1
|
Song K, Ming J, Tao B, Zhao F, Huang S, Wu W, Jiang C, Li X. Emerging glucose oxidase-delivering nanomedicines for enhanced tumor therapy. J Control Release 2025; 381:113580. [PMID: 40024341 DOI: 10.1016/j.jconrel.2025.02.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
Abnormalities in glucose metabolism have been shown to characterize malignant tumors. Glucose depletion by glucose oxidase (GOD) has shown great potential in tumor therapy by causing tumor starvation. Since 2017, nanomedicines have been designed and utilized to deliver GOD for more precise and effective glucose modulation, which can overcome intrinsic limitations of different cancer therapeutic modalities by remodeling the tumor microenvironment to enhance antitumor therapy. To date, the topic of GOD-delivering nanomedicines for enhancing tumor therapy has not been comprehensively summarized. Herein, this review aims to provide an overview and discuss in detail recent advances in GOD delivery and directly involved starvation therapy strategies, GOD-sensitized various tumor therapy strategies, and GOD-mediated multimodal antitumor strategies. Finally, the challenges and outlooks for the future progress of the emerging tumor therapeutic nanomedicines are discussed. This review provides intuitive and specific insights to a broad audience in the fields of nanomedicines, biomaterials, and cancer therapy.
Collapse
Affiliation(s)
- Kaiyue Song
- Jiangxi Provincial Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Jiang Ming
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, China
| | - Bailong Tao
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Feng Zhao
- Jiangxi Provincial Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Shaorong Huang
- Institute of Geriatrics, Jiangxi Provincial People's Hospital, the First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, China.
| | - Wencheng Wu
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China.
| | - Cong Jiang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200092, China.
| | - Xianglong Li
- Jiangxi Provincial Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China.
| |
Collapse
|
2
|
He J, Wang G, Zhou Y, Li B, Shang P. Recent advances in polydopamine-coated metal-organic frameworks for cancer therapy. Front Bioeng Biotechnol 2025; 13:1553653. [PMID: 40291560 PMCID: PMC12023280 DOI: 10.3389/fbioe.2025.1553653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 03/04/2025] [Indexed: 04/30/2025] Open
Abstract
The creation and development of classical multifunctional nanomaterials are crucial for the advancement of nanotherapeutic treatments for tumors. Currently, metal-organic frameworks (MOFs) modified with polydopamine (PDA) are at the forefront of nanomedicine research, particularly in tumor diagnostics and therapy, owing to their exceptional biocompatibility, expansive specific surface area, multifaceted functionalities, and superior photothermal properties, which led to significant advancements in anti-tumor research. Consequently, a range of anti-cancer strategies has been devised by leveraging the exceptional capabilities of MOFs, including intelligent drug delivery systems, photodynamic therapy, and photothermal therapy, which are particularly tailored for the tumor microenvironment. In order to gain deeper insight into the role of MOFs@PDA in cancer diagnosis and treatment, it is essential to conduct a comprehensive review of existing research outcomes and promptly analyze the challenges associated with their biological applications. This will provide valuable perspectives on the potential of MOFs@PDA in clinical settings.
Collapse
Affiliation(s)
- Jingchao He
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Key Laboratory of the Jiangsu Higher Education Institutions for Nucleic Acid and Cell Fate Regulation, Yangzhou University, Yangzhou, China
| | - Guangtian Wang
- Teaching Center of Pathogenic Biology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Yongfang Zhou
- Department of Oncology, Jining Cancer Hospital, Jining, China
| | - Bin Li
- Department of Biochemistry and Molecular Biology, Medical College, Guangxi University of Science and Technology, Liuzhou, China
| | - Pan Shang
- Department of Obstetrics and Gynecology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| |
Collapse
|
3
|
Wang Y, Tang Y, Guo L, Yang X, Wu S, Yue Y, Xu C. Recent advances in zeolitic imidazolate frameworks as drug delivery systems for cancer therapy. Asian J Pharm Sci 2025; 20:101017. [PMID: 39931355 PMCID: PMC11808527 DOI: 10.1016/j.ajps.2025.101017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 04/16/2024] [Accepted: 11/24/2024] [Indexed: 02/13/2025] Open
Abstract
Biological nanotechnologies based on functional nanoplatforms have synergistically catalyzed the emergence of cancer therapies. As a subtype of metal-organic frameworks (MOFs), zeolitic imidazolate frameworks (ZIFs) have exploded in popularity in the field of biomaterials as excellent protective materials with the advantages of conformational flexibility, thermal and chemical stability, and functional controllability. With these superior properties, the applications of ZIF-based materials in combination with various therapies for cancer treatment have grown rapidly in recent years, showing remarkable achievements and great potential. This review elucidates the recent advancements in the use of ZIFs as drug delivery agents for cancer therapy. The structures, synthesis methods, properties, and various modifiers of ZIFs used in oncotherapy are presented. Recent advances in the application of ZIF-based nanoparticles as single or combination tumor treatments are reviewed. Furthermore, the future prospects, potential limitations, and challenges of the application of ZIF-based nanomaterials in cancer treatment are discussed. We except to fully explore the potential of ZIF-based materials to present a clear outline for their application as an effective cancer treatment to help them achieve early clinical application.
Collapse
Affiliation(s)
- Yuhan Wang
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
- Department of Gynecological Oncology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yixin Tang
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Lei Guo
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Xi Yang
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Shanli Wu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Ying Yue
- Department of Gynecological Oncology, The First Hospital of Jilin University, Changchun 130021, China
| | - Caina Xu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| |
Collapse
|
4
|
Liu T, Hassan A, Yousif Alrawas MZ, Cui C, Ariffin Z. Polydopamine-Modified Polycaprolactone Scaffolds Loading Metal Nanoparticles for Bone Tissue Engineering. ACS OMEGA 2024; 9:45652-45662. [PMID: 39583686 PMCID: PMC11579746 DOI: 10.1021/acsomega.4c06268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/14/2024] [Accepted: 10/23/2024] [Indexed: 11/26/2024]
Abstract
Recent advancements in materials synthesis and processing technology, coupled with a deeper understanding of bone nanoscale structure and biology, have provided new avenues for designing bioactive materials in bone tissue regenerative medicine. This Review focuses on the design and application of polydopamine-modified polycaprolactone scaffolds loading metal nanoparticles for bone tissue engineering. We explore their antibacterial properties and their ability to guide cell behavior. Specifically, we discuss the synthesis techniques, protein deposition, morphology variations, and interactions with the extracellular matrix of these scaffolds and biocompatibility and efficacy in promoting bone tissue regeneration in vitro and in vivo. Challenges and unmet needs are reviewed in the development of polymer- and metal-based materials for bone tissue engineering.
