1
|
Dong J, Zhang S, Chan YK, Lai S, Deng Y. Vacancies-rich Z-scheme VdW heterojunction as H 2S-sensitized synergistic therapeutic nanoplatform against refractory biofilm infections. Biomaterials 2025; 320:123258. [PMID: 40090255 DOI: 10.1016/j.biomaterials.2025.123258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/02/2025] [Accepted: 03/13/2025] [Indexed: 03/18/2025]
Abstract
Encapsulated in a self-produced negatively charged extracellular polymeric substance (EPS) matrix, the wound infected bacterial biofilms exhibit formidable resistance to conventional positively charged antibiotics and host's immune responses, which can undoubtedly lead to persistent infections and lethal complications. Nevertheless, developing efficacious strategies to root out stubborn biofilm and promote tissue regeneration still remains a challenge. To resolve this dilemma, a versatile vacancies-rich Z-scheme MoSSe Van der Waals heterojunction (MoSSe VdW HJ) is rationally fabricated as nanoplatform for hydrogen sulfide (H2S)-sensitized synergistic therapy of wound bacterial biofilm infection. The rich anion vacancies and Z-scheme heterostructure make the fabricated MoSSe VdW HJ can effectively augment H2S, localized hyperthermia, and reactive oxygen species production under the stimulation of biofilm microenvironments (BME) and irradiation of 808 nm near-infrared (NIR) light. Therefore, MoSSe VdW HJ is capable to integrate H2S gas, chemodynamic, photothermal, and photodynamic therapies to effectively destroy eDNA and polysaccharides in the EPS matrix, thereby breaching the biofilm barrier to eradicate bacteria and facilitate wound healing. The synergistic strategy exhibits superior anti-biofilm and wound repair effects both in vivo and in vitro, thus providing guideline for the development of BME and NIR light activated synergistic therapeutics to fight against refractory biofilm infections.
Collapse
Affiliation(s)
- Jianwen Dong
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Shuting Zhang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yau Kei Chan
- Department of Ophthalmology, The University of Hong Kong, 999077, Hong Kong, China
| | - Shuangquan Lai
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Yi Deng
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China; Department of Mechanical Engineering, The University of Hong Kong, 999077, Hong Kong, China.
| |
Collapse
|
2
|
Jia X, He K, Cai L, Liu Y, Li H, Dong X, He M, Zhang L, Le G, Wang S, Chen J. Coaxially fabricated electrospinning near-infrared light-responsive nanofibrous membranes for combating drug-resistant bacteria. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138106. [PMID: 40199072 DOI: 10.1016/j.jhazmat.2025.138106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/08/2025] [Accepted: 03/29/2025] [Indexed: 04/10/2025]
Abstract
Nowadays, the rapid emergence of drug-resistant bacteria has posed a global threat to the public health, leading to increased cost of environmental hygiene and healthcare treatment, which urges the development of safe and efficient antibacterial strategies. Here, coaxially fabricated electrospun nanofibrous membrane (ENMs) consisted of quercetin (Qu) stabilized selenium nanoparticles (Qu@SeNPs) and electro-synthesized molybdenum disulfide (MoS2) nanosheets were facilely formed as core/shell structure with polyvinyl alcohol (PVA) and α-Lipoic acid (LA) as cross-linker. The obtained ENMs formed by core-shell PVA/MoS2/LA/Qu@SeNPs (PMLQS) showed good air permeability and near-infrared-light photothermal responsiveness to kill bacteria efficiently. Moreover, the obtained ENMs resembling extracellular matrix-like properties showed superior biocompatibility with negligible development toxicity of zebrafish. The antibacterial experiments indicated that the produced PMLQS fibrous membrane exhibited more pronounced bactericidal activity against Gram-positive (G+) Staphylococcus aureus (S. aureus) and methicillin-resistant S. aureus (MRSA) as compared to that of Gram-negative (G-) Escherichia coli (E. coli). Furthermore, transcriptomic analysis revealed MRSA inactivation by PMLQS ENMs involved disruption of ion transport, antioxidant system, carbohydrate metabolism and energy metabolism. Notably, the MRSA ADI pathway was also blocked supporting the minimized antibiotic resistance development. Therefore, the constructed near-infrared light-responsive PMLQS nanofibrous membrane held promise in tackling drug-resistant bacteria with enormous environmental and biomedical utilizations.
Collapse
Affiliation(s)
- Xiaoyu Jia
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Kaiting He
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ling Cai
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; The Second People's Hospital of Changzhou, the Third Affiliated Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou 213003, China
| | - Yuhui Liu
- State Key Laboratory of Nuclear Resources and Environment, School of Nuclear Science and Engineering, East China University of Technology, Nanchang 330013, China
| | - Henghui Li
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiaoxiao Dong
- Nanjing Medical University Affiliated Nanjing Municipal Center for Disease Control and Prevention, Nanjing 210003, China
| | - Min He
- Nanjing Medical University Affiliated Nanjing Municipal Center for Disease Control and Prevention, Nanjing 210003, China
| | - Li Zhang
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Guannan Le
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Shoulin Wang
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Jin Chen
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China; Jiangsu Province Engineering Research Center of Antibody Drug, Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
3
|
He R, Gu Y, Jia J, Yang F, Wu P, Feng P, Shuai C. Semiconductor photocatalytic antibacterial materials and their application for bone infection treatment. NANOSCALE HORIZONS 2025; 10:681-698. [PMID: 39850999 DOI: 10.1039/d4nh00542b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Bacterial infection in bone tissue engineering is a severe clinical issue. Traditional antimicrobial methods usually cause problems such as bacterial resistance and biosecurity. Employing semiconductor photocatalytic antibacterial materials is a more controlled and safer strategy, wherein semiconductor photocatalytic materials generate reactive oxygen species under illumination for killing bacteria by destroying their cell membranes, proteins, DNA, etc. In this review, P-type and N-type semiconductor photocatalytic materials and their antibacterial mechanisms are introduced. Type II heterojunctions, P-N heterojunctions, type Z heterojunctions and Schottky junctions have been reported to reduce the recombination of carriers, while element doping, sensitization and up-conversion luminescence expand the photoresponse range. Furthermore, the applications of semiconductor photocatalytic antibacterial materials in bone infection treatment such as osteomyelitis treatment, bone defect repair and dental tissue regeneration are summarized. Finally, the conclusion and future prospects of semiconductor photocatalytic antibacterial materials in bone tissue engineering were analyzed.
