1
|
Chiang CC, Liu CH, Rethi L, Nguyen HT, Chuang AEY. Phototactic/Photosynthetic/Magnetic-Powered Chlamydomonas Reinhardtii-Metal-Organic Frameworks Micro/Nanomotors for Intelligent Thrombolytic Management and Ischemia Alleviation. Adv Healthc Mater 2024:e2401383. [PMID: 39155411 DOI: 10.1002/adhm.202401383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/31/2024] [Indexed: 08/20/2024]
Abstract
Thrombosis presents a critical health threat globally, with high mortality and incidence rates. Clinical treatment faces challenges such as low thrombolytic agent bioavailability, thrombosis recurrence, ischemic hypoxia damage, and neural degeneration. This study developed biocompatible Chlamydomonas Reinhardtii micromotors (CHL) with photo/magnetic capabilities to address these needs. These CHL micromotors, equipped with phototaxis and photosynthesis abilities, offer promising solutions. A core aspect of this innovation involves incorporating polysaccharides (glycol chitosan (GCS) and fucoidan (F)) into ferric Metal-organic frameworks (MOFs), loaded with urokinase (UK), and subsequently self-assembled onto the multimodal CHL, forming a core-shell microstructure (CHL@GCS/F-UK-MOF). Under light-navigation, CHL@GCS/F-UK-MOF is shown to penetrate thrombi, enhancing thrombolytic biodistribution. Combining CHL@GCS/F-UK-MOF with the magnetic hyperthermia technique achieves stimuli-responsive multiple-release, accelerating thrombolysis and rapidly restoring blocked blood vessels. Moreover, this approach attenuates thrombi-induced ischemic hypoxia disorder and tissue damage. The photosynthetic and magnetotherapeutic properties of CHL@GCS/F-UK-MOF, along with their protective effects, including reduced apoptosis, enhanced behavioral function, induced Heat Shock Protein (HSP), polarized M2 macrophages, and mitigated hypoxia, are confirmed through biochemical, microscopic, and behavioral assessments. This multifunctional biomimetic platform, integrating photo-magnetic techniques, offers a comprehensive approach to cardiovascular management, advancing related technologies.
Collapse
Affiliation(s)
- Chia-Che Chiang
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, 235603, Taiwan
| | - Chia-Hung Liu
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
- Taipei Medical University Research Center of Urology and Kidney, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
- Department of Urology, Shuang Ho Hospital, Taipei Medical University, 291 Zhongzheng Road, Zhonghe District, New Taipei City, 23561, Taiwan
| | - Lekshmi Rethi
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, 235603, Taiwan
| | - Hieu Trung Nguyen
- Department of Orthopedics and Trauma, Faculty of Medicine, University of Medicine and Pharmacy, Ho Chi Minh City, 700000, Vietnam
| | - Andrew E-Y Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, 235603, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, 235603, Taiwan
- Cell Physiology and Molecular Image Research Center, Taipei Medical University-Wan Fang Hospital, Taipei, 11696, Taiwan
- Precision Medicine and Translational Cancer Research Center, Taipei Medical University Hospital, Taipei, 11031, Taiwan
| |
Collapse
|
2
|
Shen Y, Yu Y, Zhang X, Hu B, Wang N. Progress of nanomaterials in the treatment of thrombus. Drug Deliv Transl Res 2024; 14:1154-1172. [PMID: 38006448 DOI: 10.1007/s13346-023-01478-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2023] [Indexed: 11/27/2023]
Abstract
Thrombus has long been the major contributor of death and disability because it can cause adverse effects to varying degrees on the body, resulting in vascular blockage, embolism, heart valve deformation, widespread bleeding, etc. However, clinically, conventional thrombolytic drug treatments have hemorrhagic complication risks and easy to miss the best time of treatment window. Thus, it is an urgent need to investigate newly alternative treatment strategies that can reduce adverse effects and improve treatment effectiveness. Drugs based on nanomaterials act as a new biomedical strategy and promising tools, and have already been investigated for both diagnostic and therapeutic purposes in thrombus therapy. Recent studies have some encouraging progress. In the present review, we primarily concern with the latest developments in the areas of nanomedicines targeting thrombosis therapy. We present the thrombus' formation, characteristics, and biomarkers for diagnosis, overview recent emerging nanomedicine strategies for thrombus therapy, and focus on the future design directions, challenges, and prospects in the nanomedicine application in thrombus therapy.