Collapse
Affiliation(s)
- Tongbin Liu
- School
of Dental Sciences, Universiti Sains Malaysia
Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
- Department
of Stomatology, Binzhou Medical University
Hospital, Binzhou, Shandong 256600, People’s Republic of China
| | - Akram Hassan
- School
of Dental Sciences, Universiti Sains Malaysia
Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| | | | - Caiyun Cui
- Department
of Stomatology, Binzhou Medical University
Hospital, Binzhou, Shandong 256600, People’s Republic of China
| | - Zaihan Ariffin
- School
of Dental Sciences, Universiti Sains Malaysia
Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
5
|
Wang L, Song K, Jiang C, Liu S, Huang S, Yang H, Li X, Zhao F. Metal-Coordinated Polydopamine Structures for Tumor Imaging and Therapy. Adv Healthc Mater 2024; 13:e2401451. [PMID: 39021319 DOI: 10.1002/adhm.202401451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/27/2024] [Indexed: 07/20/2024]
Abstract
Meticulously engineered nanomaterials achieve significant advances in the diagnosis and therapy of solid tumors by improving tumor delivery efficiency; and thereby, enhancing imaging and therapeutic efficacy. Currently, polydopamine (PDA) attracts widespread attention because of its biocompatibility, simplicity of preparation, abundant surface groups, and high photothermal conversion efficiency, which can be applied in drug delivery, photothermal therapy, theranostics, and other nanomedicine fields. Inspired by PDA structures that are rich in catechol and amino functional groups that can coordinate with various metal ions, which have charming qualities and characteristics, metal-coordinated PDA structures are exploited for tumor theranostics, but are not thoroughly summarized. Herein, this review summarizes the recent progress in the fabrication of metal-coordinated PDA structures and their availabilities in tumor imaging and therapy, with further in-depth discussion of the challenges and future perspectives of metal-coordinated PDA structures, with the aim that this systematic review can promote interdisciplinary intersections and provide inspiration for the further growth and clinical translation of PDA materials.
Collapse
Affiliation(s)
- Lihua Wang
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Kaiyue Song
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Cong Jiang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Shanping Liu
- Library of Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Shaorong Huang
- Institute of Geriatrics, Jiangxi Provincial People's Hospital, the First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China
| | - Huang Yang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310003, China
| | - Xianglong Li
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Feng Zhao
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| |
Collapse
|
6
|
Ma R, Liu S, Liu G, Liu P, Cai K. A triple-mode strategy combining low-temperature photothermal, photodynamic, and chemodynamic therapies for treating infectious skin wounds. Biomater Sci 2024; 12:5521-5533. [PMID: 39264344 DOI: 10.1039/d4bm00859f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
The skin is the first natural barrier of the human body. Bacterial infections severely hinder the healing process of skin wounds and pose a great threat to human health. Therefore, it is particularly urgent to develop new antimicrobial strategies for bacterial pathogen clearance and wound healing. In this study, a metal-organic framework (MOF), Fe-MIL88B-NH2, was incorporated with the photosensitizer indocyanine green (ICG) to construct composite nanoparticles (MOF@ICG NPs) with multiple antibacterial activities. Under mild near-infrared (NIR) irradiation, the photosensitizer ICG in the MOF@ICG NPs undergoes photothermal conversion (∼45 °C) and photodynamic reactions to generate heat and singlet oxygen (1O2). In addition, the Fenton reaction of the NPs with hydrogen peroxide (H2O2) in the bacterial infection microenvironment resulted in the generation of hydroxyl radicals (˙OH), thus achieving the three-mode combination of low-temperature photothermal therapy (PTT)/photodynamic therapy (PDT)/chemodynamic therapy (CDT). The in vitro experimental results showed that MOF@ICG MPs had excellent antibacterial properties and good cytocompatibility, with some ability to promote the migration of L-929 fibroblasts. Furthermore, under NIR irradiation, MOF@ICG NPs could significantly kill bacteria and promote skin wound healing according to the results of animal experiments. The wound healing rate reached 87.1% after 7 days of treatment. The research results break through the limitations of single-mode antibacterial technology and provide certain theoretical guidance and technical support for the research and development of new antibacterial materials.
Collapse
Affiliation(s)
- Ruichen Ma
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Shaopeng Liu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Genhua Liu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Peng Liu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Chongqing 400044, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Chongqing 400044, China
| |
Collapse
|
7
|
Zhou J, Shen W, Feng W, Zhang X, Wu T, Zhou J, Su Z, Yin T. Temperature Self-Limited Intelligent Thermo-chemotherapeutic Lipid Nanosystem for P-gp Reversal Time Window Matched Pulse Treatment of MDR Tumor. NANO LETTERS 2024; 24:10631-10641. [PMID: 39150779 DOI: 10.1021/acs.nanolett.4c02978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2024]
Abstract
Mild photothermal therapy (PTT) shows the potential for chemosensitization by tumor-localized P-glycoprotein (P-gp) modulation. However, conventional mild PTT struggles with real-time uniform temperature control, obscuring the temperature-performance relationship and resulting in thermal damage. Besides, the time-performance relationship and the underlying mechanism of mild PTT-mediated P-gp reversal remains elusive. Herein, we developed a temperature self-limiting lipid nanosystem (RFE@PD) that integrated a reversible organic heat generator (metal-phenolic complexes) and metal chelator (deferiprone, DFP) encapsulated phase change material. Upon NIR irradiation, RFE@PD released DFP for blocking ligand-metal charge transfer to self-limit temperature below 45 °C, and rapidly reduced P-gp within 3 h via Ubiquitin-proteasome degradation. Consequently, the DOX·HCl-loaded thermo-chemotherapeutic lipid nanosystem (RFE@PD-DOX) led to dramatically improved drug accumulation and 5-fold chemosensitization in MCF-7/ADR tumor models by synchronizing P-gp reversal and drug pulse liberation, achieving a tumor inhibition ratio of 82.42%. This lipid nanosystem integrated with "intrinsic temperature-control" and "temperature-responsive pulse release" casts new light on MDR tumor therapy.
