1
|
Hu C, Dief EM, Soliman BG, Romanazzo S, Rana S, Kilian KA, Tilley RD, Gooding JJ. Direct detection of microRNA in liquid biopsies from single cancer spheroids. Chem Sci 2025; 16:8970-8978. [PMID: 40271030 PMCID: PMC12013504 DOI: 10.1039/d5sc01036e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 04/12/2025] [Indexed: 04/25/2025] Open
Abstract
Exploring cancer heterogeneity is crucial for both understanding cancer and developing prognostic tools to monitor cancer progression during treatment through the liquid biopsy concept. Herein, a nanoparticle-based "dispersible electrodes" biosensor was used to detect ultra-low concentrations of microRNA-155 (miRNA-155) from a single breast cancer spheroid for the first time. The results from the sensor were comparable to the standard real-time polymerase chain reaction analysis, but in a much shorter detection time and without any sample purification or amplification. Owing to the unique ability of the sensor to measure biomarker expression from unaltered and undiluted cancer liquid biopsy from a single cancer spheroid, we then tracked dynamic changes in miRNA-155 expression in a single spheroid treated with the anti-cancer drug doxorubicin. The ability to track dynamic biomarker changes in a single cancer spheroid opens the door to understanding key biological processes such as response to treatment on the cellular and molecular levels, paving the way for adapting liquid biopsy insights to guide oncologists and more personalised treatment strategies.
Collapse
Affiliation(s)
- Chen Hu
- School of Chemistry, Australian Centre for NanoMedicine, University of New South Wales Sydney NSW 2052 Australia
| | - Essam M Dief
- School of Chemistry, Australian Centre for NanoMedicine, University of New South Wales Sydney NSW 2052 Australia
| | - Bram G Soliman
- School of Chemistry, Australian Centre for NanoMedicine, University of New South Wales Sydney NSW 2052 Australia
| | - Sara Romanazzo
- School of Chemistry, Australian Centre for NanoMedicine, University of New South Wales Sydney NSW 2052 Australia
| | - Shilpa Rana
- School of Chemistry, Australian Centre for NanoMedicine, University of New South Wales Sydney NSW 2052 Australia
| | - Kristopher A Kilian
- School of Chemistry, Australian Centre for NanoMedicine, University of New South Wales Sydney NSW 2052 Australia
- School of Materials Science and Engineering, University of New South Wales Sydney NSW 2052 Australia
| | - Richard D Tilley
- School of Chemistry, Australian Centre for NanoMedicine, University of New South Wales Sydney NSW 2052 Australia
- Electron Microscope Unit, Mark Wainwright Analytical Centre, University of New South Wales Sydney NSW 2052 Australia
| | - J Justin Gooding
- School of Chemistry, Australian Centre for NanoMedicine, University of New South Wales Sydney NSW 2052 Australia
| |
Collapse
|
2
|
Vitacolonna M, Bruch R, Schneider R, Jabs J, Hafner M, Reischl M, Rudolf R. A spheroid whole mount drug testing pipeline with machine-learning based image analysis identifies cell-type specific differences in drug efficacy on a single-cell level. BMC Cancer 2024; 24:1542. [PMID: 39696122 DOI: 10.1186/s12885-024-13329-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 12/11/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND The growth and drug response of tumors are influenced by their stromal composition, both in vivo and 3D-cell culture models. Cell-type inherent features as well as mutual relationships between the different cell types in a tumor might affect drug susceptibility of the tumor as a whole and/or of its cell populations. However, a lack of single-cell procedures with sufficient detail has hampered the automated observation of cell-type-specific effects in three-dimensional stroma-tumor cell co-cultures. METHODS Here, we developed a high-content pipeline ranging from the setup of novel tumor-fibroblast spheroid co-cultures over optical tissue clearing, whole mount staining, and 3D confocal microscopy to optimized 3D-image segmentation and a 3D-deep-learning model to automate the analysis of a range of cell-type-specific processes, such as cell proliferation, apoptosis, necrosis, drug susceptibility, nuclear morphology, and cell density. RESULTS This demonstrated that co-cultures of KP-4 tumor cells with CCD-1137Sk fibroblasts exhibited a growth advantage compared to tumor cell mono-cultures, resulting in higher cell counts following cytostatic treatments with paclitaxel and doxorubicin. However, cell-type-specific single-cell analysis revealed that this apparent benefit of co-cultures was due to a higher resilience of fibroblasts against the drugs and did not indicate a higher drug resistance of the KP-4 cancer cells during co-culture. Conversely, cancer cells were partially even more susceptible in the presence of fibroblasts than in mono-cultures. CONCLUSION In summary, this underlines that a novel cell-type-specific single-cell analysis method can reveal critical insights regarding the mechanism of action of drug substances in three-dimensional cell culture models.
Collapse
Affiliation(s)
- Mario Vitacolonna
- CeMOS, Mannheim University of Applied Sciences, 68163, Mannheim, Germany.
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163, Mannheim, Germany.
| | - Roman Bruch
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, 76344, Eggen-stein-Leopoldshafen, Germany
| | | | - Julia Jabs
- Merck Healthcare KGaA, 64293, Darmstadt, Germany
| | - Mathias Hafner
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163, Mannheim, Germany
- Institute of Medical Technology, Medical Faculty Mannheim of Heidelberg University, Mannheim University of Applied Sciences, 68167, Mannheim, Germany
| | - Markus Reischl
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, 76344, Eggen-stein-Leopoldshafen, Germany
| | - Rüdiger Rudolf
- CeMOS, Mannheim University of Applied Sciences, 68163, Mannheim, Germany
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163, Mannheim, Germany
| |
Collapse
|
3
|
Co IL, Fomina A, Nurse M, McGuigan AP. Applications and evolution of 3D cancer-immune cell models. Trends Biotechnol 2024; 42:1615-1627. [PMID: 39025680 DOI: 10.1016/j.tibtech.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024]
Abstract
Understanding the highly complex tumor-immune landscape is an important goal for developing novel immune therapies for solid cancers. To this end, 3D cancer-immune models have emerged as patient-relevant in vitro tools for modeling the tumor-immune landscape and the cellular interactions within it. In this review, we provide an overview of the components and applications of 3D cancer-immune models and discuss their evolution from 2015 to 2023. Specifically, we observe trends in primary cell-sourced, T cell-based complex models used for therapy evaluation and biological discovery. Finally, we describe the challenges of implementing 3D cancer-immune models and the opportunities for maximizing their potential for deciphering the complex tumor-immune microenvironment and identifying novel, clinically relevant drug targets.
Collapse
Affiliation(s)
- Ileana L Co
- Institute of Biomedical Engineering, University of Toronto, 164 College St., Toronto, ON, M5S 3G9, Canada
| | - Aleksandra Fomina
- Institute of Biomedical Engineering, University of Toronto, 164 College St., Toronto, ON, M5S 3G9, Canada
| | - Michelle Nurse
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St., Toronto, ON, M5S 3E5, Canada
| | - Alison P McGuigan
- Institute of Biomedical Engineering, University of Toronto, 164 College St., Toronto, ON, M5S 3G9, Canada; Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St., Toronto, ON, M5S 3E5, Canada.
| |
Collapse
|
4
|
de Villiers M, Kotzé AF, du Plessis LH. Pneumatic extrusion bioprinting-based high throughput fabrication of a melanoma 3D cell culture model for anti-cancer drug screening. Biomed Mater 2024; 19:055034. [PMID: 39025118 DOI: 10.1088/1748-605x/ad651f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/18/2024] [Indexed: 07/20/2024]
Abstract
The high incidence of malignant melanoma highlights the need forin vitromodels that accurately represent the tumour microenvironment, enabling developments in melanoma therapy and drug screening. Despite several advancements in 3D cell culture models, appropriate melanoma models for evaluating drug efficacy are still in high demand. The 3D pneumatic extrusion-based bioprinting technology offers numerous benefits, including the ability to achieve high-throughput capabilities. However, there is a lack of research that combines pneumatic extrusion-based bioprinting with analytical assays to enable efficient drug screening in 3D melanoma models. To address this gap, this study developed a simple and highly reproducible approach to fabricate a 3D A375 melanoma cell culture model using the pneumatic extrusion-based bioprinting technology. To optimise this method, the bioprinting parameters for producing 3D cell cultures in a 96-well plate were adjusted to improve reproducibility while maintaining the desired droplet size and a cell viability of 92.13 ± 6.02%. The cross-linking method was optimised by evaluating cell viability and proliferation of the 3D bioprinted cells in three different concentrations of calcium chloride. The lower concentration of 50 mM resulted in higher cell viability and increased cell proliferation after 9 d of incubation. The A375 cells exhibited a steadier proliferation rate in the 3D bioprinted cell cultures, and tended to aggregate into spheroids, whereas the 2D cell cultures generally formed monolayered cell sheets. In addition, we evaluated the drug responses of four different anti-cancer drugs on the A375 cells in both the 2D and 3D cell cultures. The 3D cell cultures exhibited higher levels of drug resistance in all four tested anti-cancer drugs. This method presents a simple and cost-effective method of producing and analysing 3D cell culture models that do not add additional complexity to current assays and shows considerable potential for advancing 3D cell culture models' drug efficacy evaluations.
Collapse
Affiliation(s)
- Maryke de Villiers
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Awie F Kotzé
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Lissinda H du Plessis
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| |
Collapse
|
5
|
Wang Z, Hulikova A, Swietach P. Innovating cancer drug discovery with refined phenotypic screens. Trends Pharmacol Sci 2024; 45:723-738. [PMID: 39013672 DOI: 10.1016/j.tips.2024.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/10/2024] [Accepted: 06/17/2024] [Indexed: 07/18/2024]
Abstract
Before molecular pathways in cancer were known to a depth that could predict targets, drug development relied on phenotypic screening, where the effectiveness of candidate chemicals is judged from functional readouts without considering the mechanisms of action. The unraveling of tumor-specific pathways has brought targets for molecularly driven drug discovery, but precedents in the field have shown that awareness of pathways does not necessarily predict therapeutic efficacy, and many cancers still lack druggable targets. Phenotypic screening therefore retains a niche in drug development where a targeted approach is not informative. We analyze the unique advantages of phenotypic screens, and how technological advances have improved their discovery power. Notable advances include the use of larger biological panels and refined protocols that address the disease-relevance and increase data content with imaging and omic approaches.
Collapse
Affiliation(s)
- Zhenyi Wang
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | - Alzbeta Hulikova
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | - Pawel Swietach
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK.
| |
Collapse
|
6
|
Ashworth JC, Cox TR. The importance of 3D fibre architecture in cancer and implications for biomaterial model design. Nat Rev Cancer 2024; 24:461-479. [PMID: 38886573 DOI: 10.1038/s41568-024-00704-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/07/2024] [Indexed: 06/20/2024]
Abstract
The need for improved prediction of clinical response is driving the development of cancer models with enhanced physiological relevance. A new concept of 'precision biomaterials' is emerging, encompassing patient-mimetic biomaterial models that seek to accurately detect, treat and model cancer by faithfully recapitulating key microenvironmental characteristics. Despite recent advances allowing tissue-mimetic stiffness and molecular composition to be replicated in vitro, approaches for reproducing the 3D fibre architectures found in tumour extracellular matrix (ECM) remain relatively unexplored. Although the precise influences of patient-specific fibre architecture are unclear, we summarize the known roles of tumour fibre architecture, underlining their implications in cell-matrix interactions and ultimately clinical outcome. We then explore the challenges in reproducing tissue-specific 3D fibre architecture(s) in vitro, highlighting relevant biomaterial fabrication techniques and their benefits and limitations. Finally, we discuss imaging and image analysis techniques (focussing on collagen I-optimized approaches) that could hold the key to mapping tumour-specific ECM into high-fidelity biomaterial models. We anticipate that an interdisciplinary approach, combining materials science, cancer research and image analysis, will elucidate the role of 3D fibre architecture in tumour development, leading to the next generation of patient-mimetic models for mechanistic studies and drug discovery.
Collapse
Affiliation(s)
- Jennifer C Ashworth
- School of Veterinary Medicine & Science, Sutton Bonington Campus, University of Nottingham, Leicestershire, UK.
- Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, UK.
- Cancer Ecosystems Program, The Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.
| | - Thomas R Cox
- Cancer Ecosystems Program, The Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.
- The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia.
