1
|
Reimers J, Mikulics M, Lipinska-Chwalek M, Zeller-Plumhoff B, Kibkalo L, Kruth M, Willumeit-Römer R, Mayer J, Hardtdegen HH. Towards Correlative Raman Spectroscopy-STEM Investigations Performed on a Magnesium-Silver Alloy FIB Lamella. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:430. [PMID: 40137603 PMCID: PMC11944808 DOI: 10.3390/nano15060430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/13/2025] [Accepted: 02/27/2025] [Indexed: 03/29/2025]
Abstract
In this study, a lamella prepared using focused ion beam (FIB) milling from a magnesium-silver alloy wire was investigated. The wire, intended for biomedical applications, was initially degraded in simulated body fluid (SBF) under physiological conditions. Raman spectroscopy was performed across the entire FIB specimen and the results were correlated with findings from scanning transmission electron microscopy (STEM). Our micro-Raman analysis identified chemical compounds at distinct regions within the specimen. Dominant Raman modes at ~1350 cm-1 and ~1590 cm-1, likely derived from elemental carbon from the FIB protection layer, were observed. Additionally, modes indicative of the alloy's interaction with SBF, attributable to the constituents of SBF, were detected. Notably, Raman modes at ~3650 cm-1 corresponding to the OH stretching mode were identified in the targeted areas of the lamella, highlighting the chemical interaction between magnesium (Mg) and the SBF. The micro-Raman mapping images showed localized Mg(OH)2 distributions, which correlated strongly with the STEM analyses. This study underscores the effectiveness of correlating Raman spectroscopy, revealing chemical changes and STEM, capturing the corresponding microstructural changes. The combined approach is crucial for a deeper understanding of material degradation and reactivity in biocompatible alloys under physiological conditions and advances the characterization of biocompatible materials in physiological environments.
Collapse
Affiliation(s)
- Jan Reimers
- Ernst Ruska-Centre, Forschungszentrum Jülich, 52425 Jülich, Germany; (J.R.); (M.L.-C.); (L.K.); (M.K.); (J.M.)
- Institut für Metallische Biomaterialien, Helmholtz-Zentrum Hereon GmbH, Max-Planck Str. 1, 21502 Geesthacht, Germany; (B.Z.-P.); (R.W.-R.)
| | - Martin Mikulics
- Ernst Ruska-Centre, Forschungszentrum Jülich, 52425 Jülich, Germany; (J.R.); (M.L.-C.); (L.K.); (M.K.); (J.M.)
| | - Marta Lipinska-Chwalek
- Ernst Ruska-Centre, Forschungszentrum Jülich, 52425 Jülich, Germany; (J.R.); (M.L.-C.); (L.K.); (M.K.); (J.M.)
| | - Berit Zeller-Plumhoff
- Institut für Metallische Biomaterialien, Helmholtz-Zentrum Hereon GmbH, Max-Planck Str. 1, 21502 Geesthacht, Germany; (B.Z.-P.); (R.W.-R.)
- Data-Driven Analysis and Design of Materials, Fakultät für Maschinenbau und Schiffstechnik, Universität Rostock, Albert-Einstein-Straße 2, 18059 Rostock, Germany
| | - Lidia Kibkalo
- Ernst Ruska-Centre, Forschungszentrum Jülich, 52425 Jülich, Germany; (J.R.); (M.L.-C.); (L.K.); (M.K.); (J.M.)
| | - Maximilian Kruth
- Ernst Ruska-Centre, Forschungszentrum Jülich, 52425 Jülich, Germany; (J.R.); (M.L.-C.); (L.K.); (M.K.); (J.M.)
| | - Regine Willumeit-Römer
- Institut für Metallische Biomaterialien, Helmholtz-Zentrum Hereon GmbH, Max-Planck Str. 1, 21502 Geesthacht, Germany; (B.Z.-P.); (R.W.-R.)
| | - Joachim Mayer
- Ernst Ruska-Centre, Forschungszentrum Jülich, 52425 Jülich, Germany; (J.R.); (M.L.-C.); (L.K.); (M.K.); (J.M.)
