1
|
Sun YJ, Zhao DJ, Zhang Y. LD and ER targeted cysteine fluorescence sensing driven A/B-ring-naphthalene/indole simultaneously substituted water hypersensitive flavonol: simultaneous dual-colour visualization of LDs and ER, and precisely controlled linear CO delivery. J Mater Chem B 2025. [PMID: 40364741 DOI: 10.1039/d5tb00141b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
The first cysteine (Cys) fluorescence sensing-driven flavonol, HIBC (3-hydroxy-2-(1-methyl-1H-indol-3-yl)-4H-benzo[g]chromen-4-one), has been developed as a single fluorescent probe (SFprobe) and a photoCORM. This compound is characterized by the simultaneous substitutions at both the A- and B-rings with naphthalene and indole, respectively. Notably, HIBC exhibits remarkable hypersensitivity to minor variations in water fractions (fw, vol% in acetonitrile) ranging from 0% to 15%, enabling in situ real-time visualization of lipid droplets (LDs) and the endoplasmic reticulum (ER) with high spatial resolution through distinct dual-colour fluorescence without any crosstalk. Under O2, HIBC facilitates the delivery of precisely controlled amounts of CO gas within a therapeutic and safe dosage range to living systems via visible light irradiation. This control is achieved by modulating either the intensity or the duration of the irradiated light or by adjusting the dosage of the photoCORM. Its fluorescence allows for in situ real-time imaging and tracking of intracellular distribution while monitoring CO delivery progress. HIBC is generated from the sensing reaction between the precursor IBCA (2-(1-methyl-1H-indol-3-yl)-4-oxo-4H-benzo[g]chromen-3-yl acrylate) and the Cys. In PBS buffer containing only 30% of DMSO, IBCA can rapidly detect and image both endogenous and exogenous Cys within just 250 seconds. It demonstrates high selectivity-particularly against homocysteine (Hcy) and glutathione (GSH)-and sensitivity, achieving detection limits as low as 87 nM in live HeLa cells and zebrafish across a wide linear concentration range of 0-10 μM (0-2 equiv.). Importantly, IBCA also targets LDs and ER while monitoring fluctuations in Cys levels during periods of ER stress. Both IBCA and HIBC, along with all photoreaction products, exhibit negligible toxicity while demonstrating good permeability in live HeLa cells and zebrafish. The HIBC we developed represents a pioneering instance of a flavonol driven by Cys fluorescence sensing that features simultaneous substitutions at both the A-and B-rings with naphthalene and indole moieties, respectively. Compared to the unsubstituted flavonol, these structural improvements not only lead to a substantial red shift of 88 nm in the absorption peak but also significantly enhance the overall performance. It serves not only as an exceptionally water hypersensitive SFprobe for simultaneous dual-colour fluorescence visualization of LDs and ER but also functions effectively as a photoCORM. This work not only provides a method for precise control over CO release but also facilitates the development of user-friendly molecular tools for further investigation into the roles played by LDs, ER, Cys and CO in biological processes, their interactions and relationships among them, along with their potential applications in clinical diagnosis.
Collapse
Affiliation(s)
- Ying-Ji Sun
- School of Chemistry, Dalian University of Technology, Linggong Road 2, 116024, Dalian, China.
| | - Deng-Jie Zhao
- School of Chemistry, Dalian University of Technology, Linggong Road 2, 116024, Dalian, China.
| | - Yi Zhang
- School of Chemistry, Dalian University of Technology, Linggong Road 2, 116024, Dalian, China.
| |
Collapse
|
2
|
Dederich CT, Lazarus LS, Benninghoff AD, Berreau LM. Localized Light-Triggered CO Delivery: Comparing the Amount of CO Delivered and Cellular Toxicity. ACS Chem Biol 2025. [PMID: 40370005 DOI: 10.1021/acschembio.4c00884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Molecules that enable the controlled delivery of carbon monoxide (CO) in biological environments are of significant current interest to probe the beneficial roles of CO for humans. Assumptions regarding the ability of molecules to reliably deliver CO continue to impact the field, including in work involving non-metal CO delivery motifs. Flavonols are drawing increasing interest as light-triggered CO release motifs due to their ease of synthesis, functionalization, and fluorescence trackability. Importantly, the light-driven CO release properties of flavonols depend on their structure and must be fully evaluated under various conditions to understand the relationship between the amount of CO delivered and the induced biological effects. Herein, we use a family of amine-functionalized π-extended flavonols to demonstrate that structural differences result in differing interactions with biomolecules, cellular uptake, and changes in subcellular localization, which can affect the amount of CO delivered intracellularly. This results in differences in the CO-induced cellular toxicity.