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, UNSW Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
7
|
Mohan MD, Latifi N, Flick R, Simmons CA, Young EWK. Interrogating Matrix Stiffness and Metabolomics in Pancreatic Ductal Carcinoma Using an Openable Microfluidic Tumor-on-a-Chip. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38606850 DOI: 10.1021/acsami.4c00556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by a dense fibrotic stroma that contributes to aggressive tumor biology and therapeutic resistance. Current in vitro PDAC models lack sufficient optical and physical access for fibrous network visualization, in situ mechanical stiffness measurement, and metabolomic profiling. Here, we describe an openable multilayer microfluidic PDAC-on-a-chip platform that consists of pancreatic tumor cells (PTCs) and pancreatic stellate cells (PSCs) embedded in a 3D collagen matrix that mimics the stroma. Our system allows fibrous network visualization via reflected light confocal (RLC) microscopy, in situ mechanical stiffness testing using atomic force microscopy (AFM), and compartmentalized hydrogel extraction for PSC metabolomic profiling via mass spectrometry (MS) analysis. In comparing cocultures of gel-embedded PSCs and PTCs with PSC-only monocultures, RLC microscopy identified a significant decrease in pore size and corresponding increase in fiber density. In situ AFM indicated significant increases in stiffness, and hallmark characteristics of PSC activation were observed using fluorescence microscopy. PSCs in coculture also demonstrated localized fiber alignment and densification as well as increased collagen production. Finally, an untargeted MS study putatively identified metabolic contributions consistent with in vivo PDAC studies. Taken together, this platform can potentially advance our understanding of tumor-stromal interactions toward the discovery of novel therapies.
Collapse
Affiliation(s)
- Michael D Mohan
- Department of Mechanical & Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3E2, Canada
| | - Neda Latifi
- Department of Mechanical & Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, 661 University Avenue, 14th Floor, Toronto, Ontario M5G 1M1, Canada
- Department of Medical Engineering, University of South Florida, 4202 E. Fowler Avenue, ENG 030, Tampa, Florida 33620, United States
| | - Robert Flick
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Craig A Simmons
- Department of Mechanical & Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3E2, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, 661 University Avenue, 14th Floor, Toronto, Ontario M5G 1M1, Canada
| | - Edmond W K Young
- Department of Mechanical & Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3E2, Canada
| |
Collapse
|
8
|
Landon‐Brace N, Li NT, McGuigan AP. Exploring New Dimensions of Tumor Heterogeneity: The Application of Single Cell Analysis to Organoid-Based 3D In Vitro Models. Adv Healthc Mater 2023; 12:e2300903. [PMID: 37589373 PMCID: PMC11468421 DOI: 10.1002/adhm.202300903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/28/2023] [Indexed: 08/18/2023]
Abstract
Modeling the heterogeneity of the tumor microenvironment (TME) in vitro is essential to investigating fundamental cancer biology and developing novel treatment strategies that holistically address the factors affecting tumor progression and therapeutic response. Thus, the development of new tools for both in vitro modeling, such as patient-derived organoids (PDOs) and complex 3D in vitro models, and single cell omics analysis, such as single-cell RNA-sequencing, represents a new frontier for investigating tumor heterogeneity. Specifically, the integration of PDO-based 3D in vitro models and single cell analysis offers a unique opportunity to explore the intersecting effects of interpatient, microenvironmental, and tumor cell heterogeneity on cell phenotypes in the TME. In this review, the current use of PDOs in complex 3D in vitro models of the TME is discussed and the emerging directions in the development of these models are highlighted. Next, work that has successfully applied single cell analysis to PDO-based models is examined and important experimental considerations are identified for this approach. Finally, open questions are highlighted that may be amenable to exploration using the integration of PDO-based models and single cell analysis. Ultimately, such investigations may facilitate the identification of novel therapeutic targets for cancer that address the significant influence of tumor-TME interactions.
Collapse
Affiliation(s)
- Natalie Landon‐Brace
- Institute of Biomedical EngineeringUniversity of Toronto200 College StreetTorontoM5S3E5Canada
| | - Nancy T. Li
- Department of Chemical Engineering and Applied ChemistryUniversity of Toronto200 College StTorontoM5S3E5Canada
| | - Alison P. McGuigan
- Department of Chemical Engineering and Applied ChemistryInstitute of Biomedical EngineeringUniversity of Toronto200 College StTorontoM5S3E5Canada
| |
Collapse
|
9
|
Ahmed T. Functional biomaterials for biomimetic 3D in vitro tumor microenvironment modeling. IN VITRO MODELS 2023; 2:1-23. [PMID: 39872875 PMCID: PMC11756483 DOI: 10.1007/s44164-023-00043-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/30/2025]
Abstract
The translational potential of promising anticancer medications and treatments may be enhanced by the creation of 3D in vitro models that can accurately reproduce native tumor microenvironments. Tumor microenvironments for cancer treatment and research can be built in vitro using biomaterials. Three-dimensional in vitro cancer models have provided new insights into the biology of cancer. Cancer researchers are creating artificial three-dimensional tumor models based on functional biomaterials that mimic the microenvironment of the real tumor. Our understanding of tumor stroma activity over the course of cancer has improved because of the use of scaffold and matrix-based three-dimensional systems intended for regenerative medicine. Scientists have created synthetic tumor models thanks to recent developments in materials engineering. These models enable researchers to investigate the biology of cancer and assess the therapeutic effectiveness of available medications. The emergence of biomaterial engineering technologies with the potential to hasten treatment outcomes is highlighted in this review, which also discusses the influence of creating in vitro biomimetic 3D tumor microenvironments utilizing functional biomaterials. Future cancer treatments will rely much more heavily on biomaterials engineering.
Collapse
Affiliation(s)
- Tanvir Ahmed
- Department of Pharmaceutical Sciences, North South University, Bashundhara R/A, Dhaka-1229 Dhaka, Bangladesh
| |
Collapse
|
10
|
Brancato V. 3D Bioprinting for Cancer Models. Cancer Nanotechnol 2023. [DOI: 10.1007/978-3-031-17831-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
11
|
Imparato G, Urciuolo F, Mazio C, Netti PA. Capturing the spatial and temporal dynamics of tumor stroma for on-chip optimization of microenvironmental targeting nanomedicine. LAB ON A CHIP 2022; 23:25-43. [PMID: 36305728 DOI: 10.1039/d2lc00611a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Malignant cells grow in a complex microenvironment that plays a key role in cancer progression. The "dynamic reciprocity" existing between cancer cells and their microenvironment is involved in cancer differentiation, proliferation, invasion, metastasis, and drug response. Therefore, understanding the molecular mechanisms underlying the crosstalk between cancer cells and their surrounding tissue (i.e., tumor stroma) and how this interplay affects the disease progression is fundamental to design and validate novel nanotherapeutic approaches. As an important regulator of tumor progression, metastasis and therapy resistance, the extracellular matrix of tumors, the acellular component of the tumor microenvironment, has been identified as very promising target of anticancer treatment, revolutionizing the traditional therapeutic paradigm that sees the neoplastic cells as the preferential objective to fight cancer. To design and to validate such a target therapy, advanced 3D preclinical models are necessary to correctly mimic the complex, dynamic and heterogeneous tumor microenvironment. In addition, the recent advancement in microfluidic technology allows fine-tuning and controlling microenvironmental parameters in tissue-on-chip devices in order to emulate the in vivo conditions. In this review, after a brief description of the origin of tumor microenvironment heterogeneity, some examples of nanomedicine approaches targeting the tumor microenvironment have been reported. Further, how advanced 3D bioengineered tumor models coupled with a microfluidic device can improve the design and testing of anti-cancer nanomedicine targeting the tumor microenvironment has been discussed. We highlight that the presence of a dynamic extracellular matrix, able to capture the spatiotemporal heterogeneity of tumor stroma, is an indispensable requisite for tumor-on-chip model and nanomedicine testing.
Collapse
Affiliation(s)
- Giorgia Imparato
- Center for Advanced Biomaterials for Health Care@CRIB Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci n. 53, 80125 Napoli, Italy.
| | - Francesco Urciuolo
- Department of Chemical, Materials and Industrial Production Engineering (DICMAPI) and Interdisciplinary Research Centre on Biomaterials (CRIB), University of Napoli Federico II, P.le Tecchio 80, 80125 Napoli, Italy
| | - Claudia Mazio
- Center for Advanced Biomaterials for Health Care@CRIB Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci n. 53, 80125 Napoli, Italy.
| | - Paolo A Netti
- Center for Advanced Biomaterials for Health Care@CRIB Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci n. 53, 80125 Napoli, Italy.
- Department of Chemical, Materials and Industrial Production Engineering (DICMAPI) and Interdisciplinary Research Centre on Biomaterials (CRIB), University of Napoli Federico II, P.le Tecchio 80, 80125 Napoli, Italy
| |
Collapse
|
12
|
Tiwari A, Trivedi R, Lin SY. Tumor microenvironment: barrier or opportunity towards effective cancer therapy. J Biomed Sci 2022; 29:83. [PMID: 36253762 PMCID: PMC9575280 DOI: 10.1186/s12929-022-00866-3] [Citation(s) in RCA: 183] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 10/01/2022] [Indexed: 12/24/2022] Open
Abstract
Tumor microenvironment (TME) is a specialized ecosystem of host components, designed by tumor cells for successful development and metastasis of tumor. With the advent of 3D culture and advanced bioinformatic methodologies, it is now possible to study TME’s individual components and their interplay at higher resolution. Deeper understanding of the immune cell’s diversity, stromal constituents, repertoire profiling, neoantigen prediction of TMEs has provided the opportunity to explore the spatial and temporal regulation of immune therapeutic interventions. The variation of TME composition among patients plays an important role in determining responders and non-responders towards cancer immunotherapy. Therefore, there could be a possibility of reprogramming of TME components to overcome the widely prevailing issue of immunotherapeutic resistance. The focus of the present review is to understand the complexity of TME and comprehending future perspective of its components as potential therapeutic targets. The later part of the review describes the sophisticated 3D models emerging as valuable means to study TME components and an extensive account of advanced bioinformatic tools to profile TME components and predict neoantigens. Overall, this review provides a comprehensive account of the current knowledge available to target TME.
Collapse
Affiliation(s)
- Aadhya Tiwari
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Rakesh Trivedi
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shiaw-Yih Lin
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
13
|
Do XH, Hoang MHT, Vu AT, Nguyen LT, Bui DTT, Dinh DT, Nguyen XH, Than UTT, Mai HT, To TT, Nguyen TNH, Hoang NTM. Differential Cytotoxicity of Curcumin-Loaded Micelles on Human Tumor and Stromal Cells. Int J Mol Sci 2022; 23:ijms232012362. [PMID: 36293215 PMCID: PMC9604151 DOI: 10.3390/ijms232012362] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/07/2022] Open
Abstract
Although curcumin in the form of nanoparticles has been demonstrated as a potential anti-tumor compound, the impact of curcumin and nanocurcumin in vitro on normal cells and in vivo in animal models is largely unknown. This study evaluated the toxicity of curcumin-loaded micelles in vitro and in vivo on several tumor cell lines, primary stromal cells, and zebrafish embryos. Breast tumor cell line (MCF7) and stromal cells (human umbilical cord vein endothelial cells, human fibroblasts, and human umbilical cord-derived mesenchymal stem cells) were used in this study. A zebrafish embryotoxicity (FET) assay was conducted following the Organisation for Economic Co-operation and Development (OECD) Test 236. Compared to free curcumin, curcumin PM showed higher cytotoxicity to MCF7 cells in both monolayer culture and multicellular tumor spheroids. The curcumin-loaded micelles efficiently penetrated the MCF7 spheroids and induced apoptosis. The nanocurcumin reduced the viability and disturbed the function of stromal cells by suppressing cell migration and tube formation. The micelles demonstrated toxicity to the development of zebrafish embryos. Curcumin-loaded micelles demonstrated toxicity to both tumor and normal primary stromal cells and zebrafish embryos, indicating that the use of nanocurcumin in cancer treatment should be carefully investigated and controlled.
