1
|
Zhang WH, Xiang WY, Yi L, Fang R. The status and hotspot analysis of research on extracellular vesicles and osteoarthritis: a bibliometric analysis. Front Pharmacol 2025; 16:1484437. [PMID: 40230694 PMCID: PMC11994722 DOI: 10.3389/fphar.2025.1484437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 03/19/2025] [Indexed: 04/16/2025] Open
Abstract
Background Degenerative joint disease, known as osteoarthritis (OA), is characterized by pain, swelling, and decreased mobility. The illness has a major negative influence on patients' quality of life and is common around the world, especially among older people. Nevertheless, there are insufficient possibilities for early diagnosis and therapy. Extracellular vesicles, or EVs, control the immune response, tissue healing, and cellular communication. Methods This work offers a bibliometric representation of the areas of focus and correlations between extracellular vesicles and osteoarthritis. We searched for osteoarthritis and extracellular vesicles in publications in the Web of Science Core Collection (WoSCC) database. Bibliometrics, an R package, CiteSpace 6.1. R2, and VOSviewer 1.6.17 were used to perform bibliometric analyses of concentration fields, trends, and relevant factors. Results 944 papers from 59 nations were published; the countries that contributed the most to the field were China, the USA, and Italy. Professors Laura and Enrico are the top contributors. Sichuan University, Istituto Ortopedico Galeazzi, and Shanghai Jiao Tong University are the top three universities. The International Journal of Molecular Sciences is an excellent publication. Exosome, expression, knee osteoarthritis, extracellular vesicle, mesenchymal stem cell, osteoarthritis, and inflammation are the most often occurring keywords. Conclusion These results suggest areas of interest and focus for future research on EVs and OA. This trend suggests that the volume of literature on OA and EVs will continue to rise, with more research being published in the future. This study helps scholars understand current research hotspots in the field and may inspire future research.
Collapse
Affiliation(s)
- Wen Hao Zhang
- The Fourth Clinical College of Xinjiang Medical University, Urumqi, China
| | - Wen Yuan Xiang
- The Fourth Clinical College of Xinjiang Medical University, Urumqi, China
- Department of Orthopaedic, Institute of Traditional Chinese Medicine Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Department of Orthopaedic, Xinjiang Uygur Autonomous Region Institute of Traditional Chinese Medicine, Urumqi, China
- Department of orthopaedic, The Fourth Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Lin Yi
- The Fourth Clinical College of Xinjiang Medical University, Urumqi, China
- Department of Orthopaedic, Institute of Traditional Chinese Medicine Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Department of Orthopaedic, Xinjiang Uygur Autonomous Region Institute of Traditional Chinese Medicine, Urumqi, China
- Department of orthopaedic, The Fourth Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Rui Fang
- The Fourth Clinical College of Xinjiang Medical University, Urumqi, China
- Department of Orthopaedic, Institute of Traditional Chinese Medicine Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Department of Orthopaedic, Xinjiang Uygur Autonomous Region Institute of Traditional Chinese Medicine, Urumqi, China
- Department of orthopaedic, The Fourth Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
2
|
Wu W, An X, Gong W, Yang L, Liu N, Liu B, Guo B, Jiang Q, Li L. ShK-modified UCMSCs Inhibit M1-Like Macrophage Polarization and Alleviate Osteoarthritis Progression via PI3K/Akt Axis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2406822. [PMID: 39721037 PMCID: PMC11884619 DOI: 10.1002/advs.202406822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 12/15/2024] [Indexed: 12/28/2024]
Abstract
The potassium channel Kv1.3 plays an important role in regulating immune cell functions in many inflammatory diseases whereas rarely in osteoarthritis (OA). Here, it is demonstrated that the Kv1.3 of macrophages is upregulated in response to LPS stimulation, as well as in human OA synovium samples than non-OA. Administration of Stichodactyla toxin (ShK), a Kv1.3 blocker, significantly inhibited cartilage degeneration and synovial inflammation in animal models of OA in vivo by inhibiting M1 macrophage polarization and reducing the production of inflammatory factors. In this study, a transgenically engineered human umbilical cord mesenchymal stem cell (UCMSC) delivery system is developed that secreted a peptide ShK, a Kv1.3 potassium blocker, into the knee articular cavity. Collectively, the results identified Kv1.3 as a potential therapeutic target for OA and demonstrated the efficacy of using ShK transgenic engineered UCMSCs as a delivery for the peptide in OA treatment.