- Central Facility for Electron Microscopy (GFE), RWTH Aachen University, 52074 Aachen, Germany
| | - Hilde Helen Hardtdegen
- Ernst Ruska-Centre, Forschungszentrum Jülich, 52425 Jülich, Germany; (J.R.); (M.L.-C.); (L.K.); (M.K.); (J.M.)
| |
Collapse
|
2
|
Berger L, Dolert S, Akhmetshina T, Burkhard JP, Tegelkamp M, Rich A, Rubin W, Darwiche S, Kuhn G, Schäublin R, von Rechenberg B, Schaller B, Nuss K, Löffler J. In vivo performance of lean bioabsorbable Mg-Ca alloy X0 and comparison to WE43: Influence of surface modification and alloying content. Bioact Mater 2025; 44:501-515. [PMID: 39559425 PMCID: PMC11570742 DOI: 10.1016/j.bioactmat.2024.09.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 11/20/2024] Open
Abstract
Magnesium alloys present a compelling prospect for absorbable implant materials in orthopedic and trauma surgery. This study evaluates an ultra-high purity, lean magnesium-calcium alloy (X0), both with and without plasma electrolytic oxidation (PEO) surface modification, in comparison to a clinically utilized WE43 magnesium alloy. It is shown that the mechanical properties of X0 can be tuned to yield a high-strength material suitable for bone screws (with an ultimate tensile strength of 336 MPa) or a ductile material appropriate for intraoperatively deformable plates (with an elongation at fracture of 24 %). Four plate-screw combinations were implanted onto the pelvic bones of six sheep without osteotomy for 8 weeks. Subsequent analysis utilized histology, micro-computed tomography, and light and electron microscopy. All implants exhibited signs of degradation and hydrogen-gas evolution, with PEO-coated X0 implants demonstrating the least volume loss and the most substantial new-bone formation on the implant surface and surrounding cancellous bone. Furthermore, the osteoconductive properties of the X0 implants, when uncoated, exceeded those of the uncoated WE43 implants, as evidenced by greater new-bone formation on the surface. This osteoconductivity was amplified with PEO surface modification, which mitigated gas evolution and enhanced osseointegration, encouraging bone apposition in the cancellous bone vicinity. These findings thus indicate that PEO-coated X0 implants hold substantial promise as a biocompatible and absorbable implant material.
Collapse
Affiliation(s)
- L. Berger
- Laboratory of Metal Physics and Technology, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| | - S. Dolert
- Musculoskeletal Research Unit, Vetsuisse Faculty ZH, University of Zurich, 8057 Zurich, Switzerland
| | - T. Akhmetshina
- Laboratory of Metal Physics and Technology, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| | - J.-P. Burkhard
- Department of Cranio-Maxillofacial Surgery, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - M. Tegelkamp
- Musculoskeletal Research Unit, Vetsuisse Faculty ZH, University of Zurich, 8057 Zurich, Switzerland
| | - A.M. Rich
- Laboratory of Metal Physics and Technology, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| | - W. Rubin
- Laboratory of Metal Physics and Technology, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| | - S. Darwiche
- Musculoskeletal Research Unit, Vetsuisse Faculty ZH, University of Zurich, 8057 Zurich, Switzerland
- Competence Center for Applied Biotechnology and Molecular Medicine (CABMM), Vetsuisse Faculty ZH, University of Zurich, 8057 Zurich, Switzerland
| | - G. Kuhn
- Institute for Biomechanics, Department of Health Sciences and Technology, ETH Zurich, 8093 Zurich, Switzerland
| | - R.E. Schäublin
- Laboratory of Metal Physics and Technology, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| | - B. von Rechenberg
- Musculoskeletal Research Unit, Vetsuisse Faculty ZH, University of Zurich, 8057 Zurich, Switzerland
- Competence Center for Applied Biotechnology and Molecular Medicine (CABMM), Vetsuisse Faculty ZH, University of Zurich, 8057 Zurich, Switzerland
| | - B. Schaller
- Department of Cranio-Maxillofacial Surgery, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - K.M. Nuss
- Musculoskeletal Research Unit, Vetsuisse Faculty ZH, University of Zurich, 8057 Zurich, Switzerland
- Competence Center for Applied Biotechnology and Molecular Medicine (CABMM), Vetsuisse Faculty ZH, University of Zurich, 8057 Zurich, Switzerland
| | - J.F. Löffler
- Laboratory of Metal Physics and Technology, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
3
|
Rich A, Rubin W, Rickli S, Akhmetshina T, Cossu J, Berger L, Magno M, Nuss K, Schaller B, Löffler J. Development of an implantable sensor system for in vivo strain, temperature, and pH monitoring: comparative evaluation of titanium and resorbable magnesium plates. Bioact Mater 2025; 43:603-618. [PMID: 39498360 PMCID: PMC11532740 DOI: 10.1016/j.bioactmat.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 11/07/2024] Open
Abstract
Biodegradable magnesium is a highly desired material for fracture fixation implants because of its good mechanical properties and ability to completely dissolve in the body over time, eliminating the need for a secondary surgery to remove the implant. Despite extensive research on these materials, there remains a dearth of information regarding critical factors that affect implant performance in clinical applications, such as the in vivo pH and mechanical loading conditions. We developed a measurement system with implantable strain, temperature, pH and motion sensors to characterize magnesium and titanium plates, fixating bilateral zygomatic arch osteotomies in three Swiss alpine sheep for eight weeks. pH 1-2 mm above titanium plates was 6.6 ± 0.4, while for magnesium plates it was slightly elevated to 7.4 ± 0.8. Strains on magnesium plates were higher than on titanium plates, possibly due to the lower Young's modulus of magnesium. One magnesium plate experienced excessive loading, which led to plate failure within 31 h. This is, to our knowledge, the first in vivo strain, temperature, and pH data recorded for magnesium implants used for fracture fixation. These results provide insight into magnesium degradation and its influence on the in vivo environment, and may help to improve material and implant design for future clinical applications.