Collapse
Affiliation(s)
- Xuan-Hai Do
- Department of Practical and Experimental Surgery, Vietnam Military Medical University, 160 Phung Hung Street, Phuc La, Ha Dong, Hanoi 10000, Vietnam
| | - My Hanh Thi Hoang
- Faculty of Biology, VNU University of Science, 334 Nguyen Trai Street, Hanoi 10000, Vietnam or
| | - Anh-Tuan Vu
- Faculty of Biology, VNU University of Science, 334 Nguyen Trai Street, Hanoi 10000, Vietnam or
| | - Lai-Thanh Nguyen
- Faculty of Biology, VNU University of Science, 334 Nguyen Trai Street, Hanoi 10000, Vietnam or
| | - Dung Thi Thuy Bui
- Faculty of Biology, VNU University of Science, 334 Nguyen Trai Street, Hanoi 10000, Vietnam or
| | - Duy-Thanh Dinh
- Faculty of Biology, VNU University of Science, 334 Nguyen Trai Street, Hanoi 10000, Vietnam or
- Laboratory for Organogenesis and Regeneration, GIGA-R, University of Liège, 4000 Liège, Belgium
| | - Xuan-Hung Nguyen
- Center of Applied Sciences, Regenerative Medicine and Advance Technologies (CARA), Vinmec Healthcare System, 458 Minh Khai Street, Hanoi 10000, Vietnam
- College of Health Sciences, Vin University, Hanoi 10000, Vietnam
| | - Uyen Thi Trang Than
- Center of Applied Sciences, Regenerative Medicine and Advance Technologies (CARA), Vinmec Healthcare System, 458 Minh Khai Street, Hanoi 10000, Vietnam
| | - Hien Thi Mai
- Center of Applied Sciences, Regenerative Medicine and Advance Technologies (CARA), Vinmec Healthcare System, 458 Minh Khai Street, Hanoi 10000, Vietnam
| | - Thuy Thanh To
- Faculty of Biology, VNU University of Science, 334 Nguyen Trai Street, Hanoi 10000, Vietnam or
| | - Tra Ngoc Huong Nguyen
- Department of Biology, Mount Holyoke College, 50 College Street, South Hadley, MA 01075, USA
| | - Nhung Thi My Hoang
- Faculty of Biology, VNU University of Science, 334 Nguyen Trai Street, Hanoi 10000, Vietnam or
- Correspondence: ; Tel.: +84-947440249
| |
Collapse
|
14
|
Li NT, Wu NC, Cao R, Cadavid JL, Latour S, Lu X, Zhu Y, Mijalkovic M, Roozitalab R, Landon-Brace N, Notta F, McGuigan AP. An off-the-shelf multi-well scaffold-supported platform for tumour organoid-based tissues. Biomaterials 2022; 291:121883. [DOI: 10.1016/j.biomaterials.2022.121883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 10/07/2022] [Accepted: 10/23/2022] [Indexed: 11/15/2022]
|
15
|
Exploring Metabolic Signatures of Ex Vivo Tumor Tissue Cultures for Prediction of Chemosensitivity in Ovarian Cancer. Cancers (Basel) 2022; 14:cancers14184460. [PMID: 36139619 PMCID: PMC9496731 DOI: 10.3390/cancers14184460] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Women diagnosed with ovarian cancer have 5-year survival rates below 45%. Prediction of patient’s outcome and the onset of drug resistance are still major challenges. The patient’s drug response is influenced by the environment that surrounds the tumor cells. We previously showed that patient-derived tumor tissue can be kept in the lab, alive and retaining aspects of that environment. In this study, we exposed tumor tissue derived from ovarian cancer patients to the chemotherapy patients receive and identified metabolites released by the tumor tissue after treatment (metabolic footprint). Using machine learning, we uncovered metabolic signatures that discriminate tumor tissues with higher vs. lower drug sensitivity. We propose potential biomarkers involved in the production of specific building blocks of cells and energy generation processes. Overall, we established a platform to explore metabolic features of the complex environment of each patient’s tumor that can underpin the discovery of biomarkers of drug response. Abstract Predicting patient response to treatment and the onset of chemoresistance are still major challenges in oncology. Chemoresistance is deeply influenced by the complex cellular interactions occurring within the tumor microenvironment (TME), including metabolic crosstalk. We have previously shown that ex vivo tumor tissue cultures derived from ovarian carcinoma (OvC) resections retain the TME components for at least four weeks of culture and implemented assays for assessment of drug response. Here, we explored ex vivo patient-derived tumor tissue cultures to uncover metabolic signatures of chemosensitivity and/or resistance. Tissue cultures derived from nine OvC cases were challenged with carboplatin and paclitaxel, the standard-of-care chemotherapeutics, and the metabolic footprints were characterized by LC-MS. Partial least-squares discriminant analysis (PLS-DA) revealed metabolic signatures that discriminated high-responder from low-responder tissue cultures to ex vivo drug exposure. As a proof-of-concept, a set of potential metabolic biomarkers of drug response was identified based on the receiver operating characteristics (ROC) curve, comprising amino acids, fatty acids, pyrimidine, glutathione, and TCA cycle pathways. Overall, this work establishes an analytical and computational platform to explore metabolic features of the TME associated with response to treatment, which can leverage the discovery of biomarkers of drug response and resistance in OvC.
Collapse
|
16
|
Seeto WJ, Tian Y, Pradhan S, Minond D, Lipke EA. Droplet Microfluidics-Based Fabrication of Monodisperse Poly(ethylene glycol)-Fibrinogen Breast Cancer Microspheres for Automated Drug Screening Applications. ACS Biomater Sci Eng 2022; 8:3831-3841. [PMID: 35969206 PMCID: PMC9472798 DOI: 10.1021/acsbiomaterials.2c00285] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/11/2022] [Indexed: 01/03/2023]
Abstract
Spheroidal cancer microtissues are highly advantageous for a wide range of biomedical applications, including high-throughput drug screening, multiplexed target validation, mechanistic investigation of tumor-extracellular matrix (ECM) interactions, among others. Current techniques for spheroidal tissue formation rely heavily on self-aggregation of single cancer cells and have substantial limitations in terms of cell-type-specific heterogeneities, uniformity, ease of production and handling, and most importantly, mimicking the complex native tumor microenvironmental conditions in simplistic models. These constraints can be overcome by using engineered tunable hydrogels that closely mimic the tumor ECM and elucidate pathologically relevant cell behavior, coupled with microfluidics-based high-throughput fabrication technologies to encapsulate cells and create cancer microtissues. In this study, we employ biosynthetic hybrid hydrogels composed of poly(ethylene glycol diacrylate) (PEGDA) covalently conjugated to natural protein (fibrinogen) (PEG-fibrinogen, PF) to create monodisperse microspheres encapsulating breast cancer cells for 3D culture and tumorigenic characterization. A previously developed droplet-based microfluidic system is used for rapid, facile, and reproducible fabrication of uniform cancer microspheres with either MCF7 or MDA-MB-231 (metastatic) breast cancer cells. Cancer cell-type-dependent variations in cell viability, metabolic activity, and 3D morphology, as well as microsphere stiffness, are quantified over time. Particularly, MCF7 cells grew as tight cellular clusters in the PF microspheres, characteristic of their epithelial morphology, while MDA-MB-231 cells displayed elongated and invasive morphology, characteristic of their mesenchymal and metastatic nature. Finally, the translational potential of the cancer microsphere platform toward high-throughput drug screening is also demonstrated. With high uniformity, scalability, and control over engineered microenvironments, the established cancer microsphere model can be potentially used for mechanistic studies, fabrication of modular cancer microtissues, and future drug-testing applications.
Collapse
Affiliation(s)
- Wen J. Seeto
- Department
of Chemical Engineering, Auburn University, Auburn, Alabama 36849, United States
| | - Yuan Tian
- Department
of Chemical Engineering, Auburn University, Auburn, Alabama 36849, United States
| | - Shantanu Pradhan
- Department
of Chemical Engineering, Auburn University, Auburn, Alabama 36849, United States
| | - Dmitriy Minond
- College
of Pharmacy, Department of Pharmaceutical Sciences, Nova Southeastern University, Lauderdale, Florida 33314, United States
- Rumbaugh-Goodwin
Institute for Cancer Research, Nova Southeastern
University, Lauderdale, Florida 33314, United States
| | - Elizabeth A. Lipke
- Department
of Chemical Engineering, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
17
|
Kim D, Hwang KS, Seo EU, Seo S, Lee BC, Choi N, Choi J, Kim HN. Vascularized Lung Cancer Model for Evaluating the Promoted Transport of Anticancer Drugs and Immune Cells in an Engineered Tumor Microenvironment. Adv Healthc Mater 2022; 11:e2102581. [PMID: 35286780 PMCID: PMC11468795 DOI: 10.1002/adhm.202102581] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/08/2022] [Indexed: 01/09/2023]
Abstract
The tumor microenvironment (TME) is the environment around the tumor, including blood vessels, immune cells, fibroblasts, signaling molecules, and the extracellular matrix (ECM). Owing to its component interactions, the TME influences tumor growth and drug delivery in a highly complex manner. Although several vascularized cancer models are developed to mimic the TME in vitro, these models cannot comprehensively reflect blood vessel-tumor spheroid interactions. Here, a method for inducing controlled tumor angiogenesis by engineering the microenvironment is presented. The interstitial flow direction regulates the direction of capillary sprouting, showing that angiogenesis occurs in the opposite direction of flow, while the existence of lung fibroblasts affects the continuity and lumen formation of sprouted capillaries. The vascularized tumor model shows enhanced delivery of anticancer drugs and immune cells to the tumor spheroids because of the perfusable vascular networks. The possibility of capillary embolism using anticancer drug-conjugated liquid metal nanoparticles is investigated using the vascularized tumor model. This vascularized tumor platform can aid in the development of effective anticancer drugs and cancer immunotherapy.
Collapse
Affiliation(s)
- Dasom Kim
- Brain Science InstituteKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Kyeong Seob Hwang
- Brain Science InstituteKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- School of Mechanical EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Eun U Seo
- Brain Science InstituteKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- Division of Bio‐Medical Science and TechnologyKIST SchoolKorea University of Science and Technology (UST)Seoul02792Republic of Korea
| | - Suyeong Seo
- Brain Science InstituteKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- Program in Nano Science and TechnologyGraduate School of Convergence Science and TechnologySeoul National UniversitySeoul08826Republic of Korea
| | - Byung Chul Lee
- Brain Science InstituteKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- Division of Bio‐Medical Science and TechnologyKIST SchoolKorea University of Science and Technology (UST)Seoul02792Republic of Korea
| | - Nakwon Choi
- Brain Science InstituteKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- Division of Bio‐Medical Science and TechnologyKIST SchoolKorea University of Science and Technology (UST)Seoul02792Republic of Korea
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Republic of Korea
| | - Jonghoon Choi
- School of Integrative EngineeringChung‐Ang UniversitySeoul06974Republic of Korea
| | - Hong Nam Kim
- Brain Science InstituteKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- School of Mechanical EngineeringYonsei UniversitySeoul03722Republic of Korea
- Division of Bio‐Medical Science and TechnologyKIST SchoolKorea University of Science and Technology (UST)Seoul02792Republic of Korea
- Yonsei‐KIST Convergence Research InstituteYonsei UniversitySeoul03722Republic of Korea
| |
Collapse
|
18
|
Chermat R, Ziaee M, Mak DY, Refet-Mollof E, Rodier F, Wong P, Carrier JF, Kamio Y, Gervais T. Radiotherapy on-chip: microfluidics for translational radiation oncology. LAB ON A CHIP 2022; 22:2065-2079. [PMID: 35477748 DOI: 10.1039/d2lc00177b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The clinical importance of radiotherapy in the treatment of cancer patients justifies the development and use of research tools at the fundamental, pre-clinical, and ultimately clinical levels, to investigate their toxicities and synergies with systemic agents on relevant biological samples. Although microfluidics has prompted a paradigm shift in drug discovery in the past two decades, it appears to have yet to translate to radiotherapy research. However, the materials, dimensions, design versatility and multiplexing capabilities of microfluidic devices make them well-suited to a variety of studies involving radiation physics, radiobiology and radiotherapy. This review will present the state-of-the-art applications of microfluidics in these fields and specifically highlight the perspectives offered by radiotherapy on-a-chip in the field of translational radiobiology and precision medicine. This body of knowledge can serve both the microfluidics and radiotherapy communities by identifying potential collaboration avenues to improve patient care.
Collapse
Affiliation(s)
- Rodin Chermat
- μFO Lab, Polytechnique Montréal, Montréal, QC, Canada.
