1
|
Elbashier E, Wagner P, Officer DL, Gordon KC. Impact of the Acceptor Group on the Properties of Triphenylamine-Donor-Acceptor Dyes: An Experimental and Computational Study. J Phys Chem A 2025; 129:1026-1041. [PMID: 39818835 DOI: 10.1021/acs.jpca.4c07364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Three triphenylamine-Indane donor-acceptor dyes with different functional groups on the acceptor were studied to investigate how substitution would affect the optical properties. The dyes studied were IndCN, containing two malononitrile groups; InO, with two ketone groups; and InOCN, which features mixed functional groups. A combination of Raman spectroscopy, UV-vis absorption and emission spectroscopy, and density functional theory (DFT) calculations were employed for characterization. The dyes exhibited intramolecular charge transfer transitions with relatively high molar absorptivity (εabs) of ∼50 mM-1 cm-1 at 491-591 nm within the visible spectrum and emissions at 690-840 nm in dichloromethane. The malononitrile-containing dyes showed lower-energy absorption and emissions due to a reduced band gap compared to ketone-containing dyes. The bulkiness of the malononitrile group led to a bent geometry, increasing nonradiative decay and reducing the fluorescence quantum yield. The dyes exhibited fluorescence quantum yields less than 0.25 and lifetimes of ∼5 ns. Resonance Raman spectra and DFT calculations showed that the longer linker group (propen-1-ylidene linker) in these systems reduced the charge-transfer character of the optical transition. The emission intensities of the three dyes were temperature-sensitive, with ketone-containing dyes showing shifts in emission bands as well. This could be due to molecular stacking and intermolecular π-interactions.
Collapse
Affiliation(s)
- Elkhansa Elbashier
- Department of Chemistry and Dodd Walls Centre, University of Otago, Dunedin 9016, New Zealand
| | - Pawel Wagner
- Australian Institute of Innovative Materials, University of Wollongong, Wollongong 2522, Australia
| | - David L Officer
- Australian Institute of Innovative Materials, University of Wollongong, Wollongong 2522, Australia
| | - Keith C Gordon
- Department of Chemistry and Dodd Walls Centre, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
2
|
Lee MMS, Yu EY, Chau JHC, Lam JWY, Kwok RTK, Tang BZ. Expanding Our Horizons: AIE Materials in Bacterial Research. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2407707. [PMID: 39246197 DOI: 10.1002/adma.202407707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/11/2024] [Indexed: 09/10/2024]
Abstract
Bacteria share a longstanding and complex relationship with humans, playing a role in protecting gut health and sustaining the ecosystem to cause infectious diseases and antibiotic resistance. Luminogenic materials that share aggregation-induced emission (AIE) characteristics have emerged as a versatile toolbox for bacterial studies through fluorescence visualization. Numerous research efforts highlight the superiority of AIE materials in this field. Recent advances in AIE materials in bacterial studies are categorized into four areas: understanding bacterial interactions, antibacterial strategies, diverse applications, and synergistic applications with bacteria. Initial research focuses on visualizing the unseen bacteria and progresses into developing strategies involving electrostatic interactions, amphiphilic AIE luminogens (AIEgens), and various AIE materials to enhance bacterial affinity. Recent progress in antibacterial strategies includes using photodynamic and photothermal therapies, bacterial toxicity studies, and combined therapies. Diverse applications from environmental disinfection to disease treatment, utilizing AIE materials in antibacterial coatings, bacterial sensors, wound healing materials, etc., are also provided. Finally, synergistic applications combining AIE materials with bacteria to achieve enhanced outcomes are explored. This review summarizes the developmental trend of AIE materials in bacterial studies and is expected to provide future research directions in advancing bacterial methodologies.