Collapse
Affiliation(s)
- C Taylor Dederich
- Department of Chemistry & Biochemistry, Utah State University, Logan, Utah 84322-0300, United States
| | - Livia S Lazarus
- Department of Chemistry & Biochemistry, Utah State University, Logan, Utah 84322-0300, United States
| | - Abby D Benninghoff
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, Utah 84322-4800, United States
| | - Lisa M Berreau
- Department of Chemistry & Biochemistry, Utah State University, Logan, Utah 84322-0300, United States
| |
Collapse
|
3
|
Demissie GG, Chen YC, Ciou SY, Hsu SH, Wang CY, Huang CC, Chang HT, Lee YC, Chang JY. Hypoxia-Targeted-Therapy: Mussel-inspired hollow polydopamine nanocarrier containing MoS 2 nanozyme and tirapazamine with anti-angiogenesis property for synergistic tumor therapy. J Colloid Interface Sci 2025; 685:396-414. [PMID: 39855086 DOI: 10.1016/j.jcis.2025.01.149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/16/2025] [Accepted: 01/18/2025] [Indexed: 01/27/2025]
Abstract
Photothermal therapy (PTT) using thermal and tumor microenvironment-responsive reagents is promising for cancer treatment. This study demonstrates an effective PTT nanodrug consisting of hollow-structured, thermally sensitive polydopamine nanobowls (HPDA NB), molybdenum sulfide (MoS2) nanozyme, and tirapazamine (TPZ; a hypoxia-responsive drug), with a structure of HPDA@TPZ/MoS NBs, which is hereafter denoted as HPTZMoS NBs. With the Fenton-like activity, the HPTZMoS NBs in the presence of H2O2 catalyze the formation of hydroxyl radicals, providing chemodynamic therapy (CDT) effect and deactivating glutathione. Under acidic conditions, HPTZMoS NBs facilitate the release of sulfide ions (S2-) and TPZ, providing a combination of chemotherapy (CT) and hydrogen sulfide (H2S) gas therapy (GT). Under an 808-nm NIR laser irradiation, the HPTZMoS NBs efficiently convert photo energy to thermal energy, providing PTT and improved CDT, CT, and GT effects. Upon treatment with an NIR laser and H2O2, a synergistic effect leads to substantial tumor cell eradication. Additionally, HPTZMoS NBs disrupt vascular endothelial growth factor (VEGF-A165)-induced cell migration in human umbilical vein endothelial cells through its strong interaction with VEGF-A165. In vivo studies in 4T1-tumor-bearing mice confirm that HPTZMoS NBs induces significant tumor destruction through a combination of PTT, hyperthermia-induced CDT, GT, and CT pathways. This study presents a multifaceted, highly selective nanotherapy platform with potent anti-angiogenesis properties, holding significant promise for future clinical applications.
Collapse
Affiliation(s)
- Girum Getachew Demissie
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335 Taiwan
| | - Yi-Chia Chen
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335 Taiwan
| | - Sin-Yi Ciou
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335 Taiwan
| | - Shih-Hao Hsu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110 Taiwan
| | - Chen-Yow Wang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202224 Taiwan
| | - Chih-Ching Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202224 Taiwan
| | - Huan-Tsung Chang
- Department of Biomedical Sciences, Chang Gung University, Taoyuan 33302 Taiwan; Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 33302 Taiwan; Center for Advanced Biomaterials and Technology Innovation, Chang Gung University, Taoyuan 33302 Taiwan; Division of Breast Surgery, Department of General Surgery, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan.
| | - Yu-Cheng Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110 Taiwan.
| | - Jia-Yaw Chang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335 Taiwan.
| |
Collapse
|
4
|
Hagar FF, Abbas SH, Atef E, Abdelhamid D, Abdel-Aziz M. Benzimidazole scaffold as a potent anticancer agent with different mechanisms of action (2016-2023). Mol Divers 2025; 29:1821-1849. [PMID: 39031290 PMCID: PMC11909089 DOI: 10.1007/s11030-024-10907-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/30/2024] [Indexed: 07/22/2024]
Abstract
Benzimidazole scaffolds have potent anticancer activity due to their structure similarity to nucleoside. In addition, benzimidazoles could function as hydrogen donors or acceptors and bind to different drug targets that participate in cancer progression. The literature had many anticancer agents containing benzimidazole cores that gained much interest. Provoked by our endless interest in benzimidazoles as anticancer agents, we summarized the successful trials of the benzimidazole scaffolds in this concern. Moreover, we discuss the substantial opportunities in cancer treatment using benzimidazole-based drugs that may direct medicinal chemists for a compelling future design of more active chemotherapeutic agents with potential clinical applications. The uniqueness of this work lies in the highlighted benzimidazole scaffold hybridization with different molecules and benzimidazole-metal complexes, detailed mechanisms of action, and the IC50 of the developed compounds determined by different laboratories after 2015.