Collapse
Affiliation(s)
- A.M. Rich
- Laboratory of Metal Physics and Technology, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| | - W. Rubin
- Laboratory of Metal Physics and Technology, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| | - S. Rickli
- Laboratory of Metal Physics and Technology, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
- Department of Information Technology and Electrical Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - T. Akhmetshina
- Laboratory of Metal Physics and Technology, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| | - J. Cossu
- Laboratory of Metal Physics and Technology, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| | - L. Berger
- Laboratory of Metal Physics and Technology, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| | - M. Magno
- Department of Information Technology and Electrical Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - K.M. Nuss
- Musculoskeletal Research Unit, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | - B. Schaller
- Inselspital, Bern University Hospital, 3010 Bern, Switzerland
| | - J.F. Löffler
- Laboratory of Metal Physics and Technology, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
4
|
Willbold E, Kalla K, Janning C, Bartsch I, Bobe K, Brauneis M, Haupt M, Reebmann M, Schwarze M, Remennik S, Shechtman D, Nellesen J, Tillmann W, Witte F. Dissolving magnesium hydroxide implants enhance mainly cancellous bone formation whereas degrading RS66 implants lead to prominent periosteal bone formation in rabbits. Acta Biomater 2024; 185:73-84. [PMID: 39053818 DOI: 10.1016/j.actbio.2024.07.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/20/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Bone fractures often require internal fixation using plates or screws. Normally, these devices are made of permanent metals like titanium providing necessary strength and biocompatibility. However, they can also cause long-term complications and may require removal. An interesting alternative are biocompatible degradable devices, which provide sufficient initial strength and then degrade gradually. Among other materials, biodegradable magnesium alloys have been developed for craniofacial and orthopaedic applications. Previously, we tested implants made of magnesium hydroxide and RS66, a strong and ductile ZK60-based alloy, with respect to biocompatibility and degradation behaviour. Here, we compare the effects of dissolving magnesium hydroxide and RS66 cylinders on bone regeneration and bone growth in rabbit condyles using microtomographical and histological analysis. Both magnesium hydroxide and RS66 induced a considerable osteoblastic activity leading to distinct but different spatio-temporal patterns of cancellous and periosteal bone growth. Dissolving RS66 implants induced a prominent periosteal bone formation on the medial surface of the original condyle whereas dissolving magnesium hydroxide implants enhance mainly cancellous bone formation. Especially periosteal bone formation was completed after 6 and 8 weeks, respectively. The observed bone promoting functions are in line with previous reports of magnesium stimulating cancellous and periosteal bone growth and possible underlying signalling mechanisms are discussed. STATEMENT OF SIGNIFICANCE: Biodegradable magnesium based implants are promising candidates for use in orthopedic and traumatic surgery. Although these implants are in the scientific focus for a long time, comparatively little is known about the interactions between degrading magnesium and the biological environment. In this work, we investigated the effects of two degrading cylindrical magnesium implants (MgOH2 and RS66) both on bone regeneration and on bone growth. Both MgOH2 and RS66 induce remarkable osteoblastic activities, however with different spatio-temporal patterns regarding cancellous and periosteal bone growth. We hypothesize that degradation products do not diffuse directionless away, but are transported by the restored blood flow in specific spatial patterns which is also dependent on the used surgical technique.