Collapse
Affiliation(s)
- Yetong Shen
- Department of Biochemistry and Molecular Biology, China Medical University, No. 77 Puhe Road, Shenyang, 110122, China
- College of Life and Health Sciences, Northeastern University, Shenyang, 110167, China
| | - Yang Yu
- Department of Biochemistry and Molecular Biology, China Medical University, No. 77 Puhe Road, Shenyang, 110122, China
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Xin Zhang
- Department of Biochemistry and Molecular Biology, China Medical University, No. 77 Puhe Road, Shenyang, 110122, China
| | - Bo Hu
- Department of Biochemistry and Molecular Biology, China Medical University, No. 77 Puhe Road, Shenyang, 110122, China.
| | - Ning Wang
- Department of Biochemistry and Molecular Biology, China Medical University, No. 77 Puhe Road, Shenyang, 110122, China.
- Department of Forensic Medicine, China Medical University, No.77 Puhe Road, Shenyang, 110122, China.
| |
Collapse
|
3
|
Miller MA, Medina S. Life at the interface: Engineering bio-nanomaterials through interfacial molecular self-assembly. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1966. [PMID: 38725255 PMCID: PMC11090466 DOI: 10.1002/wnan.1966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/15/2024]
Abstract
Interfacial self-assembly describes the directed organization of molecules and colloids at phase boundaries. Believed to be fundamental to the inception of primordial life, interfacial assembly is exploited by a myriad of eukaryotic and prokaryotic organisms to execute physiologic activities and maintain homeostasis. Inspired by these natural systems, chemists, engineers, and materials scientists have sought to harness the thermodynamic equilibria at phase boundaries to create multi-dimensional, highly ordered, and functional nanomaterials. Recent advances in our understanding of the biophysical principles guiding molecular assembly at gas-solid, gas-liquid, solid-liquid, and liquid-liquid interphases have enhanced the rational design of functional bio-nanomaterials, particularly in the fields of biosensing, bioimaging and biotherapy. Continued development of non-canonical building blocks, paired with deeper mechanistic insights into interphase self-assembly, holds promise to yield next generation interfacial bio-nanomaterials with unique, and perhaps yet unrealized, properties. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Michael A Miller
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Scott Medina
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
4
|
Wang J, Jin W, Huang S, Wang W, Wang S, Yu Z, Gao L, Gao Y, Han H, Wang L. Microbubble Biointerfacing by Regulation of the Platelet Membrane Surfactant Activity at the Gas-Liquid Interface for Acute Thrombosis Targeting. Angew Chem Int Ed Engl 2024; 63:e202314583. [PMID: 38196289 DOI: 10.1002/anie.202314583] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/01/2024] [Accepted: 01/09/2024] [Indexed: 01/11/2024]
Abstract
Biointerfacing nanomaterials with cell membranes has been successful in the functionalization of nanoparticles or nanovesicles, but microbubble functionalization remains challenging due to the unique conformation of the lipid monolayer structure at the gas-liquid interface that provides insufficient surfactant activity. Here, we describe a strategy to rationally regulate the surfactant activity of platelet membrane vesicles by adjusting the ratio of proteins to lipids through fusion with synthetic phospholipids (i.e., liposomes). A "platesome" with the optimized protein-to-lipid ratio can be assembled at the gas-liquid interface in the same manner as pulmonary surfactants to stabilize a microsized gas bubble. Platesome microbubbles (PMBs) inherited 61.4 % of the platelet membrane vesicle proteins and maintained the active conformation of integrin αIIbβ3 without the talin 1 for fibrin binding. We demonstrated that the PMBs had good stability, long circulation, and superior functionality both in vitro and in vivo. Moreover, by molecular ultrasound imaging, the PMBs provide up to 11.8 dB of ultrasound signal-to-noise ratio enhancement for discriminating between acute and chronic thrombi. This surface tension regulating strategy may provide a paradigm for biointerfacing microbubbles with cell membranes, offering a potential new approach for the construction of molecular ultrasound contrast agents for the diagnosis of different diseases.