Collapse
Affiliation(s)
- Ruizhong He
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
| | - Yulong Gu
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
| | - Jiye Jia
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
| | - Feng Yang
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
| | - Ping Wu
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Pei Feng
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
| | - Cijun Shuai
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
- Jiangxi Province Key Laboratory of Additive Manufacturing of Implantable Medical Device, Jiangxi University of Science and Technology, Nanchang 330013, China
| |
Collapse
|
4
|
Wang X, Shi W, Jin Y, Li Z, Deng T, Su T, Zheng A, Cao L. Photodynamic and photothermal bacteria targeting nanosystems for synergistically combating bacteria and biofilms. J Nanobiotechnology 2025; 23:40. [PMID: 39849558 PMCID: PMC11756032 DOI: 10.1186/s12951-025-03126-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 01/14/2025] [Indexed: 01/25/2025] Open
Abstract
The escalating hazards posed by bacterial infections underscore the imperative for pioneering advancements in next-generation antibacterial modalities and treatments. Present therapeutic methodologies are frequently impeded by the constraints of insufficient biofilm infiltration and the absence of precision in pathogen-specific targeting. In this current study, we have used chlorin e6 (Ce6), zeolitic imidazolate framework-8 (ZIF-8), polydopamine (PDA), and UBI peptide to formulate an innovative nanosystem meticulously engineered to confront bacterial infections and effectually dismantle biofilm architectures through the concerted mechanism of photodynamic therapy (PDT)/photothermal therapy (PTT) therapies, including in-depth research, especially for oral bacteria and oral biofilm. Ce6@ZIF-8-PDA/UBI nanosystem, with effective adhesion and bacteria-targeting, affords a nuanced bacterial targeting strategy and augments penetration depth into oral biofilm matrices. The Ce6@ZIF-8-PDA/UBI nanosystem potentiated bacterial binding and aggregation. Upon exposure to red-light (RL) irradiation, Ce6@ZIF-8-PDA/UBI showed excellent antibacterial effect on S. aureus, E. coli, F. nucleatum, and P. gingivalis and exceptional light-driven antibiofilm activity to P. gingivalis biofilm, which was a result of the efficient bacterial localization mediated by PDA/UBI, as well as the PDT/PTT facilitated by Ce6/PDA interactions. Collectively, these versatile nanoplatforms augur a promising and strategic avenue for controlling infection and biofilm, thereby holding significant potential for future integration into clinical paradigms. The original application of the developed nanosystem in oral biofilms also provides a new strategy for effective oral infection treatment.
Collapse
Affiliation(s)
- Xiao Wang
- Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, National Clinical Research Center for Oral Diseases, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Wenxuan Shi
- Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
- School of Dental Medicine, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, 44106, USA
| | - Yu Jin
- Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, National Clinical Research Center for Oral Diseases, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Zhuoyuan Li
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, National Clinical Research Center for Oral Diseases, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Tanjun Deng
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, National Clinical Research Center for Oral Diseases, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Tingshu Su
- Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China.
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, National Clinical Research Center for Oral Diseases, 639 Zhizaoju Road, Shanghai, 200011, China.
| | - Ao Zheng
- Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China.
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, National Clinical Research Center for Oral Diseases, 639 Zhizaoju Road, Shanghai, 200011, China.
| | - Lingyan Cao
- Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China.
- National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, National Clinical Research Center for Oral Diseases, 639 Zhizaoju Road, Shanghai, 200011, China.
| |
Collapse
|
5
|
Chen Z, Mo Q, Mo D, Pei X, Liang A, Cai J, Zhou B, Zheng L, Li H, Yin F, Zhao J. A multifunctional photothermal electrospun PLGA/MoS 2@Pd nanofiber membrane for diabetic wound healing. Regen Biomater 2024; 12:rbae143. [PMID: 39850758 PMCID: PMC11754638 DOI: 10.1093/rb/rbae143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/16/2024] [Accepted: 12/01/2024] [Indexed: 01/25/2025] Open
Abstract
Injury caused by excess reactive oxygen species (ROS) may lead to susceptibility to bacterial infection and sustained inflammatory response, which are the major factors impeding diabetic wound healing. By utilizing optimal anti-inflammatory, antioxidant and antibacterial biomaterials for multifunctional wound dressings is critical in clinical applications. In this study, a novel electrospun PLGA/MoS2@Pd nanofiber membrane was synthesized by encapsulating antioxidant and near-infrared (NIR) responsive MOS2@Pd nanozymes in PLGA nanofibers to form a multifunctional dressing for diabetic wound repair. With excellent biocompatibility and hemostatic ability, this novel PLGA/MoS2@Pd nanofiber membrane can effectively reduce oxidative stress damage and intracellular inflammatory factors expression in fibroblasts by scavenging ROS. Additionally, the PLGA/MoS2@Pd nanofiber membrane exhibited favorable NIR-mediated photothermal antibacterial activity in vitro, with inhibition rates of 97.14% and 97.07% against Staphylococcus aureus (S.aureus) and Escherichia coli (E.coli), respectively. In a diabetic rat wound infection model, NIR-assisted PLGA/MoS2@Pd nanofiber membrane effectively inhibited bacterial growth in the wound, reduced infection-induced inflammatory response, and promoted tissue epithelialization and collagen deposition, resulting in a wound healing rate of up to 98.5% on Day 14. This study highlighted the construction of a multifunctional nanofiber membrane platform and demonstrated its promising potential as a clinical dressing for diabetic wounds.