Collapse
Affiliation(s)
- Elmar Willbold
- Laboratory for Biomechanics and Biomaterials, Department of Orthopaedic Surgery, Hannover Medical School, Anna-von-Borries-Straße 1-7, 30625 Hannover, Germany.
| | - Katharina Kalla
- Laboratory for Biomechanics and Biomaterials, Department of Orthopaedic Surgery, Hannover Medical School, Anna-von-Borries-Straße 1-7, 30625 Hannover, Germany
| | - Carla Janning
- Laboratory for Biomechanics and Biomaterials, Department of Orthopaedic Surgery, Hannover Medical School, Anna-von-Borries-Straße 1-7, 30625 Hannover, Germany
| | - Ivonne Bartsch
- Laboratory for Biomechanics and Biomaterials, Department of Orthopaedic Surgery, Hannover Medical School, Anna-von-Borries-Straße 1-7, 30625 Hannover, Germany
| | - Katharina Bobe
- Laboratory for Biomechanics and Biomaterials, Department of Orthopaedic Surgery, Hannover Medical School, Anna-von-Borries-Straße 1-7, 30625 Hannover, Germany
| | - Maria Brauneis
- Laboratory for Biomechanics and Biomaterials, Department of Orthopaedic Surgery, Hannover Medical School, Anna-von-Borries-Straße 1-7, 30625 Hannover, Germany
| | - Maike Haupt
- Laboratory for Biomechanics and Biomaterials, Department of Orthopaedic Surgery, Hannover Medical School, Anna-von-Borries-Straße 1-7, 30625 Hannover, Germany
| | - Mattias Reebmann
- Laboratory for Biomechanics and Biomaterials, Department of Orthopaedic Surgery, Hannover Medical School, Anna-von-Borries-Straße 1-7, 30625 Hannover, Germany
| | - Michael Schwarze
- Laboratory for Biomechanics and Biomaterials, Department of Orthopaedic Surgery, Hannover Medical School, Anna-von-Borries-Straße 1-7, 30625 Hannover, Germany
| | - Sergei Remennik
- The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Dan Shechtman
- Department of Materials Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Jens Nellesen
- Institute of Materials Engineering, Technische Universität Dortmund, Leonhard-Euler-Straße 2, 44227 Dortmund, Germany
| | - Wolfgang Tillmann
- Institute of Materials Engineering, Technische Universität Dortmund, Leonhard-Euler-Straße 2, 44227 Dortmund, Germany
| | - Frank Witte
- Charité - Universitätsmedizin Berlin, Department of Prosthodontics, Geriatric Dentistry and Craniomandibular Disorders, Aßmannshauser Straße 4-6, 14197, Berlin, Germany
| |
Collapse
|
5
|
Yusa Y, Shimizu Y, Hayashi M, Aizawa T, Nakahara T, Ueno T, Sato A, Miura C, Yamamoto A, Imai Y. Effect of hematoma on early degradation behavior of magnesium after implantation. Biomed Mater 2024; 19:055043. [PMID: 39151472 DOI: 10.1088/1748-605x/ad7085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/16/2024] [Indexed: 08/19/2024]
Abstract
The corrosion of magnesium (Mg)-based bioabsorbable implanting devices is influenced by implantation environment which dynamically changes by biological response including wound healing. Understanding the corrosion mechanisms along the healing process is essential for the development of Mg-based devices. In this study, a hematoma model was created in a rat femur to analyze Mg corrosion with hematoma in the early stage of implantation. Pure Mg specimen (99.9%,ϕ1.2 × 6 mm) was implanted in rat femur under either hematoma or non-hematoma conditions. After a designated period of implantation, the specimens were collected and weighed. The insoluble salts formed on the specimen surfaces were analyzed using scanning electron microscopy, energy-dispersive x-ray spectroscopy, and Raman spectroscopy on days 1, 3, and 7. The results indicate that hematomas promote Mg corrosion and change the insoluble salt precipitation. The weight loss of the hematoma group (27.31 ± 5.91 µg mm-2) was significantly larger than that of the non-hematoma group (14.77 ± 3.28 µg mm-2) on day 7. In the non-hematoma group, carbonate and phosphate were detected even on day 1, but the only latter was detected on day 7. In the hematoma group, hydroxide was detected on day 1, followed by the formation of carbonate and phosphate on days 3 and 7. The obtained results suggest the hypoxic and acidic microenvironment in hematomas accelerates the Mg corrosion immediately after implantation, and the subsequent hematoma resorption process leads to the formation of phosphate and carbonate with organic molecules. This study revealed the risk of hematomas as an acceleration factor of the corrosion of Mg-based devices leading to the early implant failure. It is important to consider this risk in the design of Mg-based devices and to optimize surgical procedures controlling hemorrhage at implantation and reducing unexpected bleeding after surgery.