Collapse
Affiliation(s)
- Jiyuan Zhou
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Weiyang Shen
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Wenna Feng
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Xin Zhang
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Tongyu Wu
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Jianping Zhou
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Zhigui Su
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Tingjie Yin
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| |
Collapse
|
8
|
Mo D, Cui W, Chen L, Meng J, Sun Y, Cai K, Zhang J, Zhang J, Wang K, Luo X. Activation of the PPARγ/NF-κB pathway by A-MPDA@Fe 3O 4@PVP via scavenging reactive oxygen species to alleviate hepatic ischemia-reperfusion injury. J Mater Chem B 2024; 12:5722-5733. [PMID: 38764419 DOI: 10.1039/d4tb00423j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Hepatic ischemia-reperfusion injury (IRI) is a common pathological process during hepatectomy and liver transplantation and the two primary reasons for hepatic IRI are reactive oxygen species (ROS)-mediated oxidative stress and excessive inflammatory responses. Herein, a novel antioxidant nanodrug (A-MPDA@Fe3O4@PVP) is prepared by employing L-arginine-doped mesoporous polydopamine (A-MPDA) nanoparticles as the carrier for deposition of ultra-small ferric oxide (Fe3O4) nanoparticles and further surface modification with polyvinylpyrrolidone (PVP). A-MPDA@Fe3O4@PVP not only effectively reduces the aggregation of ultra-small Fe3O4, but also simultaneously replicates the catalytic activity of catalase (CAT) and superoxide dismutase (SOD). A-MPDA@Fe3O4@PVP with good antioxidant activity can rapidly remove various toxic reactive oxygen species (ROS) and effectively regulate macrophage polarization in vitro. In the treatment of hepatic IRI, A-MPDA@Fe3O4@PVP effectively alleviates ROS-induced oxidative stress, reduces the expression of inflammatory factors, and prevents apoptosis of hepatocytes through immune regulation. A-MPDA@Fe3O4@PVP can further protect liver tissue by activating the PPARγ/NF-κB pathway. This multiplex antioxidant enzyme therapy can provide new references for the treatment of IRI in organ transplantation and other ROS-related injuries such as fibrosis, cirrhosis, and bacterial and hepatic viral infection.
Collapse
Affiliation(s)
- Dong Mo
- Department of Central Laboratory, Chongqing University Three Gorges Hospital, School of Medicine, Chongqing University, Chongqing, 40400, China.
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Wei Cui
- Department of Central Laboratory, Chongqing University Three Gorges Hospital, School of Medicine, Chongqing University, Chongqing, 40400, China.
| | - Linxin Chen
- Department of Central Laboratory, Chongqing University Three Gorges Hospital, School of Medicine, Chongqing University, Chongqing, 40400, China.
| | - Juanjuan Meng
- Department of Central Laboratory, Chongqing University Three Gorges Hospital, School of Medicine, Chongqing University, Chongqing, 40400, China.
| | - Yuting Sun
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing 400044, China.
| | - Jixi Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing 400044, China.
| | - Jianrong Zhang
- Department of Cardiovascular Surgery, Chongqing University Three Gorges Hospital, School of Medicine, Chongqing University, Chongqing, 40400, China.
| | - Kui Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing 400044, China.
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, Chongqing 400037, China
| | - Xiaohe Luo
- Department of Central Laboratory, Chongqing University Three Gorges Hospital, School of Medicine, Chongqing University, Chongqing, 40400, China.
- Department of Laboratory Medicine, Chongqing University Three Gorges Hospital, School of Medicine, Chongqing University, Chongqing, 40400, China
| |
Collapse
|
9
|
Feng C, Chen B, Fan R, Zou B, Han B, Guo G. Polyphenol-Based Nanosystems for Next-Generation Cancer Therapy: Multifunctionality, Design, and Challenges. Macromol Biosci 2023; 23:e2300167. [PMID: 37266916 DOI: 10.1002/mabi.202300167] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/15/2023] [Indexed: 06/03/2023]
Abstract
With the continuous updating of cancer treatment methods and the rapid development of precision medicine in recent years, there are higher demands for advanced and versatile drug delivery systems. Scientists are committed to create greener and more effective nanomedicines where the carrier is no longer limited to a single function of drug delivery. Polyphenols, which can act as both active ingredients and fundamental building blocks, are being explored as potential multifunctional carriers that are efficient and safe for design purposes. Due to their intrinsic anticancer activity, phenolic compounds have shown surprising expressiveness in ablation of tumor cells, overcoming cancer multidrug resistance (MDR), and enhancing immunotherapeutic efficacy. This review provides an overview of recent advances in the design, synthesis, and application of versatile polyphenol-based nanosystems for cancer therapy in various modes. Moreover, the merits of polyphenols and the challenges for their clinical translation are also discussed, and it is pointed out that the novel polyphenol delivery system requires further optimization and validation.
Collapse
Affiliation(s)
- Chenqian Feng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bo Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rangrang Fan
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bingwen Zou
- Department of Thoracic Oncology and Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bo Han
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Gang Guo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
10
|
He R, Yang P, Liu A, Zhang Y, Chen Y, Chang C, Lu B. Cascade strategy for glucose oxidase-based synergistic cancer therapy using nanomaterials. J Mater Chem B 2023; 11:9798-9839. [PMID: 37842806 DOI: 10.1039/d3tb01325a] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Nanomaterial-based cancer therapy faces significant limitations due to the complex nature of the tumor microenvironment (TME). Starvation therapy is an emerging therapeutic approach that targets tumor cell metabolism using glucose oxidase (GOx). Importantly, it can provide a material or environmental foundation for other diverse therapeutic methods by manipulating the properties of the TME, such as acidity, hydrogen peroxide (H2O2) levels, and hypoxia degree. In recent years, this cascade strategy has been extensively applied in nanoplatforms for ongoing synergetic therapy and still holds undeniable potential. However, only a few review articles comprehensively elucidate the rational designs of nanoplatforms for synergetic therapeutic regimens revolving around the conception of the cascade strategy. Therefore, this review focuses on innovative cascade strategies for GOx-based synergetic therapy from representative paradigms to state-of-the-art reports to provide an instructive, comprehensive, and insightful reference for readers. Thereafter, we discuss the remaining challenges and offer a critical perspective on the further advancement of GOx-facilitated cancer treatment toward clinical translation.