Collapse
Affiliation(s)
- Zhengrong Chen
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Quansheng Mo
- Department of Traditional Chinese Medicine, The Ninth People's Hospital of Nanning, Binyang, Guangxi 530409, China
| | - Dandan Mo
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Xiaomin Pei
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Anru Liang
- Department of Burns and Plastic Surgery, The Third Affiliated Hospital of Guangxi Medical University & The Second Nanning People's Hospital, Nanning 530031, China
| | - Jinhong Cai
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Bo Zhou
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Hongmian Li
- Department of Plastic and Reconstructive Surgery, The People’s Hospital of Guangxi Zhuang Autonomous Region & Research Center of Medical Sciences, Guangxi Academy of Medical Sciences, Nanning 530021, China
| | - Feiying Yin
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- Department of Orthopedics, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
6
|
Kushwaha A, Bharti NR, Sharma A, Kedia SK, Gupta G, Goel N. Enhanced NO 2 Gas Sensing in Nanocrystalline MoS 2 via Swift Heavy Ion Irradiation: An Experimental and DFT Study. ACS Sens 2024; 9:5966-5975. [PMID: 39441079 DOI: 10.1021/acssensors.4c01812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Nanostructured transition metal dichalcogenides (TMDs) like MoS2 hold promise for gas sensing applications due to their exceptional properties. However, limitations exist in maximizing sensor performance, such as limited active sites for gas interaction and sluggish response/recovery times. This study explores swift heavy ion (SHI) irradiation as a strategy to address these challenges in MoS2-based NO2 gas sensors. MoS2 nanoflakes were fabricated and subsequently irradiated with 120 MeV silver (Ag) ions to induce structural and morphological modifications. Characterization techniques confirmed the formation of Mo and S vacancies within the MoS2 lattice due to irradiation. Significantly, SHI irradiation resulted in a remarkable enhancement of approximately 3 times improvement in sensing response compared to pristine MoS2 sensors. Additionally, the irradiated sensors exhibit substantial improvements in both response and recovery times for NO2 detection. SHI irradiation resulted in the formation of self-affine nanostructures and increased grain fragmentation as fluence rises. This enhanced surface area is hypothesized to promote gas-sensor response. To gain deeper insights into the underlying mechanism, first-principles calculations were employed. These calculations suggest that electron transfer occurs from the MoS2 surface to the NO2 molecule during interaction. Furthermore, the irradiation-induced vacancies facilitate stronger NO2 adsorption on the MoS2 surface compared to the pristine sample. This work demonstrates the effectiveness of SHI irradiation in engineering defects within MoS2 nanoflakes, leading to significantly improved NO2 gas-sensing performance. This approach offers a promising avenue for developing next-generation TMD-based gas sensors with enhanced sensitivity, response times, and stability.
Collapse
Affiliation(s)
- Aditya Kushwaha
- Department of Electronics and Communication Engineering, Netaji Subhas University of Technology, New Delhi, Dwarka 110078, India
| | - Neetu Raj Bharti
- Department of Electronics and Communication Engineering, Netaji Subhas University of Technology, New Delhi, Dwarka 110078, India
| | - Anuj Sharma
- CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012, India
| | - Sanjay Kumar Kedia
- Materials Science Division, Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Govind Gupta
- CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012, India
| | - Neeraj Goel
- Department of Electronics and Communication Engineering, Netaji Subhas University of Technology, New Delhi, Dwarka 110078, India
| |
Collapse
|
7
|
Silva EP, Rechotnek F, Lima AMO, da Silva ACP, Sequinel T, Freitas CF, Martins AF, Muniz EC. Design and fabrication strategies of molybdenum disulfide-based nanomaterials for combating SARS-CoV-2 and other respiratory diseases: A review. BIOMATERIALS ADVANCES 2024; 163:213949. [PMID: 39002189 DOI: 10.1016/j.bioadv.2024.213949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/23/2024] [Accepted: 06/29/2024] [Indexed: 07/15/2024]
Affiliation(s)
- Elisangela P Silva
- Department of Chemistry, Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | - Fernanda Rechotnek
- Department of Chemistry, State University of Maringá (UEM), Maringá, PR, Brazil
| | - Antônia M O Lima
- Department of Chemistry, State University of Maringá (UEM), Maringá, PR, Brazil
| | | | - Thiago Sequinel
- Faculty of Exact Sciences and Technology (FACET), Federal University of Grande Dourados, Dourados, MS, Brazil
| | - Camila F Freitas
- Department of Chemistry, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil.
| | - Alessandro F Martins
- Department of Chemistry, State University of Maringá (UEM), Maringá, PR, Brazil; Laboratory of Materials, Macromolecules, and Composites (LaMMAC), Federal University of Technology - Paraná (UTFPR), Apucarana, PR, Brazil; Department of Chemistry, Pittsburg State University (PSU), Pittsburg, KS, USA.
| | - Edvani C Muniz
- Department of Chemistry, Federal University of Piauí (UFPI), Teresina, PI, Brazil; Department of Chemistry, State University of Maringá (UEM), Maringá, PR, Brazil
| |
Collapse
|
8
|
Li L, Zhang Y, Liu Y, Wu Y, Wang X, Cao L, Feng X. Synthesis of Pt-MoS 2 with enhanced photothermal and peroxidase-like properties and its antibacterial application. RSC Adv 2024; 14:29428-29438. [PMID: 39297038 PMCID: PMC11409452 DOI: 10.1039/d4ra05487c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/05/2024] [Indexed: 09/21/2024] Open
Abstract
Despite tremendous efforts, bacterial infection and contamination remain a major clinical challenge to modern humans. Nanozyme materials with stimuli-responsive properties are expected to be powerful tools for the next generation of antibacterial therapy. Here, MoS2 nanosheet was firstly prepared by liquid phase exfoliation method, and Pt-MoS2 hybrid biomaterial was then successfully synthesized by a simple self-reduction method. The Pt decoration significantly improves the photothermal effect of MoS2 nanosheet under 808 nm NIR laser irradiation. Besides, benefiting from the formation of heterogeneous structure, the Pt-MoS2 has significantly enhanced peroxidase mimetic catalytic activity, which can kill bacteria through catalysis of H2O2 to generate antimicrobial hydroxyl radicals. Moreover, the temperature rise brought about by NIR laser stimulation further amplifies the nanozyme activity of the composites. After treatment by the synergistic platform, both Staphylococcus aureus and Escherichia coli can be effectively inhibited, demonstrating its broad-spectrum antibacterial properties. In addition, the developed antibacterial Pt-MoS2 nanozyme have the excellent biocompatibility, which makes them well suited for infection elimination in biological systems. Overall, this work shows great potential for rationally combining the multiple functions of MoS2-based nanomaterials for synergistic antibacterial therapy. In the future, the Pt-MoS2 nanozyme may find wider applications in areas such as personal healthcare or surface disinfection treatment of medical devices.
