1
|
Xu R, Lin P, Zheng J, Lin Y, Mai Z, Lu Y, Chen X, Zhou Z, Cui L, Zhao X. Orchestrating cancer therapy: Recent advances in nanoplatforms harmonize immunotherapy with multifaceted treatments. Mater Today Bio 2025; 30:101386. [PMID: 39742149 PMCID: PMC11683241 DOI: 10.1016/j.mtbio.2024.101386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/17/2024] [Accepted: 12/05/2024] [Indexed: 01/03/2025] Open
Abstract
Advancements in cancer therapy have increasingly focused on leveraging the synergistic effects of combining immunotherapy with other treatment modalities, facilitated by the use of innovative nanoplatforms. These strategies aim to augment the efficacy of standalone treatments while addressing their inherent limitations. Nanoplatforms enable precise delivery and controlled release of therapeutic agents, which enhances treatment specificity and reduces systemic toxicity. This review highlights the critical role of nanomaterials in enhancing immunotherapy when combined with chemotherapy, radiotherapy, photodynamic therapy, photothermal therapy, and sonodynamic therapy. Additionally, it addresses current challenges, including limited in vivo studies, difficulties in standardizing and scaling production, complexities of combination therapies, lack of comparative analyses, and the need for personalized treatments. Future directions involve refining nanoplatform engineering for improved targeting and minimizing adverse effects, alongside large animal studies to establish the long-term efficacy and safety of these combined therapeutic strategies. These efforts aim to translate laboratory successes into clinically viable treatments, significantly improving therapeutic outcomes and advancing the field of oncology.
Collapse
Affiliation(s)
- Rongwei Xu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Pei Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Jiarong Zheng
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yunfan Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Zizhao Mai
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Ye Lu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Xu Chen
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Zihao Zhou
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Li Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
- School of Dentistry, University of California, Los Angeles, Los Angeles, 90095, CA, USA
| | - Xinyuan Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| |
Collapse
|
2
|
Zhao C, Song W, Wang J, Tang X, Jiang Z. Immunoadjuvant-functionalized metal-organic frameworks: synthesis and applications in tumor immune modulation. Chem Commun (Camb) 2025; 61:1962-1977. [PMID: 39774558 DOI: 10.1039/d4cc06510g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Cancer immunotherapy, which leverages the body's immune system to recognize and attack cancer cells, has made significant progress, particularly in the treatment of metastatic tumors. However, challenges such as drug stability and off-target effects still limit its clinical success. To address these issues, metal-organic frameworks (MOFs) have emerged as promising nanocarriers in cancer immunotherapy. MOFs have unique porous structure, excellent drug loading capacity, and tunable surface modification properties. MOFs not only enhance drug delivery efficiency but also allow for precise control of drug release. They reduce off-target effects and significantly improve targeting and therapy efficacy. As research deepens, MOFs' effectiveness as drug carriers has been refined. When combined with immunoadjuvants or anticancer drugs, MOFs further stimulate the immune response. This improves the specificity of immune attacks on tumors. This review provides a comprehensive overview of the applications of MOFs in cancer immunotherapy. It focuses on synthesis, drug loading strategies, and surface modifications. It also analyzes their role in enhancing immunotherapy effectiveness. By integrating current research, we aim to provide insights for the future development of immunoadjuvant-functionalized MOFs, accelerating their clinical application for safer and more effective cancer treatments.