- Institut du Cancer de Montréal, (ICM), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Maryam Ziaee
- μFO Lab, Polytechnique Montréal, Montréal, QC, Canada.
- Institut du Cancer de Montréal, (ICM), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - David Y Mak
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Elena Refet-Mollof
- μFO Lab, Polytechnique Montréal, Montréal, QC, Canada.
- Institut du Cancer de Montréal, (ICM), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Francis Rodier
- Institut du Cancer de Montréal, (ICM), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
- Département de radiologie, radio-oncologie et médecine nucléaire, Université de Montréal, Montreal, QC, Canada
| | - Philip Wong
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Institut du Cancer de Montréal, (ICM), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Jean-François Carrier
- Département de radiologie, radio-oncologie et médecine nucléaire, Université de Montréal, Montreal, QC, Canada
- Département de Physique, Université de Montréal, Montréal, QC, Canada
- Département de Radio-oncologie, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, QC, Canada
| | - Yuji Kamio
- Département de Radio-oncologie, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, QC, Canada
- Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada
| | - Thomas Gervais
- μFO Lab, Polytechnique Montréal, Montréal, QC, Canada.
- Institut du Cancer de Montréal, (ICM), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| |
Collapse
|
19
|
Biomimetic hydrogel supports initiation and growth of patient-derived breast tumor organoids. Nat Commun 2022; 13:1466. [PMID: 35304464 PMCID: PMC8933543 DOI: 10.1038/s41467-022-28788-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 02/01/2022] [Indexed: 12/15/2022] Open
Abstract
Patient-derived tumor organoids (PDOs) are a highly promising preclinical model that recapitulates the histology, gene expression, and drug response of the donor patient tumor. Currently, PDO culture relies on basement-membrane extract (BME), which suffers from batch-to-batch variability, the presence of xenogeneic compounds and residual growth factors, and poor control of mechanical properties. Additionally, for the development of new organoid lines from patient-derived xenografts, contamination of murine host cells poses a problem. We propose a nanofibrillar hydrogel (EKGel) for the initiation and growth of breast cancer PDOs. PDOs grown in EKGel have histopathologic features, gene expression, and drug response that are similar to those of their parental tumors and PDOs in BME. In addition, EKGel offers reduced batch-to-batch variability, a range of mechanical properties, and suppressed contamination from murine cells. These results show that EKGel is an improved alternative to BME matrices for the initiation, growth, and maintenance of breast cancer PDOs. Patient-derived tumour organoids are important preclinical models but suffer from variability from the use of basement-membrane extract and cell contamination. Here, the authors report on the development of mimetic nanofibrilar hydrogel which supports tumour organoid growth with reduced batch variability and cell contamination.
Collapse
|
20
|
Chen CN, Wang JC, Chen YT, Yang TL. Exploration of the niche effect on tumor satellite budding of head and neck cancer with biomimicking modeling. Biomaterials 2022; 285:121471. [PMID: 35490561 DOI: 10.1016/j.biomaterials.2022.121471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/09/2022] [Accepted: 03/12/2022] [Indexed: 11/24/2022]
|
21
|
Lyophilized Gelatin@non-Woven Scaffold to Promote Spheroids Formation and Enrich Cancer Stem Cell Incidence. NANOMATERIALS 2022; 12:nano12050808. [PMID: 35269296 PMCID: PMC8912757 DOI: 10.3390/nano12050808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/22/2022] [Accepted: 02/01/2022] [Indexed: 02/01/2023]
Abstract
A gelatin@non-woven fabric (gelatin@NWF) hybrid scaffold with tailored micropore structures was fabricated by lyophilizing, using gelatin to support cells and the NWF matrix as a frame to enforce the mechanical stability of gelatin. By freezing the gelatin and NWF hybrid in liquid nitrogen and subsequently lyophilizing and crosslinking the process, the gelatin@NWF scaffold was prepared to support cell growth and promote cell aggregation and spheroids’ formation. The results indicated that by tuning the lyophilizing temperature, the micropore size on the gelatin could be tailored. Consequently, tumor spheroids can be formed on gelatin@NWF scaffolds with honeycomb-like pores around 10 µm. The cell spheroids formed on the tailored gelatin@NWF scaffold were characterized in cancer stem cell (CSC)-associated gene expression, chemotherapy drug sensitivity, and motility. It was found that the expression of the CSC-associated biomarkers SOX2, OCT4, and ALDH1A1 in gene and protein levels in DU 145 cell spheres formed on gelatin@NWF scaffolds were significantly higher than in those cells grown as monolayers. Moreover, cells isolated from spheroids grown on gelatin@NWF scaffold showed higher drug resistance and motility. Tumor spheroids can be formed on a long-term storage scaffold, highlighting the potential of gelatin@NWF as a ready-to-use scaffold for tumor cell sphere generation and culturing.
Collapse
|
22
|
Jia Y, Wei Z, Zhang S, Yang B, Li Y. Instructive Hydrogels for Primary Tumor Cell Culture: Current Status and Outlook. Adv Healthc Mater 2022; 11:e2102479. [PMID: 35182456 DOI: 10.1002/adhm.202102479] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 02/07/2022] [Indexed: 02/06/2023]
Abstract
Primary tumor organoids (PTOs) growth in hydrogels have emerged as an important in vitro model that recapitulates many characteristics of the native tumor tissue, and have important applications in fundamental cancer research and for the development of useful therapeutic treatment. This paper begins with reviewing the methods of isolation of primary tumor cells. Then, recent advances on the instructive hydrogels as biomimetic extracellular matrix for primary tumor cell culture and construction of PTO models are summarized. Emerging microtechnology for growth of PTOs in microscale hydrogels and the applications of PTOs are highlighted. This paper concludes with an outlook on the future directions in the investigation of instructive hydrogels for PTO growth.
Collapse
Affiliation(s)
- Yiyang Jia
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 China
| | - Zhentong Wei
- Department of Oncologic Gynecology The First Hospital of Jilin University Changchun 130021 China
| | - Songling Zhang
- Department of Oncologic Gynecology The First Hospital of Jilin University Changchun 130021 China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 China
- Joint Laboratory of Opto‐Functional Theranostics in Medicine and Chemistry The First Hospital of Jilin University Changchun 130021 China
| | - Yunfeng Li
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 China
- Joint Laboratory of Opto‐Functional Theranostics in Medicine and Chemistry The First Hospital of Jilin University Changchun 130021 China
| |
Collapse
|
23
|
3D microgels to quantify tumor cell properties and therapy response dynamics. Biomaterials 2022; 283:121417. [DOI: 10.1016/j.biomaterials.2022.121417] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/18/2022] [Accepted: 02/15/2022] [Indexed: 12/21/2022]
|
24
|
Engel M, Belfiore L, Aghaei B, Sutija M. Enabling high throughput drug discovery in 3D cell cultures through a novel bioprinting workflow. SLAS Technol 2022; 27:32-38. [PMID: 35058203 DOI: 10.1016/j.slast.2021.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Advanced three dimensional cell culture techniques have been adopted in many laboratories to better model in vivo tissue by recapitulating multi-cellular architecture and the presence of extracellular matrix features. We describe here a 3D cell culture platform in a small molecule screening workflow that uses traditional biomarker and intracellular kinase end point assay readouts. By combining the high throughput bioprinter RASTRUM with the high throughput screening assay AlphaLISA, we demonstrate the utility of the protocol in 3D synthetic hydrogel cultures with breast cancer (MDA-MB-231 and MCF-7) and fibroblast cells. To establish and validate the workflow, we treated the breast cancer cultures with doxorubicin, while fibroblast cultures were stimulated with the pro-inflammatory lipopolysaccharide. 3D and 2D MDA-MB-231 cultures were equally susceptible to doxorubicin treatment, while showing opposite ERK phosphorylation changes. Doxorubicin readily entered embedded MCF-7 spheroids and markedly reduced intracellular GSK3β phosphorylation. Furthermore, quantifying extracellular interleukin 6 levels showed a very similar activation profile for fibroblasts in 2D and 3D cultures, with 3D fibroblast networks being more resistant against the immune challenge. Through these validation experiments we demonstrate the full compatibility of the bioprinted 3D cell cultures with several widely-used 2D culture assays. The efficiency of the workflow, minimal culture handling, and applicability of traditional screening assays, demonstrates that advanced encapsulated 3D cell cultures can be used in 2D cell culture screening workflows, while providing a more holistic view on cell biology to increase the predictability to in vivo drug response.
Collapse
Affiliation(s)
- Martin Engel
- Inventia Life Science Operations Pty Ltd, Alexandria, NSW 2015, Australia.
| | - Lisa Belfiore
- Inventia Life Science Operations Pty Ltd, Alexandria, NSW 2015, Australia
| | - Behnaz Aghaei
- Inventia Life Science Operations Pty Ltd, Alexandria, NSW 2015, Australia
| | | |
Collapse
|
25
|
Imparato G, Urciuolo F, Netti PA. Organ on Chip Technology to Model Cancer Growth and Metastasis. Bioengineering (Basel) 2022; 9:28. [PMID: 35049737 PMCID: PMC8772984 DOI: 10.3390/bioengineering9010028] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 12/18/2022] Open
Abstract
Organ on chip (OOC) has emerged as a major technological breakthrough and distinct model system revolutionizing biomedical research and drug discovery by recapitulating the crucial structural and functional complexity of human organs in vitro. OOC are rapidly emerging as powerful tools for oncology research. Indeed, Cancer on chip (COC) can ideally reproduce certain key aspects of the tumor microenvironment (TME), such as biochemical gradients and niche factors, dynamic cell-cell and cell-matrix interactions, and complex tissue structures composed of tumor and stromal cells. Here, we review the state of the art in COC models with a focus on the microphysiological systems that host multicellular 3D tissue engineering models and can help elucidate the complex biology of TME and cancer growth and progression. Finally, some examples of microengineered tumor models integrated with multi-organ microdevices to study disease progression in different tissues will be presented.
Collapse
Affiliation(s)
- Giorgia Imparato
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Naples, Italy; (F.U.); (P.A.N.)
| | - Francesco Urciuolo
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Naples, Italy; (F.U.); (P.A.N.)
- Department of Chemical, Materials and Industrial Production (DICMAPI), Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, P.leTecchio 80, 80125 Naples, Italy
| | - Paolo Antonio Netti
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Naples, Italy; (F.U.); (P.A.N.)
- Department of Chemical, Materials and Industrial Production (DICMAPI), Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, P.leTecchio 80, 80125 Naples, Italy
| |
Collapse
|
26
|
Prince E, Kheiri S, Wang Y, Xu F, Cruickshank J, Topolskaia V, Tao H, Young EWK, McGuigan AP, Cescon DW, Kumacheva E. Microfluidic Arrays of Breast Tumor Spheroids for Drug Screening and Personalized Cancer Therapies. Adv Healthc Mater 2022; 11:e2101085. [PMID: 34636180 DOI: 10.1002/adhm.202101085] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/30/2021] [Indexed: 12/20/2022]
Abstract
One of the obstacles limiting progress in the development of effective cancer therapies is the shortage of preclinical models that capture the dynamic nature of tumor microenvironments. Interstitial flow strongly impacts tumor response to chemotherapy; however, conventional in vitro cancer models largely disregard this key feature. Here, a proof of principle microfluidic platform for the generation of large arrays of breast tumor spheroids that are grown under close-to-physiological flow in a biomimetic hydrogel is reported. This cancer spheroids-on-a-chip model is used for time- and labor-efficient studies of the effects of drug dose and supply rate on the chemosensitivity of breast tumor spheroids. The capability to grow large arrays of tumor spheroids from patient-derived cells of different breast cancer subtypes is shown, and the correlation between in vivo drug efficacy and on-chip spheroid drug response is demonstrated. The proposed platform can serve as an in vitro preclinical model for the development of personalized cancer therapies and effective screening of new anticancer drugs.