Collapse
Affiliation(s)
- Michelle M S Lee
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Eric Y Yu
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Joe H C Chau
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Jacky W Y Lam
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Ryan T K Kwok
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Ben Zhong Tang
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong (CUHK-Shenzhen), Shenzhen, Guangdong, 518172, China
| |
Collapse
|
3
|
Ren H, Hao M, Liu G, Li J, Jiang Z, Meng W, Zhang Y. Oxygen Self-Supplied Perfluorocarbon-Modified Micelles for Enhanced Cancer Photodynamic Therapy and Ferroptosis. ACS APPLIED BIO MATERIALS 2024; 7:3306-3315. [PMID: 38634490 DOI: 10.1021/acsabm.4c00251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Photodynamic therapy (PDT) and ferroptosis show significant potential in tumor treatment. However, their therapeutic efficacy is often hindered by the oxygen-deficient tumor microenvironment and the challenges associated with efficient intracellular drug delivery into tumor cells. Toward this end, this work synthesized perfluorocarbon (PFC)-modified Pluronic F127 (PFC-F127), and then exploits it as a carrier for codelivery of photosensitizer Chlorin e6 (Ce6) and the ferroptosis promoter sorafenib (Sor), yielding an oxygen self-supplying nanoplatform denoted as Ce6-Sor@PFC-F127. The PFCs on the surface of the micelle play a crucial role in efficiently solubilizing and delivering oxygen as well as increasing the hydrophobicity of the micelle surface, giving rise to enhanced endocytosis by cancer cells. The incorporation of an oxygen-carrying moiety into the micelles enhances the therapeutic impact of PDT and ferroptosis, leading to amplified endocytosis and cytotoxicity of tumor cells. Hypotonic saline technology was developed to enhance the cargo encapsulation efficiency. Notably, in a murine tumor model, Ce6-Sor@PFC-F127 effectively inhibited tumor growth through the combined use of oxygen-enhanced PDT and ferroptosis. Taken together, this work underscores the promising potential of Ce6-Sor@PFC-F127 as a multifunctional therapeutic nanoplatform for the codelivery of multiple cargos such as oxygen, photosensitizers, and ferroptosis inducers.
Collapse
Affiliation(s)
- He Ren
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, P.R. China
| | - Minchao Hao
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, P.R. China
| | - Gengqi Liu
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, P.R. China
| | - Jiexin Li
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, P.R. China
| | - Zhen Jiang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, P.R. China
| | - Wenlu Meng
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, P.R. China
| | - Yumiao Zhang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, P.R. China
| |
Collapse
|
4
|
Lin Y, Liang X, Li Z, Gong T, Ren B, Li Y, Peng X. Omics for deciphering oral microecology. Int J Oral Sci 2024; 16:2. [PMID: 38195684 PMCID: PMC10776764 DOI: 10.1038/s41368-023-00264-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/03/2023] [Accepted: 11/27/2023] [Indexed: 01/11/2024] Open
Abstract
The human oral microbiome harbors one of the most diverse microbial communities in the human body, playing critical roles in oral and systemic health. Recent technological innovations are propelling the characterization and manipulation of oral microbiota. High-throughput sequencing enables comprehensive taxonomic and functional profiling of oral microbiomes. New long-read platforms improve genome assembly from complex samples. Single-cell genomics provides insights into uncultured taxa. Advanced imaging modalities including fluorescence, mass spectrometry, and Raman spectroscopy have enabled the visualization of the spatial organization and interactions of oral microbes with increasing resolution. Fluorescence techniques link phylogenetic identity with localization. Mass spectrometry imaging reveals metabolic niches and activities while Raman spectroscopy generates rapid biomolecular fingerprints for classification. Culturomics facilitates the isolation and cultivation of novel fastidious oral taxa using high-throughput approaches. Ongoing integration of these technologies holds the promise of transforming our understanding of oral microbiome assembly, gene expression, metabolites, microenvironments, virulence mechanisms, and microbe-host interfaces in the context of health and disease. However, significant knowledge gaps persist regarding community origins, developmental trajectories, homeostasis versus dysbiosis triggers, functional biomarkers, and strategies to deliberately reshape the oral microbiome for therapeutic benefit. The convergence of sequencing, imaging, cultureomics, synthetic systems, and biomimetic models will provide unprecedented insights into the oral microbiome and offer opportunities to predict, prevent, diagnose, and treat associated oral diseases.
