1
|
Qi W, Zhao T, Liu M, Shi X, Yang Y, Huang Y, Li N, Ai K, Huang Q. Engineered tantalum sulfide nanosheets for effective acute liver injury treatment by regulating oxidative stress and inflammation. J Colloid Interface Sci 2025; 693:137596. [PMID: 40250115 DOI: 10.1016/j.jcis.2025.137596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/11/2025] [Accepted: 04/12/2025] [Indexed: 04/20/2025]
Abstract
INTRODUCTION Tantalum sulfide (TaS2), a two-dimensional layered material, shows significant promise for treating acute liver injury (ALI) due to its exceptional biocompatibility and potent reactive oxygen species (ROS) scavenging capacity. However, the clinical translation of TaS2-based therapy remains limited by challenges in optimizing its stability, bioavailability, and particle size to match the liver's complex architecture. OBJECTIVES This study investigated the mechanisms by which serum albumin (SA)-modified TaS2 nanosheets (S-TaS2) modulate oxidative stress, apoptosis, and inflammation to achieve therapeutic efficacy in ALI. METHODS S-TaS2 was synthesized via a top-down exfoliation strategy and comprehensively characterized using transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), ultraviolet-visible (UV-Vis) spectroscopy, and Zeta potential analysis. In vivo therapeutic performance was evaluated through liver function tests, Hematoxylin-Eosin staining (HE), Dihydroethidium (DHE) staining, 8-Hydroxy-2'-deoxyguanosine (8-OHdG) staining, and ROS level assessments. Biodistribution, mitochondrial protection, and anti-inflammatory effects of S-TaS2 were assessed via in vivo fluorescence imaging, immunohistochemistry, western blotting, JC-1 and Mitochondrial Superoxide (MitoSOX) staining, Annexin V-fluorescein isothiocyanate (FITC)/Propidium Iodide (PI) apoptosis assays, enzyme-linked immunosorbent assays (ELISA), and other complementary techniques. RESULTS The exfoliation process successfully reduced TaS2 to monolayer nanosheets, yielding a nanoscale formulation with improved bioactivity. SA modification significantly enhanced aqueous stability and enabled targeted liver delivery. This targeting effect is attributed to two factors: the inherent liver affinity of SA and the optimal particle size of S-TaS2 (∼185 nm), which facilitates passage through hepatic sinusoids (50-200 nm) and, in pathological conditions such as ALI, through damaged vascular endothelium. In an acetaminophen (APAP)-induced ALI model, S-TaS2 preferentially accumulated in the injured liver, where it scavenged excessive ROS, mitigated mitochondrial dysfunction, and significantly preserved hepatocyte integrity. Notably, S-TaS2 also attenuated liver inflammation, reduced pro-inflammatory cytokine levels, and promoted tissue repair. Furthermore, it demonstrated adequate biosafety both in vitro and in vivo. CONCLUSIONS This study presents the first successful synthesis of S-TaS2, a liver-targeting nanotherapeutic engineered through SA modification and size optimization. S-TaS2 preferentially accumulates in damaged hepatic tissue and effectively combats ALI by suppressing oxidative stress and inflammation, while preventing their pathological amplification. These findings offer new therapeutic insights and a promising platform for future liver-targeted interventions.
Collapse
Affiliation(s)
- Weimin Qi
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China; Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Tianjiao Zhao
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China; Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Min Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China; Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Xiaojing Shi
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China; Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Yongqi Yang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China; Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Yunying Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China; Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Niansheng Li
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China.
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Qiong Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
2
|
Xu C, Zhang Z, Ying Y, Li S, Dang Y, He L, Liu X, Wang P, Xue F. Tumor-microenvironment-activated bimetallic oxide nanoplatform for second near-infrared region fluorescence-guided colon tumor surgery and multimodal synergistic therapy. J Colloid Interface Sci 2025; 692:137529. [PMID: 40220640 DOI: 10.1016/j.jcis.2025.137529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/31/2025] [Accepted: 04/05/2025] [Indexed: 04/14/2025]
Abstract
Colon cancer, characterized by its high incidence and mortality rates, continues to present a significant challenge in cancer treatment. To address this, we present a novel ZnCe based nanocarrier featuring stacked mesopores and rough surface, indocyanine Green (ICG) is encapsulated within these mesopores (ZnCe&ICG). This innovative nanoplatform demonstrates effective accumulation in tumor regions and can be triggered to generate efficacious reactive oxygen species (ROS) in the weakly acidic and high H2O2 conditions typical of tumor microenvironments. Enhanced fluorescent imaging using improved tumor-to-background ratio has proven effective in precisely delineating tumor margins from surrounding healthy tissue. With the guidance of this second near-infrared region (NIR II, 1000-1700 nm) fluorescence imaging technique, tumors are completely excised, resulting in negligible instances of in situ recurrence or metastasis observed 30 days following surgery. Notably, under 808 nm laser irradiation, the nanoplatform exhibits a high photothermal conversion efficiency, leading to localized heating that further amplifies ROS production via multi ion synergetic catalysis for tumor cell killing. These results underscore the potential of tumor microenvironment-responsive ZnCe-based nanocomposite as a fluorescence imaging contrast agent and chemodynamic agent for cancer treatment, particularly when combined with NIR light activation.