Collapse
Affiliation(s)
- Elisabeth Prince
- Department of Chemistry University of Toronto 80 St. George St Toronto Ontario M5P 2Y2 Canada
| | - Sina Kheiri
- Department of Mechanical & Industrial Engineering University of Toronto 5 King's College Circle Toronto Ontario M5S 3G8 Canada
| | - Yihe Wang
- Department of Chemistry University of Toronto 80 St. George St Toronto Ontario M5P 2Y2 Canada
| | - Fei Xu
- Department of Chemistry University of Toronto 80 St. George St Toronto Ontario M5P 2Y2 Canada
| | - Jennifer Cruickshank
- Princess Margaret Cancer Centre University Health Network 610 University Ave Toronto Ontario M5G 2C1 Canada
| | - Valentina Topolskaia
- Department of Chemistry University of Toronto 80 St. George St Toronto Ontario M5P 2Y2 Canada
| | - Huachen Tao
- Department of Chemistry University of Toronto 80 St. George St Toronto Ontario M5P 2Y2 Canada
| | - Edmond W. K. Young
- Department of Mechanical & Industrial Engineering University of Toronto 5 King's College Circle Toronto Ontario M5S 3G8 Canada
- Institute of Biomaterials and Biomedical Engineering University of Toronto 164 College St Toronto Ontario M5S 3G9 Canada
| | - Alison. P. McGuigan
- Institute of Biomaterials and Biomedical Engineering University of Toronto 164 College St Toronto Ontario M5S 3G9 Canada
- Department of Chemical Engineering and Applied Chemistry University of Toronto 200 College St Toronto Ontario M5S 3E5 Canada
| | - David W. Cescon
- Princess Margaret Cancer Centre University Health Network 610 University Ave Toronto Ontario M5G 2C1 Canada
| | - Eugenia Kumacheva
- Department of Chemistry University of Toronto 80 St. George St Toronto Ontario M5P 2Y2 Canada
- Institute of Biomaterials and Biomedical Engineering University of Toronto 164 College St Toronto Ontario M5S 3G9 Canada
- Department of Chemical Engineering and Applied Chemistry University of Toronto 200 College St Toronto Ontario M5S 3E5 Canada
| |
Collapse
|
27
|
Barbosa MAG, Xavier CPR, Pereira RF, Petrikaitė V, Vasconcelos MH. 3D Cell Culture Models as Recapitulators of the Tumor Microenvironment for the Screening of Anti-Cancer Drugs. Cancers (Basel) 2021; 14:190. [PMID: 35008353 PMCID: PMC8749977 DOI: 10.3390/cancers14010190] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/23/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022] Open
Abstract
Today, innovative three-dimensional (3D) cell culture models have been proposed as viable and biomimetic alternatives for initial drug screening, allowing the improvement of the efficiency of drug development. These models are gaining popularity, given their ability to reproduce key aspects of the tumor microenvironment, concerning the 3D tumor architecture as well as the interactions of tumor cells with the extracellular matrix and surrounding non-tumor cells. The development of accurate 3D models may become beneficial to decrease the use of laboratory animals in scientific research, in accordance with the European Union's regulation on the 3R rule (Replacement, Reduction, Refinement). This review focuses on the impact of 3D cell culture models on cancer research, discussing their advantages, limitations, and compatibility with high-throughput screenings and automated systems. An insight is also given on the adequacy of the available readouts for the interpretation of the data obtained from the 3D cell culture models. Importantly, we also emphasize the need for the incorporation of additional and complementary microenvironment elements on the design of 3D cell culture models, towards improved predictive value of drug efficacy.
Collapse
Affiliation(s)
- Mélanie A. G. Barbosa
- Cancer Drug Resistance Group, IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal; (M.A.G.B.); (C.P.R.X.)
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal;
| | - Cristina P. R. Xavier
- Cancer Drug Resistance Group, IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal; (M.A.G.B.); (C.P.R.X.)
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal;
| | - Rúben F. Pereira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal;
- Biofabrication Group, INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Vilma Petrikaitė
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, A. Mickevičiaus g 9, LT-44307 Kaunas, Lithuania;
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania
| | - M. Helena Vasconcelos
- Cancer Drug Resistance Group, IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal; (M.A.G.B.); (C.P.R.X.)
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal;
- Department of Biological Sciences, FFUP—Faculty of Pharmacy of the University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
28
|
De Ridder K, Tung N, Werle JT, Karpf L, Awad RM, Bernier A, Ceuppens H, Salmon H, Goyvaerts C. Novel 3D Lung Tumor Spheroids for Oncoimmunological Assays. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Kirsten De Ridder
- Laboratory for Molecular and Cellular Therapy Department of Biomedical Sciences Vrije Universiteit Brussel Laarbeeklaan 103-E 1090 Jette Belgium
| | - Navpreet Tung
- Department of Oncological Sciences The Precision Immunology Institute The Tisch Cancer Institute Icahn School of Medicine at Mount Sinai 1470 Madison Avenue New York NY 10029 USA
| | - Jan-Timon Werle
- Institut Curie INSERM 75005 Paris France
- PSL Research University 75006 Paris France
| | - Léa Karpf
- Department of Oncological Sciences The Precision Immunology Institute The Tisch Cancer Institute Icahn School of Medicine at Mount Sinai 1470 Madison Avenue New York NY 10029 USA
| | - Robin Maximilian Awad
- Laboratory for Molecular and Cellular Therapy Department of Biomedical Sciences Vrije Universiteit Brussel Laarbeeklaan 103-E 1090 Jette Belgium
| | - Annie Bernier
- Institut Curie INSERM 75005 Paris France
- PSL Research University 75006 Paris France
| | - Hannelore Ceuppens
- Laboratory for Molecular and Cellular Therapy Department of Biomedical Sciences Vrije Universiteit Brussel Laarbeeklaan 103-E 1090 Jette Belgium
| | - Hélène Salmon
- Department of Oncological Sciences The Precision Immunology Institute The Tisch Cancer Institute Icahn School of Medicine at Mount Sinai 1470 Madison Avenue New York NY 10029 USA
- Institut Curie INSERM 75005 Paris France
- PSL Research University 75006 Paris France
| | - Cleo Goyvaerts
- Laboratory for Molecular and Cellular Therapy Department of Biomedical Sciences Vrije Universiteit Brussel Laarbeeklaan 103-E 1090 Jette Belgium
| |
Collapse
|
29
|
Li Y, Qin Z, Zhang F, Yang ST. Two-color fluorescent proteins reporting survivin regulation in breast cancer cells for high throughput drug screening. Biotechnol Bioeng 2021; 119:1004-1017. [PMID: 34914099 DOI: 10.1002/bit.28006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/25/2021] [Accepted: 12/09/2021] [Indexed: 02/06/2023]
Abstract
Reporter gene assay is widely used for high throughput drug screening and drug action mechanism evaluation. In this study, we developed a robust dual-fluorescent reporter assay to detect drugs repressing the transcription of survivin, a cancer biomarker from the inhibitor of apoptosis family, in breast cancer cells cultured in three-dimensional (3D) microbioreactors. Survivin is overexpressed in numerous malignancies but almost silent in normal tissue cells and is considered a lead target for cancer therapy. Breast cancer MCF-7 cells were engineered to express enhanced green fluorescent protein driven by a survivin promoter and red fluorescent protein driven by a cytomegalovirus promoter as internal control to detect changes in survivin expression in cells as affected by drugs. This 3D dual-fluorescent reporter assay was validated with YM155 and doxorubicin, which were known to downregulate survivin in cancer cells, and further evaluated with two widely used anticancer compounds, cisplatin, and epigallocatechin gallate, to evaluate their effects on survivin expression. The results showed that the 3D dual-fluorescent reporter assay was robust for high throughput screening of drugs targeting survivin in breast cancer cells.
Collapse
Affiliation(s)
- You Li
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Zhen Qin
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Fengli Zhang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Shang-Tian Yang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
30
|
Spatially resolved quantification of drug metabolism and efficacy in 3D paper-based tumor mimics. Anal Chim Acta 2021; 1186:339091. [PMID: 34756260 DOI: 10.1016/j.aca.2021.339091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/10/2021] [Accepted: 09/20/2021] [Indexed: 11/23/2022]
Abstract
Paper-based cultures are an emerging platform for preparing three-dimensional (3D) tissue- and tumor-like structures. The ability to stack individual sheets of cell-containing paper affords a modular means of assembling structures with defined cellular compositions and microenvironments. These layered stacks are easily separated at the end of an experiment, providing spatially resolved populations of live cells for further analysis. Here we describe a workflow in which cell viability, drug penetration, and drug metabolism are quantified in a spatially resolved manner. Specifically, we mapped the distribution of the drug irinotecan and its bioactive metabolite SN38 in a colorectal cancer cell-containing stacked structure with liquid chromatography-mass spectrometry (LC-MS). This paper provides the first example of a 3D culture platform that quantifies viability and drug metabolism in a spatially resolved manner. Our data show that cells at the bottom of the stack are more drug-resistant than layers in contact with the culture medium, similar to cells in the nutrient-poor center of a proliferating tumor being more drug-resistant than the rapidly dividing cells at its periphery. The powerful combination of quantitative viability and drug metabolism measurements will enable future studies to determine the exact mechanism(s) of drug resistance in different regions of a tumor.
Collapse
|
31
|
Kort-Mascort J, Bao G, Elkashty O, Flores-Torres S, Munguia-Lopez JG, Jiang T, Ehrlicher AJ, Mongeau L, Tran SD, Kinsella JM. Decellularized Extracellular Matrix Composite Hydrogel Bioinks for the Development of 3D Bioprinted Head and Neck in Vitro Tumor Models. ACS Biomater Sci Eng 2021; 7:5288-5300. [PMID: 34661396 DOI: 10.1021/acsbiomaterials.1c00812] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Reinforced extracellular matrix (ECM)-based hydrogels recapitulate several mechanical and biochemical features found in the tumor microenvironment (TME) in vivo. While these gels retain several critical structural and bioactive molecules that promote cell-matrix interactivity, their mechanical properties tend toward the viscous regime limiting their ability to retain ordered structural characteristics when considered as architectured scaffolds. To overcome this limitation characteristic of pure ECM hydrogels, we present a composite material containing alginate, a seaweed-derived polysaccharide, and gelatin, denatured collagen, as rheological modifiers which impart mechanical integrity to the biologically active decellularized ECM (dECM). After an optimization process, the reinforced gel proposed is mechanically stable and bioprintable and has a stiffness within the expected physiological values. Our hydrogel's elastic modulus has no significant difference when compared to tumors induced in preclinical xenograft head and neck squamous cell carcinoma (HNSCC) mouse models. The bioprinted cell-laden model is highly reproducible and allows proliferation and reorganization of HNSCC cells while maintaining cell viability above 90% for periods of nearly 3 weeks. Cells encapsulated in our bioink produce spheroids of at least 3000 μm2 of cross-sectional area by day 15 of culture and are positive for cytokeratin in immunofluorescence quantification, a common marker of HNSCC model validation in 2D and 3D models. We use this in vitro model system to evaluate the standard-of-care small molecule therapeutics used to treat HNSCC clinically and report a 4-fold increase in the IC50 of cisplatin and an 80-fold increase for 5-fluorouracil compared to monolayer cultures. Our work suggests that fabricating in vitro models using reinforced dECM provides a physiologically relevant system to evaluate malignant neoplastic phenomena in vitro due to the physical and biological features replicated from the source tissue microenvironment.