Collapse
Affiliation(s)
- Yongwang Lin
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoyue Liang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhengyi Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tao Gong
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xian Peng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
5
|
Kilian HI, Zhang H, Shiraz Bhurwani MM, Nilam AM, Seong D, Jeon M, Ionita CN, Xia J, Lovell JF. Barium sulfate and pigment admixture for photoacoustic and x-ray contrast imaging of the gut. JOURNAL OF BIOMEDICAL OPTICS 2023; 28:082803. [PMID: 36776721 PMCID: PMC9917716 DOI: 10.1117/1.jbo.28.8.082803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
Significance X-ray imaging is frequently used for gastrointestinal imaging. Photoacoustic imaging (PAI) of the gastrointestinal tract is an emerging approach that has been demonstrated for preclinical imaging of small animals. A contrast agent active in both modalities could be useful for imaging applications. Aim We aimed to develop a dual-modality contrast agent comprising an admixture of barium sulfate with pigments that absorb light in the second near-infrared region (NIR-II), for preclinical imaging with both x-ray and PAI modalities. Approach Eleven different NIR-II dyes were evaluated after admixture with a 40% w/v barium sulfate mixture. The resulting NIR-II absorption in the soluble fraction and in the total mixture was characterized. Proof-of-principle imaging studies in mice were carried out. Results Pigments that produced more uniform suspensions were assessed further for photoacoustic contrast signal at a wavelength of 1064 nm that corresponds to the output of the Nd:YAG laser used. Phantom imaging studies demonstrated that the pigment-barium sulfate mixture generated imaging contrast in both x-ray and PAI modalities. The optimal pigment selected for further study was a cyanine tetrafluoroborate salt. Ex-vivo and whole-body mouse imaging demonstrated that photoacoustic and x-ray contrast signals co-localized in the intestines for both imaging modalities. Conclusion These data demonstrate that commercially-available NIR-II pigments can simply be admixed with barium sulfate to generate a dual-modality contrast agent appropriate for small animal gastrointestinal imaging.
Collapse
Affiliation(s)
- Hailey I Kilian
- University at Buffalo, State University of New York, Department of Biomedical Engineering, Buffalo, New York, United States
| | - Huijuan Zhang
- University at Buffalo, State University of New York, Department of Biomedical Engineering, Buffalo, New York, United States
| | - Mohammad Mahdi Shiraz Bhurwani
- University at Buffalo, State University of New York, Department of Biomedical Engineering, Buffalo, New York, United States
- Canon Stroke and Vascular Research Center, Buffalo, New York, United States
| | - Anoop M Nilam
- University at Buffalo, State University of New York, Department of Biomedical Engineering, Buffalo, New York, United States
| | - Daewoon Seong
- Kyungpook National University, College of IT Engineering, School of Electronic and Electrical Engineering, Daegu, Republic of Korea
| | - Mansik Jeon
- Kyungpook National University, College of IT Engineering, School of Electronic and Electrical Engineering, Daegu, Republic of Korea
| | - Ciprian N Ionita
- University at Buffalo, State University of New York, Department of Biomedical Engineering, Buffalo, New York, United States
- Canon Stroke and Vascular Research Center, Buffalo, New York, United States
| | - Jun Xia
- University at Buffalo, State University of New York, Department of Biomedical Engineering, Buffalo, New York, United States
| | - Jonathan F Lovell
- University at Buffalo, State University of New York, Department of Biomedical Engineering, Buffalo, New York, United States
| |
Collapse
|
6
|
Yue NN, Xu HM, Xu J, Zhu MZ, Zhang Y, Tian CM, Nie YQ, Yao J, Liang YJ, Li DF, Wang LS. Application of Nanoparticles in the Diagnosis of Gastrointestinal Diseases: A Complete Future Perspective. Int J Nanomedicine 2023; 18:4143-4170. [PMID: 37525691 PMCID: PMC10387254 DOI: 10.2147/ijn.s413141] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/02/2023] [Indexed: 08/02/2023] Open