Collapse
Affiliation(s)
- Yu Yusa
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Yoshinaka Shimizu
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
- Central Research Laboratories, Nihon Parkerizing Co., Ltd, 4-5-1 Ohkami, Hiratsuka, Kanagawa 254-0012, Japan
| | - Masanobu Hayashi
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Takayuki Aizawa
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Takahiro Nakahara
- Central Research Laboratories, Nihon Parkerizing Co., Ltd, 4-5-1 Ohkami, Hiratsuka, Kanagawa 254-0012, Japan
| | - Takahiro Ueno
- Central Research Laboratories, Nihon Parkerizing Co., Ltd, 4-5-1 Ohkami, Hiratsuka, Kanagawa 254-0012, Japan
| | - Akimitsu Sato
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Chieko Miura
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Akiko Yamamoto
- Research Center for Functional Materials, National Institute for Materials Sciences, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Yoshimichi Imai
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| |
Collapse
|
6
|
Kwesiga MP, Gillette AA, Razaviamri F, Plank ME, Canull AL, Alesch Z, He W, Lee BP, Guillory RJ. Biodegradable magnesium materials regulate ROS-RNS balance in pro-inflammatory macrophage environment. Bioact Mater 2023; 23:261-273. [PMID: 36439083 PMCID: PMC9678810 DOI: 10.1016/j.bioactmat.2022.10.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/21/2022] [Accepted: 10/11/2022] [Indexed: 11/19/2022] Open
Abstract
The relationship between reactive oxygen and nitrogen species (ROS-RNS) secretion and the concomitant biocorrosion of degradable magnesium (Mg) materials is poorly understood. We found that Mg foils implanted short term in vivo (24 h) displayed large amounts of proinflammatory F4/80+/iNOS + macrophages at the interface. We sought to investigate the interplay between biodegrading Mg materials (98.6% Mg, AZ31 & AZ61) and macrophages (RAW 264.7) stimulated with lipopolysaccharide (RAW 264.7LPS) to induce ROS-RNS secretion. To test how these proinflammatory ROS-RNS secreting cells interact with Mg corrosion in vitro, Mg and AZ61 discs were suspended approximately 2 mm above a monolayer of RAW 264.7 cells, either with or without LPS. The surfaces of both materials showed acute (24 h) changes when incubated in the proinflammatory RAW 264.7LPS environment. Mg discs incubated with RAW 264.7LPS macrophages showed greater corrosion pitting, while AZ61 showed morphological and elemental bulk product changes via scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX). X-ray photoelectron spectroscopy (XPS) analysis showed a reduction in the Ca/P ratio of the surface products for AZ61 disc incubated with RAW 264.7LPS, but not the Mg discs. Moreover, RAW 264.7LPS macrophages were found to be more viable in the acute biodegradative environment generated by Mg materials, as demonstrated by calcein-AM and cleaved (active) caspase-3 staining (CC3). LPS stimulation caused an increase in ROS-RNS, and a decrease in antioxidant peroxidase activity. Mg and AZ61 were found to change this ROS-RNS balance, independently of physiological antioxidant mechanisms. The findings highlight the complexity of the cellular driven acute inflammatory responses to different biodegradable Mg, and how it can potentially affect performance of these materials.
Collapse
|
7
|
Kovacevic S, Ali W, Martínez-Pañeda E, LLorca J. Phase-field modeling of pitting and mechanically-assisted corrosion of Mg alloys for biomedical applications. Acta Biomater 2023; 164:641-658. [PMID: 37068554 DOI: 10.1016/j.actbio.2023.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/21/2023] [Accepted: 04/07/2023] [Indexed: 04/19/2023]
Abstract
A phase-field model is developed to simulate the corrosion of Mg alloys in body fluids. The model incorporates both Mg dissolution and the transport of Mg ions in solution, naturally predicting the transition from activation-controlled to diffusion-controlled bio-corrosion. In addition to uniform corrosion, the presented framework captures pitting corrosion and accounts for the synergistic effect of aggressive environments and mechanical loading in accelerating corrosion kinetics. The model applies to arbitrary 2D and 3D geometries with no special treatment for the evolution of the corrosion front, which is described using a diffuse interface approach. Experiments are conducted to validate the model and a good agreement is attained against in vitro measurements on Mg wires. The potential of the model to capture mechano-chemical effects during corrosion is demonstrated in case studies considering Mg wires in tension and bioabsorbable coronary Mg stents subjected to mechanical loading. The proposed methodology can be used to assess the in vitro and in vivo service life of Mg-based biomedical devices and optimize the design taking into account the effect of mechanical deformation on the corrosion rate. The model has the potential to advocate further development of Mg alloys as a biodegradable implant material for biomedical applications. STATEMENT OF SIGNIFICANCE: A physically-based model is developed to simulate the corrosion of bioabsorbable metals in environments that resemble biological fluids. The model captures pitting corrosion and incorporates the role of mechanical fields in enhancing the corrosion of bioabsorbable metals. Model predictions are validated against dedicated in vitro corrosion experiments on Mg wires. The potential of the model to capture mechano-chemical effects is demonstrated in representative examples. The simulations show that the presence of mechanical fields leads to the formation of cracks accelerating the failure of Mg wires, whereas pitting severely compromises the structural integrity of coronary Mg stents. This work extends phase-field modeling to bioengineering and provides a mechanistic tool for assessing the service life of bioabsorbable metallic biomedical devices.