Collapse
Affiliation(s)
- Fatma Fouad Hagar
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Samar H Abbas
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia, Egypt.
| | - Eman Atef
- College of Pharmacy, West Coast University, Los Angeles, CA, USA
| | - Dalia Abdelhamid
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia, Egypt.
- Raabe College of Pharmacy, Ohio Northern University, Ohio, USA.
| | - Mohamed Abdel-Aziz
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia, Egypt
| |
Collapse
|
5
|
Anderson SN, Dederich CT, Borowski T, Berreau LM. Thermal CO Release Reactivity of a π-Extended Flavonol Anion. Org Lett 2024; 26:10253-10258. [PMID: 39569889 DOI: 10.1021/acs.orglett.4c03651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
The π-extended flavonol Flav-1 (1) undergoes reaction with KOH or KO2 to form 1-, which reacts with O2 at ambient temperature, resulting in CO release and depside formation. Mechanistic and DFT studies support a reaction pathway involving reaction of 1- with O2 on the triplet energy surface in the rate-determining step. Formation of a cyclic peroxide leads to CO extrusion. These studies indicate that if formed in biological environments, 1- will release CO in the absence of light illumination.
Collapse
Affiliation(s)
- Stephen N Anderson
- Department of Chemistry & Biochemistry, Utah State University, 0300 Old Main Hill, Logan, Utah 84322-0300, United States
| | - C Taylor Dederich
- Department of Chemistry & Biochemistry, Utah State University, 0300 Old Main Hill, Logan, Utah 84322-0300, United States
| | - Tomasz Borowski
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Science, Niezapominajek 8, Krakow, 30-239, Poland
| | - Lisa M Berreau
- Department of Chemistry & Biochemistry, Utah State University, 0300 Old Main Hill, Logan, Utah 84322-0300, United States
| |
Collapse
|
6
|
Liu X, Liu S, Jin X, Liu H, Sun K, Wang X, Li M, Wang P, Chang Y, Wang T, Wang B, Yu XA. An encounter between metal ions and natural products: natural products-coordinated metal ions for the diagnosis and treatment of tumors. J Nanobiotechnology 2024; 22:726. [PMID: 39574109 PMCID: PMC11580416 DOI: 10.1186/s12951-024-02981-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 11/04/2024] [Indexed: 11/25/2024] Open
Abstract
Natural products-coordinated metal ions to form the nanomedicines are in the spotlight for cancer therapy. Some natural products could be coordinated with metal ions forming nanomedicines via simple and green environmental self-assembly, which not only improved the bioavailability of natural products, but also conferred multiple therapeutic modalities and multimodal imaging. On the one hand, in the weak acidity, glutathione (GSH) and hydrogen peroxide (H2O2) overexpression of tumor microenvironment (TME), such carrier-free nanomedicines could be further enhanced the therapeutic effect via optimizing the species of metal ions. On the other hand, nanomedicines could exert the precise treatment of tumor under the guidance of multiple imaging. Hence, this review summarized the research progress in recent years on the application of natural product-coordinated metal ions in cancer therapy. In addition, the prospects and challenges for the application of natural product-coordinated metal ions were discussed, especially how to improve targeting ability and stability and assess the safety of metal ions, so as to facilitate the clinical translation and application of natural product-coordinated metal ions nanomedicines.
Collapse
Affiliation(s)
- Xinyue Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Suyi Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xingyue Jin
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Haifan Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Kunhui Sun
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xiongqin Wang
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
| | - Meifang Li
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
| | - Ping Wang
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
| | - Yanxu Chang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Tiejie Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China.
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen, 518057, China.
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China.
| | - Bing Wang
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen, 518057, China.
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China.
| | - Xie-An Yu
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen, 518057, China.
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China.
| |
Collapse
|
7
|
Anderson SN, Dederich CT, Elsberg JGD, Benninghoff AD, Berreau LM. Investigating the Combined Toxicity of Cu(II) and Carbon Monoxide (CO); Cellular CO Delivery Using a Cu(II) Flavonolato Complex. ChemMedChem 2024; 19:e202300682. [PMID: 38369675 PMCID: PMC11407907 DOI: 10.1002/cmdc.202300682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/20/2024]
Abstract
Carbon monoxide (CO) delivery molecules are of significant current interest as potential therapeutics, including for anticancer applications. A recent approach toward generating new types of materials-based anticancer agents involves combining the Fenton reactivity of a redox active metal ion with CO delivery. However, small molecule examples of these types of entities have not been systematically studied to evaluate the combined effect on cellular toxicity. Herein we describe a Cu(II) flavonolato complex which produces anticancer effects through a combination of copper-mediated reactive oxygen species (ROS) generation and light-induced flavonol CO release. Confocal microscopy studies provide evidence of enhanced flavonol uptake in the copper flavonolato system relative to the free flavonol, which leads to an increased amount of CO delivery within cells. Importantly, this work demonstrates that a metal flavonolato species can be used to produce enhanced toxicity effects resulting from both metal ion-induced Fenton reactivity and increased cellular uptake of a flavonol CO donor.