Abstract
The diagnosis of gastrointestinal (GI) diseases currently relies primarily on invasive procedures like digestive endoscopy. However, these procedures can cause discomfort, respiratory issues, and bacterial infections in patients, both during and after the examination. In recent years, nanomedicine has emerged as a promising field, providing significant advancements in diagnostic techniques. Nanoprobes, in particular, offer distinct advantages, such as high specificity and sensitivity in detecting GI diseases. Integration of nanoprobes with advanced imaging techniques, such as nuclear magnetic resonance, optical fluorescence imaging, tomography, and optical correlation tomography, has significantly enhanced the detection capabilities for GI tumors and inflammatory bowel disease (IBD). This synergy enables early diagnosis and precise staging of GI disorders. Among the nanoparticles investigated for clinical applications, superparamagnetic iron oxide, quantum dots, single carbon nanotubes, and nanocages have emerged as extensively studied and utilized agents. This review aimed to provide insights into the potential applications of nanoparticles in modern imaging techniques, with a specific focus on their role in facilitating early and specific diagnosis of a range of GI disorders, including IBD and colorectal cancer (CRC). Additionally, we discussed the challenges associated with the implementation of nanotechnology-based GI diagnostics and explored future prospects for translation in this promising field.
Collapse
Affiliation(s)
- Ning-ning Yue
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, People’s Republic of China
| | - Hao-ming Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, People’s Republic of China
| | - Jing Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, People’s Republic of China
| | - Min-zheng Zhu
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, People’s Republic of China
| | - Yuan Zhang
- Department of Medical Administration, Huizhou Institute of Occupational Diseases Control and Prevention, Huizhou, Guangdong, People’s Republic of China
| | - Cheng-Mei Tian
- Department of Emergency, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, People’s Republic of China
| | - Yu-qiang Nie
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, People’s Republic of China
| | - Jun Yao
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, People’s Republic of China
| | - Yu-jie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen, Guangdong, People’s Republic of China
| | - De-feng Li
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, People’s Republic of China
| | - Li-sheng Wang
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, People’s Republic of China
| |
Collapse
|
7
|
Sun B, Liu J, Li S, Lovell JF, Zhang Y. Imaging of Gastrointestinal Tract Ailments. J Imaging 2023; 9:115. [PMID: 37367463 DOI: 10.3390/jimaging9060115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/20/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
Gastrointestinal (GI) disorders comprise a diverse range of conditions that can significantly reduce the quality of life and can even be life-threatening in serious cases. The development of accurate and rapid detection approaches is of essential importance for early diagnosis and timely management of GI diseases. This review mainly focuses on the imaging of several representative gastrointestinal ailments, such as inflammatory bowel disease, tumors, appendicitis, Meckel's diverticulum, and others. Various imaging modalities commonly used for the gastrointestinal tract, including magnetic resonance imaging (MRI), positron emission tomography (PET) and single photon emission computed tomography (SPECT), and photoacoustic tomography (PAT) and multimodal imaging with mode overlap are summarized. These achievements in single and multimodal imaging provide useful guidance for improved diagnosis, staging, and treatment of the corresponding gastrointestinal diseases. The review evaluates the strengths and weaknesses of different imaging techniques and summarizes the development of imaging techniques used for diagnosing gastrointestinal ailments.