Collapse
Affiliation(s)
- Ruixuan He
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China.
| | - Peida Yang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China.
| | - Aoxue Liu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China.
| | - Yueli Zhang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China.
| | - Yuqi Chen
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China.
| | - Cong Chang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, People's Republic of China.
| | - Bo Lu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China.
| |
Collapse
|
11
|
Li Y, Zhang Y, Dong Y, Akakuru OU, Yao X, Yi J, Li X, Wang L, Lou X, Zhu B, Fan K, Qin Z. Ablation of Gap Junction Protein Improves the Efficiency of Nanozyme-Mediated Catalytic/Starvation/Mild-Temperature Photothermal Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210464. [PMID: 36964940 DOI: 10.1002/adma.202210464] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/22/2023] [Indexed: 06/02/2023]
Abstract
Reactive oxygen species (ROS)-mediated tumor catalytic therapy is typically hindered by gap junction proteins that form cell-to-cell channels to remove cytotoxic ROS, thereby protecting tumor cells from oxidative damage. In this work, a multifunctional nanozyme, FePGOGA, is designed and prepared by Fe(III)-mediated oxidative polymerization (FeP), followed by glucose oxidase (GOx) and GAP19 peptides co-loading through electrostatic and π-π interactions. The FePGOGA nanozyme exhibits excellent cascade peroxidase- and glutathione-oxidase-like activities that efficiently catalyze hydrogen peroxide conversion to hydroxyl radicals and convert reduced glutathione to oxidized glutathione disulfide. The loaded GOx starves the tumors and aggravates tumor oxidative stress through glucose decomposition, while GAP19 peptides block the hemichannels by inducing degradation of Cx43, thus increasing the accumulation of intracellular ROS, and decreasing the transport of intracellular glucose. Furthermore, the ROS reacts with primary amines of heat shock proteins to destroy their structure and function, enabling tumor photothermal therapy at the widely sought-after mild temperature (mildPTT, ≤45 °C). In vivo experiments demonstrate the significant antitumor effectof FePGOGA on cal27 xenograft tumors under near-infrared light irradiation. This study demonstrates the successful ablation of gap junction proteins to overcome resistance to ROS-mediated therapy, providing a regulator to suppress tumor self-preservation during tumor starvation, catalytic therapy, and mildPTT.
Collapse
Affiliation(s)
- Yongjuan Li
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, 450001, China
- Center of Infection and Immunity, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yu Zhang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Ya Dong
- Center of Infection and Immunity, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Ozioma Udochukwu Akakuru
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Xiaohan Yao
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Jinmeng Yi
- Center of Infection and Immunity, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Xinyan Li
- Center of Infection and Immunity, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Linlin Wang
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Xiaohan Lou
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Baoyu Zhu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Kelong Fan
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China
| | - Zhihai Qin
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, 450001, China
| |
Collapse
|
12
|
Liu G, Wen Z, Liu F, Xu Y, Li H, Sun S. Multisubcellular organelle-targeting nanoparticle for synergistic chemotherapy and photodynamic/photothermal tumor therapy. Nanomedicine (Lond) 2023; 18:613-631. [PMID: 37183879 DOI: 10.2217/nnm-2023-0021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
Background: The subcellular organelle-targeting strategy has attracted wide attention for a variety of reasons, including strong specificity, high accuracy, low dose administration and few side effects. It is an important and challenging task to explore the multisubcellular organelle-targeting strategy to achieve effective tumor treatment. Materials & methods: Using bovine serum albumin as a nanoreactor, BSA/Cu/NQ/IR780/DOX nanoparticles (NPs) were constructed via drug-induced protein self-assembly. Folic acid was then coupled to the surface of NPs to prepare folate receptor-targeted FA-BSA/Cu/NQ/IR780/DOX NPs. Results & conclusion: The FA-BSA/Cu/NQ/IR780/DOX NPs exhibit multifunctional properties, including multisubcellular organelle-targeting, induction of response release in the tumor microenvironment, fluorescence imaging capabilities and potential for synergistic chemotherapy and photodynamic/photothermal tumor therapy.
Collapse
Affiliation(s)
- Guoxin Liu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Zhenfu Wen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Fengyu Liu
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian, 116023, People's Republic of China
| | - Yongqian Xu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Hongjuan Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Shiguo Sun
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
- College of Chemistry & Pharmaceutical Engineering, Hebei University of Science & Technology, Shijiazhuang, 050018, People's Republic of China
| |
Collapse
|
13
|
Li K, Xu K, He Y, Yang Y, Tan M, Mao Y, Zou Y, Feng Q, Luo Z, Cai K. Oxygen Self-Generating Nanoreactor Mediated Ferroptosis Activation and Immunotherapy in Triple-Negative Breast Cancer. ACS NANO 2023; 17:4667-4687. [PMID: 36861638 DOI: 10.1021/acsnano.2c10893] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The hypoxia microenvironment of solid tumors poses a technological bottleneck for ferroptosis and immunotherapy in clinical oncology. Nanoreactors based on special physiological signals in tumor cells are able to avoid various tumor tolerance mechanisms by alleviating the intracellular hypoxia environment. Herein we reported a nanoreactor Cu2-xSe that enabled the conversion of Cu elements between Cu+ and Cu2+ for the generation of O2 and the consumption of intracellular GSH content. Furthermore, to enhance the catalytic and ferroptosis-inducing activities of the nanoreactors, the ferroptosis agonist Erastin was loaded on the ZIF-8 coating on the surface of Cu2-xSe to up-regulate the expression of NOX4 protein, increase the intracellular H2O2 content, catalyze the Cu+ to produce O2 and activate ferroptosis. In addition, the nanoreactors were simultaneously surface functionalized with PEG polymer and folic acid molecules, which ensured the in vivo blood circulation and tumor-specific uptake. In vitro and in vivo experiments demonstrated that the functionalized self-supplying nanoreactors can amplify the ability to generate O2 and consume intracellular GSH via the interconversion of Cu elements Cu+ and Cu2+, and impair the GPX4/GSH pathway and HIF-1α protein expression. At the same time, by alleviating the intracellular hypoxia environment, the expression of miR301, a gene in the secreted exosomes was decreased, which ultimately affected the phenotype polarization of TAMs and increased the content of IFN γ secreted by CD8+ T cells, which further promoted the ferroptosis induced by Erastin-loaded nanoreactors. This combined therapeutic strategy of activating the tumor immune response and ferroptosis via self-supplying nanoreactors provides a potential strategy for clinical application.