Collapse
Affiliation(s)
- Liangyu Li
- Department of Nursing, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College Hangzhou China
| | - Yueqin Zhang
- School of Public Health, Hangzhou Medical College Hangzhou China
| | - Yumeng Liu
- School of Public Health, Hangzhou Medical College Hangzhou China
| | - Yaojuan Wu
- Department of Nursing, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College Hangzhou China
| | - Xiao Wang
- School of Public Health, Hangzhou Medical College Hangzhou China
| | - Lidong Cao
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College Hangzhou China
- College of Mechanical Engineering, Zhejiang University Hangzhou China
| | - Xia Feng
- Department of Nursing, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College Hangzhou China
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College Hangzhou China
| |
Collapse
|
9
|
Yu X, Xu C, Sun J, Xu H, Huang H, Gan Z, George A, Ouyang S, Liu F. Recent developments in two-dimensional molybdenum disulfide-based multimodal cancer theranostics. J Nanobiotechnology 2024; 22:515. [PMID: 39198894 PMCID: PMC11351052 DOI: 10.1186/s12951-024-02785-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/18/2024] [Indexed: 09/01/2024] Open
Abstract
Recent advancements in cancer research have led to the generation of innovative nanomaterials for improved diagnostic and therapeutic strategies. Despite the proven potential of two-dimensional (2D) molybdenum disulfide (MoS2) as a versatile platform in biomedical applications, few review articles have focused on MoS2-based platforms for cancer theranostics. This review aims to fill this gap by providing a comprehensive overview of the latest developments in 2D MoS2 cancer theranostics and emerging strategies in this field. This review highlights the potential applications of 2D MoS2 in single-model imaging and therapy, including fluorescence imaging, photoacoustic imaging, photothermal therapy, and catalytic therapy. This review further classifies the potential of 2D MoS2 in multimodal imaging for diagnostic and synergistic theranostic platforms. In particular, this review underscores the progress of 2D MoS2 as an integrated drug delivery system, covering a broad spectrum of therapeutic strategies from chemotherapy and gene therapy to immunotherapy and photodynamic therapy. Finally, this review discusses the current challenges and future perspectives in meeting the diverse demands of advanced cancer diagnostic and theranostic applications.
Collapse
Affiliation(s)
- Xinbo Yu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Shenyang, 110001, China
- Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Chen Xu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Shenyang, 110001, China
- Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Jingxu Sun
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Shenyang, 110001, China
| | - Hainan Xu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Hanwei Huang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Shenyang, 110001, China
- Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Ziyang Gan
- Institute of Physical Chemistry, Abbe Center of Photonics, Friedrich Schiller University Jena, Jena, Germany
| | - Antony George
- Institute of Physical Chemistry, Abbe Center of Photonics, Friedrich Schiller University Jena, Jena, Germany
| | - Sihui Ouyang
- College of Materials Science and Engineering, Chongqing University, National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing, 400044, China.
| | - Funan Liu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Shenyang, 110001, China.
- Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
10
|
Fathi Kisomi M, Yadegar A, Shekari T, Amin M, Llopis-Lorente A, Liu C, Haririan I, Aghdaei HA, Shokrgozar MA, Zali MR, Rad-Malekshahi M, Miri AH, Hamblin MR, Wacker MG. Unveiling the potential role of micro/nano biomaterials in the treatment of Helicobacter pylori infection. Expert Rev Anti Infect Ther 2024; 22:613-630. [PMID: 39210553 DOI: 10.1080/14787210.2024.2391910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Helicobacter pylori causes stubborn infections and leads to a variety of stomach disorders, such as peptic ulcer, chronic atrophic gastritis, and gastric cancer. Although antibiotic-based approaches have been widely used against H. pylori, some challenges such as antibiotic resistance are increasing in severity. Therefore, simpler but more effective strategies are needed. AREAS COVERED In this review, basic information on functionalized and non-functionalized micro/nano biomaterials and routes of administration for H. pylori inhibition are provided in an easy-to-understand format. Afterward, in vitro and in vivo studies of some promising bio-platforms including metal-based biomaterials, biopolymers, small-molecule saccharides, and vaccines for H. pylori inhibition are discussed in a holistic manner. EXPERT OPINION Functionalized or non-functionalized micro/nano biomaterials loaded with anti-H. pylori agents can show efficient bactericidal activity with no/slight negative influence on the host gastrointestinal microbiota. However, this claim needs to be substantiated with hard data such as assessment of the biopharmaceutical parameters of anti-H. pylori systems and the measurement of diversity/abundance of bacterial genera in the host gastric/gut microbiota before and after H. pylori eradication.
Collapse
Affiliation(s)
- Misagh Fathi Kisomi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tara Shekari
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Amin
- Department of Drug and Food Control, Faculty of Pharmacy, and the Institute of Pharmaceutical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Antoni Llopis-Lorente
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Chenguang Liu
- College of Marine Life Science, Ocean University of China, Qingdao, P.R. China
| | - Ismaeil Haririan
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mazda Rad-Malekshahi
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Miri
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Matthias G Wacker
- Department of Pharmacy, Faculty of Science, National University of Singapore, 4 Science Drive 2, Singapore 117545, Singapore
| |
Collapse
|
11
|
Xu B, Yu D, Xu C, Gao Y, Sun H, Liu L, Yang Y, Qi D, Wu J. Study on synergistic mechanism of molybdenum disulfide/sodium carboxymethyl cellulose composite nanofiber mats for photothermal/photodynamic antibacterial treatment. Int J Biol Macromol 2024; 266:130838. [PMID: 38521322 DOI: 10.1016/j.ijbiomac.2024.130838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/02/2024] [Accepted: 03/11/2024] [Indexed: 03/25/2024]
Abstract
Innovative antibacterial therapies using nanomaterials, such as photothermal (PTT) and photodynamic (PDT) treatments, have been developed for treating wound infections. However, creating secure wound dressings with these therapies faces challenges. The primary focus of this study is to prepare an antibacterial nanofiber dressing that effectively incorporates stable loads of functional nanoparticles and demonstrates an efficient synergistic effect between PTT and PDT. Herein, a composite nanofiber mat was fabricated, integrating spherical molybdenum disulfide (MoS2) nanoparticles. MoS2 was deposited onto polylactic acid (PLA) nanofiber mats using vacuum filtration, which was further stabilized by sodium carboxymethyl cellulose (CMC) adhesion and glutaraldehyde (GA) cross-linking. The composite nanofibers demonstrated synergistic antibacterial effects under NIR light irradiation, and the underlying mechanism was explored. They induce bacterial membrane permeability, protein leakage, and intracellular reactive oxygen species (ROS) elevation, ultimately leading to >95 % antibacterial activity against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), which is higher than that of single thermotherapy (almost no antibacterial activity) or ROS therapy (about 80 %). In addition, the composite nanofiber mats exhibited promotion effects on infected wound healing in vivo. This study demonstrates the great prospects of composite nanofiber dressings in clinical treatment of bacterial-infected wounds.