Collapse
Affiliation(s)
- Chen Zhao
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| | - Weihua Song
- Xuanwu Hospital Capital Medical University, Beijing, 100037, China
| | - Jianing Wang
- School of Medical Technology, the Qiushi College, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaoying Tang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| | - Zhenqi Jiang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
3
|
Zheng J, He Z, Shen L, Chen X, Chen P, Zhang B, Qin H, Xiong Z, Zhang S. Microwave-Responsive Edge-Oxidized Graphene for Imaging-Guided Neoadjuvant Thermal Immunotherapy via Promoting Immunogenic Cell Death and Redressing Hypoxia. ACS APPLIED NANO MATERIALS 2024; 7:10243-10256. [DOI: 10.1021/acsanm.4c00580] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Affiliation(s)
- Jieling Zheng
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou 510627, China
| | - Zicong He
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou 510627, China
| | - Luyan Shen
- Engineering Research Center for Nanophotonics and Advanced Instrument, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Xiaoyu Chen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Pei Chen
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou 510627, China
| | - Bin Zhang
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou 510627, China
| | - Huan Qin
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Zhiyuan Xiong
- School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Shuixing Zhang
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou 510627, China
| |
Collapse
|
4
|
Guo W, Chen Z, Wu Q, Tan L, Ren X, Fu C, Cao F, Gu D, Meng X. Prepared MW-Immunosensitizers Precisely Release NO to Downregulate HIF-1α Expression and Enhance Immunogenic Cell Death. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308055. [PMID: 38037766 DOI: 10.1002/smll.202308055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/03/2023] [Indexed: 12/02/2023]
Abstract
Microwave thermotherapy (MWTT) has limited its application in the clinic due to its high rate of metastasis and recurrence after treatment. Nitric oxide (NO) is a gaseous molecule that can address the high metastasis and recurrence rates after MWTT by increasing thermal sensitivity, down-regulating the expression of hypoxia-inducible factor-1 (HIF-1), and inducing the immunogenic cell death (ICD). Therefore, GaMOF-Arg is designed, a gallium-based organic skeleton material derivative loaded with L-arginine (L-Arg), and coupled the mitochondria-targeting drug of triphenylphosphine (TPP) on its surface to obtain GaMOF-Arg-TPP (GAT) MW-immunosensitizers. When GAT MW-immunosensitizers are introduced into mice through the tail vein, reactive oxygen species (ROS) are generated and L-Arg is released under MW action. Then, L-Arg reacts with ROS to generate NO, which not only downregulates HIF-1 expression to improve tumor hypoxia exacerbated by MW, but also enhances immune responses by augment calreticulin (CRT) exposure, high mobility group box 1 (HMGB1) release, and T-cell proliferation to achieve prevention of tumor metastasis and recurrence. In addition, NO can induce mitochondria damage to increase their sensitivity to MWTT. This study provides a unique insight into the use of metal-organic framework MW-immunosensitizers to enhance tumor therapy and offers a new way to treat cancer efficiently.
Collapse
Affiliation(s)
- Wenna Guo
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
- Laboratory of Controllable Preparation and Application of Nanomaterials, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zengzhen Chen
- Laboratory of Controllable Preparation and Application of Nanomaterials, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Qiong Wu
- Laboratory of Controllable Preparation and Application of Nanomaterials, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Longfei Tan
- Laboratory of Controllable Preparation and Application of Nanomaterials, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xiangling Ren
- Laboratory of Controllable Preparation and Application of Nanomaterials, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Changhui Fu
- Laboratory of Controllable Preparation and Application of Nanomaterials, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Feng Cao
- National Clinical Research Center for Geriatric Diseases & 2nd Medical Center, Chinese PLA General Hospital, Beijing, 100853, P. R. China
| | - Deen Gu
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Xianwei Meng
- Laboratory of Controllable Preparation and Application of Nanomaterials, CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
5
|
Wang D, Wu Q, Ren X, Niu M, Ren J, Meng X. Tunable Zeolitic Imidazolate Framework-8 Nanoparticles for Biomedical Applications. SMALL METHODS 2024; 8:e2301270. [PMID: 37997211 DOI: 10.1002/smtd.202301270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/21/2023] [Indexed: 11/25/2023]
Abstract
Zeolite imidazole framework-8 (ZIF-8) is the most prestigious one among zeolitic imidazolate framework (ZIF) with tunable dimensions and unique morphological features. Utilizing its synthetic adjustability and structural regularity, ZIF-8 exhibits enhanced flexibility, allowing for a wide range of functionalities, such as loading of nanoparticle components while preserving biomolecules activity. Extensive efforts are made from investigating synthesis techniques to develop novel applications over decades. In this review, the development and recent progress of various synthesis approaches are briefly summarized. In addition, its interesting properties such as adjustable porosity, excellent thermal, and chemical stabilities are introduced. Further, five representative biomedical applications are highlighted based on above physicochemical properties. Finally, the remaining challenges and offered insights into the future outlook are also discussed. This review aims to understand the co-relationships between structures and biomedical functionalities, offering the opportunity to construct attractive materials with promising characteristics.