Collapse
Affiliation(s)
- Stephen N Anderson
- Department of Chemistry & Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322-0300, United States
| | - C Taylor Dederich
- Department of Chemistry & Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322-0300, United States
| | - Josiah G D Elsberg
- Department of Chemistry & Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322-0300, United States
| | - Abby D Benninghoff
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, 4815 Old Main Hill, Logan, UT 84322-4815, United States
| | - Lisa M Berreau
- Department of Chemistry & Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322-0300, United States
| |
Collapse
|
8
|
Tian Y, Li P, Wang L, Ye X, Qu Z, Mou J, Yang S, Wu H. Glutathione-triggered release of SO 2 gas to augment oxidative stress for enhanced chemodynamic and sonodynamic therapy. Biomater Sci 2024; 12:2341-2355. [PMID: 38497292 DOI: 10.1039/d3bm02027d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Recently, gas therapy has emerged as a promising alternative treatment for deep-seated tumors. However, some challenges regarding insufficient or uncontrolled gas generation as well as unclear therapeutic mechanisms restrict its further clinical application. Herein, a well-designed nanoreactor based on intracellular glutathione (GSH)-triggered generation of sulfur dioxide (SO2) gas to augment oxidative stress has been developed for synergistic chemodynamic therapy (CDT)/sonodynamic therapy (SDT)/SO2 gas therapy. The nanoreactor (designed as CCM@FH-DNs) is constructed by employing iron-doped hollow mesoporous silica nanoparticles as carriers, the surface of which was modified with the SO2 prodrug 2,4-dinitrobenzenesulfonyl (DNs) and further coated with cancer cell membranes for homologous targeting. The CCM@FH-DNs can not only serve as a Fenton-like agent for CDT, but also as a sonosensitizer for SDT. Importantly, CCM@FH-DNs can release SO2 for SO2-mediated gas therapy. Both in vitro and in vivo evaluations demonstrate that the CCM@FH-DNs nanoreactor performs well in augmenting oxidative stress for SO2 gas therapy-enhanced CDT/SDT via GSH depletion and glutathione peroxidase-4 enzyme deactivation as well as superoxide dismutase inhibition. Moreover, the doped iron ions ensure that the CCM@FH-DNs nanoreactors enable magnetic resonance imaging-guided therapy. Such a GSH-triggered SO2 gas therapy-enhanced CDT/SDT strategy provides an intelligent paradigm for developing efficient tumor microenvironment-responsive treatments.
Collapse
Affiliation(s)
- Ya Tian
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China.
| | - Pei Li
- Department of Ultrasound, Shanghai Institute of Medical Imaging, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Likai Wang
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China.
| | - Xueli Ye
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China.
| | - Zhonghuan Qu
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China.
| | - Juan Mou
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China.
| | - Shiping Yang
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China.
| | - Huixia Wu
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
9
|
Hao JN, Ge K, Chen G, Dai B, Li Y. Strategies to engineer various nanocarrier-based hybrid catalysts for enhanced chemodynamic cancer therapy. Chem Soc Rev 2023; 52:7707-7736. [PMID: 37874584 DOI: 10.1039/d3cs00356f] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Chemodynamic therapy (CDT) is a newly developed cancer-therapeutic modality that kills cancer cells by the highly toxic hydroxyl radical (˙OH) generated from the in situ triggered Fenton/Fenton-like reactions in an acidic and H2O2-overproduced tumor microenvironment (TME). By taking the advantage of the TME-activated catalytic reaction, CDT enables a highly specific and minimally-invasive cancer treatment without external energy input, whose efficiency mainly depends on the reactant concentrations of both the catalytic ions and H2O2, and the reaction conditions (including pH, temperature, and amount of glutathione). Unfortunately, it suffers from unsatisfactory therapy efficiency for clinical application because of the limited activators (i.e., mild acid pH and insufficient H2O2 content) and overexpressed reducing substance in TME. Currently, various synergistic strategies have been elaborately developed to increase the CDT efficiency by regulating the TME, enhancing the catalytic efficiency of catalysts, or combining with other therapeutic modalities. To realize these strategies, the construction of diverse nanocarriers to deliver Fenton catalysts and cooperatively therapeutic agents to tumors is the key prerequisite, which is now being studied but has not been thoroughly summarized. In particular, nanocarriers that can not only serve as carriers but are also active themselves for therapy are recently attracting increasing attention because of their less risk of toxicity and metabolic burden compared to nanocarriers without therapeutic capabilities. These therapy-active nanocarriers well meet the requirements of an ideal therapy system with maximum multifunctionality but minimal components. From this new perspective, in this review, we comprehensively summarize the very recent research progress on nanocarrier-based systems for enhanced CDT and the strategies of how to integrate various Fenton agents into the nanocarriers, with particular focus on the studies of therapy-active nanocarriers for the construction of CDT catalysts, aiming to guide the design of nanosystems with less components and more functionalities for enhanced CDT. Finally, the challenges and prospects of such a burgeoning cancer-theranostic modality are outlooked to provide inspirations for the further development and clinical translation of CDT.