Collapse
Affiliation(s)
- Jacqueline Kort-Mascort
- Department of Bioengineering, McGill University, McConnell Engineering Building, 3480 University, Room 350, Montreal, Quebec H3A 0E9, Canada
| | - Guangyu Bao
- Department of Mechanical Engineering, McGill University, Macdonald Engineering Building, Room 270, 817 Sherbrooke Street West, Montreal, Quebec H3A 0C3, Canada
| | - Osama Elkashty
- Faculty of Dentistry, McGill University, 3640 rue University, Montreal, Quebec H3A 0C7, Canada.,Oral Pathology Department, Faculty of Dentistry, Mansoura University, Mansoura 29R6+Q3F, Egypt
| | - Salvador Flores-Torres
- Department of Bioengineering, McGill University, McConnell Engineering Building, 3480 University, Room 350, Montreal, Quebec H3A 0E9, Canada
| | - Jose G Munguia-Lopez
- Department of Bioengineering, McGill University, McConnell Engineering Building, 3480 University, Room 350, Montreal, Quebec H3A 0E9, Canada.,Faculty of Dentistry, McGill University, 3640 rue University, Montreal, Quebec H3A 0C7, Canada
| | - Tao Jiang
- Department of Intelligent Machinery and Instrument, College of Intelligence Science and Technology, National University of Defense Technology Changsha, No. 109 Deya Road, Kaifu District, Changsha, Hunan 410073, China
| | - Allen J Ehrlicher
- Department of Bioengineering, McGill University, McConnell Engineering Building, 3480 University, Room 350, Montreal, Quebec H3A 0E9, Canada.,Department of Mechanical Engineering, McGill University, Macdonald Engineering Building, Room 270, 817 Sherbrooke Street West, Montreal, Quebec H3A 0C3, Canada
| | - Luc Mongeau
- Department of Mechanical Engineering, McGill University, Macdonald Engineering Building, Room 270, 817 Sherbrooke Street West, Montreal, Quebec H3A 0C3, Canada
| | - Simon D Tran
- Faculty of Dentistry, McGill University, 3640 rue University, Montreal, Quebec H3A 0C7, Canada
| | - Joseph M Kinsella
- Department of Bioengineering, McGill University, McConnell Engineering Building, 3480 University, Room 350, Montreal, Quebec H3A 0E9, Canada
| |
Collapse
|
32
|
Mohan MD, Young EWK. TANDEM: biomicrofluidic systems with transverse and normal diffusional environments for multidirectional signaling. LAB ON A CHIP 2021; 21:4081-4094. [PMID: 34604885 DOI: 10.1039/d1lc00279a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Biomicrofluidic systems that can recapitulate complex biological processes with precisely controlled 3D geometries are a significant advancement from traditional 2D cultures. To this point, these systems have largely been limited to either laterally adjacent channels in a single plane or vertically stacked single-channel arrangements. As a result, lateral (or transverse) and vertical (or normal) diffusion have been isolated to their respective designs only, thus limiting potential access to nutrients and 3D communication that typifies in vivo microenvironments. Here we report a novel device architecture called "TANDEM", an acronym for "T̲ransverse A̲nd N̲ormal D̲iffusional E̲nvironments for M̲ultidirectional Signaling", which enables multiplanar arrangements of aligned channels where normal and transverse diffusion occur in tandem to facilitate multidirectional communication. We developed a computational transport model in COMSOL and tested diffusion and culture viability in one specific TANDEM configuration, and found that TANDEM systems demonstrated enhanced diffusion in comparison to single-plane counterparts. This resulted in improved viability of hydrogel-embedded cells, which typically suffer from a lack of sufficient nutrient access during long-term culture. Finally, we showed that TANDEM designs can be expanded to more complex alternative configurations depending on the needs of the end-user. Based on these findings, TANDEM designs can utilize multidirectional enhanced diffusion to improve long-term viability and ultimately facilitate more robust and more biomimetic microfluidic systems with increasingly more complex geometric layouts.
Collapse
Affiliation(s)
- Michael D Mohan
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
| | - Edmond W K Young
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
| |
Collapse
|
33
|
Application of LDH assay for therapeutic efficacy evaluation of ex vivo tumor models. Sci Rep 2021; 11:18571. [PMID: 34535719 PMCID: PMC8448883 DOI: 10.1038/s41598-021-97894-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 08/31/2021] [Indexed: 12/20/2022] Open
Abstract
The current standard preclinical oncology models are not able to fully recapitulate therapeutic targets and clinically relevant disease biology, evidenced by the 90% attrition rate of new therapies in clinical trials. Three-dimensional (3D) culture systems have the potential to enhance the relevance of preclinical models. However, the limitations of currently available cellular assays to accurately evaluate therapeutic efficacy in these models are hindering their widespread adoption. We assessed the compatibility of the lactate dehydrogenase (LDH) assay in 3D spheroid cultures against other commercially available readout methods. We developed a standardized protocol to apply the LDH assay to ex vivo cultures, considering the impact of culture growth dynamics. We show that accounting for growth rates and background release levels of LDH are sufficient to make the LDH assay a suitable methodology for longitudinal monitoring and endpoint assessment of therapeutic efficacy in both cell line-derived xenografts (xenospheres) and patient-derived explant cultures. This method has the added value of being non-destructive and not dependent on reagent penetration or manipulation of the parent material. The establishment of reliable readout methods for complex 3D culture systems will further the utility of these tumor models in preclinical and co-clinical drug development studies.
Collapse
|
34
|
Hypoxic Jumbo Spheroids On-A-Chip (HOnAChip): Insights into Treatment Efficacy. Cancers (Basel) 2021; 13:cancers13164046. [PMID: 34439199 PMCID: PMC8394550 DOI: 10.3390/cancers13164046] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/01/2021] [Accepted: 08/07/2021] [Indexed: 12/25/2022] Open
Abstract
Hypoxia is a key characteristic of the tumor microenvironment, too rarely considered during drug development due to the lack of a user-friendly method to culture naturally hypoxic 3D tumor models. In this study, we used soft lithography to engineer a microfluidic platform allowing the culture of up to 240 naturally hypoxic tumor spheroids within an 80 mm by 82.5 mm chip. These jumbo spheroids on a chip are the largest to date (>750 µm), and express gold-standard hypoxic protein CAIX at their core only, a feature absent from smaller spheroids of the same cell lines. Using histopathology, we investigated response to combined radiotherapy (RT) and hypoxic prodrug Tirapazamine (TPZ) on our jumbo spheroids produced using two sarcoma cell lines (STS117 and SK-LMS-1). Our results demonstrate that TPZ preferentially targets the hypoxic core (STS117: p = 0.0009; SK-LMS-1: p = 0.0038), but the spheroids' hypoxic core harbored as much DNA damage 24 h after irradiation as normoxic spheroid cells. These results validate our microfluidic device and jumbo spheroids as potent fundamental and pre-clinical tools for the study of hypoxia and its effects on treatment response.
Collapse
|
35
|
Balachander GM, Kotcherlakota R, Nayak B, Kedaria D, Rangarajan A, Chatterjee K. 3D Tumor Models for Breast Cancer: Whither We Are and What We Need. ACS Biomater Sci Eng 2021; 7:3470-3486. [PMID: 34286955 DOI: 10.1021/acsbiomaterials.1c00230] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Three-dimensional (3D) models have led to a paradigm shift in disease modeling in vitro, particularly for cancer. The past decade has seen a phenomenal increase in the development of 3D models for various types of cancers with a focus on studying stemness, invasive behavior, angiogenesis, and chemoresistance of cancer cells, as well as contributions of its stroma, which has expanded our understanding of these processes. Cancer biology is moving into exploring the emerging hallmarks of cancer, such as inflammation, immune evasion, and reprogramming of energy metabolism. Studies into these emerging concepts have provided novel targets and treatment options such as antitumor immunotherapy. However, 3D models that can investigate the emerging hallmarks are few and underexplored. As commonly used immunocompromised mice and syngenic mice cannot accurately mimic human immunology, stromal interactions, and metabolism and require the use of prohibitively expensive humanized mice, there is tremendous scope to develop authentic 3D tumor models in these areas. Taking the specific case of breast cancer, we discuss the currently available 3D models, their applications to mimic signaling in cancer, tumor-stroma interactions, drug responses, and assessment of drug delivery systems and therapies. We discuss the lacunae in the development of 3D tumor models for the emerging hallmarks of cancer, for lesser-explored forms of breast cancer, and provide insights to develop such models. We discuss how the next generation of 3D models can provide a better mimic of human cancer modeling compared to xenograft models and the scope toward preclinical models and precision medicine.
Collapse
Affiliation(s)
- Gowri Manohari Balachander
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore-560012, India.,Department of Physiology, Yong Loo Lin School of Medicine, National University Health System, MD9-04-11, 2 Medical Drive, Singapore 117593, Singapore
| | - Rajesh Kotcherlakota
- Department of Materials Engineering, Indian Institute of Science, Bangalore-560012, India
| | - Biswadeep Nayak
- Department of Materials Engineering, Indian Institute of Science, Bangalore-560012, India.,Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States.,Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore-560012, India
| | - Dhaval Kedaria
- Department of Materials Engineering, Indian Institute of Science, Bangalore-560012, India
| | - Annapoorni Rangarajan
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore-560012, India.,Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore-560012, India
| | - Kaushik Chatterjee
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore-560012, India.,Department of Materials Engineering, Indian Institute of Science, Bangalore-560012, India
| |
Collapse
|
36
|
Rodrigues J, Heinrich MA, Teixeira LM, Prakash J. 3D In Vitro Model (R)evolution: Unveiling Tumor–Stroma Interactions. Trends Cancer 2021; 7:249-264. [DOI: 10.1016/j.trecan.2020.10.009] [Citation(s) in RCA: 243] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/19/2020] [Accepted: 10/26/2020] [Indexed: 12/22/2022]
|
37
|
Lacalle D, Castro-Abril HA, Randelovic T, Domínguez C, Heras J, Mata E, Mata G, Méndez Y, Pascual V, Ochoa I. SpheroidJ: An Open-Source Set of Tools for Spheroid Segmentation. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 200:105837. [PMID: 33221056 DOI: 10.1016/j.cmpb.2020.105837] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/08/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND OBJECTIVES Spheroids are the most widely used 3D models for studying the effects of different micro-environmental characteristics on tumour behaviour, and for testing different preclinical and clinical treatments. In order to speed up the study of spheroids, imaging methods that automatically segment and measure spheroids are instrumental; and, several approaches for automatic segmentation of spheroid images exist in the literature. However, those methods fail to generalise to a diversity of experimental conditions. The aim of this work is the development of a set of tools for spheroid segmentation that works in a diversity of settings. METHODS In this work, we have tackled the spheroid segmentation task by first developing a generic segmentation algorithm that can be easily adapted to different scenarios. This generic algorithm has been employed to reduce the burden of annotating a dataset of images that, in turn, has been employed to train several deep learning architectures for semantic segmentation. Both our generic algorithm and the constructed deep learning models have been tested with several datasets of spheroid images where the spheroids were grown under several experimental conditions, and the images acquired using different equipment. RESULTS The developed generic algorithm can be particularised to different scenarios; however, those particular algorithms fail to generalise to different conditions. By contrast, the best deep learning model, constructed using the HRNet-Seg architecture, generalises properly to a diversity of scenarios. In order to facilitate the dissemination and use of our algorithms and models, we present SpheroidJ, a set of open-source tools for spheroid segmentation. CONCLUSIONS In this work, we have developed an algorithm and trained several models for spheroid segmentation that can be employed with images acquired under different conditions. Thanks to this work, the analysis of spheroids acquired under different conditions will be more reliable and comparable; and, the developed tools will help to advance our understanding of tumour behaviour.
Collapse
Affiliation(s)
- David Lacalle
- Department of Mathematics and Computer Science, University of La Rioja, Spain
| | - Héctor Alfonso Castro-Abril
- Tissue MicroEnvironment (TME) lab, Institute for Health Research Aragón (IIS Aragón), Zaragoza, Spain; Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain; Grupo de modelado y métodos numéricos en Ingeniería, Universidad Nacional de Colombia, Colombia
| | - Teodora Randelovic
- Tissue MicroEnvironment (TME) lab, Institute for Health Research Aragón (IIS Aragón), Zaragoza, Spain; Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
| | - César Domínguez
- Department of Mathematics and Computer Science, University of La Rioja, Spain
| | - Jónathan Heras
- Department of Mathematics and Computer Science, University of La Rioja, Spain.
| | - Eloy Mata
- Department of Mathematics and Computer Science, University of La Rioja, Spain
| | - Gadea Mata
- Confocal Microscopy Core Unit, Spanish National Cancer Research Centre, Madrid, Spain
| | - Yolanda Méndez
- Department of Mathematics and Computer Science, University of La Rioja, Spain
| | - Vico Pascual
- Department of Mathematics and Computer Science, University of La Rioja, Spain
| | - Ignacio Ochoa
- Tissue MicroEnvironment (TME) lab, Institute for Health Research Aragón (IIS Aragón), Zaragoza, Spain; Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
38
|
Golchin A, Farzaneh S, Porjabbar B, Sadegian F, Estaji M, Ranjbarvan P, Kanafimahbob M, Ranjbari J, Salehi-Nik N, Hosseinzadeh S. Regenerative Medicine Under the Control of 3D Scaffolds: Current State and Progress of Tissue Scaffolds. Curr Stem Cell Res Ther 2021; 16:209-229. [DOI: 10.2174/1574888x15666200720115519] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 11/22/2022]
Abstract
Currently, combining stem cells (SCs) with biomaterial scaffolds provides a promising strategy
for the future of biomedicine and regenerative medicine (RG). The cells need similar substrates of
the extracellular matrix (ECM) for normal tissue development, which signifies the importance of
three dimensional (3D) scaffolds to determine cell fate. Herein, the importance and positive contributions
of corresponding 3D scaffolds on cell functions, including cell interactions, cell migrations,
and nutrient delivery, are presented. Furthermore, the synthesis techniques which are recruited to
fabricate the 3D scaffolds are discussed, and the related studies of 3D scaffold for different tissues
are also reported in this paper. This review focuses on 3D scaffolds that have been used for tissue
engineering purposes and directing stem cell fate as a means of producing replacements for biomedical
applications.