Collapse
Affiliation(s)
- Dongdong Wang
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiong Wu
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangling Ren
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meng Niu
- Department of Radiology, First Hospital of China Medical University Key Laboratory of Diagnostic Imaging and Interventional Radiology in Liaoning Province, Shenyang, 110001, China
| | - Jun Ren
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xianwei Meng
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
6
|
Xiang Y, Chen Q, Nan Y, Liu M, Xiao Z, Yang Y, Zhang J, Ying X, Long X, Wang S, Sun J, Huang Q, Ai K. Nitric Oxide‐Based Nanomedicines for Conquering TME Fortress: Say “NO” to Insufficient Tumor Treatment. ADVANCED FUNCTIONAL MATERIALS 2024; 34. [DOI: 10.1002/adfm.202312092] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Indexed: 01/02/2025]
Abstract
AbstractAlmost all cancer treatments are significantly limited by the strong tumor microenvironment (TME) fortress formed by abnormal vasculature, dense extracellular matrix (ECM), multidrug resistance (MDR) system, and immune “cold” environment. In the huge efforts of dismantling the TME fortress, nitric oxide (NO)‐based nanomedicines are increasingly occupying a central position and have already been identified as super “strong polygonal warriors” to dismantle TME fortress for efficient cancer treatment, benefiting from NO's unique physicochemical properties and extremely fascinating biological effects. However, there is a paucity of systematic review to elaborate on the progress and fundamental mechanism of NO‐based nanomedicines in oncology from this aspect. Herein, the key characteristics of TME fortress and the potential of NO in reprogramming TME are delineated and highlighted. The evolution of NO donors and the advantages of NO‐based nanomedicines are discussed subsequently. Moreover, the latest progress of NO‐based nanomedicines for solid tumors is comprehensively reviewed, including normalizing tumor vasculature, overcoming ECM barrier, reversing MDR, and reactivating the immunosuppression TME. Lastly, the prospects, limitations, and future directions on NO‐based nanomedicines for TME manipulation are discussed to provide new insights into the construction of more applicable anticancer nanomedicines.
Collapse
Affiliation(s)
- Yuting Xiang
- Department of Pharmacy Xiangya Hospital Central South University Changsha Hunan 410008 P. R. China
- Xiangya School of Pharmaceutical Sciences Central South University Changsha Hunan 410078 P. R. China
| | - Qiaohui Chen
- Xiangya School of Pharmaceutical Sciences Central South University Changsha Hunan 410078 P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research Xiangya School of Pharmaceutical Sciences Central South University Changsha 410078 P. R. China
| | - Yayun Nan
- Geriatric Medical Center People's Hospital of Ningxia Hui Autonomous Region Yinchuan Ningxia 750002 P. R. China
| | - Min Liu
- Xiangya School of Pharmaceutical Sciences Central South University Changsha Hunan 410078 P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research Xiangya School of Pharmaceutical Sciences Central South University Changsha 410078 P. R. China
| | - Zuoxiu Xiao
- Xiangya School of Pharmaceutical Sciences Central South University Changsha Hunan 410078 P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research Xiangya School of Pharmaceutical Sciences Central South University Changsha 410078 P. R. China
| | - Yuqi Yang
- Department of Pharmacy Xiangya Hospital Central South University Changsha Hunan 410008 P. R. China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital Central South University Changsha Hunan 410008 P. R. China
| | - Jinping Zhang
- Department of Pharmacy Xiangya Hospital Central South University Changsha Hunan 410008 P. R. China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital Central South University Changsha Hunan 410008 P. R. China
| | - Xiaohong Ying