Collapse
Affiliation(s)
- Ji-Na Hao
- Lab of Low Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Kaiming Ge
- Lab of Low Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Guoli Chen
- Lab of Low Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Bin Dai
- School of Chemistry and Chemical Engineering, Pharmacy School, State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Yongsheng Li
- Lab of Low Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
- School of Chemistry and Chemical Engineering, Pharmacy School, State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China
| |
Collapse
|
10
|
Chen Y, Yang Y, He X, Liu X, Yu P, Liu R, Wei L, Zhang B, Zou T, Liu H, Li Y, Chen R, Cheng Y. Copper indium selenium nanomaterials for photo-amplified immunotherapy through simultaneously enhancing cytotoxic T lymphocyte recruitment and M1 polarization of macrophages. Acta Biomater 2023; 171:495-505. [PMID: 37739250 DOI: 10.1016/j.actbio.2023.09.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/04/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023]
Abstract
Photoactivated immunotherapy has promising therapeutic efficacy for treating malignancies, especially metastatic tumors. In this study, an erythrocyte membrane-encapsulated copper indium selenium (RCIS) semiconductor nanomaterial was developed to eliminate primary and metastatic tumors, in which copper ions can induce chemodynamic performance, and the narrow band gap endows RCIS with the properties of near-infrared (NIR) light-activated photothermal and photodynamic amplified immunotherapy. Furthermore, RCIS can be used as a nanocarrier to form RNCIS nanoparticles (NPs) by loading NLG919, which blocks the indoleamine 2,3-dioxygenase-1. Under NIR light irradiation, RNCIS NPs release NLG919 at tumor sites via photothermal properties, thereby promoting the recruitment of cytotoxic T lymphocytes and M1 polarization of macrophages, targeting the activation and amplification of immune responses. Herein, in vitro and in vivo studies showed that RNCIS NPs effectively kill cancer cells and eliminate primary and metastatic tumors. Therefore, this study suggests that semiconductor nanomaterials with narrow bandgaps have great potential as photoimmunotherapy agents and NIR light-responsive nanocarriers for controlled release, providing a great paradigm for synergetic tumor photoimmunotherapy. STATEMENT OF SIGNIFICANCE: The Erythrocyte membrane-coated, NLG919-loaded copper indium selenium (RNCIS) semiconductor was designed for eliminating primary and metastatic tumors. RNCIS exhibits chemodynamic, photodynamic, and photothermal activated immunotherapy by inhibiting indoleamine 2,3-dioxygenase-1. This can enhance the recruitment of cytotoxic T lymphocyte and M1 polarization of macrophage, leading to higher synergetic photo-immune therapeutic efficacy.
Collapse
Affiliation(s)
- Yining Chen
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development Jilin Agricultural University, Changchun 130118, PR China
| | - Yunan Yang
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development Jilin Agricultural University, Changchun 130118, PR China
| | - Xinai He
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development Jilin Agricultural University, Changchun 130118, PR China
| | - Xin Liu
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development Jilin Agricultural University, Changchun 130118, PR China
| | - Pengcheng Yu
- College of Science, Jilin Provincial Key Laboratory of Human Health Status Identification and Function Enhancement, Changchun University, Changchun 130022, PR China
| | - Runru Liu
- College of Science, Jilin Provincial Key Laboratory of Human Health Status Identification and Function Enhancement, Changchun University, Changchun 130022, PR China
| | - Liqi Wei
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development Jilin Agricultural University, Changchun 130118, PR China
| | - Biao Zhang
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development Jilin Agricultural University, Changchun 130118, PR China
| | - Tianshu Zou
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development Jilin Agricultural University, Changchun 130118, PR China
| | - Hongxiang Liu
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development Jilin Agricultural University, Changchun 130118, PR China
| | - Yuanqiang Li
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development Jilin Agricultural University, Changchun 130118, PR China
| | - Rui Chen
- College of Science, Jilin Provincial Key Laboratory of Human Health Status Identification and Function Enhancement, Changchun University, Changchun 130022, PR China.