Collapse
Affiliation(s)
- Boyang Sun
- Key Laboratory of Systems Bioengineering, School of Chemical Engineering and Technology, Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Jingang Liu
- Key Laboratory of Systems Bioengineering, School of Chemical Engineering and Technology, Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Silu Li
- Key Laboratory of Systems Bioengineering, School of Chemical Engineering and Technology, Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Jonathan F Lovell
- Department of Biomedical Engineering, The State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Yumiao Zhang
- Key Laboratory of Systems Bioengineering, School of Chemical Engineering and Technology, Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| |
Collapse
|
8
|
Jiang Z, Ding Y, Lovell JF, Zhang Y. Design and application of organic contrast agents for molecular imaging in the second near infrared (NIR-II) window. PHOTOACOUSTICS 2022; 28:100426. [PMID: 36419744 PMCID: PMC9676394 DOI: 10.1016/j.pacs.2022.100426] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/05/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Optical imaging in the second near-infrared (NIR-II) window has attracted interest in recent years because of the merits of reduced light scattering, minimal autofluorescence from biological tissues and deeper penetration depth in this wavelength range. In this review, we summarize NIR-II organic contrast agents reported in the past decade for photoacoustic and fluorescence imaging including members of the cyanine family, D-A-D structure dyes, phthalocyanines and semiconducting polymers. Improved imaging contrast and higher resolution could be favorably achieved by rational design of NIR-II fluorophores by tuning their properties including molar extinction coefficient, fluorescence quantum yield, emission wavelength and others. A wide variety of applications using NIR-II dyes has been realized including imaging of tumors, lymphatics, brains, intestines and others. Emerging applications such as targeted imaging and activable imaging with improved resolution and sensitivity have been demonstrated by innovative chemical modification of NIR-II dyes. Looking forward, rational design of improved NIR-II dyes for advanced bioimaging is likely to remain an area of interest for next-generation potential approaches to disease diagnosis.
Collapse
Affiliation(s)
- Zhen Jiang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, 300350, China
| | - Yuanmeng Ding
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, 300350, China
| | - Jonathan F. Lovell
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Yumiao Zhang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, 300350, China
| |
Collapse
|
9
|
Li P, He X, Li Y, Lam JWY, Kwok RTK, Wang CC, Xia LG, Tang BZ. Recent advances in aggregation-induced emission luminogens in photoacoustic imaging. Eur J Nucl Med Mol Imaging 2022; 49:2560-2583. [PMID: 35277741 DOI: 10.1007/s00259-022-05726-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/13/2022] [Indexed: 12/14/2022]
Abstract
Photoacoustic imaging (PAI) is a rapidly emerging modality in biomedical research with the advantages of noncontact operation, high optical resolution, and deep penetration. Great efforts and progress in the development of PAI agents with improved imaging resolution and sensitivity have been made over the past 2 decades. Among them, organic agents are the most promising candidates for preclinical/clinical applications due to their outstanding in vivo properties and facile biofunctionalities. Motivated by the unique properties of aggregation-induced emission (AIE) luminogens (AIEgens), various optical probes have been developed for bioanalyte detection, multimodal bioimaging, photodynamic/photothermal therapy, and imaging-guided therapeutics. In particular, AIE-active contrast agents have been demonstrated in PAI applications with excellent performance in imaging resolution and tissue permeability in vivo. This paper presents a brief overview of recent progress in AIE-based agents in the field of photoacoustic imaging. In particular, we focus on the basic concepts, data sorting and comparison, developing trends, and perspectives of photoacoustic imaging. Through numerous typical examples, the way each system realizes the desired photoacoustic performance in various biomedical applications is clearly illustrated. We believe that AIE-based PAI agents would be promising multifunctional theranostic platforms in clinical fields and will facilitate significant advancements in this research topic.