Collapse
Affiliation(s)
- Ke Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China
| | - Kun Xu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China
| | - Ye He
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Yulu Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China
| | - Meijun Tan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China
| | - Yulan Mao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China
| | - Yanan Zou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China
| | - Qian Feng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China
| | - Zhong Luo
- School of Life Science, Chongqing University, Chongqing 400044, P. R. China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China
| |
Collapse
|
14
|
Zhang L, Ye B, Chen Z, Chen ZS. Progress in the studies on the molecular mechanisms associated with multidrug resistance in cancers. Acta Pharm Sin B 2022; 13:982-997. [PMID: 36970215 PMCID: PMC10031261 DOI: 10.1016/j.apsb.2022.10.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/28/2022] [Accepted: 08/18/2022] [Indexed: 11/01/2022] Open
Abstract
Chemotherapy is one of the important methods to treat cancer, and the emergence of multidrug resistance (MDR) is one major cause for the failure of cancer chemotherapy. Almost all anti-tumor drugs develop drug resistance over a period of time of application in cancer patients, reducing their effects on killing cancer cells. Chemoresistance can lead to a rapid recurrence of cancers and ultimately patient death. MDR may be induced by multiple mechanisms, which are associated with a complex process of multiple genes, factors, pathways, and multiple steps, and today the MDR-associated mechanisms are largely unknown. In this paper, from the aspects of protein-protein interactions, alternative splicing (AS) in pre-mRNA, non-coding RNA (ncRNA) mediation, genome mutations, variance in cell functions, and influence from the tumor microenvironment, we summarize the molecular mechanisms associated with MDR in cancers. In the end, prospects for the exploration of antitumor drugs that can reverse MDR are briefly discussed from the angle of drug systems with improved targeting properties, biocompatibility, availability, and other advantages.
Collapse
|
15
|
Yang F, Fang W, Yang M, Chen W, Xu J, Wang J, Li W, Zhao B, Qiu L, Chen J. Enzyme-loaded glycogen nanoparticles with tumor-targeting Activatable host-guest supramolecule for augmented chemodynamic therapy. Int J Biol Macromol 2022; 217:878-889. [PMID: 35907454 DOI: 10.1016/j.ijbiomac.2022.07.183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/10/2022] [Accepted: 07/22/2022] [Indexed: 11/05/2022]
Abstract
Chemodynamic therapy (CDT) has advantages in site-specific killing tumor and avoiding systemically side effect. Although numerous nano-systems have been developed to enhance the intracellular hydrogen peroxide (H2O2) for improving CDT effect, the biocompatibility of the materials limits their further biomedical applications. Herein glycogen, as a natural biological macromolecule, was used to construct a new targeted separable GOx@GF/HC nanoparticle system to deliver glucose oxidase (GOx) for CDT/starvation tumor therapy. Amination glycogen-ferrocene (GF) as a guest core and hyaluronic acid-β-cyclodextrin (HC) as a host shell were synthesized and self-assembled through host-guest interactions to deliver GOx. After being entered into tumor cells, GOx were released to catalyze glucose to produce gluconic acid and H2O2, which in turn cut off the nutrition of tumor cells for starvation therapy and enhanced the generation of OH with ferrous ion through Fenton reaction. Furthermore, GOx@GF/HC also exhibited remarkable tumor-targeting and tumor-suppression in vivo. Therefore, the GOx@GF/HC system can exert excellent synergistic effect of CDT and starvation therapy on cancer treatment through a cascade reaction, which have some potential application for the development of CDT tumor-treatment.
Collapse
Affiliation(s)
- Fuwei Yang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Wenjie Fang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Meiyang Yang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Weijun Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Jiamin Xu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Junze Wang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Wenhua Li
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Bingke Zhao
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Lipeng Qiu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China.
| | - Jinghua Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
16
|
Li K, Lin C, Li M, Xu K, He Y, Mao Y, Lu L, Geng W, Li X, Luo Z, Cai K. Multienzyme-like Reactivity Cooperatively Impairs Glutathione Peroxidase 4 and Ferroptosis Suppressor Protein 1 Pathways in Triple-Negative Breast Cancer for Sensitized Ferroptosis Therapy. ACS NANO 2022; 16:2381-2398. [PMID: 35041395 DOI: 10.1021/acsnano.1c08664] [Citation(s) in RCA: 134] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ferroptosis is a recently discovered route of regulated cell death that offers the opportunities for the treatment of chemotherapy-resistant tumor indications, but its efficacy can be affected by the glutathione peroxidase 4 (GPX4) and ferroptosis suppressor protein 1 (FSP1) antioxidant mechanisms, posing significant challenges for its clinical translation. In this study, we report a Cu-tetra(4-carboxyphenyl)porphyrin chloride(Fe(III)) (Cu-TCPP(Fe)) metal organic framework (MOF)-based nanosystem for the efficient incorporation of Au nanoparticles (NPs) and RSL3, which can demonstrate enzyme-like activities to universally suppress the antiferroptotic pathways in tumor cells for amplifying ferroptotic damage. Herein, Cu-TCPP(Fe) MOF nanosheets were integrated with Au NPs via in situ nucleation and loaded with RSL3 via π-π stacking, which were eventually modified with polyethylene glycol (PEG) and iRGD for tumor-targeted drug delivery. Specifically, the Au NPs can demonstrate glucose oxidase-like activities for efficient glucose depletion, thus disrupting the pentose phosphate pathway to impede reduced glutathione (GSH) biosynthesis and prevent the recycling of coenzyme Q10 (CoQ10) to CoQ10H2, while Cu species can oxidize GSH into oxidized glutathione (GSSG). These nanocatalytic activities can lead to the simultaneous inhibition of the GPX4/GSH and FSP1/CoQ10H2 pathways and cooperate with the GPX4-deactivating function of RSL3 to cause pronounced ferroptotic damage, thereby providing a strong rationale for the application of ferroptosis therapy in the clinic.