Collapse
Affiliation(s)
- Chao Xu
- Department of Gastrointestinal Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou 350001, PR China
| | - Ziqian Zhang
- Department of Gastrointestinal Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou 350001, PR China; Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, PR China
| | - Yunfei Ying
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, PR China; Department of Biochemistry and Molecular Biology, School of Basic Medicine, University of South China, Hengyang 421001, PR China
| | - Siyaqi Li
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, PR China; College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Yongying Dang
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, PR China
| | - Liangzhen He
- Department of Gastrointestinal Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou 350001, PR China
| | - Xiaolong Liu
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, PR China; The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China.
| | - Peiyuan Wang
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, PR China; The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China.
| | - Fangqin Xue
- Department of Gastrointestinal Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou 350001, PR China.
| |
Collapse
|
3
|
Wang Y, Wu Q, Guo W, Chen Z, Tan L, Fu C, Ren X, Zhang J, Meng X, Gu B. Dual-upregulation of p53 for self-sensitized cuproptosis via microwave dynamic and NO gas therapy. J Colloid Interface Sci 2025; 691:137421. [PMID: 40154167 DOI: 10.1016/j.jcis.2025.137421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/21/2025] [Accepted: 03/22/2025] [Indexed: 04/01/2025]
Abstract
Cuproptosis-a novel cell death mechanism-is an innovative strategy for tumor therapy. However, the insufficient efficacy of cuproptosis, primarily owing to the low sensitivity of tumor cells to Cu ions, remains a major challenge. In this study, we design TiCuMOF@PEG@l-Arg@TPP (TCPAT) nanoparticles to facilitate self-sensitized cuproptosis for anti-tumor therapy through the dual upregulation of p53. TiMOF serves as a microwave sensitizer by generating reactive oxygen species (ROS). Notably, the uniformly distributed Cu ions within the MOF serve as co-catalysts to provide reactive sites that enhance ROS generation. Additionally, the ROS generated are utilized to oxidize l-arginine, thus resulting in the release of nitric oxide (NO), which has a long half-life and diffusion distance, thereby enabling it to penetrate deep into the tumor regions that are typically inaccessible to ROS. Furthermore, TCPAT not only induces cuproptosis but also leverages the efficiently generated ROS and cascade-released NO for the dual upregulation of p53. This upregulation subsequently inhibits glycolysis, increases cellular sensitivity to Cu ions, and facilitates self-sensitized cuproptosis. Consequently, the self-sensitized cuproptosis strategy, dependent on the efficient generation of ROS, presents a promising avenue for tumor therapy based on cuproptosis mechanisms.
Collapse
Affiliation(s)
- Yuxin Wang
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qiong Wu
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Wenna Guo
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Zengzhen Chen
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Longfei Tan
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Changhui Fu
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Xiangling Ren
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Jiqing Zhang
- Department of Urology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, PR China.
| | - Xianwei Meng
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Bin Gu
- Department of Stomatology, The First Medical Center of PLA General Hospital, Beijing 100853, PR China.
| |
Collapse
|
4
|
Paranthaman S, Uthaiah CA, Md S, Alkreathy HM. Comprehensive strategies for constructing efficient CRISPR/Cas based cancer therapy: Target gene selection, sgRNA optimization, delivery methods and evaluation. Adv Colloid Interface Sci 2025; 341:103497. [PMID: 40157335 DOI: 10.1016/j.cis.2025.103497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/17/2024] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
Cancer is a complicated disease that results from the interplay between specific changes in cellular genetics and diverse microenvironments. The application of high-performance and customizable clustered regularly interspaced palindromic repeats/associated protein (CRISPR/Cas) nuclease systems has significantly enhanced genome editing for accurate cancer modeling and facilitated simultaneous genetic modification for cancer therapy and mutation identification. Achieving an effective CRISPR/Cas platform for cancer treatment depends on the identification, selection, and optimization of specific mutated genes in targeted cancer tissues. However, overcoming the off-target effects, specificity, and immunogenicity are additional challenges that must be addressed while developing a gene editing system for cancer therapy. From this perspective, we briefly covered the pipeline of CRISPR/Cas cancer therapy, identified target genes to optimize gRNAs and sgRNAs, and explored alternative delivery modalities, including viral, non-viral, and extracellular vesicles. In addition, the list of patents and current clinical trials related to this unique cancer therapy method is discussed. In summary, we have discussed comprehensive start-to-end pipeline strategies for CRISPR/Cas development to advance the precision, effectiveness, and safety of clinical applications for cancer therapy.