Collapse
Affiliation(s)
- Pei Li
- Department of Gastrointestinal Surgery, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), The First Affiliated Hospital, Southern University of Science and Technology, 518020, Shenzhen, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Division of Life Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
- Department of General Surgery, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, China
| | - Xuewen He
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Division of Life Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yang Li
- Department of Gastrointestinal Surgery, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), The First Affiliated Hospital, Southern University of Science and Technology, 518020, Shenzhen, China
- Department of General Surgery, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, China
| | - Jacky Wing Yip Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Division of Life Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ryan Tsz Kin Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Division of Life Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| | - Cun Chuan Wang
- The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China.
| | - Li Gang Xia
- Department of Gastrointestinal Surgery, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), The First Affiliated Hospital, Southern University of Science and Technology, 518020, Shenzhen, China.
- Department of General Surgery, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, China.
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Division of Life Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Shenzhen Institute of Molecular Aggregate Science and Engineering, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen City, 518172, Guangdong, China
| |
Collapse
|
10
|
Zhang C, Ren H, Liu G, Li J, Wang X, Zhang Y. Effective Genome Editing Using CRISPR-Cas9 Nanoflowers. Adv Healthc Mater 2022; 11:e2102365. [PMID: 34989166 DOI: 10.1002/adhm.202102365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/17/2021] [Indexed: 01/31/2023]
Abstract
CRISPR-Cas9 as a powerful gene-editing tool has tremendous potential for the treatment of genetic diseases. Herein, a new mesoporous nanoflower (NF)-like delivery nanoplatform termed Cas9-NF is reported by crosslinking Cas9 and polymeric micelles that enables efficient intracellular delivery and controlled release of Cas9 in response to reductive microenvironment in tumor cells. The flower morphology is flexibly tunable by the protein concentration and different types of crosslinkers. Cas9 protein, embedded between polymeric micelles and protected by Cas9-NF, remains stable even under extreme pH conditions. Responsive cleavage of crosslinkers in tumor cells, leads to the traceless release of Cas9 for efficient gene knockout in nucleus. This crosslinked nanoparticle exhibits excellent capability of downregulating oncogene expression and inhibiting tumor growth in a murine tumor model. Taken together, these findings pave a new pathway toward the application of the protein-micelle crosslinked nanoflower for protein delivery, which warrants further investigations for gene regulation and cancer treatment.
Collapse
Affiliation(s)
- Chen Zhang
- Key Laboratory of Systems Bioengineering (Ministry of Education) School of Chemical Engineering and Technology Tianjin University Tianjin 300350 P. R. China
| | - He Ren
- Key Laboratory of Systems Bioengineering (Ministry of Education) School of Chemical Engineering and Technology Tianjin University Tianjin 300350 P. R. China
| | - Gengqi Liu
- Key Laboratory of Systems Bioengineering (Ministry of Education) School of Chemical Engineering and Technology Tianjin University Tianjin 300350 P. R. China
| | - Jiexin Li
- Key Laboratory of Systems Bioengineering (Ministry of Education) School of Chemical Engineering and Technology Tianjin University Tianjin 300350 P. R. China
| | - Xiaojie Wang
- Key Laboratory of Systems Bioengineering (Ministry of Education) School of Chemical Engineering and Technology Tianjin University Tianjin 300350 P. R. China
| | - Yumiao Zhang
- Key Laboratory of Systems Bioengineering (Ministry of Education) School of Chemical Engineering and Technology Tianjin University Tianjin 300350 P. R. China
| |
Collapse
|
11
|
Ding Y, Park B, Ye J, Wang X, Liu G, Yang X, Jiang Z, Han M, Fan Y, Song J, Kim C, Zhang Y. Surfactant-Stripped Semiconducting Polymer Micelles for Tumor Theranostics and Deep Tissue Imaging in the NIR-II Window. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104132. [PMID: 34850550 DOI: 10.1002/smll.202104132] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/28/2021] [Indexed: 06/13/2023]
Abstract
Photoacoustic imaging (PA) in the second near infrared (NIR-II) window presents key advantages for deep tissue imaging owing to reduced light scattering and low background signal from biological structures. Here, a thiadiazoloquinoxaline-based semiconducting polymer (SP) with strong absorption in the NIR-II region is reported. After encapsulation of SP in Pluronic F127 (F127) followed by removal of excess surfactant, a dual functional polymer system named surfactant-stripped semiconductor polymeric micelles (SSS-micelles) are generated with water solubility, storage stability, and high photothermal conversion efficiency, permitting tumor theranostics in a mouse model. SSS-micelles have a wideband absorption in the NIR-II window, allowing for the PA imaging at both 1064 and 1300 nm wavelengths. The PA signal of the SSS-micelles can be detected through 6.5 cm of chicken breast tissue in vitro. In mice or rats, SSS-micelles can be visualized in bladder and intestine overlaid 5 cm (signal to noise ratio, SNR ≈ 17 dB) and 5.8 cm (SNR over 10 dB) chicken breast tissue, respectively. This work demonstrates the SSS-micelles as a nanoplatform for deep tissue theranostics.