Collapse
Affiliation(s)
- Bingjie Xu
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Dan Yu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Chenlu Xu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yujie Gao
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Hengqiu Sun
- Department of Pediatric Surgery, Taizhou Women and Children's Hospital of Wenzhou Medical University, Taizhou 318000, China.
| | - Lei Liu
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yang Yang
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Dongming Qi
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China; Key Laboratory of Green Cleaning Technology & Detergent of Zhejiang Province, Lishui 323000, China.
| | - Jindan Wu
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China; Key Laboratory of Green Cleaning Technology & Detergent of Zhejiang Province, Lishui 323000, China.
| |
Collapse
|
12
|
Shen Q, Li Z, Bai H, Gu M, Kang J, Jia R, Zhang J, Dong A. Regulation of band gap and localized surface plasmon resonance by loading Au nanorods on violet phosphene nanosheets for photodynamic/photothermal synergistic anti-infective therapy. J Mater Chem B 2024; 12:3392-3403. [PMID: 38512335 DOI: 10.1039/d4tb00105b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
In the face of the serious threat to human health and the economic burden caused by bacterial antibiotic resistance, 2D phosphorus nanomaterials have been widely used as antibacterial agents. Violet phosphorus nanosheets (VPNSs) are an exciting bandgap-adjustable 2D nanomaterial due to their good physicochemical properties, yet the study of VPNS-based antibiotics is still in its infancy. Here, a composite of gold nanorods (AuNRs) loaded onto VPNS platforms (VPNS/AuNR) is constructed to maximize the potential of VPNSs for antimicrobial applications. The loading with AuNRs not only enhances the photothermal performance via a localized surface plasmon resonance (LSPR) effect, but also enhances the light absorption capacity due to the narrowing of the band gap of the VPNSs, thus increasing the ROS generation capacity. The results demonstrate that VPNS/AuNR exhibits outstanding antibacterial properties and good biocompatibility. Attractively, VPNS/AuNR is then extensively tested for treating skin wound infections, suggesting promising in vivo antibacterial and wound-healing features. Our findings may open a novel direction to develop a versatile VPNS-based treatment platform, which can significantly boost the progress of VPNS exploration.
Collapse
Affiliation(s)
- Qiudi Shen
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, 235 University West Street, Hohhot 010021, China.
| | - Zhihao Li
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Haoran Bai
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, 235 University West Street, Hohhot 010021, China.
| | - Mengyue Gu
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy (CNRE), School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jing Kang
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, 235 University West Street, Hohhot 010021, China.
| | - Ran Jia
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 130023 Changchun, P. R. China
| | - Jinying Zhang
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy (CNRE), School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, 235 University West Street, Hohhot 010021, China.
| |
Collapse
|
13
|
She P, Li S, Li X, Rao H, Men X, Qin JS. Photocatalytic antibacterial agents based on inorganic semiconductor nanomaterials: a review. NANOSCALE 2024; 16:4961-4973. [PMID: 38390689 DOI: 10.1039/d3nr06531f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Microbial contamination and antibiotic pollution have threatened public health and it is important to develop a rapid and safe sterilization strategy. Among various disinfection strategies, photocatalytic antibacterial methods have drawn increasing attention due to their efficient disinfection performances and environment-friendly properties. Although there are some reviews about bacterial disinfection, specific reviews on photocatalysis focused on inorganic semiconductor nanomaterials are rarely reported. Herein, we present a systematic summary of recent disinfection developments based on inorganic nanomaterials (including metal oxides, sulfides, phosphides, carbon materials, and corresponding heterostructures) over the past five years. Moreover, key factors and challenges for inorganic nanomaterial-based photocatalytic disinfection are outlined, which holds great potential for future photocatalytic antibacterial applications.
Collapse
Affiliation(s)
- Ping She
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Shuming Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Xuejing Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Heng Rao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Xiaoju Men
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, China
| | - Jun-Sheng Qin
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| |
Collapse
|
14
|
Liang J, Li H, Ren M, Zhou M, Han J, Zhou W, Kong F, Fakayode OA, Ur Rehman A, Fapohunda FO, Zhou C. Lignin-ultrasound method: Enhancement of antimicrobial capacity of MoS 2-containing films. Int J Biol Macromol 2023; 252:126509. [PMID: 37633551 DOI: 10.1016/j.ijbiomac.2023.126509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/27/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
To improve the antimicrobial ability of MoS2-containing films, we used lignin and triple-frequency ultrasound for liquid-phase exfoliation (LPE) to obtain MoS2 nanosheets. Photoresponsive antimicrobial films with MoS2 nanosheets, lignin, polyvinyl alcohol and deep eutectic solvents were subsequently prepared. Lignin functionalized the MoS2 nanosheets by chemically linking with S in MoS2 and significantly improved the exfoliation efficiency. Tri-frequency ultrasound produces beneficial effects on the LPE process by creating a more homogeneous sound field and a stronger degree of cavitation. The concentration of MoS2 nanosheets in the exfoliating solution could reach 1.713 mg/mL under the effect of lignin-ultrasound. The antimicrobial ability of the films was analyzed, and the colony-forming units of E. coli and S. aureus could be reduced from 7 × 106 to 1 × 106 cfu/mL under the irradiation of infrared. The lignin in the film undergoes depolymerization and demethoxylation under the irradiation of infrared to have a more phenolic hydroxyl structure, which confers the growth inhibition ability of the films for bacteria that cannot be in close contact with the film. The method we used has some significance for the preparation of MoS2 nanosheets, and composite films prepared from MoS2, and lignin can be used in food packaging, wound antimicrobials, and other fields.