Collapse
Affiliation(s)
- Sasa Kovacevic
- Department of Civil and Environmental Engineering, Imperial College London, London SW7 2AZ, UK.
| | - Wahaaj Ali
- IMDEA Materials Institute, C/Eric Kandel 2, Getafe 28906, Madrid, Spain; Department of Material Science and Engineering, Universidad Carlos III de Madrid, Leganes 28911, Madrid, Spain
| | - Emilio Martínez-Pañeda
- Department of Civil and Environmental Engineering, Imperial College London, London SW7 2AZ, UK.
| | - Javier LLorca
- IMDEA Materials Institute, C/Eric Kandel 2, Getafe 28906, Madrid, Spain; Department of Materials Science, Polytechnic University of Madrid, E. T. S. de Ingenieros de Caminos, 28040 Madrid, Spain.
| |
Collapse
|
8
|
Al-Jeda M, Mena-Morcillo E, Chen A. Micro-Sized pH Sensors Based on Scanning Electrochemical Probe Microscopy. MICROMACHINES 2022; 13:2143. [PMID: 36557442 PMCID: PMC9785626 DOI: 10.3390/mi13122143] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Monitoring pH changes at the micro/nano scale is essential to gain a fundamental understanding of surface processes. Detection of local pH changes at the electrode/electrolyte interface can be achieved through the use of micro-/nano-sized pH sensors. When combined with scanning electrochemical microscopy (SECM), these sensors can provide measurements with high spatial resolution. This article reviews the state-of-the-art design and fabrication of micro-/nano-sized pH sensors, as well as their applications based on SECM. Considerations for selecting sensing probes for use in biological studies, corrosion science, in energy applications, and for environmental research are examined. Different types of pH sensitive probes are summarized and compared. Finally, future trends and emerging applications of micro-/nano-sized pH sensors are discussed.
Collapse
Affiliation(s)
| | | | - Aicheng Chen
- Correspondence: ; Tel.: +1-519-824-4120 (ext. 54764)
| |
Collapse
|
9
|
Vaghefinazari B, Wierzbicka E, Visser P, Posner R, Arrabal R, Matykina E, Mohedano M, Blawert C, Zheludkevich ML, Lamaka SV. Chromate-Free Corrosion Protection Strategies for Magnesium Alloys-A Review: Part III-Corrosion Inhibitors and Combining Them with Other Protection Strategies. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15238489. [PMID: 36499985 PMCID: PMC9736638 DOI: 10.3390/ma15238489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/10/2022] [Accepted: 11/20/2022] [Indexed: 05/09/2023]
Abstract
Owing to the unique active corrosion protection characteristic of hexavalent chromium-based systems, they have been projected to be highly effective solutions against the corrosion of many engineering metals. However, hexavalent chromium, rendered a highly toxic and carcinogenic substance, is being phased out of industrial applications. Thus, over the past few years, extensive and concerted efforts have been made to develop environmentally friendly alternative technologies with comparable or better corrosion protection performance to that of hexavalent chromium-based technologies. The introduction of corrosion inhibitors to a coating system on magnesium surface is a cost-effective approach not only for improving the overall corrosion protection performance, but also for imparting active inhibition during the service life of the magnesium part. Therefore, in an attempt to resemble the unique active corrosion protection characteristic of the hexavalent chromium-based systems, the incorporation of inhibitors to barrier coatings on magnesium alloys has been extensively investigated. In Part III of the Review, several types of corrosion inhibitors for magnesium and its alloys are reviewed. A discussion of the state-of-the-art inhibitor systems, such as iron-binding inhibitors and inhibitor mixtures, is presented, and perspective directions of research are outlined, including in silico or computational screening of corrosion inhibitors. Finally, the combination of corrosion inhibitors with other corrosion protection strategies is reviewed. Several reported highly protective coatings with active inhibition capabilities stemming from the on-demand activation of incorporated inhibitors can be considered a promising replacement for hexavalent chromium-based technologies, as long as their deployment is adequately addressed.