Collapse
Affiliation(s)
- Ke Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Chuanchuan Lin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Menghuan Li
- School of Life Science, Chongqing University, Chongqing 400044, People's Republic of China
| | - Kun Xu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Ye He
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Yulan Mao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Lu Lu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Wenbo Geng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Xuemin Li
- Innovative Drug Research Centre, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, People's Republic of China
| | - Zhong Luo
- School of Life Science, Chongqing University, Chongqing 400044, People's Republic of China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China
| |
Collapse
|
17
|
Ding M, Zhang Y, Li J, Pu K. Bioenzyme-based nanomedicines for enhanced cancer therapy. NANO CONVERGENCE 2022; 9:7. [PMID: 35119544 PMCID: PMC8816986 DOI: 10.1186/s40580-022-00297-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/04/2022] [Indexed: 05/09/2023]
Abstract
Bioenzymes that catalyze reactions within living systems show a great promise for cancer therapy, particularly when they are integrated with nanoparticles to improve their accumulation into tumor sites. Nanomedicines can deliver toxic bioenzymes into cancer cells to directly cause their death for cancer treatment. By modulating the tumor microenvironment, such as pH, glucose concentration, hypoxia, redox levels and heat shock protein expression, bioenzyme-based nanomedicines play crucial roles in improving the therapeutic efficacy of treatments. Moreover, bioenzyme-mediated degradation of the major components in tumor extracellular matrix greatly increases the penetration and retention of nanoparticles in deep tumors and infiltration of immune cells into tumor tissues, thus enhancing the efficacies of chemotherapy, phototherapy and immunotherapy. In this review, we summarize the recent progresses of bioenzyme-based nanomedicines for enhanced cancer therapy. The design and working mechanisms of the bioenzyme-based nanomedicines to achieve enhanced chemotherapy, photothermal therapy, photodynamic therapy, chemodynamic therapy, radiotherapy and immunotherapy are introduced in detail. At the end of this review, a conclusion and current challenges and perspectives in this field are given.
Collapse
Affiliation(s)
- Mengbin Ding
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Yijing Zhang
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Jingchao Li
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China.
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore.
| |
Collapse
|
18
|
Zhu M, Shi Y, Shan Y, Guo J, Song X, Wu Y, Wu M, Lu Y, Chen W, Xu X, Tang L. Recent developments in mesoporous polydopamine-derived nanoplatforms for cancer theranostics. J Nanobiotechnology 2021; 19:387. [PMID: 34819084 PMCID: PMC8613963 DOI: 10.1186/s12951-021-01131-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/09/2021] [Indexed: 02/08/2023] Open
Abstract
Polydopamine (PDA), which is derived from marine mussels, has excellent potential in early diagnosis of diseases and targeted drug delivery owing to its good biocompatibility, biodegradability, and photothermal conversion. However, when used as a solid nanoparticle, the application of traditional PDA is restricted because of the low drug-loading and encapsulation efficiencies of hydrophobic drugs. Nevertheless, the emergence of mesoporous materials broaden our horizon. Mesoporous polydopamine (MPDA) has the characteristics of a porous structure, simple preparation process, low cost, high specific surface area, high light-to-heat conversion efficiency, and excellent biocompatibility, and therefore has gained considerable interest. This review provides an overview of the preparation methods and the latest applications of MPDA-based nanodrug delivery systems (chemotherapy combined with radiotherapy, photothermal therapy combined with chemotherapy, photothermal therapy combined with immunotherapy, photothermal therapy combined with photodynamic/chemodynamic therapy, and cancer theranostics). This review is expected to shed light on the multi-strategy antitumor therapy applications of MPDA-based nanodrug delivery systems. ![]()
Collapse
Affiliation(s)
- Menglu Zhu
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, 322000, Yiwu, Zhejiang, People's Republic of China
| | - Yi Shi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, People's Republic of China
| | - Yifan Shan
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, 322000, Yiwu, Zhejiang, People's Republic of China
| | - Junyan Guo
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, 322000, Yiwu, Zhejiang, People's Republic of China
| | - Xuelong Song
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, 322000, Yiwu, Zhejiang, People's Republic of China
| | - Yuhua Wu
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, 322000, Yiwu, Zhejiang, People's Republic of China
| | - Miaolian Wu
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, 322000, Yiwu, Zhejiang, People's Republic of China
| | - Yan Lu
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, 322000, Yiwu, Zhejiang, People's Republic of China
| | - Wei Chen
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, People's Republic of China.
| | - Xiaoling Xu
- Shulan International Medical College, Zhejiang Shuren University, 310004, Hangzhou, Zhejiang, People's Republic of China.
| | - Longguang Tang
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, 322000, Yiwu, Zhejiang, People's Republic of China. .,International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, 322000, Yiwu, Zhejiang, People's Republic of China.