Collapse
Affiliation(s)
- Wenshu Wu
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University321 Zhongshan RoadNanjingJiangsu210008P. R. China
- State Key Laboratory of Pharmaceutical Biotechnology Nanjing University22 Hankou RoadNanjingJiangsu210093P. R. China
- Branch of National Clinical Research Center for Orthopedics Sports Medicine and Rehabilitation321 Zhongshan RoadNanjingJiangsu210008P. R. China
- Institute of Medical 3D PrintingNanjing UniversityNanjing211166P. R. China
- Jiangsu Engineering Research Center for 3D Bioprinting321 Zhongshan RoadNanjing210000P. R. China
| | - Xueying An
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University321 Zhongshan RoadNanjingJiangsu210008P. R. China
- State Key Laboratory of Pharmaceutical Biotechnology Nanjing University22 Hankou RoadNanjingJiangsu210093P. R. China
- Branch of National Clinical Research Center for Orthopedics Sports Medicine and Rehabilitation321 Zhongshan RoadNanjingJiangsu210008P. R. China
- Institute of Medical 3D PrintingNanjing UniversityNanjing211166P. R. China
- Jiangsu Engineering Research Center for 3D Bioprinting321 Zhongshan RoadNanjing210000P. R. China
| | - Wang Gong
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University321 Zhongshan RoadNanjingJiangsu210008P. R. China
- State Key Laboratory of Pharmaceutical Biotechnology Nanjing University22 Hankou RoadNanjingJiangsu210093P. R. China
- Branch of National Clinical Research Center for Orthopedics Sports Medicine and Rehabilitation321 Zhongshan RoadNanjingJiangsu210008P. R. China
- Institute of Medical 3D PrintingNanjing UniversityNanjing211166P. R. China
- Jiangsu Engineering Research Center for 3D Bioprinting321 Zhongshan RoadNanjing210000P. R. China
| | - Lin Yang
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University321 Zhongshan RoadNanjingJiangsu210008P. R. China
- State Key Laboratory of Pharmaceutical Biotechnology Nanjing University22 Hankou RoadNanjingJiangsu210093P. R. China
- Branch of National Clinical Research Center for Orthopedics Sports Medicine and Rehabilitation321 Zhongshan RoadNanjingJiangsu210008P. R. China
- Institute of Medical 3D PrintingNanjing UniversityNanjing211166P. R. China
- Jiangsu Engineering Research Center for 3D Bioprinting321 Zhongshan RoadNanjing210000P. R. China
- Department of Sports Medicine and Adult Reconstructive SurgeryNanjing Drum Tower HospitalClinical College of Nanjing Medical UniversityNanjing210008P.R. China
| | - Na Liu
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University321 Zhongshan RoadNanjingJiangsu210008P. R. China
- State Key Laboratory of Pharmaceutical Biotechnology Nanjing University22 Hankou RoadNanjingJiangsu210093P. R. China
- Branch of National Clinical Research Center for Orthopedics Sports Medicine and Rehabilitation321 Zhongshan RoadNanjingJiangsu210008P. R. China
- Institute of Medical 3D PrintingNanjing UniversityNanjing211166P. R. China
- Jiangsu Engineering Research Center for 3D Bioprinting321 Zhongshan RoadNanjing210000P. R. China
| | - Bin Liu
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University321 Zhongshan RoadNanjingJiangsu210008P. R. China
- State Key Laboratory of Pharmaceutical Biotechnology Nanjing University22 Hankou RoadNanjingJiangsu210093P. R. China
- Branch of National Clinical Research Center for Orthopedics Sports Medicine and Rehabilitation321 Zhongshan RoadNanjingJiangsu210008P. R. China
- Institute of Medical 3D PrintingNanjing UniversityNanjing211166P. R. China
- Jiangsu Engineering Research Center for 3D Bioprinting321 Zhongshan RoadNanjing210000P. R. China
| | - Baosheng Guo
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University321 Zhongshan RoadNanjingJiangsu210008P. R. China
- State Key Laboratory of Pharmaceutical Biotechnology Nanjing University22 Hankou RoadNanjingJiangsu210093P. R. China