Collapse
Affiliation(s)
- Ali Golchin
- Department of Clinical Biochemistry and Applied Cell Science, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Sina Farzaneh
- Department of Tissue engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahareh Porjabbar
- Department of Tissue engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Sadegian
- Department of Tissue engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Estaji
- Department of Tissue engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parviz Ranjbarvan
- Department of Clinical Biochemistry and Applied Cell Science, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohammad Kanafimahbob
- Department of Tissue engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Ranjbari
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Nasim Salehi-Nik
- Department of Biomechanical Engineering, University of Twente, Enschede, Netherlands
| | - Simzar Hosseinzadeh
- Department of Tissue engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
39
|
Blanco‐Fernandez B, Gaspar VM, Engel E, Mano JF. Proteinaceous Hydrogels for Bioengineering Advanced 3D Tumor Models. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003129. [PMID: 33643799 PMCID: PMC7887602 DOI: 10.1002/advs.202003129] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/13/2020] [Indexed: 05/14/2023]
Abstract
The establishment of tumor microenvironment using biomimetic in vitro models that recapitulate key tumor hallmarks including the tumor supporting extracellular matrix (ECM) is in high demand for accelerating the discovery and preclinical validation of more effective anticancer therapeutics. To date, ECM-mimetic hydrogels have been widely explored for 3D in vitro disease modeling owing to their bioactive properties that can be further adapted to the biochemical and biophysical properties of native tumors. Gathering on this momentum, herein the current landscape of intrinsically bioactive protein and peptide hydrogels that have been employed for 3D tumor modeling are discussed. Initially, the importance of recreating such microenvironment and the main considerations for generating ECM-mimetic 3D hydrogel in vitro tumor models are showcased. A comprehensive discussion focusing protein, peptide, or hybrid ECM-mimetic platforms employed for modeling cancer cells/stroma cross-talk and for the preclinical evaluation of candidate anticancer therapies is also provided. Further development of tumor-tunable, proteinaceous or peptide 3D microtesting platforms with microenvironment-specific biophysical and biomolecular cues will contribute to better mimic the in vivo scenario, and improve the predictability of preclinical screening of generalized or personalized therapeutics.
Collapse
Affiliation(s)
- Barbara Blanco‐Fernandez
- Department of Chemistry, CICECO – Aveiro Institute of Materials, University of AveiroCampus Universitário de SantiagoAveiro3810‐193Portugal
- Institute for Bioengineering of Catalonia (IBEC)The Barcelona Institute of Science and TechnologyBaldiri Reixac 10–12Barcelona08028Spain
| | - Vítor M. Gaspar
- Department of Chemistry, CICECO – Aveiro Institute of Materials, University of AveiroCampus Universitário de SantiagoAveiro3810‐193Portugal
| | - Elisabeth Engel
- Institute for Bioengineering of Catalonia (IBEC)The Barcelona Institute of Science and TechnologyBaldiri Reixac 10–12Barcelona08028Spain
- Materials Science and Metallurgical EngineeringPolytechnical University of Catalonia (UPC)Eduard Maristany 16Barcelona08019Spain
- CIBER en BioingenieríaBiomateriales y NanomedicinaCIBER‐BBNMadrid28029Spain
| | - João F. Mano
- Department of Chemistry, CICECO – Aveiro Institute of Materials, University of AveiroCampus Universitário de SantiagoAveiro3810‐193Portugal
| |
Collapse
|
40
|
Schäfer MEA, Klicks J, Hafner M, Rudolf R. Preparation, Drug Treatment, and Immunohistological Analysis of Tri-Culture Spheroid 3D Melanoma-Like Models. Methods Mol Biol 2021; 2265:173-183. [PMID: 33704714 DOI: 10.1007/978-1-0716-1205-7_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Most currently available three-dimensional melanoma models have either focused on simplicity or were optimized for physiological relevance. Accordingly, these paradigms have been either composed of malignant cells only or they were sophisticated human skin equivalents featuring multiple cell types and skin-like organization. Here, an intermediate spheroid-based assay system is presented, which uses tri-cultures of human CCD-1137Sk fibroblasts, HaCaT keratinocytes, and SK-MEL-28 melanoma cells. Being made of cell lines, these spheroids can be reliably reproduced without any special equipment using standard culture procedures, and they feature different aspects of skin and early stage melanoma. Therefore, this kind of model can be useful for lead-compound testing or addressing fundamental principles of early melanoma formation.
Collapse
Affiliation(s)
| | - Julia Klicks
- Institute of Molecular and Cell Biology, Hochschule Mannheim, Mannheim, Germany
| | - Mathias Hafner
- Institute of Molecular and Cell Biology, Hochschule Mannheim, Mannheim, Germany
| | - Rüdiger Rudolf
- Institute of Molecular and Cell Biology, Hochschule Mannheim, Mannheim, Germany.
| |
Collapse
|
41
|
Pinto CIG, Bucar S, Alves V, Fonseca A, Abrunhosa AJ, da Silva CL, Guerreiro JF, Mendes F. Copper-64 Chloride Exhibits Therapeutic Potential in Three-Dimensional Cellular Models of Prostate Cancer. Front Mol Biosci 2020; 7:609172. [PMID: 33335914 PMCID: PMC7736412 DOI: 10.3389/fmolb.2020.609172] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/04/2020] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer (PCa) is the second most common cancer type in men, and in advanced metastatic stages is considerable incurable. This justifies the need for efficient early diagnostic methods and novel therapies, particularly radiopharmaceuticals with the potential for simultaneous diagnosis and therapy (theranostics). We have previously demonstrated, using monolayer-cultured cells, that copper-64 chloride, a promising theranostic agent for PCa, has the potential to induce significant damage in cancer cells while having minimal side effects in healthy tissues. Here, we further explored this compound for its theranostic applications using more advanced PCa cellular models, specifically multicellular spheroids. Namely, we evaluated the cellular uptake of 64CuCl2 in three human PCa spheroids (derived from 22RV1, DU145, and LNCaP cells), and characterized the growth profile and viability of those spheroids as well as the clonogenic capacity of spheroid-derived cells after exposure to 64CuCl2. Furthermore, the populations of cancer stem cells (CSCs), known to be important for cancer resistance and recurrence, present in the spheroid models were also evaluated using two different markers (CD44 and CD117). 64CuCl2 was found to have significant detrimental effects in spheroids and spheroid-derived cells, being able to reduce their growth and impair the viability and reproductive ability of spheroids from both castration-resistant (22RV1 and DU145) and hormone-naïve PCa (LNCaP). Interestingly, resistance to 64CuCl2 treatment seemed to be related with the presence of a CSC population, since the most resistant spheroids, derived from the DU145 cell line, had the highest initial percentage of CSCs among the three cell lines under study. Altogether, these results clearly highlight the theranostic potential of 64CuCl2.
Collapse
Affiliation(s)
- Catarina I G Pinto
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Sara Bucar
- Departamento de Bioengenharia, iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Vítor Alves
- CIBIT/ICNAS Instituto de Ciências Nucleares Aplicadas à Saúde, Universidade de Coimbra, Coimbra, Portugal
| | - Alexandra Fonseca
- CIBIT/ICNAS Instituto de Ciências Nucleares Aplicadas à Saúde, Universidade de Coimbra, Coimbra, Portugal
| | - Antero J Abrunhosa
- CIBIT/ICNAS Instituto de Ciências Nucleares Aplicadas à Saúde, Universidade de Coimbra, Coimbra, Portugal
| | - Cláudia L da Silva
- Departamento de Bioengenharia, iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Joana F Guerreiro
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Filipa Mendes
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.,Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
42
|
Haase K, Offeddu GS, Gillrie MR, Kamm RD. Endothelial Regulation of Drug Transport in a 3D Vascularized Tumor Model. ADVANCED FUNCTIONAL MATERIALS 2020; 30:2002444. [PMID: 33692661 PMCID: PMC7939067 DOI: 10.1002/adfm.202002444] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Indexed: 05/06/2023]
Abstract
Drug discovery and efficacy in cancer treatments are limited by the inability of pre-clinical models to predict successful outcomes in humans. Limitations remain partly due to their lack of a physiologic tumor microenvironment (TME), which plays a considerable role in drug delivery and tumor response to therapy. Chemotherapeutics and immunotherapies rely on transport through the vasculature, via the smallest capillaries and stroma to the tumor, where passive and active transport processes are at play. Here, a 3D vascularized tumor on-chip is used to examine drug delivery in a relevant TME within a large bed of perfusable vasculature. This system demonstrates highly localized pathophysiological effects of two tumor spheroids (Skov3 and A549) which cause significant changes in vessel density and barrier function. Paclitaxel (Taxol) uptake is examined through diffusivity measurements, functional efflux assays and accumulation of the fluorescent-conjugated drug within the TME. Due to vascular and stromal contributions, differences in the response of vascularized tumors to Taxol (shrinkage and CD44 expression) are apparent compared with simpler models. This model specifically allows for examination of spatially resolved tumor-associated endothelial dysfunction, likely improving the representation of in vivo drug distribution, and has potential for development into a more predictable model of drug delivery.
Collapse
Affiliation(s)
- Kristina Haase
- Massachusetts Institute of Technology, Massachusetts, 02139, USA
| | | | - Mark R Gillrie
- Massachusetts Institute of Technology, Massachusetts, 02139, USA; University of Calgary, Calgary, T2N 1N4, Canada
| | - Roger D Kamm
- Massachusetts Institute of Technology, Massachusetts, 02139, USA
| |
Collapse
|
43
|
Li Y, Khuu N, Prince E, Tao H, Zhang N, Chen Z, Gevorkian A, McGuigan AP, Kumacheva E. Matrix Stiffness-Regulated Growth of Breast Tumor Spheroids and Their Response to Chemotherapy. Biomacromolecules 2020; 22:419-429. [PMID: 33136364 DOI: 10.1021/acs.biomac.0c01287] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Interactions between tumor cells and the extracellular matrix (ECM) are an important factor contributing to therapy failure in cancer patients. Current in vitro breast cancer spheroid models examining the role of mechanical properties on spheroid response to chemotherapy are limited by the use of two-dimensional cell culture, as well as simultaneous variation in hydrogel matrix stiffness and other properties, e.g., hydrogel composition, pore size, and cell adhesion ligand density. In addition, currently used hydrogel matrices do not replicate the filamentous ECM architecture in a breast tumor microenvironment. Here, we report a collagen-alginate hydrogel with a filamentous architecture and a 20-fold variation in stiffness, achieved independently of other properties, used for the evaluation of estrogen receptor-positive breast cancer spheroid response to doxorubicin. The variation in hydrogel mechanical properties was achieved by altering the degree of cross-linking of alginate molecules. We show that soft hydrogels promote the growth of larger MCF-7 tumor spheroids with a lower fraction of proliferating cells and enhance spheroid resistance to doxorubicin. Notably, the stiffness-dependent chemotherapeutic response of the spheroids was temporally mediated: it became apparent at sufficiently long cell culture times, when the matrix stiffness has influenced the spheroid growth. These findings highlight the significance of decoupling matrix stiffness from other characteristics in studies of chemotherapeutic resistance of tumor spheroids and in development of drug screening platforms.