- Xiangya School of Pharmaceutical Sciences Central South University Changsha Hunan 410078 P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research Xiangya School of Pharmaceutical Sciences Central South University Changsha 410078 P. R. China
| | - Xingyu Long
- Xiangya School of Pharmaceutical Sciences Central South University Changsha Hunan 410078 P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research Xiangya School of Pharmaceutical Sciences Central South University Changsha 410078 P. R. China
| | - Shuya Wang
- Xiangya School of Pharmaceutical Sciences Central South University Changsha Hunan 410078 P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research Xiangya School of Pharmaceutical Sciences Central South University Changsha 410078 P. R. China
| | - Jian Sun
- College of Pharmacy Xinjiang Medical University Urumqi 830017 P. R. China
| | - Qiong Huang
- Department of Pharmacy Xiangya Hospital Central South University Changsha Hunan 410008 P. R. China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital Central South University Changsha Hunan 410008 P. R. China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences Central South University Changsha Hunan 410078 P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research Xiangya School of Pharmaceutical Sciences Central South University Changsha 410078 P. R. China
- Key Laboratory of Aging‐related Bone and Joint Diseases Prevention and Treatment Ministry of Education Xiangya Hospital Central South University Changsha 410078 P. R. China
| |
Collapse
|
7
|
Li B, Ashrafizadeh M, Jiao T. Biomedical application of metal-organic frameworks (MOFs) in cancer therapy: Stimuli-responsive and biomimetic nanocomposites in targeted delivery, phototherapy and diagnosis. Int J Biol Macromol 2024; 260:129391. [PMID: 38242413 DOI: 10.1016/j.ijbiomac.2024.129391] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/12/2023] [Accepted: 01/08/2024] [Indexed: 01/21/2024]
Abstract
The nanotechnology is an interdisciplinary field that has become a hot topic in cancer therapy. Metal-organic frameworks (MOFs) are porous materials and hybrid composites consisted of organic linkers and metal cations. Despite the wide application of MOFs in other fields, the potential of MOFs for purpose of cancer therapy has been revealed by the recent studies. High surface area and porosity, significant drug loading and encapsulation efficiency are among the benefits of using MOFs in drug delivery. MOFs can deliver genes/drugs with selective targeting of tumor cells that can be achieved through functionalization with ligands. The photosensitizers and photo-responsive nanostructures including carbon dots and gold nanoparticles can be loaded in/on MOFs to cause phototherapy-mediated tumor ablation. The immunogenic cell death induction and increased infiltration of cytotoxic CD8+ and CD4+ T cells can be accelerated by MOF platforms in providing immunotherapy of tumor cells. The stimuli-responsive MOF platforms responsive to pH, redox, enzyme and ion can accelerate release of therapeutics in tumor site. Moreover, MOF nanocomposites can be modified ligands and green polymers to improve their selectivity and biocompatibility for cancer therapy. The application of MOFs for the detection of cancer-related biomarkers can participate in the early diagnosis of patients.
Collapse
Affiliation(s)
- Beixu Li
- School of Policing Studies, Shanghai University of Political Science and Law, Shanghai 201701, China; Shanghai Fenglin Forensic Center, Shanghai 200231, China; State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Department of Pathology, University of Maryland, Baltimore, MD 21201, USA
| | - Milad Ashrafizadeh
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518055, China; International Association for Diagnosis and Treatment of Cancer, Shenzhen, Guangdong 518055, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China.
| | - Taiwei Jiao
- Department of Gastroenterology and Endoscopy, The First Hospital of China Medical University, 155 North Nanjing St, Shenyang 110001, China.