- Branch of National Clinical Research Center for Orthopedics Sports Medicine and Rehabilitation321 Zhongshan RoadNanjingJiangsu210008P. R. China
- Institute of Medical 3D PrintingNanjing UniversityNanjing211166P. R. China
- Jiangsu Engineering Research Center for 3D Bioprinting321 Zhongshan RoadNanjing210000P. R. China
| | - Qing Jiang
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University321 Zhongshan RoadNanjingJiangsu210008P. R. China
- State Key Laboratory of Pharmaceutical Biotechnology Nanjing University22 Hankou RoadNanjingJiangsu210093P. R. China
- Branch of National Clinical Research Center for Orthopedics Sports Medicine and Rehabilitation321 Zhongshan RoadNanjingJiangsu210008P. R. China
- Institute of Medical 3D PrintingNanjing UniversityNanjing211166P. R. China
- Jiangsu Engineering Research Center for 3D Bioprinting321 Zhongshan RoadNanjing210000P. R. China
- Department of Sports Medicine and Adult Reconstructive SurgeryNanjing Drum Tower HospitalClinical College of Nanjing Medical UniversityNanjing210008P.R. China
| | - Lan Li
- Division of Sports Medicine and Adult Reconstructive SurgeryDepartment of Orthopedic SurgeryNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University321 Zhongshan RoadNanjingJiangsu210008P. R. China
- State Key Laboratory of Pharmaceutical Biotechnology Nanjing University22 Hankou RoadNanjingJiangsu210093P. R. China
- Branch of National Clinical Research Center for Orthopedics Sports Medicine and Rehabilitation321 Zhongshan RoadNanjingJiangsu210008P. R. China
- Institute of Medical 3D PrintingNanjing UniversityNanjing211166P. R. China
- Jiangsu Engineering Research Center for 3D Bioprinting321 Zhongshan RoadNanjing210000P. R. China
| |
Collapse
|
3
|
Liu Y, Chen X, Tan X, Huang Y, Zhang W, Wang Z, Yang L, Wang Y, Li Z, Zhang X. Double network hydrogels encapsulating genetically modified dedifferentiated chondrocytes for auricular cartilage regeneration. J Mater Chem B 2025; 13:1823-1844. [PMID: 39745373 DOI: 10.1039/d4tb02352h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Microtia profoundly affects patients' appearance and psychological well-being. Tissue engineering ear cartilage scaffolds have emerged as the most promising solution for ear reconstruction. However, constructing tissue engineering ear cartilage scaffolds requires multiple passaging of chondrocytes, resulting in their dedifferentiation and loss of their special phenotypes and functions. To tackle these issues, here we employ guanidinobenzoic acid (GBA) modified generation 5 polyamidoamine (PAMAM) dendrimers (PG) as a Runx1 plasmid carrier to construct PG/pRunx1 polyplex nanoparticles. The PG/pRunx1 polyplexes are transfected into human auricular chondrocytes, significantly mitigating chondrocyte dedifferentiation and enhancing cartilage regeneration during the in vitro culture. Furthermore, we develop highly porous double-network hydrogels based on methacrylate-functionalized and oxidized chondroitin sulfate and carbohydrazide-modified gelatin and the hydrogels possessed both dynamic adaptability and mechanical support characteristics by reversible dynamic covalent crosslinking and static covalent crosslinking, serving as an ideal scaffold for tissue engineering. Consequently, chondrocytes treated with PG/pRunx1 polyplex nanoparticles are incorporated into the hydrogels to construct tissue-engineered auricular cartilage scaffolds. After subcutaneous implantation in nude mice, the scaffolds containing chondrocytes treated with PG/pRunx1 nanoparticles showed more mature cartilaginous tissue, characterized by prominent ECM deposition and enhanced chondrogenesis. Therefore, this research provides a novel strategy for the development of tissue-engineered auricular cartilage scaffolds.