| | - Yan Cheng
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development Jilin Agricultural University, Changchun 130118, PR China.
| |
Collapse
|
11
|
Lahooti B, Akwii RG, Zahra FT, Sajib MS, Lamprou M, Alobaida A, Lionakis MS, Mattheolabakis G, Mikelis CM. Targeting endothelial permeability in the EPR effect. J Control Release 2023; 361:212-235. [PMID: 37517543 DOI: 10.1016/j.jconrel.2023.07.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/19/2023] [Accepted: 07/23/2023] [Indexed: 08/01/2023]
Abstract
The characteristics of the primary tumor blood vessels and the tumor microenvironment drive the enhanced permeability and retention (EPR) effect, which confers an advantage towards enhanced delivery of anti-cancer nanomedicine and has shown beneficial effects in preclinical models. Increased vascular permeability is a landmark feature of the tumor vessels and an important driver of the EPR. The main focus of this review is the endothelial regulation of vascular permeability. We discuss current challenges of targeting vascular permeability towards clinical translation and summarize the structural components and mechanisms of endothelial permeability, the principal mediators and signaling players, the targeted approaches that have been used and their outcomes to date. We also critically discuss the effects of the tumor-infiltrating immune cells, their interplay with the tumor vessels and the impact of immune responses on nanomedicine delivery, the impact of anti-angiogenic and tumor-stroma targeting approaches, and desirable nanoparticle design approaches for greater translational benefit.
Collapse
Affiliation(s)
- Behnaz Lahooti
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Racheal G Akwii
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Fatema Tuz Zahra
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Md Sanaullah Sajib
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Margarita Lamprou
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras 26504, Greece
| | - Ahmed Alobaida
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Ha'il 81442, Saudi Arabia
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - George Mattheolabakis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA.
| | - Constantinos M Mikelis
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras 26504, Greece.
| |
Collapse
|
12
|
Recent advances in augmenting Fenton chemistry of nanoplatforms for enhanced chemodynamic therapy. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.215004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
13
|
Chai J, Zhu J, Tian Y, Yang K, Luan J, Wang Y. Carbon monoxide therapy: a promising strategy for cancer. J Mater Chem B 2023; 11:1849-1865. [PMID: 36786000 DOI: 10.1039/d2tb02599j] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cancer is one of the acute life-threatening diseases endangering the whole of humanity. The treatment modalities for cancer are various. However, in most cases, a single treatment choice provides multiple side effects, poor targeting, and ineffective treatment. In recent years, the physiological regulatory function of carbon monoxide (CO) in the cancer process has been reported gradually, and CO-related nano-drugs have been explored. It shows better application prospects in cancer treatment and provides new ideas for treatment. The present review introduces the pathophysiological role of CO. The recent advances in cancer therapy, such as CO-mediated gas therapy, combined application of CO chemotherapy, photodynamic therapy (PDT), photothermal therapy (PTT), and immunotherapy, are described. Current challenges and future developments in CO-based treatment are also discussed. This review provides comprehensive information on recent advances in CO therapy and also some valuable guidance for promoting the progress of gas therapy nanomedicine.
Collapse
Affiliation(s)
- Jingjing Chai
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.
| | - Junfei Zhu
- China-Japan Friendship Hospital, No. 2 Sakura East Street, Chaoyang District, Beijing, China
| | - Yu Tian
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.
| | - Kui Yang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.
| | - Jiajie Luan
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.
| | - Yan Wang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.
| |
Collapse
|
14
|
Wang C, Xue F, Wang M, An L, Wu D, Tian Q. 2D Cu-Bipyridine MOF Nanosheet as an Agent for Colon Cancer Therapy: A Three-in-One Approach for Enhancing Chemodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38604-38616. [PMID: 35979620 DOI: 10.1021/acsami.2c11999] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Chemodynamic therapy (CDT) is a highly tumor-specific and minimally invasive treatment that is widely used in cancer therapy. However, its therapeutic effect is limited by the poor efficiency of hydroxyl radical generation. In colon cancer in particular, the high expression of hydrogen sulfide (H2S), which has strong reducibility, results in the consumption of generated hydroxyl radicals, further weakening the efficacy of CDT. To overcome this problem, we developed a novel two-dimensional (2D) Cu-bipyridine metal-organic framework (MOF) nanosheet [Cu(bpy)2(OTf)2] for colon cancer CDT. The therapeutic effect of Cu(bpy)2(OTf)2 is enhanced based on three factors. First, the developed 2D Cu-MOF rapidly consumes H2S to inhibit the consumption of generated hydroxyl radicals. Second, the ultrasmall CuS generated after H2S depletion facilitates Fenton-like reactions. Third, the generated CuS exhibits good photothermal performance in the second near-infrared window, allowing for photothermal-enhanced CDT. The ability of Cu(bpy)2(OTf)2 to improve the CDT effect was demonstrated through both in vitro and in vivo experiments. This work demonstrates the applicability of 2D Cu-MOF in the CDT of colon cancer and provides a novel strategy for constructing CDT agents for colon cancer.