Collapse
Affiliation(s)
- Yunfeng Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Nancy Khuu
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Elisabeth Prince
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Huachen Tao
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Ningtong Zhang
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Zhengkun Chen
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Albert Gevorkian
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Alison P McGuigan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada.,The Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Eugenia Kumacheva
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada.,Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada.,The Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| |
Collapse
|
44
|
Huo KG, D'Arcangelo E, Tsao MS. Patient-derived cell line, xenograft and organoid models in lung cancer therapy. Transl Lung Cancer Res 2020; 9:2214-2232. [PMID: 33209645 PMCID: PMC7653147 DOI: 10.21037/tlcr-20-154] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lung cancer accounts for most cancer-related deaths worldwide and has an overall 5-year survival rate of ~15%. Cell lines have played important roles in the study of cancer biology and potential therapeutic targets, as well as pre-clinical testing of novel drugs. However, most experimental therapies that have cleared preclinical testing using established cell lines have failed phase III clinical trials. This suggests that such models may not adequately recapitulate patient tumor biology and clinical outcome predictions. Here, we discuss and compare different pre-clinical lung cancer models, including established cell lines, patient-derived cell lines, xenografts and organoids, summarize the methodology for generating these models, and review their relative advantages and limitations in different oncologic research applications. We further discuss additional gaps in patient-derived pre-clinical models to better recapitulate tumor biology and improve their clinical predictive power.
Collapse
Affiliation(s)
- Ku-Geng Huo
- University Health Network and Princess Margaret Cancer Centre, Toronto, Canada
| | - Elisa D'Arcangelo
- University Health Network and Princess Margaret Cancer Centre, Toronto, Canada
| | - Ming-Sound Tsao
- University Health Network and Princess Margaret Cancer Centre, Toronto, Canada
| |
Collapse
|
45
|
3D bioprinted hyaluronic acid-based cell-laden scaffold for brain microenvironment simulation. Biodes Manuf 2020. [DOI: 10.1007/s42242-020-00076-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
46
|
Pradhan S, Banda OA, Farino CJ, Sperduto JL, Keller KA, Taitano R, Slater JH. Biofabrication Strategies and Engineered In Vitro Systems for Vascular Mechanobiology. Adv Healthc Mater 2020; 9:e1901255. [PMID: 32100473 PMCID: PMC8579513 DOI: 10.1002/adhm.201901255] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 01/24/2020] [Indexed: 12/17/2022]
Abstract
The vascular system is integral for maintaining organ-specific functions and homeostasis. Dysregulation in vascular architecture and function can lead to various chronic or acute disorders. Investigation of the role of the vascular system in health and disease has been accelerated through the development of tissue-engineered constructs and microphysiological on-chip platforms. These in vitro systems permit studies of biochemical regulation of vascular networks and parenchymal tissue and provide mechanistic insights into the biophysical and hemodynamic forces acting in organ-specific niches. Detailed understanding of these forces and the mechanotransductory pathways involved is necessary to develop preventative and therapeutic strategies targeting the vascular system. This review describes vascular structure and function, the role of hemodynamic forces in maintaining vascular homeostasis, and measurement approaches for cell and tissue level mechanical properties influencing vascular phenomena. State-of-the-art techniques for fabricating in vitro microvascular systems, with varying degrees of biological and engineering complexity, are summarized. Finally, the role of vascular mechanobiology in organ-specific niches and pathophysiological states, and efforts to recapitulate these events using in vitro microphysiological systems, are explored. It is hoped that this review will help readers appreciate the important, but understudied, role of vascular-parenchymal mechanotransduction in health and disease toward developing mechanotherapeutics for treatment strategies.
Collapse
Affiliation(s)
- Shantanu Pradhan
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE, 19716, USA
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Omar A. Banda
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE, 19716, USA
| | - Cindy J. Farino
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE, 19716, USA
| | - John L. Sperduto
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE, 19716, USA
| | - Keely A. Keller
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE, 19716, USA
| | - Ryan Taitano
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE, 19716, USA
| | - John H. Slater
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE, 19716, USA
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, DE 19716, USA
- Delaware Biotechnology Institute, 15 Innovation Way, Newark, DE 19711, USA
| |
Collapse
|
47
|
The life cycle of cancer-associated fibroblasts within the tumour stroma and its importance in disease outcome. Br J Cancer 2020; 122:931-942. [PMID: 31992854 PMCID: PMC7109057 DOI: 10.1038/s41416-019-0705-1] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/11/2019] [Accepted: 12/10/2019] [Indexed: 02/08/2023] Open
Abstract
The tumour microenvironment (TME) determines vital aspects of tumour development, such as tumour growth, metastases and response to therapy. Cancer-associated fibroblasts (CAFs) are abundant and extremely influential in this process and interact with cellular and matrix TME constituents such as endothelial and immune cells and collagens, fibronectin and elastin, respectively. However, CAFs are also the recipients of signals—both chemical and physical—that are generated by the TME, and their phenotype effectively evolves alongside the tumour mass during tumour progression. Amid a rising clinical interest in CAFs as a crucial force for disease progression, this review aims to contextualise the CAF phenotype using the chronological framework of the CAF life cycle within the evolving tumour stroma, ranging from quiescent fibroblasts to highly proliferative and secretory CAFs. The emergence, properties and clinical implications of CAF activation are discussed, as well as research strategies used to characterise CAFs and current clinical efforts to alter CAF function as a therapeutic strategy.
Collapse
|
48
|
Dai X, Du T, Han K. Engineering Nanoparticles for Optimized Photodynamic Therapy. ACS Biomater Sci Eng 2019; 5:6342-6354. [DOI: 10.1021/acsbiomaterials.9b01251] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Xinxin Dai
- College of Science, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430070, China
| | - Ting Du
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin 300457, China
| | - Kai Han
- College of Science, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430070, China
- College of Pharmacy, University of Michigan, 2800 Plymouth Road, Ann Arbor, Michigan 48105, United States
| |
Collapse
|
49
|
Shokoohmand A, Ren J, Baldwin J, Atack A, Shafiee A, Theodoropoulos C, Wille ML, Tran PA, Bray LJ, Smith D, Chetty N, Pollock PM, Hutmacher DW, Clements JA, Williams ED, Bock N. Microenvironment engineering of osteoblastic bone metastases reveals osteomimicry of patient-derived prostate cancer xenografts. Biomaterials 2019; 220:119402. [PMID: 31400612 DOI: 10.1016/j.biomaterials.2019.119402] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/16/2019] [Accepted: 07/30/2019] [Indexed: 01/01/2023]
Abstract
Representative in vitro models that mimic the native bone tumor microenvironment are warranted to support the development of more successful treatments for bone metastases. Here, we have developed a primary cell 3D model consisting of a human osteoblast-derived tissue-engineered construct (hOTEC) indirectly co-cultured with patient-derived prostate cancer xenografts (PDXs), in order to study molecular interactions in a patient-derived microenvironment context. The engineered biomimetic microenvironment had high mineralization and embedded osteocytes, and supported a high degree of cancer cell osteomimicry at the gene, protein and mineralization levels when co-cultured with prostate cancer PDXs from a lymph node metastasis (LuCaP35) and bone metastasis (BM18) from patients with primary prostate cancer. This fully patient-derived model is a promising tool for the assessment of new molecular mechanisms and as a personalized pre-clinical platform for therapy testing for patients with prostate cancer bone metastases.
Collapse
Affiliation(s)
- Ali Shokoohmand
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane, QLD, Australia; School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty (SEF), QUT, Brisbane, QLD, Australia; Australian Prostate Cancer Research Centre, Queensland (APCRC-Q), QUT, Brisbane, QLD, Australia; Translational Research Institute (TRI), QUT, Brisbane, QLD, Australia; Centre in Regenerative Medicine, IHBI, QUT, Kelvin Grove, QLD, Australia
| | - Jiongyu Ren
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane, QLD, Australia; School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty (SEF), QUT, Brisbane, QLD, Australia; Centre in Regenerative Medicine, IHBI, QUT, Kelvin Grove, QLD, Australia
| | - Jeremy Baldwin
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane, QLD, Australia; School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty (SEF), QUT, Brisbane, QLD, Australia; Centre in Regenerative Medicine, IHBI, QUT, Kelvin Grove, QLD, Australia
| | - Anthony Atack
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane, QLD, Australia; Australian Prostate Cancer Research Centre, Queensland (APCRC-Q), QUT, Brisbane, QLD, Australia; Translational Research Institute (TRI), QUT, Brisbane, QLD, Australia; School of Biomedical Sciences, Faculty of Health, QUT, Brisbane, QLD, Australia
| | - Abbas Shafiee
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane, QLD, Australia; School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty (SEF), QUT, Brisbane, QLD, Australia; Centre in Regenerative Medicine, IHBI, QUT, Kelvin Grove, QLD, Australia
| | - Christina Theodoropoulos
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane, QLD, Australia; School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty (SEF), QUT, Brisbane, QLD, Australia; Centre in Regenerative Medicine, IHBI, QUT, Kelvin Grove, QLD, Australia
| | - Marie-Luise Wille
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane, QLD, Australia; School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty (SEF), QUT, Brisbane, QLD, Australia; Centre in Regenerative Medicine, IHBI, QUT, Kelvin Grove, QLD, Australia
| | - Phong A Tran
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane, QLD, Australia; School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty (SEF), QUT, Brisbane, QLD, Australia; Centre in Regenerative Medicine, IHBI, QUT, Kelvin Grove, QLD, Australia
| | - Laura J Bray
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane, QLD, Australia; School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty (SEF), QUT, Brisbane, QLD, Australia; Translational Research Institute (TRI), QUT, Brisbane, QLD, Australia; Centre in Regenerative Medicine, IHBI, QUT, Kelvin Grove, QLD, Australia
| | - Deborah Smith
- Cancer Pathology Research Group, Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia; Department of Anatomical Pathology, Mater Hospital Brisbane, QLD, Australia
| | - Naven Chetty
- Cancer Pathology Research Group, Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia; Department of Anatomical Pathology, Mater Hospital Brisbane, QLD, Australia
| | - Pamela M Pollock
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane, QLD, Australia; Translational Research Institute (TRI), QUT, Brisbane, QLD, Australia; School of Biomedical Sciences, Faculty of Health, QUT, Brisbane, QLD, Australia
| | - Dietmar W Hutmacher
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane, QLD, Australia; School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty (SEF), QUT, Brisbane, QLD, Australia; Australian Prostate Cancer Research Centre, Queensland (APCRC-Q), QUT, Brisbane, QLD, Australia; Translational Research Institute (TRI), QUT, Brisbane, QLD, Australia; Centre in Regenerative Medicine, IHBI, QUT, Kelvin Grove, QLD, Australia; Australian Research Council (ARC) Training Centre in Additive Biomanufacturing, QUT, Kelvin Grove, QLD, Australia; School of Biomedical Sciences, Faculty of Health, QUT, Brisbane, QLD, Australia
| | - Judith A Clements
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane, QLD, Australia; Australian Prostate Cancer Research Centre, Queensland (APCRC-Q), QUT, Brisbane, QLD, Australia; Translational Research Institute (TRI), QUT, Brisbane, QLD, Australia; Australian Research Council (ARC) Training Centre in Additive Biomanufacturing, QUT, Kelvin Grove, QLD, Australia; School of Biomedical Sciences, Faculty of Health, QUT, Brisbane, QLD, Australia
| | - Elizabeth D Williams
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane, QLD, Australia; Australian Prostate Cancer Research Centre, Queensland (APCRC-Q), QUT, Brisbane, QLD, Australia; Translational Research Institute (TRI), QUT, Brisbane, QLD, Australia; School of Biomedical Sciences, Faculty of Health, QUT, Brisbane, QLD, Australia
| | - Nathalie Bock
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane, QLD, Australia; Australian Prostate Cancer Research Centre, Queensland (APCRC-Q), QUT, Brisbane, QLD, Australia; Translational Research Institute (TRI), QUT, Brisbane, QLD, Australia; Centre in Regenerative Medicine, IHBI, QUT, Kelvin Grove, QLD, Australia; School of Biomedical Sciences, Faculty of Health, QUT, Brisbane, QLD, Australia.
| |
Collapse
|
50
|
Li W, Hu X, Wang S, Xing Y, Wang H, Nie Y, Liu T, Song K. Multiple comparisons of three different sources of biomaterials in the application of tumor tissue engineering in vitro and in vivo. Int J Biol Macromol 2019; 130:166-176. [DOI: 10.1016/j.ijbiomac.2019.02.136] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/22/2019] [Accepted: 02/22/2019] [Indexed: 12/13/2022]
|