Collapse
Affiliation(s)
- Yang Liu
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Xiaoting Chen
- Animal Experimental Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xueqin Tan
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yeqian Huang
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Wen Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Zhicun Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Li Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Zhengyong Li
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
4
|
Cho S, Lee KS, Lee K, Kim HS, Park S, Yu SE, Ha H, Baek S, Kim J, Kim H, Lee JY, Lee S, Sung HJ. Surface Crystal and Degradability of Shape Memory Scaffold Essentialize Osteochondral Regeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401989. [PMID: 38855993 DOI: 10.1002/smll.202401989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/27/2024] [Indexed: 06/11/2024]
Abstract
The minimally invasive deployment of scaffolds is a key safety factor for the regeneration of cartilage and bone defects. Osteogenesis relies primarily on cell-matrix interactions, whereas chondrogenesis relies on cell-cell aggregation. Bone matrix expansion requires osteoconductive scaffold degradation. However, chondrogenic cell aggregation is promoted on the repellent scaffold surface, and minimal scaffold degradation supports the avascular nature of cartilage regeneration. Here, a material satisfying these requirements for osteochondral regeneration is developed by integrating osteoconductive hydroxyapatite (HAp) with a chondroconductive shape memory polymer (SMP). The shape memory function-derived fixity and recovery of the scaffold enabled minimally invasive deployment and expansion to fill irregular defects. The crystalline phases on the SMP surface inhibited cell aggregation by suppressing water penetration and subsequent protein adsorption. However, HAp conjugation SMP (H-SMP) enhanced surface roughness and consequent cell-matrix interactions by limiting cell aggregation using crystal peaks. After mouse subcutaneous implantation, hydrolytic H-SMP accelerated scaffold degradation compared to that by the minimal degradation observed for SMP alone for two months. H-SMP and SMP are found to promote osteogenesis and chondrogenesis, respectively, in vitro and in vivo, including the regeneration of rat osteochondral defects using the binary scaffold form, suggesting that this material is promising for osteochondral regeneration.
Collapse
Affiliation(s)
- Sungwoo Cho
- Department of Medical Engineering, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Kang Suk Lee
- Department of Medical Engineering, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- TMD LAB Co. Ltd., 6th Floor, 31, Gwangnaru-ro 8-gil, Seongdong-gu, Seoul, 04799, South Korea
| | - Kyubae Lee
- Department of Biomedical Materials, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon, 35365, South Korea
| | - Hye-Seon Kim
- Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Suji Park
- Department of Medical Engineering, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Seung Eun Yu
- Department of Medical Engineering, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hyunsu Ha
- Department of Medical Engineering, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Sewoom Baek
- Department of Medical Engineering, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Department of Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jueun Kim
- Department of Medical Engineering, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Department of Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hyunjae Kim
- Department of Medical Engineering, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Ji Youn Lee
- Department of Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Sangmin Lee
- Department of Medical Engineering, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hak-Joon Sung
- Department of Medical Engineering, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- TMD LAB Co. Ltd., 6th Floor, 31, Gwangnaru-ro 8-gil, Seongdong-gu, Seoul, 04799, South Korea
- Department of Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
5
|
Yao MX, Zhang YF, Liu W, Wang HC, Ren C, Zhang YQ, Shi TL, Chen W. Cartilage tissue healing and regeneration based on biocompatible materials: a systematic review and bibliometric analysis from 1993 to 2022. Front Pharmacol 2024; 14:1276849. [PMID: 38239192 PMCID: PMC10794889 DOI: 10.3389/fphar.2023.1276849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 11/20/2023] [Indexed: 01/22/2024] Open
Abstract
Cartilage, a type of connective tissue, plays a crucial role in supporting and cushioning the body, and damages or diseases affecting cartilage may result in pain and impaired joint function. In this regard, biocompatible materials are used in cartilage tissue healing and regeneration as scaffolds for new tissue growth, barriers to prevent infection and reduce inflammation, and deliver drugs or growth factors to the injury site. In this article, we perform a comprehensive bibliometric analysis of literature on cartilage tissue healing and regeneration based on biocompatible materials, including an overview of current research, identifying the most influential articles and authors, discussing prevailing topics and trends in this field, and summarizing future research directions.