Collapse
Affiliation(s)
- Jiahui Wang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, P. R. China
| | - Weikui Jin
- Department of Ultrasound Diagnostics, The Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, 210008, P. R. China
| | - Shengyu Huang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, P. R. China
| | - Wenqi Wang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, P. R. China
| | - Siyu Wang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, P. R. China
| | - Zhen Yu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, P. R. China
| | - Li Gao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, P. R. China
| | - Yu Gao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, P. R. China
| | - Hao Han
- Department of Ultrasound Diagnostics, The Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, 210008, P. R. China
| | - Lianhui Wang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, P. R. China
| |
Collapse
|
5
|
Crowley NA, Medina SH. Targeted and transient opening of the blood brain barrier in discrete neurocircuits and brain regions. Neuropsychopharmacology 2023; 48:253-254. [PMID: 35851872 PMCID: PMC9700744 DOI: 10.1038/s41386-022-01380-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Nicole A Crowley
- Department of Biology, Penn State University, University Park, PA, 16802, USA.
- Department of Biomedical Engineering, Penn State University, University Park, PA, 16802, USA.
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, 16802, USA.
| | - Scott H Medina
- Department of Biomedical Engineering, Penn State University, University Park, PA, 16802, USA.
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, 16802, USA.
| |
Collapse
|
6
|
Hale MM, Medina SH. Biomaterials-Enabled Antithrombotics: Recent Advances and Emerging Strategies. Mol Pharm 2022; 19:4453-4465. [PMID: 36149250 PMCID: PMC9728464 DOI: 10.1021/acs.molpharmaceut.2c00626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 12/13/2022]
Abstract
Antithrombotic and thrombolytic therapies are used to prevent, treat, and remove blood clots in various clinical settings, from emergent to prophylactic. While ubiquitous in their healthcare application, short half-lives, off-target effects, overdosing complications, and patient compliance continue to be major liabilities to the utility of these agents. Biomaterials-enabled strategies have the potential to comprehensively address these limitations by creating technologies that are more precise, durable, and safe in their antithrombotic action. In this review, we discuss the state of the art in anticoagulant and thrombolytic biomaterials, covering the nano to macro length scales. We emphasize current methods of formulation, discuss how material properties affect controlled release kinetics, and summarize modern mechanisms of clot-specific drug targeting. The preclinical efficacy of these technologies in an array of cardiovascular applications, including stroke, pulmonary embolism, myocardial infarction, and blood contacting devices, is summarized and performance contrasted. While significant advances have already been made, ongoing development efforts look to deliver bioresponsive "smart" biomaterials that will open new precision medicine opportunities in cardiology.
Collapse
Affiliation(s)
- Macy M. Hale
- Department
of Biomedical Engineering, Pennsylvania
State University, University
Park, Pennsylvania 16802-4400, United States
| | - Scott H. Medina
- Department
of Biomedical Engineering, Pennsylvania
State University, University
Park, Pennsylvania 16802-4400, United States
- Huck
Institutes of the Life Sciences, Pennsylvania
State University, University Park, Pennsylvania 16802-4400, United States
| |
Collapse
|
7
|
Liao J, Li Y, Luo Y, Meng S, Zhang C, Xiong L, Wang T, Lu Y. Recent Advances in Targeted Nanotherapies for Ischemic Stroke. Mol Pharm 2022; 19:3026-3041. [PMID: 35905397 DOI: 10.1021/acs.molpharmaceut.2c00383] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ischemic stroke (IS) is a severe neurological disease caused by the narrowing or occlusion of cerebral blood vessels and is known for high morbidity, disability, and mortality rates. Clinically available treatments of stroke include the surgical removal of the thrombus and thrombolysis with tissue fibrinogen activator. Pharmaceuticals targeting IS are uncommon, and the development of new therapies is hindered by the low bioavailability and stability of many drugs. Nanomedicine provides new opportunities for the development of novel neuroprotective and thrombolytic strategies for the diagnosis and treatment of IS. Numerous nanotherapeutics with different physicochemical properties are currently being developed to facilitate drug delivery by accumulation and controlled release and to improve their restorative properties. In this review, we discuss recent developments in IS therapy, including assisted drug delivery and targeting, neuroprotection through regulation of the neuron environment, and sources of endogenous biomimetic specific targeting. In addition, we discuss the role and neurotoxic effects of inorganic metal nanoparticles in IS therapy. This study provides a theoretical basis for the utilization of nano-IS therapies that may contribute to the development of new strategies for a range of embolic diseases.
Collapse
Affiliation(s)
- Jun Liao
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Yi Li
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Yunchun Luo
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Sha Meng
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Chuan Zhang
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Liyan Xiong
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Tingfang Wang
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Ying Lu
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| |
Collapse
|