Collapse
Affiliation(s)
- Bahram Vaghefinazari
- Institute of Surface Science, Helmholtz-Zentrum Hereon, 21502 Geesthacht, Germany
| | - Ewa Wierzbicka
- Departamento de Ingeniería Química y de Materiales, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Department of Functional Materials and Hydrogen Technology, Faculty of Advanced Technologies and Chemistry, Military University of Technology, 2 Kaliskiego Street, 00-908 Warsaw, Poland
| | | | - Ralf Posner
- Henkel AG & Co. KGaA, 40589 Düsseldorf, Germany
| | - Raúl Arrabal
- Departamento de Ingeniería Química y de Materiales, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Endzhe Matykina
- Departamento de Ingeniería Química y de Materiales, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Marta Mohedano
- Departamento de Ingeniería Química y de Materiales, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Carsten Blawert
- Institute of Surface Science, Helmholtz-Zentrum Hereon, 21502 Geesthacht, Germany
| | | | - Sviatlana V. Lamaka
- Institute of Surface Science, Helmholtz-Zentrum Hereon, 21502 Geesthacht, Germany
- Correspondence:
| |
Collapse
|
10
|
Zhang H, Zhang W, Qiu H, Zhang G, Li X, Qi H, Guo J, Qian J, Shi X, Gao X, Shi D, Zhang D, Gao R, Ding J. A Biodegradable Metal-Polymer Composite Stent Safe and Effective on Physiological and Serum-Containing Biomimetic Conditions. Adv Healthc Mater 2022; 11:e2201740. [PMID: 36057108 DOI: 10.1002/adhm.202201740] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/25/2022] [Indexed: 01/28/2023]
Abstract
The new-generation coronary stents are expected to be biodegradable, and then the biocompatibility along with biodegradation becomes more challenging. It is a critical issue to choose appropriate biomimetic conditions to evaluate biocompatibility. Compared with other candidates for biodegradable stents, iron-based materials are of high mechanical strength, yet have raised more concerns about biodegradability and biocompatibility. Herein, a metal-polymer composite strategy is applied to accelerate the degradation of iron-based stents in vitro and in a porcine model. Furthermore, it is found that serum, the main environment of vascular stents, ensured the safety of iron corrosion through its antioxidants. This work highlights the importance of serum, particularly albumin, for an in vitro condition mimicking blood-related physiological condition, when reactive oxygen species, inflammatory response, and neointimal hyperplasia are concerned. The resultant metal-polymer composite stent is implanted into a patient in clinical research via interventional treatment, and the follow-up confirms its safety, efficacy, and appropriate biodegradability.
Collapse
Affiliation(s)
- Hongjie Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Wanqian Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China.,National and Local Joint Engineering Laboratory of Interventional Medical Biotechnology and System, Biotyx Medical (Shenzhen) Co., Ltd, Lifetech Scientific (Shenzhen) Co. Ltd., Shenzhen, 518110, P. R. China
| | - Hong Qiu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, P. R. China
| | - Gui Zhang
- National and Local Joint Engineering Laboratory of Interventional Medical Biotechnology and System, Biotyx Medical (Shenzhen) Co., Ltd, Lifetech Scientific (Shenzhen) Co. Ltd., Shenzhen, 518110, P. R. China
| | - Xin Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Haiping Qi
- National and Local Joint Engineering Laboratory of Interventional Medical Biotechnology and System, Biotyx Medical (Shenzhen) Co., Ltd, Lifetech Scientific (Shenzhen) Co. Ltd., Shenzhen, 518110, P. R. China
| | - Jingzhen Guo
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Jie Qian
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, P. R. China
| | - Xiaoli Shi
- National and Local Joint Engineering Laboratory of Interventional Medical Biotechnology and System, Biotyx Medical (Shenzhen) Co., Ltd, Lifetech Scientific (Shenzhen) Co. Ltd., Shenzhen, 518110, P. R. China
| | - Xian Gao
- National and Local Joint Engineering Laboratory of Interventional Medical Biotechnology and System, Biotyx Medical (Shenzhen) Co., Ltd, Lifetech Scientific (Shenzhen) Co. Ltd., Shenzhen, 518110, P. R. China
| | - Daokun Shi
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Deyuan Zhang
- National and Local Joint Engineering Laboratory of Interventional Medical Biotechnology and System, Biotyx Medical (Shenzhen) Co., Ltd, Lifetech Scientific (Shenzhen) Co. Ltd., Shenzhen, 518110, P. R. China
| | - Runlin Gao
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, P. R. China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| |