Collapse
Affiliation(s)
- Meng-Xuan Yao
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, Shijiazhuang, Hebei, China
| | - Yi-Fan Zhang
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, Shijiazhuang, Hebei, China
| | - Wei Liu
- Department of Pharmacy, Cangzhou People’s Hospital, Cangzhou, China
| | - Hai-Cheng Wang
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, Shijiazhuang, Hebei, China
| | - Chuan Ren
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, Shijiazhuang, Hebei, China
| | - Yu-Qin Zhang
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, Shijiazhuang, Hebei, China
| | - Tai-Long Shi
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, Shijiazhuang, Hebei, China
| | - Wei Chen
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, Shijiazhuang, Hebei, China
| |
Collapse
|
6
|
Liu L, Tang H, Wang Y. Polymeric biomaterials: Advanced drug delivery systems in osteoarthritis treatment. Heliyon 2023; 9:e21544. [PMID: 38034809 PMCID: PMC10682535 DOI: 10.1016/j.heliyon.2023.e21544] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 12/02/2023] Open
Abstract
Polymeric biomaterials have emerged as a highly promising candidate for drug delivery systems (DDS), exhibiting significant potential to enhance the therapeutic landscape of osteoarthritis (OA) therapy. Their remarkable capacity to manifest desirable physicochemical attributes, coupled with their excellent biocompatibility and biodegradability, has greatly expanded their utility in pharmacotherapeutic applications. Nevertheless, an urgent necessity exists for a comprehensive synthesis of the most recent advances in polymeric DDS, providing valuable guidance for their implementation in the context of OA therapy. This review is dedicated to summarizing and examining recent developments in the utilization of polymeric DDS for OA therapy. Initially, we present an overview of the intricate pathophysiology characterizing OA and underscore the prevailing limitations inherent to current treatment modalities. Subsequently, we introduce diverse categories of polymeric DDS, including hydrogels, nanofibers, and microspheres, elucidating their inherent advantages and limitations. Moreover, we discuss and summarize the delivery of bioactive agents through polymeric biomaterials for OA therapy, emphasizing key findings and emerging trends. Finally, we highlight prospective directions for advancing polymeric DDS, offering a promising approach to enhance their translational potential for OA therapy.
Collapse
Affiliation(s)
- Lin Liu
- Department of Emergency, Honghui Hospital of Xi'an Jiaotong University, Xi'an City, Shaanxi Province, 710054, China
| | - Haifeng Tang
- Department of Emergency, Honghui Hospital of Xi'an Jiaotong University, Xi'an City, Shaanxi Province, 710054, China
| | - Yanjun Wang
- Department of Emergency, Honghui Hospital of Xi'an Jiaotong University, Xi'an City, Shaanxi Province, 710054, China
| |
Collapse
|
7
|
Wang X, Zhang Y, Yang J. Transcriptome analysis reveals synergistic modulation of E-cadherin/N-cadherin in hMSC aggregates chondrogenesis. Genes Genomics 2023; 45:681-692. [PMID: 36595183 DOI: 10.1007/s13258-022-01362-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND N-cadherin-mediated cell adhesion is a vital inductor for mesenchymal condensation in chondrogenesis. Recent studies have revealed the involvement of E-cadherin in enhancing the multipotency of mesenchymal stem cells (MSCs) and limb development; however, the signaling crosstalk of E/N-cadherin remains unclear. OBJECTIVE This study aimed to explore the synergistic modulation of E/N-cadherin in the chondrogenic differentiation of MSC aggregates. METHODS Human E/N-cadherin-functionalized (hE/N-cad-Fc) poly (lactic-co-glycolic acid) (PLGA) microparticles (hE/N-cad-PLGA) were incorporated into the human MSC (hMSC) aggregates to upregulate the expression of the corresponding endogenous cadherin. The chondrogenic differentiation of the hMSC aggregates was initiated by hE/N-cad-PLGA, controlling the release of transforming growth factor-β (TGF-β). A transcriptome analysis was used to assess differentially expressed genes (DEGs) modulated by hE/N-cad-Fc in hMSC aggregate chondrogenesis. Gene functions and signaling pathways were assessed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. The associated biological pathways were assessed by a protein-protein interaction (PPI) network analysis, and the results were further confirmed by real-time quantitative PCR (qPCR) and western blotting. RESULTS A total of 1083 DEGs, comprising 111 upregulated and 972 downregulated genes, were discovered to be related to the enhanced chondrogenic differentiation modulated by hE/N-cad-Fc. The GO and KEGG functional enrichment analyses revealed that hE/N-cad-Fc synergistically regulated the p53-related survival signaling pathway. PPI analysis revealed that mitogen-activated protein kinases (MAPK) caspase regulation is a core aspect of the chondrogenic differentiation process, confirmed by western blotting. CONCLUSION To the best of our knowledge, our study is the first to reveal that the synergistic modulation of E/N-cadherin enhances the chondrogenic differentiation of hMSCs via the ERK1/2-p53 signaling axis.