Collapse
Affiliation(s)
- Yuanmeng Ding
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300350, China
| | - Byullee Park
- Department of Electrical Engineering, Convergence IT Engineering and Mechanical Engineering, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Jiamin Ye
- College of Chemistry, MOE key Laboratory for Analytical Science of Food Safety and Biology Institution, Fuzhou University, Fuzhou, 350108, China
| | - Xiaojie Wang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300350, China
| | - Gengqi Liu
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300350, China
| | - Xingyue Yang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300350, China
| | - Zhen Jiang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300350, China
| | - Moongyu Han
- Department of Electrical Engineering, Convergence IT Engineering and Mechanical Engineering, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Yong Fan
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymer and IChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Fudan, 200433, China
| | - Jibin Song
- College of Chemistry, MOE key Laboratory for Analytical Science of Food Safety and Biology Institution, Fuzhou University, Fuzhou, 350108, China
| | - Chulhong Kim
- Department of Electrical Engineering, Convergence IT Engineering and Mechanical Engineering, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Yumiao Zhang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300350, China
| |
Collapse
|
12
|
Ren H, Li J, Liu G, Sun Y, Yang X, Jiang Z, Zhang J, Lovell JF, Zhang Y. Anticancer Vaccination with Immunogenic Micelles That Capture and Release Pristine CD8 + T-Cell Epitopes and Adjuvants. ACS APPLIED MATERIALS & INTERFACES 2022; 14:2510-2521. [PMID: 34986639 DOI: 10.1021/acsami.1c18117] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The development of nanocarriers capable of codelivering antigens and immune-activating adjuvants is an emerging area of research and is relevant for cancer vaccines that target induction of antigen-specific CD8+ T-cell responses. Here, we report a system for delivery of short peptide antigens to dendritic cells for strong cellular immune responses, based on block copolymers chemically modified with a hydrophobic and self-immolative linker. After modification, micelles effectively and reversibly capture antigens and adjuvants via a covalent bond within several minutes in an aqueous solution. After uptake in antigen presenting cells, the polymer disulfide bond is cleaved by intracellular glutathione, leading to release of pristine antigens, along with the upregulated expression of costimulatory molecules. The induced antigen-specific CD8+ T cells have strong tumor cell killing efficacy in the murine B16OVA and human papilloma virus-E6/E7 subcutaneous and lung metastasis tumor models. In addition, delivery to lymph nodes can be imaged to visualize vaccine trafficking. Taken together, multifunctional self-immolative micelles represent a versatile class of a vaccine delivery system for the generation of a cellular immune response that warrants further exploration as a component of cancer immunotherapy.
