Instituto Tecnológico y de Estudios Superiores de MonterreyAv. Eugenio Garza Sada 2501 Sur, Tecnológico64849MonterreyN.L.Mexico
| | - Ting Wang
- Division of Engineering in MedicineDepartment of MedicineHarvard Medical SchoolBrigham and Women's HospitalCambridgeMA02139USA
- School of MedicineJiangsu UniversityZhenjiangJiangsu212013China
| | - Sudeep Joshi
- Department of Mechanical EngineeringStevens Institute of TechnologyHobokenNJ07030USA
| | - Zahra Rezaei
- Division of Engineering in MedicineDepartment of MedicineHarvard Medical SchoolBrigham and Women's HospitalCambridgeMA02139USA
- Department of Chemical and Petroleum EngineeringSharif University of TechnologyAzadi Ave11365‐11155TehranIran
| | - Bruna Alice Gomes de Melo
- Division of Engineering in MedicineDepartment of MedicineHarvard Medical SchoolBrigham and Women's HospitalCambridgeMA02139USA
- Department of Engineering of Materials and BioprocessesSchool of Chemical EngineeringUniversity of CampinasCampinasSão Paulo13083‐852Brazil
| | - David Ge
- Division of Engineering in MedicineDepartment of MedicineHarvard Medical SchoolBrigham and Women's HospitalCambridgeMA02139USA
| | - Manu S. Mannoor
- Department of Mechanical EngineeringStevens Institute of TechnologyHobokenNJ07030USA
| | - Su Ryon Shin
- Division of Engineering in MedicineDepartment of MedicineHarvard Medical SchoolBrigham and Women's HospitalCambridgeMA02139USA
| |
Collapse
|