Collapse
Affiliation(s)
- Xueping Wang
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Yan Zhang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, China
| | - Jun Yang
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
8
|
Xiong Y, Mi BB, Lin Z, Hu YQ, Yu L, Zha KK, Panayi AC, Yu T, Chen L, Liu ZP, Patel A, Feng Q, Zhou SH, Liu GH. The role of the immune microenvironment in bone, cartilage, and soft tissue regeneration: from mechanism to therapeutic opportunity. Mil Med Res 2022; 9:65. [PMID: 36401295 PMCID: PMC9675067 DOI: 10.1186/s40779-022-00426-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 10/30/2022] [Indexed: 11/21/2022] Open
Abstract
Bone, cartilage, and soft tissue regeneration is a complex spatiotemporal process recruiting a variety of cell types, whose activity and interplay must be precisely mediated for effective healing post-injury. Although extensive strides have been made in the understanding of the immune microenvironment processes governing bone, cartilage, and soft tissue regeneration, effective clinical translation of these mechanisms remains a challenge. Regulation of the immune microenvironment is increasingly becoming a favorable target for bone, cartilage, and soft tissue regeneration; therefore, an in-depth understanding of the communication between immune cells and functional tissue cells would be valuable. Herein, we review the regulatory role of the immune microenvironment in the promotion and maintenance of stem cell states in the context of bone, cartilage, and soft tissue repair and regeneration. We discuss the roles of various immune cell subsets in bone, cartilage, and soft tissue repair and regeneration processes and introduce novel strategies, for example, biomaterial-targeting of immune cell activity, aimed at regulating healing. Understanding the mechanisms of the crosstalk between the immune microenvironment and regeneration pathways may shed light on new therapeutic opportunities for enhancing bone, cartilage, and soft tissue regeneration through regulation of the immune microenvironment.
Collapse
Affiliation(s)
- Yuan Xiong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Bo-Bin Mi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Ze Lin
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Yi-Qiang Hu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Le Yu
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH, 45701, USA
| | - Kang-Kang Zha
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.,Key Laboratory of Biorheological Science and Technology,Ministry of Education College of Bioengineering, Chongqing University, Shapingba, Chongqing, 400044, China
| | - Adriana C Panayi
- Department of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02152, USA
| | - Tao Yu
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lang Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.,Department of Physics, Center for Hybrid Nanostructure (CHyN), University of Hamburg, Hamburg, 22761, Germany
| | - Zhen-Ping Liu
- Department of Physics, Center for Hybrid Nanostructure (CHyN), University of Hamburg, Hamburg, 22761, Germany.,Joint Laboratory of Optofluidic Technology and System,National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Anish Patel
- Skeletal Biology Laboratory, Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02120, USA
| | - Qian Feng
- Key Laboratory of Biorheological Science and Technology,Ministry of Education College of Bioengineering, Chongqing University, Shapingba, Chongqing, 400044, China.
| | - Shuan-Hu Zhou
- Skeletal Biology Laboratory, Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02120, USA. .,Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA.
| | - Guo-Hui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.
| |
Collapse
|