Collapse
Affiliation(s)
- Jiakang Liang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Haoxin Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Manni Ren
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Man Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jingyi Han
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Wenhao Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Fangong Kong
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education/Shandong Province, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Olugbenga Abiola Fakayode
- Department of Mechanical Engineering, 10-263 Donadeo Innovation Centre for Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Abd Ur Rehman
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | | | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
15
|
Xing Z, Guo J, Wu Z, He C, Wang L, Bai M, Liu X, Zhu B, Guan Q, Cheng C. Nanomaterials-Enabled Physicochemical Antibacterial Therapeutics: Toward the Antibiotic-Free Disinfections. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303594. [PMID: 37626465 DOI: 10.1002/smll.202303594] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/17/2023] [Indexed: 08/27/2023]
Abstract
Bacterial infection continues to be an increasing global health problem with the most widely accepted treatment paradigms restricted to antibiotics. However, the overuse and misuse of antibiotics have triggered multidrug resistance of bacteria, frustrating therapeutic outcomes, and leading to higher mortality rates. Even worse, the tendency of bacteria to form biofilms on living and nonliving surfaces further increases the difficulty in confronting bacteria because the extracellular matrix can act as a robust barrier to prevent the penetration of antibiotics and resist environmental damage. As a result, the inability to eliminate bacteria and biofilms often leads to persistent infection, implant failure, and device damage. Therefore, it is of paramount importance to develop alternative antimicrobial agents while avoiding the generation of bacterial resistance to prevent the large-scale growth of bacterial resistance. In recent years, nano-antibacterial materials have played a vital role in the antibacterial field because of their excellent physical and chemical properties. This review focuses on new physicochemical antibacterial strategies and versatile antibacterial nanomaterials, especially the mechanism and types of 2D antibacterial nanomaterials. In addition, this advanced review provides guidance on the development direction of antibiotic-free disinfections in the antibacterial field in the future.
Collapse
Affiliation(s)
- Zhenyu Xing
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Jiusi Guo
- Department of Orthodontics, Department of Endodontics, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Zihe Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chao He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Liyun Wang
- Department of Medical Ultrasound, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Mingru Bai
- Department of Orthodontics, Department of Endodontics, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xikui Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Bihui Zhu
- Department of Medical Ultrasound, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiuyue Guan
- Department of Geriatrics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
16
|
Zhang L, You J, Lv H, Liu M, Quni S, Liu X, Zhou Y. Black Phosphorus - A Rising Star in the Antibacterial Materials. Int J Nanomedicine 2023; 18:6563-6584. [PMID: 38026531 PMCID: PMC10644884 DOI: 10.2147/ijn.s438448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/03/2023] [Indexed: 12/01/2023] Open
Abstract
Antibiotics are the most commonly used means to treat bacterial infection at present, but the unreasonable use of antibiotics induces the generation of drug-resistant bacteria, which causes great problems for their clinical application. In recent years, researchers have found that nanomaterials with high specific surface area, special structure, photocatalytic activity and other properties show great potential in bacterial infection control. Among them, black phosphorus (BP), a two-dimensional (2D) nanomaterial, has been widely reported in the treatment of tumor and bone defect due to its excellent biocompatibility and degradability. However, the current theory about the antibacterial properties of BP is still insufficient, and the relevant mechanism of action needs to be further studied. In this paper, we introduced the structure and properties of BP, elaborated the mechanism of BP in bacterial infection, and systematically reviewed the application of BP composite materials in the field of antibacterial. At the same time, we also discussed the challenges faced by the current research and application of BP, which laid a solid theoretical foundation for the further study of BP in the future.
Collapse
Affiliation(s)
- Lu Zhang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, People’s Republic of China
- School of Stomatology, Jilin University, Changchun, People’s Republic of China
| | - Jiaqian You
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, People’s Republic of China
| | - Huixin Lv
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, People’s Republic of China
| | - Manxuan Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, People’s Republic of China
| | - Sezhen Quni
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, People’s Republic of China
| | - Xiuyu Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, People’s Republic of China
| | - Yanmin Zhou
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, People’s Republic of China
- School of Stomatology, Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
17
|
Păun C, Motelică L, Ficai D, Ficai A, Andronescu E. Metal-Organic Frameworks: Versatile Platforms for Biomedical Innovations. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6143. [PMID: 37763421 PMCID: PMC10532503 DOI: 10.3390/ma16186143] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023]
Abstract
This review article explores the multiple applications and potential of metal-organic frameworks (MOFs) in the biomedical field. With their highly versatile and tunable properties, MOFs present many possibilities, including drug delivery, biomolecule recognition, biosensors, and immunotherapy. Their crystal structure allows precise tuning, with the ligand typology and metal geometry playing critical roles. MOFs' ability to encapsulate drugs and exhibit pH-triggered release makes them ideal candidates for precision medicine, including cancer treatment. They are also potential gene carriers for genetic disorders and have been used in biosensors and as contrast agents for magnetic resonance imaging. Despite the complexities encountered in modulating properties and interactions with biological systems, further research on MOFs is imperative. The primary focus of this review is to provide a comprehensive examination of MOFs in these applications, highlighting the current achievements and complexities encountered. Such efforts will uncover their untapped potential in creating innovative tools for biomedical applications, emphasizing the need to invest in the continued exploration of this promising field.
Collapse
Affiliation(s)
- Cătălin Păun
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
| | - Ludmila Motelică
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
| | - Denisa Ficai
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Gh. Polizu 1-7, 050054 Bucharest, Romania
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov St. 3, 050054 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov St. 3, 050054 Bucharest, Romania
| |
Collapse
|
18
|
Shu R, Sun J, Li B, Gao X, He M, Chan YK, Shi J, Bai D, Yang W, Deng Y. Self‐Tandem Bio‐Heterojunctions Empower Orthopedic Implants with Amplified Chemo‐Photodynamic Anti‐Pathogenic Therapy and Boosted Diabetic Osseointegration. ADVANCED FUNCTIONAL MATERIALS 2023; 33. [DOI: 10.1002/adfm.202214873] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Indexed: 01/03/2025]
Abstract
AbstractHyperglycemic microenvironment in diabetes mellitus inevitably stalls the normal orchestrated course of bone regeneration and encourages pathogenic multiplication. Photodynamic therapy (PDT) and chemo‐dynamic therapy (CDT) are extensively harnessed to combat pathogens, yet deep‐seated diabetic bone defect has difficulty in supplying sufficient oxygen (O2) and hydrogen peroxide (H2O2) stocks, resulting in inferior therapeutic efficiency. To address the tough plaguing, the self‐tandem bio‐heterojunctions (bio‐HJs) consisting of molybdenum disulfide (MoS2), graphene oxide (GO), and glucose oxidase (GOx) are constructed on orthopedic polyetheretherketone (PEEK) implants (SP‐Mo/G@GOx) for amplified chemo‐photodynamic anti‐pathogenic therapy and boosted osseointegration in the deep‐seated diabetic micromilieu. In this system, GOx exhausts glucose to generate H2O2, which provides an abundant stock for CDT. Besides, the bio‐HJs produce hyperthermia upon near‐infrared light (NIR) to accelerate the dynamic process, which amplifies the antibacterial potency of PDT by promoting the vast yield of singlet oxygen (1O2) in a self‐tandem manner. More importantly, in vivo and in vitro assays demonstrate that the engineered implants exert a captivated bactericidal ability and significantly boost osseointegration in an infectious diabetic bone defect model. As envisaged, this study furnishes a novel tactic to arm orthopedic implants with self‐tandem capability for the remedy of infectious diabetic bone defects.