Collapse
Affiliation(s)
- He Ren
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, P. R. China 300350
| | - Jiexin Li
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, P. R. China 300350
| | - Gengqi Liu
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, P. R. China 300350
| | - Yaping Sun
- Imaging Center, Hospital of Traditional Chinese Medicine, Beichen District, Tianjin, P. R. China 300400
| | - Xingyue Yang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, P. R. China 300350
| | - Zhen Jiang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, P. R. China 300350
| | - Jingyu Zhang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, P. R. China 300350
| | - Jonathan F Lovell
- Department of Biomedical Engineering, The State University of New York at Buffalo, Buffalo, New York 14260, United States
| | - Yumiao Zhang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, P. R. China 300350
| |
Collapse
|
13
|
Yang X, Qiu Q, Liu G, Ren H, Wang X, Lovell JF, Zhang Y. Traceless antibiotic-crosslinked micelles for rapid clearance of intracellular bacteria. J Control Release 2021; 341:329-340. [PMID: 34843813 DOI: 10.1016/j.jconrel.2021.11.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/06/2021] [Accepted: 11/22/2021] [Indexed: 02/07/2023]
Abstract
Effective delivery of antimicrobial agents to intracellular pathogens represents a major bottleneck for a wide variety of infectious diseases. To address this, we developed SIR-micelles(+), as a new delivery vehicle comprising antibiotic-loaded micelles with rapid self-immolation within cells for targeted delivery to macrophages, where most intracellular bacterial reside. After phagocytosis, SIR-micelles(+) rapidly release the pristine antibiotic after the cleavage of the disulfide bonds by intracellular reducing agents such as glutathione (GSH). Colistin, a hydrophilic and potent "last-resort" antibiotic used for the treatment of drug-resistant bacterial infection, was encapsulated in SIR-micelles with 40% yield and good short-term storage stability. Hydrophobic moieties and mannose ligands in SIR-micelles(+) enhanced the delivery of colistin into macrophages. The traceless and thiol-responsive release of colistin effectively eliminated intracellular Escherichia coli within twenty minutes. In a murine pneumonia model, SIR-micelles(+) significantly reduced bacterial lung burden of multidrug-resistant Klebsiella pneumoniae. Furthermore, SIR-micelles(+) improved the survival rate and reduced the bacterial burden of organs infected by intracellular bacteria transferred from donor mice. Using this formulation approach, the nephrotoxicity and neurotoxicity induced by antibiotic were reduced by about 5- 15 fold. Thus, SIR-micelles(+) represent a new class of material that can be used for targeting treatment of intracellular and drug-resistant pathogens.
Collapse
Affiliation(s)
- Xingyue Yang
- School of Chemical Engineering and Technology, Tianjin University, 300350, PR China; Key Laboratory of Systems Bioengineering (Ministry of Education) Tianjin University, Tianjin 300072, PR China
| | - Qian Qiu
- School of Chemical Engineering and Technology, Tianjin University, 300350, PR China; Key Laboratory of Systems Bioengineering (Ministry of Education) Tianjin University, Tianjin 300072, PR China
| | - Gengqi Liu
- School of Chemical Engineering and Technology, Tianjin University, 300350, PR China; Key Laboratory of Systems Bioengineering (Ministry of Education) Tianjin University, Tianjin 300072, PR China
| | - He Ren
- School of Chemical Engineering and Technology, Tianjin University, 300350, PR China; Key Laboratory of Systems Bioengineering (Ministry of Education) Tianjin University, Tianjin 300072, PR China
| | - Xiaojie Wang
- School of Chemical Engineering and Technology, Tianjin University, 300350, PR China; Key Laboratory of Systems Bioengineering (Ministry of Education) Tianjin University, Tianjin 300072, PR China
| | - Jonathan F Lovell
- Department of Biomedical Engineering, The State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Yumiao Zhang
- School of Chemical Engineering and Technology, Tianjin University, 300350, PR China; Key Laboratory of Systems Bioengineering (Ministry of Education) Tianjin University, Tianjin 300072, PR China.
| |
Collapse
|