| |
Collapse
|
8
|
Wang Y, Ren X, Zheng Y, Tan L, Li B, Fu C, Wu Q, Chen Z, Ren J, Yang D, Yu S, Meng X. Boosting Microwave Thermo-Dynamic Cancer Therapy of TiMOF via COF-Coating. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304440. [PMID: 37544921 DOI: 10.1002/smll.202304440] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Indexed: 08/08/2023]
Abstract
Microwave (MW) dynamic therapy (MDT) can efficiently eliminate tumor residue resulting from MW thermal therapy. However, MDT is currently in its infancy, and luck of effective MDT sensiters severely limits its clinical therapeutic effect. Herein, based on TiMOF (TM), a high-efficiency MW sensitizer is designed for MW thermo-dynamic therapy. TM can generate heat and cytotoxic reacyive oxygen species (ROS) under MW irradiation and has the potential to be used as an MW sensitizer, while the suboptimal MW dynamic sensitization effect of TM limits its application. Inorder to improve the MW dynamic sensitization performance, a covalent organic framework (COF) with good stability and a large conjugate system is used to cover TM, which is conductive to electron and energy transfer, thus increasing the ROS generation rate and prolonging the ROS lifetime. In addition, loading Ni NPs endow nanomaterials with magnetic resonance imaging capabilities. Therefore, this work develops an MW sensitizer based on TM for the first time, and the mechanism of COF coating to enhance the MW dynamic sensitization of TM is preliminarily explored, which provides a new idea for the further development of MW sensitizer with great potential.
Collapse
Affiliation(s)
- Yuxin Wang
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiangling Ren
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yingjuan Zheng
- Department of Radiotherapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, P. R. China
| | - Longfei Tan
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Bingyan Li
- Department of Radiotherapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, P. R. China
| | - Changhui Fu
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qiong Wu
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zengzhen Chen
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jun Ren
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Daoke Yang
- Department of Radiotherapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, P. R. China
| | - Shiping Yu
- Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, P. R. China
| | - Xianwei Meng
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
9
|
Chen L, Zhao D, Ren X, Ren J, Meng X, Fu C, Li X. Shikonin-Loaded Hollow Fe-MOF Nanoparticles for Enhanced Microwave Thermal Therapy. ACS Biomater Sci Eng 2023; 9:5405-5417. [PMID: 37638660 PMCID: PMC10498989 DOI: 10.1021/acsbiomaterials.3c00644] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/15/2023] [Indexed: 08/29/2023]
Abstract
Microwave (MW) thermal therapy has been widely used for the treatment of cancer in clinics, but it still shows limited efficacy and a high recurrence rate owing to non-selective heat delivery and thermo-resistance. Regulating glycolysis shows great promise to improve MW thermal therapy since glycolysis plays an important role in thermo-resistance, progression, metabolism, and recurrence. Herein, we developed a delivery nanosystem of shikonin (SK)-loaded and hyaluronic acid (HA)-modified hollow Fe-MOF (HFM), HFM@SK@HA, as an efficient glycolysis-meditated agent to improve the efficacy of MW thermal therapy. The HFM@SK@HA nanosystem shows a high SK loading capacity of 31.7 wt %. The loaded SK can be effectively released from the HFM@SK@HA under the stimulation of an acidic tumor microenvironment and MW irradiation, overcoming the intrinsically low solubility and severe toxicity of SK. We also find that the HFM@SK@HA can not only greatly improve the heating effect of MW in the tumor site but also mediate MW-enhancing dynamic therapy efficiency by catalyzing the endogenous H2O2 to generate reactive oxygen species (ROS). As such, the MW irradiation treatment in the presence of HFM@SK@HA in vitro enables a highly improved anti-tumor efficacy due to the combined effect of released SK and generated ROS on inhibiting glycolysis in cancer cells. Our in vivo experiments show that the tumor inhibition rate is up to 94.75% ± 3.63% with no obvious recurrence during the 2 weeks after treatment. This work provides a new strategy for improving the efficacy of MW thermal therapy.