Collapse
Affiliation(s)
- Chengbin Wang
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
- Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai 200234, China
| | - Fengfeng Xue
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Mengxin Wang
- Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai 200234, China
| | - Lu An
- Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai 200234, China
| | - Dan Wu
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Qiwei Tian
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| |
Collapse
|
15
|
Tang Q, Liu J, Wang CB, An L, Zhang HL, Wang Y, Ren B, Yang SP, Liu JG. A multifunctional nanoplatform delivering carbon monoxide and a cysteine protease inhibitor to mitochondria under NIR light shows enhanced synergistic anticancer efficacy. NANOSCALE 2022; 14:9097-9103. [PMID: 35713601 DOI: 10.1039/d2nr01122k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Photoactivated chemotherapy has attracted widespread attention due to its ability to circumvent the shortcomings of hypoxia in tumor tissues compared with traditional photodynamic therapy. In this work, novel multifunctional nanoplatform (1), Ru-inhibitor@TPPMnCO@N-GQDs, was designed and prepared, which was capable of mitochondria-targeted co-delivery of the cysteine protease inhibitor and carbon monoxide (CO) stimulated with an 808 nm near infrared (NIR) laser. Nanoplatform (1) was prepared by covalent attachment of a mitochondria-targeted CO donor (TPPMnCO) and a Ru(II)-caged cysteine protease inhibitor (Ru-inhibitor) on the surface of fluorescent N-doped graphene quantum dots (N-GQDs). Nanoplatform (1) preferentially accumulated in the mitochondria of cancer cells and instantly delivered CO and the cysteine protease inhibitor upon 808 nm NIR light irradiation, thus damaging mitochondria and leading to significant in vitro and in vivo anticancer efficacy. In addition, nanoplatform (1) has good biocompatibility and did not exert any toxic side effects on mice during the period of treatment. The targeted subcellular mitochondrial co-delivery of CO and the cysteine protease inhibitor may provide new insights into CO and enzyme inhibitor combined therapies for cancer treatment.
Collapse
Affiliation(s)
- Qi Tang
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Jing Liu
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Cheng-Bin Wang
- Key Lab of Resource Chemistry of MOE & Shanghai Key Lab of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, P. R. China.
| | - Lu An
- Key Lab of Resource Chemistry of MOE & Shanghai Key Lab of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, P. R. China.
| | - Hai-Lin Zhang
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Yi Wang
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Bing Ren
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Shi-Ping Yang
- Key Lab of Resource Chemistry of MOE & Shanghai Key Lab of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, P. R. China.
| | - Jin-Gang Liu
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| |
Collapse
|
16
|
Zhuang Y, Han S, Fang Y, Huang H, Wu J. Multidimensional transitional metal-actuated nanoplatforms for cancer chemodynamic modulation. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214360] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Lazarus L, Dederich CT, Anderson SN, Benninghoff AD, Berreau LM. Flavonol-Based Carbon Monoxide Delivery Molecule with Endoplasmic Reticulum, Mitochondria, And Lysosome Localization. ACS Med Chem Lett 2022; 13:236-242. [PMID: 35178180 PMCID: PMC8842101 DOI: 10.1021/acsmedchemlett.1c00595] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/26/2022] [Indexed: 12/14/2022] Open
Abstract
Light-triggered carbon monoxide (CO) delivery molecules are of significant current interest for evaluating the role of CO in biology and as potential therapeutics. Herein we report the first example of a metal free CO delivery molecule that can be tracked via confocal microscopy at low micromolar concentrations in cells prior to CO release. The NEt2-appended extended flavonol (4) localizes to the endoplasmic reticulum, mitochondria, and lysosomes. Subcellular localization of 4 results in CO-induced toxicity effects that are distinct as compared to a nonlocalized analog. Anti-inflammatory effects of 4, as measured by TNF-α suppression, occur at the nanomolar level in the absence of CO release, and are enhanced with visible-light-induced CO release. Overall, the highly trackable nature of 4 enables studies of the biological effects of both a localized flavonol and CO release at low micromolar to nanomolar concentrations.