Collapse
|
11
|
Rahimi E, Imani A, Lekka M, Andreatta F, Gonzalez-Garcia Y, Mol JMC, Asselin E, Fedrizzi L. Morphological and Surface Potential Characterization of Protein Nanobiofilm Formation on Magnesium Alloy Oxide: Their Role in Biodegradation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10854-10866. [PMID: 35994730 PMCID: PMC9454254 DOI: 10.1021/acs.langmuir.2c01540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/15/2022] [Indexed: 06/15/2023]
Abstract
The formation of a protein nanobiofilm on the surface of degradable biomaterials such as magnesium (Mg) and its alloys influences metal ion release, cell adhesion/spreading, and biocompatibility. During the early stage of human body implantation, competition and interaction between inorganic species and protein molecules result in a complex film containing Mg oxide and a protein layer. This film affects the electrochemical properties of the metal surface, the protein conformational arrangement, and the electronic properties of the protein/Mg oxide interface. In this study, we discuss the impact of various simulated body fluids, including sodium chloride (NaCl), phosphate-buffered saline (PBS), and Hanks' solutions on protein adsorption, electrochemical interactions, and electrical surface potential (ESP) distribution at the adsorbed protein/Mg oxide interface. After 10 min of immersion in NaCl, atomic force microscopy (AFM) and scanning Kelvin probe force microscopy (SKPFM) showed a higher surface roughness related to enhanced degradation and lower ESP distribution on a Mg-based alloy than those in other solutions. Furthermore, adding bovine serum albumin (BSA) to all solutions caused a decline in the total surface roughness and ESP magnitude on the Mg alloy surface, particularly in the NaCl electrolyte. Using SKPFM surface analysis, we detected a protein nanobiofilm (∼10-20 nm) with an aggregated and/or fibrillary morphology only on the Mg surface exposed in Hanks' and PBS solutions; these surfaces had a lower ESP value than the oxide layer.
Collapse
Affiliation(s)
- Ehsan Rahimi
- Polytechnic
Department of Engineering and Architecture, University of Udine, 33100 Udine, Italy
- Department
of Materials Science and Engineering, Delft
University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Amin Imani
- Department
of Materials Engineering, The University
of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Maria Lekka
- CIDETEC,
Basque Research and Technology Alliance (BRTA), Po. Miramón 196, 20014 Donostia-San Sebastián, Spain
| | - Francesco Andreatta
- Polytechnic
Department of Engineering and Architecture, University of Udine, 33100 Udine, Italy
| | - Yaiza Gonzalez-Garcia
- Department
of Materials Science and Engineering, Delft
University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Johannes M. C. Mol
- Department
of Materials Science and Engineering, Delft
University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Edouard Asselin
- Department
of Materials Engineering, The University
of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Lorenzo Fedrizzi
- Polytechnic
Department of Engineering and Architecture, University of Udine, 33100 Udine, Italy
| |
Collapse
|
12
|
Corrosion Behavior in Magnesium-Based Alloys for Biomedical Applications. MATERIALS 2022; 15:ma15072613. [PMID: 35407944 PMCID: PMC9000648 DOI: 10.3390/ma15072613] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/13/2022] [Accepted: 03/15/2022] [Indexed: 12/14/2022]
Abstract
Magnesium alloys exhibit superior biocompatibility and biodegradability, which makes them an excellent candidate for artificial implants. However, these materials also suffer from lower corrosion resistance, which limits their clinical applicability. The corrosion mechanism of Mg alloys is complicated since the spontaneous occurrence is determined by means of loss of aspects, e.g., the basic feature of materials and various corrosive environments. As such, this study provides a review of the general degradation/precipitation process multifactorial corrosion behavior and proposes a reasonable method for modeling and preventing corrosion in metals. In addition, the composition design, the structural treatment, and the surface processing technique are involved as potential methods to control the degradation rate and improve the biological properties of Mg alloys. This systematic representation of corrosive mechanisms and the comprehensive discussion of various technologies for applications could lead to improved designs for Mg-based biomedical devices in the future.
Collapse
|