Collapse
Affiliation(s)
- Lufeng Chen
- Department
of Radiation Oncology, First Clinical Medical
School and First Hospital of Shanxi Medical University, No.85 Jiefang Road, Taiyuan City 030001, PR China
| | - Dongming Zhao
- Department
of Radiation Oncology, First Clinical Medical
School and First Hospital of Shanxi Medical University, No.85 Jiefang Road, Taiyuan City 030001, PR China
- Department
of Pathology, Basic Medical School, Shanxi
Medical University, No.56 Xinjian Road, Taiyuan City 030001, PR China
| | - Xiangling Ren
- Laboratory
of Controllable Preparation and Application of Nanomaterials, Technical
Institute of Physics and Chemistry, Chinese
Academy of Sciences, No.29 East Road Zhongguancun, Beijing 100190, PR China
- CAS
Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jun Ren
- Laboratory
of Controllable Preparation and Application of Nanomaterials, Technical
Institute of Physics and Chemistry, Chinese
Academy of Sciences, No.29 East Road Zhongguancun, Beijing 100190, PR China
- CAS
Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xianwei Meng
- Laboratory
of Controllable Preparation and Application of Nanomaterials, Technical
Institute of Physics and Chemistry, Chinese
Academy of Sciences, No.29 East Road Zhongguancun, Beijing 100190, PR China
- CAS
Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Changhui Fu
- Laboratory
of Controllable Preparation and Application of Nanomaterials, Technical
Institute of Physics and Chemistry, Chinese
Academy of Sciences, No.29 East Road Zhongguancun, Beijing 100190, PR China
- CAS
Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xianfeng Li
- Department
of Radiation Oncology, First Clinical Medical
School and First Hospital of Shanxi Medical University, No.85 Jiefang Road, Taiyuan City 030001, PR China
- Department
of Pathology, Basic Medical School, Shanxi
Medical University, No.56 Xinjian Road, Taiyuan City 030001, PR China
| |
Collapse
|
10
|
Zhang S, Gong X, Wei Q, Lv J, Du E, Wang J, Ji W, Li JL. Rationally Designed Enzyme-Resistant Peptidic Assemblies for Plasma Membrane Targeting in Cancer Treatment. Adv Healthc Mater 2023; 12:e2301730. [PMID: 37400071 DOI: 10.1002/adhm.202301730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
Peptides are being increasingly important for subcellular targeted cancer treatment to improve specificity and reverse multidrug resistance. However, there has been yet any report on targeting plasma membrane (PM) through self-assembling peptides. A simple synthetic peptidic molecule (tF4) is developed. It is revealed that tF4 is carboxyl esterase-resistant and self-assembles into vesical nanostructures. Importantly, tF4 assemblies interact with PM through orthogonal hydrogen bonding and hydrophobic interaction to regulate cancer cellular functions. Mechanistically, tF4 assemblies induce stress fiber formation, cytoskeleton reconstruction, and death receptor 4/5 (DR4/5) expression in cancer cells. DR4/5 triggers extrinsic caspase-8 signaling cascade, resulting in cell death. The results provide a new strategy for developing enzyme-resistant and PM-targeting peptidic molecules against cancer.
Collapse
Affiliation(s)
- Shijin Zhang
- National Engineering Research Centre of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xuewen Gong
- National Engineering Research Centre of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Qinchuan Wei
- National Engineering Research Centre of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jiarong Lv
- National Engineering Research Centre of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Enming Du
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan University School of Medicine, Henan Provincial People's Hospital, Zhengzhou, Henan, 450003, China
| | - Jiaqing Wang
- National Engineering Research Centre of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Wei Ji
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Ji-Liang Li
- National Engineering Research Centre of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Wenzhou Institute, University of Chinese Academy of Sciences, 1 Jinlian Road, Wenzhou, 325000, China
| |
Collapse
|