| |
Collapse
|
19
|
Peng D, Liu G, He Y, Gao P, Gou S, Wu J, Yu J, Liu P, Cai K. Fabrication of a pH-responsive core-shell nanosystem with a low-temperature photothermal therapy effect for treating bacterial biofilm infection. Biomater Sci 2021; 9:7483-7491. [PMID: 34635886 DOI: 10.1039/d1bm01329g] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Recently, photothermal therapy (PTT) has been recognized as a viable alternative strategy against bacterial biofilm infection. However, the hyperthermia required for PTT to ablate a biofilm usually induces damage in normal tissues/organs nearby. Herein, we developed zeolite-based imidazole framework (ZIF-8)-coated mesoporous polydopamine (MPDA) core-shell nanoparticles and then loaded Pifithrin-μ (PES), a natural inhibitor of heat-shock protein (HSP) that plays an essential role in bacteria resisting heating-induced damage. The ZIF-8 shell of the MPDA@ZIF-8/PES nanoplatform enabled a rapid degradation in response to the acidic environment in bacterial biofilm infection, which triggered the controlled release of PES and Zn ions. As a result, HSP was remarkably suppressed for enhancing PTT efficacy upon mild near-infrared light irradiation. In addition, the release of Zn2+ also had an antibacterial/antibiofilm effect. Thus, the fabricated nanosystem was able to induce the effective elimination of the bacterial biofilm, realizing low-temperature PTT (∼45 °C) with excellent antibacterial efficacy. This work presented here not only provides a facile approach to fabricate the MPDA@ZIF-8/PES nanosystem with the responsiveness of the bacterial infection environment, but also proposes a promising low-temperature PTT strategy to treat bacterial biofilm-infection effectively.
Collapse
Affiliation(s)
- Dan Peng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China.
| | - Genhua Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China.
| | - Ye He
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China.
| | - Pengfei Gao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China.
| | - Shuangquan Gou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China.
| | - Jing Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China.
| | - Jinxiu Yu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China.
| | - Peng Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China. .,Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Chongqing 400044, P. R. China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China. .,Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Chongqing 400044, P. R. China
| |
Collapse
|
20
|
Luo Y, Yan P, Li X, Hou J, Wang Y, Zhou S. pH-Sensitive Polymeric Vesicles for GOx/BSO Delivery and Synergetic Starvation-Ferroptosis Therapy of Tumor. Biomacromolecules 2021; 22:4383-4394. [PMID: 34533297 DOI: 10.1021/acs.biomac.1c00960] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Typical glucose oxidase (GOx)-based starvation therapy is a promising strategy for tumor treatment; however, it is still difficult to achieve an effective therapeutic effect via a single starvation therapy. Herein, we designed a pH-sensitive polymeric vesicle (PV) self-assembled by histamine-modified chondroitin sulfate (CS-his) for codelivery of GOx and l-buthionine sulfoximine (BSO). GOx can consume glucose to induce the starvation therapy after the PVs reach cancer cell. Moreover, the product H2O2 will be reduced by a high concentration of glutathione (GSH) in the tumor cell, resulting in a reduction of the GSH content. The released BSO finally further reduced the GSH level. As a result, the signaling pathway of the ferroptosis will be activated. The in vivo results demonstrated that GOx/BSO@CS PVs exhibit a good inhibitory effect on the growth of 4T1 tumors in mice. Thus, this work provides a facile strategy to prepare pH-sensitive nanomedicine for synergistic starvation-ferroptosis therapy of tumor.
Collapse
Affiliation(s)
- Yang Luo
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Peng Yan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Xinyang Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Jianwen Hou
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Yi Wang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Shaobing Zhou
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| |
Collapse
|
21
|
Nanoplatform-based natural products co-delivery system to surmount cancer multidrug-resistant. J Control Release 2021; 336:396-409. [PMID: 34175367 DOI: 10.1016/j.jconrel.2021.06.034] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/15/2022]
Abstract
The emergence of multidrug resistance (MDR) in malignant tumors is the primary reason for invalid chemotherapy. Antitumor drugs are often adversely affected by the MDR of tumor cells. Treatments using conventional drugs, which have specific drug targets, hardly regulate the complex signaling pathway of MDR cells because of the complex formation mechanism of MDR. However, natural products have positive advantages, such as high efficiency, low toxicity, and ability to target multiple mechanism pathways associated with MDR. Natural products, as MDR reversal agents, synergize with chemotherapeutics and enhance the sensitivity of tumor cells to chemotherapeutics, and the co-delivery of natural products and antitumor drugs with nanocarriers maximizes the synergistic effects against MDR in tumor cells. This review summarizes the molecular mechanisms of MDR, the advantages of natural products combined with chemotherapeutics in offsetting complicated MDR mechanisms, and the types and mechanisms of natural products that are potential MDR reversal modulators. Meanwhile, aiming at the low bioavailability of cocktail combined natural products and chemotherapeutic in vivo, the advantages of nanoplatform-based co-delivery system and recent research developments are illustrated on the basis of our previous research. Finally, prospective horizons are analyzed, which are expected to considerably improve the nano-co-delivery of natural products and chemotherapeutic systems for MDR reversal in cancer.
Collapse
|
22
|
Zhang H, Steed A, Co M, Chen X. Cancer stem cells, epithelial-mesenchymal transition, ATP and their roles in drug resistance in cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:684-709. [PMID: 34322664 PMCID: PMC8315560 DOI: 10.20517/cdr.2021.32] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The cancer stem cell (CSC) state and epithelial-mesenchymal transition (EMT) activation are tightly interconnected. Cancer cells that acquire the EMT/CSC phenotype are equipped with adaptive metabolic changes to maintain low reactive oxygen species levels and stemness, enhanced drug transporters, anti-apoptotic machinery and DNA repair system. Factors present in the tumor microenvironment such as hypoxia and the communication with non-cancer stromal cells also promote cancer cells to enter the EMT/CSC state and display related resistance. ATP, particularly the high levels of intratumoral extracellular ATP functioning through both signaling pathways and ATP internalization, induces and regulates EMT and CSC. The three of them work together to enhance drug resistance. New findings in each of these factors will help us explore deeper into mechanisms of drug resistance and suggest new resistance-associated markers and therapeutic targets.