Collapse
Affiliation(s)
- Rui Shu
- College of Biomedical Engineering State Key Laboratory of Oral Diseases West China Hospital of Stomatology School of Chemical Engineering Sichuan University Chengdu 610065 P. R. China
- National Clinical Research Center for Oral Diseases Department of Pediatric Dentistry West China Hospital of Stomatology Sichuan University Chengdu 610065 P. R. China
| | - Jiamin Sun
- College of Biomedical Engineering State Key Laboratory of Oral Diseases West China Hospital of Stomatology School of Chemical Engineering Sichuan University Chengdu 610065 P. R. China
| | - Bin Li
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases Department of Orthodontics West China Hospital of Stomatology Sichuan University Chengdu 610065 P. R. China
| | - Xiangyu Gao
- College of Biomedical Engineering State Key Laboratory of Oral Diseases West China Hospital of Stomatology School of Chemical Engineering Sichuan University Chengdu 610065 P. R. China
| | - Miaomiao He
- College of Biomedical Engineering State Key Laboratory of Oral Diseases West China Hospital of Stomatology School of Chemical Engineering Sichuan University Chengdu 610065 P. R. China
| | - Yau Kei Chan
- Department of Ophthalmology The University of Hong Kong Hong Kong SAR 999077 P. R. China
| | - Jiacheng Shi
- College of Biomedical Engineering State Key Laboratory of Oral Diseases West China Hospital of Stomatology School of Chemical Engineering Sichuan University Chengdu 610065 P. R. China
| | - Ding Bai
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases Department of Orthodontics West China Hospital of Stomatology Sichuan University Chengdu 610065 P. R. China
| | - Weizhong Yang
- College of Biomedical Engineering State Key Laboratory of Oral Diseases West China Hospital of Stomatology School of Chemical Engineering Sichuan University Chengdu 610065 P. R. China
| | - Yi Deng
- College of Biomedical Engineering State Key Laboratory of Oral Diseases West China Hospital of Stomatology School of Chemical Engineering Sichuan University Chengdu 610065 P. R. China
- Department of Mechanical Engineering The University of Hong Kong Hong Kong SAR 999077 P. R. China
- State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 P. R. China
| |
Collapse
|
19
|
Chen X, Chen Y, Zhang L, Liu Z, Qiu E, Liu Q, Regulacio MD, Lin C, Yang DP. Hydrophilic ZnO/C nanocomposites with superior adsorption, photocatalytic, and photo-enhanced antibacterial properties for synergistic water purification. J Colloid Interface Sci 2023; 648:535-550. [PMID: 37307610 DOI: 10.1016/j.jcis.2023.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/25/2023] [Accepted: 06/04/2023] [Indexed: 06/14/2023]
Abstract
Owing to the numerous potential applications of ZnO nanomaterials, the development of ZnO-based nanocomposites has become of great scientific interest in various fields. In this paper, we are reporting the fabrication of a series of ZnO/C nanocomposites through a simple "one-pot" calcination method under three different temperatures, 500 ℃, 600 ℃, and 700 ℃, with samples labeled as ZnO/C-500, -600, and -700, respectively. All samples exhibited adsorption capabilities and photon-activated catalytic and antibacterial properties, with the ZnO/C-700 sample showing superior performance among the three. The carbonaceous material in ZnO/C is key to expanding the optical absorption range and improving the charge separation efficiency of ZnO. The remarkable adsorption property of the ZnO/C-700 sample was demonstrated using Congo red dye, and is credited to its good hydrophilicity. It was also found to exhibit the most notable photocatalysis effect due to its high charge transfer efficiency. The hydrophilic ZnO/C-700 sample was also examined for antibacterial effects both in vitro (against Escherichia coli and Staphylococcus aureus) and in vivo (against MSRA-infected rat wound model), and it was observed to exhibit synergistic killing performance under visible-light irradiation. A possible cleaning mechanism is proposed on the basis of our experimental results. Overall, this work presents a facile way of synthesizing ZnO/C nanocomposites with outstanding adsorption, photocatalysis, and antibacterial properties for the efficient treatment of organic and bacterial contaminants in wastewater.
Collapse
Affiliation(s)
- Xiaofang Chen
- The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yimin Chen
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Lingyu Zhang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Zhihua Liu
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Enhui Qiu
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Qiaoling Liu
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Michelle D Regulacio
- Institute of Chemistry, University of the Philippines Diliman, Quezon City 1101, Philippines.
| | - Chang Lin
- The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.
| | - Da-Peng Yang
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, China; School of Rehabilitation Science and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong 266024, China.
| |
Collapse
|
20
|
Photo-Antibacterial Activity of Two-Dimensional (2D)-Based Hybrid Materials: Effective Treatment Strategy for Controlling Bacterial Infection. Antibiotics (Basel) 2023; 12:antibiotics12020398. [PMID: 36830308 PMCID: PMC9952232 DOI: 10.3390/antibiotics12020398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Bacterial contamination in water bodies is a severe scourge that affects human health and causes mortality and morbidity. Researchers continue to develop next-generation materials for controlling bacterial infections from water. Photo-antibacterial activity continues to gain the interest of researchers due to its adequate, rapid, and antibiotic-free process. Photo-antibacterial materials do not have any side effects and have a minimal chance of developing bacterial resistance due to their rapid efficacy. Photocatalytic two-dimensional nanomaterials (2D-NMs) have great potential for the control of bacterial infection due to their exceptional properties, such as high surface area, tunable band gap, specific structure, and tunable surface functional groups. Moreover, the optical and electric properties of 2D-NMs might be tuned by creating heterojunctions or by the doping of metals/carbon/polymers, subsequently enhancing their photo-antibacterial ability. This review article focuses on the synthesis of 2D-NM-based hybrid materials, the effect of dopants in 2D-NMs, and their photo-antibacterial application. We also discuss how we could improve photo-antibacterials by using different strategies and the role of artificial intelligence (AI) in the photocatalyst and in the degradation of pollutants. Finally, we discuss was of improving the photo-antibacterial activity of 2D-NMs, the toxicity mechanism, and their challenges.