Collapse
Affiliation(s)
- Livia
S. Lazarus
- Department
of Chemistry and Biochemistry, Utah State
University, Logan, Utah 84322-0300, United States
| | - C. Taylor Dederich
- Department
of Chemistry and Biochemistry, Utah State
University, Logan, Utah 84322-0300, United States
| | - Stephen N. Anderson
- Department
of Chemistry and Biochemistry, Utah State
University, Logan, Utah 84322-0300, United States
| | - Abby D. Benninghoff
- Department
of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, Utah 84322-4815, United States
| | - Lisa M. Berreau
- Department
of Chemistry and Biochemistry, Utah State
University, Logan, Utah 84322-0300, United States,
| |
Collapse
|
18
|
Jia C, Guo Y, Wu FG. Chemodynamic Therapy via Fenton and Fenton-Like Nanomaterials: Strategies and Recent Advances. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2103868. [PMID: 34729913 DOI: 10.1002/smll.202103868] [Citation(s) in RCA: 315] [Impact Index Per Article: 105.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Chemodynamic therapy (CDT), a novel cancer therapeutic strategy defined as the treatment using Fenton or Fenton-like reaction to produce •OH in the tumor region, was first proposed by Bu, Shi, and co-workers in 2016. Recently, with the rapid development of Fenton and Fenton-like nanomaterials, CDT has attracted tremendous attention because of its unique advantages: 1) It is tumor-selective with low side effects; 2) the CDT process does not depend on external field stimulation; 3) it can modulate the hypoxic and immunosuppressive tumor microenvironment; 4) the treatment cost of CDT is low. In addition to the Fe-involved CDT strategies, the Fenton-like reaction-mediated CDT strategies have also been proposed, which are based on many other metal elements including copper, manganese, cobalt, titanium, vanadium, palladium, silver, molybdenum, ruthenium, tungsten, cerium, and zinc. Moreover, CDT has been combined with other therapies like chemotherapy, radiotherapy, phototherapy, sonodynamic therapy, and immunotherapy for achieving enhanced anticancer effects. Besides, there have also been studies that extend the application of CDT to the antibacterial field. This review introduces the latest advancements in the nanomaterials-involved CDT from 2018 to the present and proposes the current limitations as well as future research directions in the related field.
Collapse
Affiliation(s)
- Chenyang Jia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Yuxin Guo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| |
Collapse
|
19
|
Liu R, Peng Y, Lu L, Peng S, Chen T, Zhan M. Near-infrared light-triggered nano-prodrug for cancer gas therapy. J Nanobiotechnology 2021; 19:443. [PMID: 34949202 PMCID: PMC8697457 DOI: 10.1186/s12951-021-01078-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/11/2021] [Indexed: 02/06/2023] Open
Abstract
Gas therapy (GT) has attracted increasing attention in recent years as a new cancer treatment method with favorable therapeutic efficacy and reduced side effects. Several gas molecules, such as nitric oxide (NO), carbon monoxide (CO), hydrogen (H2), hydrogen sulfide (H2S) and sulfur dioxide (SO2), have been employed to treat cancers by directly killing tumor cells, enhancing drug accumulation in tumors or sensitizing tumor cells to chemotherapy, photodynamic therapy or radiotherapy. Despite the great progress of gas therapy, most gas molecules are prone to nonspecific distribution when administered systemically, resulting in strong toxicity to normal tissues. Therefore, how to deliver and release gas molecules to targeted tissues on demand is the main issue to be considered before clinical applications of gas therapy. As a specific and noninvasive stimulus with deep penetration, near-infrared (NIR) light has been widely used to trigger the cleavage and release of gas from nano-prodrugs via photothermal or photodynamic effects, achieving the on-demand release of gas molecules with high controllability. In this review, we will summarize the recent progress in cancer gas therapy triggered by NIR light. Furthermore, the prospects and challenges in this field are presented, with the hope for ongoing development.
Collapse
Affiliation(s)
- Runcong Liu
- Zhuhai Precision Medical Center, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Hospital Affiliated With Jinan University (Zhuhai People's Hospital), Jinan University, Zhuhai, 519000, Guangdong, P.R. China
| | - Yongjun Peng
- Zhuhai Precision Medical Center, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Hospital Affiliated With Jinan University (Zhuhai People's Hospital), Jinan University, Zhuhai, 519000, Guangdong, P.R. China
| | - Ligong Lu
- Zhuhai Precision Medical Center, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Hospital Affiliated With Jinan University (Zhuhai People's Hospital), Jinan University, Zhuhai, 519000, Guangdong, P.R. China
| | - Shaojun Peng
- Zhuhai Precision Medical Center, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Hospital Affiliated With Jinan University (Zhuhai People's Hospital), Jinan University, Zhuhai, 519000, Guangdong, P.R. China.
| | - Tianfeng Chen
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China.
| | - Meixiao Zhan
- Zhuhai Precision Medical Center, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Hospital Affiliated With Jinan University (Zhuhai People's Hospital), Jinan University, Zhuhai, 519000, Guangdong, P.R. China.
| |
Collapse
|