Collapse
Affiliation(s)
- Haiyun Zhang
- Department of Biological Science, Ohio University, Athens, OH 45701, USA.,Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA.,Interdisciplinary Graduate Program in Molecular and Cellular Biology, Ohio University, Athens, OH 45701, USA
| | - Alexander Steed
- Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Milo Co
- Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Xiaozhuo Chen
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA.,Interdisciplinary Graduate Program in Molecular and Cellular Biology, Ohio University, Athens, OH 45701, USA.,Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA.,Department of Biomedical Sciences, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
23
|
Xie X, Tang J, Xing Y, Wang Z, Ding T, Zhang J, Cai K. Intervention of Polydopamine Assembly and Adhesion on Nanoscale Interfaces: State-of-the-Art Designs and Biomedical Applications. Adv Healthc Mater 2021; 10:e2002138. [PMID: 33690982 DOI: 10.1002/adhm.202002138] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/26/2021] [Indexed: 12/11/2022]
Abstract
The translation of mussel-inspired wet adhesion to biomedical engineering fields have catalyzed the emergence of polydopamine (PDA)-based nanomaterials with privileged features and properties of conducting multiple interfacial interactions. Recent concerns and progress on the understanding of PDA's hierarchical structure and progressive assembly are inspiring approaches toward novel nanostructures with property and function advantages over simple nanoparticle architectures. Major breakthroughs in this field demonstrated the essential role of π-π stacking and π-cation interactions in the rational intervention of PDA self-assembly. In this review, the recently emerging concepts in the preparation and application of PDA nanomaterials, including 3D mesostructures, low-dimensional nanostructures, micelle/nanoemulsion based nanoclusters, as well as other multicomponent nanohybrids by the segregation and organization of PDA building blocks on nanoscale interfaces are outlined. The contribution of π-electron interactions on the interfacial loading/release of π electron-rich molecules (nucleic acids, drugs, photosensitizers) and the exogenous coupling of optical energy, as well as the impact of wet-adhesion interactions on the nano-bio interface interplay, are highlighted by discussing the structure-property relationships in their featured applications including fluorescent biosensing, gene therapy, drug delivery, phototherapy, combined therapy, etc. The limitations of current explorations, and future research directions are also discussed.
Collapse
Affiliation(s)
- Xiyue Xie
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University No. 174 Shazheng Road Chongqing 400044 China
| | - Jia Tang
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University No. 174 Shazheng Road Chongqing 400044 China
| | - Yuxin Xing
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University No. 174 Shazheng Road Chongqing 400044 China
| | - Zhenqiang Wang
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University No. 174 Shazheng Road Chongqing 400044 China
| | - Tao Ding
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University No. 174 Shazheng Road Chongqing 400044 China
| | - Jixi Zhang
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University No. 174 Shazheng Road Chongqing 400044 China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University No. 174 Shazheng Road Chongqing 400044 China
| |
Collapse
|
24
|
Zhu YX, Jia HR, Duan QY, Wu FG. Nanomedicines for combating multidrug resistance of cancer. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1715. [PMID: 33860622 DOI: 10.1002/wnan.1715] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022]
Abstract
Chemotherapy typically involves the use of specific chemodrugs to inhibit the proliferation of cancer cells, but the frequent emergence of a variety of multidrug-resistant cancer cells poses a tremendous threat to our combat against cancer. The fundamental causes of multidrug resistance (MDR) have been studied for decades, and can be generally classified into two types: one is associated with the activation of diverse drug efflux pumps, which are responsible for translocating intracellular drug molecules out of the cells; the other is linked with some non-efflux pump-related mechanisms, such as antiapoptotic defense, enhanced DNA repair ability, and powerful antioxidant systems. To overcome MDR, intense efforts have been made to develop synergistic therapeutic strategies by introducing MDR inhibitors or combining chemotherapy with other therapeutic modalities, such as phototherapy, gene therapy, and gas therapy, in the hope that the drug-resistant cells can be sensitized toward chemotherapeutics. In particular, nanotechnology-based drug delivery platforms have shown the potential to integrate multiple therapeutic agents into one system. In this review, the focus was on the recent development of nanostrategies aiming to enhance the efficiency of chemotherapy and overcome the MDR of cancer in a synergistic manner. Different combinatorial strategies are introduced in detail and the advantages as well as underlying mechanisms of why these strategies can counteract MDR are discussed. This review is expected to shed new light on the design of advanced nanomedicines from the angle of materials and to deepen our understanding of MDR for the development of more effective anticancer strategies. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Ya-Xuan Zhu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Hao-Ran Jia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Qiu-Yi Duan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
25
|
Yang X, Li M, Liang J, Hou X, He X, Wang K. NIR-Controlled Treatment of Multidrug-Resistant Tumor Cells by Mesoporous Silica Capsules Containing Gold Nanorods and Doxorubicin. ACS APPLIED MATERIALS & INTERFACES 2021; 13:14894-14910. [PMID: 33769025 DOI: 10.1021/acsami.0c23073] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Multidrug resistance (MDR) is identified as a major impediment to the efficient chemotherapy of cancer, and considerable endeavors have been devoted to reverse MDR containing structuring varieties of multifunctional nanocarriers. Here, a specially light-activated hollow mesoporous silica nanocontainer with an in situ-synthesized Au nanorod (AuNR) core and a surface-modified hairpin structure DNA gatekeeper is reported for treating MDR tumor cells. In this system, the AuNR only fills part of the space in hollow mesoporous silica due to its controllable size, and the remaining space is used to load enough DOX. By controlling the near-infrared (NIR) laser intensity and exposure duration, the configuration of hairpin-structured DNA (Tm = 51.4 °C) can change reversibly and then trigger the controllable intracellular release of DOX, leading to a significantly enhanced chemotherapeutic efficacy and adjustable photothermal treatment for multidrug-resistant cancer cells. The in vitro experiments showed that this system could effectively overcome the MDR of HepG2-adm cells (a MDR cell line of human hepatocarcinoma cells) by the increased concentration of DOX intracellularly and the photothermal conversion of AuNRs, even at a low concentration (e.g., 30 μg mL-1). Therefore, this NIR-triggered chemo-photothermal synergistic treatment system can be used as a promising efficient strategy in reversing the multidrug resistance for cancer therapy.
Collapse
Affiliation(s)
- Xue Yang
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
- School of Pharmacy, Xinxiang Medical University, No. 601, Jinsui Road, Xinxiang 453003, China
| | - Man Li
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Jinying Liang
- School of Pharmacy, Xinxiang Medical University, No. 601, Jinsui Road, Xinxiang 453003, China
| | - Xueyan Hou
- School of Pharmacy, Xinxiang Medical University, No. 601, Jinsui Road, Xinxiang 453003, China
| | - Xiaoxiao He
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Kemin Wang
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| |
Collapse
|