Collapse
|
21
|
Wang X, Zhao M, Feng J, Li D. Influence of polycrystalline MoS2 nanoflowers on mouse breast cancer cell proliferation via molten salt sintering. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
22
|
Li J, Yi W, Luo Y, Yang K, He L, Xu C, Deng L, He D. GSH-depleting and H 2O 2-self-supplying hybrid nanozymes for intensive catalytic antibacterial therapy by photothermal-augmented co-catalysis. Acta Biomater 2023; 155:588-600. [PMID: 36328125 DOI: 10.1016/j.actbio.2022.10.050] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/22/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022]
Abstract
Nanozyme-based chemodynamic therapy (CDT) has shown tremendous potential in the treatment of bacterial infections. However, the CDT antibacterial efficacy is severely limited by the catalytic activity of nanozymes or the infection microenvironments such as insufficient hydrogen peroxide (H2O2) and overexpressed glutathione (GSH). Herein, a versatile hybrid nanozyme (MoS2/CuO2) is rationally constructed by simply decorating ultrasmall CuO2 nanodots onto lamellar MoS2 platelets of hydrangea-like MoS2 nanocarrier via a covalent Cu-S bond. The MoS2/CuO2 nanozyme exhibits the peroxidase-mimic activity for catalytically converting H2O2 produced by acid-triggered decomposition of the decorated CuO2 into hydroxyl radical (•OH). Meanwhile, the MoS2/CuO2 can consume GSH overexpressed in the infection sites via redox reaction mediated by polyvalent transition metal ions (Cu2+ and Mo6+) for enhanced CDT. More importantly, MoS2 support can promote the conversion of Cu2+ to Cu+ by a co-catalytic reaction based on the Mo4+/Mo6+ redox couples, and provide photonic hyperthermia (PTT) to augment the peroxidase-mimic activity. The developed MoS2/CuO2 nanozymes possesses a desirable catalytic property, as well as a remarkably improved antibacterial efficiency both in vitro and in vivo. Taken together, this study proposes a synergetic multiple enhancement strategy to successfully construct the versatile hybrid nanozymes for intensive in vivo PTT/CDT dual-mode anti-infective therapy. STATEMENT OF SIGNIFICANCE: Chemodynamic therapy (CDT) has shown great potentialities in the treatment of bacterial infections, while its therapeutic efficiency is severely limited by the infection microenvironments such as insufficient hydrogen peroxide (H2O2) and overexpressed glutathione (GSH). Here, we rationally construct a hybrid nanozyme (MoS2/CuO2) with peroxidase-like activity that can enhance CDT by regulating local microenvironments, that is, simultaneously self-supplying H2O2 and consuming GSH. Importantly, MoS2 support can promote the conversion of Cu2+ to Cu+ by the Mo4+/Mo6+ redox couples, and provide photonic hyperthermia (PTT) to augment the peroxidase-mimic activity. The developed MoS2/CuO2 shows desirable PTT/CDT dual-mode antibacterial efficacy both in vitro and in vivo. This study proposes a versatile hybrid nanozyme with multiple enhancement effects for intensive in vivo anti-infective therapy.
Collapse
Affiliation(s)
- Junqin Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Wenhua Yi
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Yuze Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Ke Yang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Lidan He
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Caiyun Xu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Le Deng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Dinggeng He
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, China.
| |
Collapse
|
23
|
Wan D, Liu X, Sun W, Qiao Y, Chen DF, Zheng Y, Wu S. Sea urchin-like Bi 2S 3/curcumin heterojunction rapidly kills bacteria and promotes wound healing under near-infrared light. Biomater Sci 2022; 10:6377-6387. [PMID: 36178709 DOI: 10.1039/d2bm01474b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bacterial infection is an urgent public health problem. We design a novel photo-responsive hybrid material by growing small molecules of curcumin (Cur) in situ on a sea urchin-like Bi2S3 surface by a one-step hydrothermal reaction method, thus forming an organic-inorganic hybrid material with interfacial contact. The Bi2S3/Cur hybrid material has good antibacterial effect under 808 nm near-infrared (NIR) light irradiation. The antibacterial mechanism is that the electron redistribution at the interface of Bi2S3/Cur excited by 808 nm NIR light will cause a large number of electrons to gather on the side of Bi2S3, forming an internal electric field to drive the excited electrons from Bi2S3 to Cur, which accelerates the separation of photoexcited electron-hole pairs and enhances the production of reactive oxygen species (ROS). In conclusion, due to these synergistic effects of the photothermal properties of Bi2S3, the production of more ROS and the release of small molecules of Cur from traditional Chinese medicine in Bi2S3/Cur, the antibacterial efficacy against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) is 99.96% and 99.03%, respectively. In vivo experiments in animals show that Bi2S3/Cur can reduce the inflammatory response and promote wound healing. This paper presents a simple, rapid and safe strategy for the treatment of wound infections with near-infrared light.
Collapse
Affiliation(s)
- Danya Wan
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China.
| | - Xiangmei Liu
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China. .,School of Health Science and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Wenchan Sun
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China.
| | - Yuqian Qiao
- School of Materials Science & Engineering, Peking University, Yiheyuan Road 5#, Beijing 100871, China.
| | - Da-Fu Chen
- Beijing JiShuiTan Hospital, Beijing Research Institute Orthopaedics & Traumatology, Lab Bone Tissue Engineering, Beijing 100035, Peoples R China.
| | - Yufeng Zheng
- School of Materials Science & Engineering, Peking University, Yiheyuan Road 5#, Beijing 100871, China.
| | - Shuilin Wu
- School of Materials Science & Engineering, Peking University, Yiheyuan Road 5#, Beijing 100871, China.
| |
Collapse
|