Collapse
Affiliation(s)
- Sathishbabu Paranthaman
- Department of Cell Biology and Molecular Genetics, Sri Devaraj Urs Medical College, Sri Devaraj Urs Academy of Higher Education and Research, Tamaka, Kolar 563103, Karnataka, India.
| | - Chinnappa A Uthaiah
- Genetics Laboratory, Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Raipur, Chhattisgarh 492099, India
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Huda Mohammed Alkreathy
- Department of Clinical Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
5
|
Han X, Zeng X, Gao S, Zhang Q, Zheng K, Yang H, Hu B, Ding C. Adipose-targeted nanohybrid as a browning inducer for synergistic hyperthermia-pharmacotherapy of obesity. J Colloid Interface Sci 2025; 687:540-551. [PMID: 39978259 DOI: 10.1016/j.jcis.2025.02.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 02/11/2025] [Accepted: 02/13/2025] [Indexed: 02/22/2025]
Abstract
Inducing adipose browning to increase energy expenditure has recently emerged as a promising approach for antiobesity treatment. However, its therapeutic efficacy is often limited by poor adipose-targeted drug delivery and suboptimal browning efficiency. To address these challenges, an adipose-targeting aptamer (Apt8) and browning agent resveratrol (Res) were used to construct an Apt-modified and Res-loaded degradable mesoporous silica-coated Au nanorods nanocarriers (NC), termed Res@NC@Apt8, achieving adipose-targeted hyperthermia-pharmacotherapy. Upon internalization by adipocytes, laser irradiation induces mild local hyperthermia (LHT) via Res@NC@Apt8, triggering calcium ion (Ca2+) influx. Simultaneously, the interaction of the nanohybrid with local glutathione (GSH) releases Res. The dual mechanisms activate the adenosine 5'-monophosphate-activated protein kinase (AMPK) pathway, reduce the lipid droplet content, enhance mitochondrial biogenesis, and accelerate metabolism, thereby synergistically promoting adipose browning. Intravenous Res@NC@Apt8 administration in obese mice significantly drives adipose reduction and further achieves excellent antiobesity therapeutic efficacy. This synergistic treatment achieves a superior weight reduction of 17.2% compared with 6.9% and 10.6% achieved using LHT and pharmacotherapy alone, respectively. This study introduces a novel strategy for achieving activatable LHT and drug release for synergetic obesity treatment.
Collapse
Affiliation(s)
- Xiaoyang Han
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Xiaohan Zeng
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Shiwen Gao
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Qian Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Ke Zheng
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Huiwen Yang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Bo Hu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Caifeng Ding
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| |
Collapse
|
6
|
Chen S, Zhang P, Bai H, Yi W. Recent advances in nano-molybdenum oxide for photothermal cancer therapy. Nanomedicine (Lond) 2025; 20:883-901. [PMID: 40063363 PMCID: PMC11988261 DOI: 10.1080/17435889.2025.2476386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/04/2025] [Indexed: 04/09/2025] Open
Abstract
Cancer remains a significant global health challenge, driving the search for innovative treatments. Photothermal therapy (PTT) has emerged as a promising approach, using photothermal agents to convert near-infrared (NIR) light into heat for tumor ablation. Among these agents, nano-molybdenum oxide, particularly non-stoichiometric MoO3-x (0 < x < 1), stands out due to its unique defect structure, strong NIR absorption, high photothermal conversion efficiency (PCE), and pH-responsive degradation. This review summarized recent advancements in nano-molybdenum oxide for PTT, covering its classification, synthesis, surface modification, and tumor-targeting mechanisms. Subsequently, we explored its applications in PTT and combination therapies, evaluated biocompatibility and toxicity, and discussed current achievements, challenges, and future perspectives in cancer treatment.
Collapse
Affiliation(s)
- Shihai Chen
- College of Science, Northwest A&F University, Xianyang, China
| | - Ping Zhang
- College of Science, Northwest A&F University, Xianyang, China
| | - Hongmei Bai
- College of Science, Northwest A&F University, Xianyang, China
| | - Wenhui Yi
- Key Laboratory for Information Photonic Technology of ShaanXi Province & Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
7
|
Wang Z, Zhang C. Nanomaterials for targeted therapy of kidney diseases: Strategies and advances. Mater Today Bio 2025; 31:101534. [PMID: 39990736 PMCID: PMC11846943 DOI: 10.1016/j.mtbio.2025.101534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/21/2025] [Accepted: 01/28/2025] [Indexed: 02/25/2025] Open
Abstract
The treatment and management of kidney diseases pose a significant global burden. Due to the presence of blood circulation barriers and glomerular filtration barriers, drug therapy for kidney diseases faces challenges such as poor renal targeting, short half-life, and severe systemic side effects, severely hindering therapeutic progress. Therefore, the research and development of kidney-targeted therapeutic agents is of great clinical significance. In recent years, the application of nanotechnology in the field of nephrology has shown potential for revolutionizing the diagnosis and treatment of kidney diseases. Carefully designed nanomaterials can exhibit optimal biological characteristics, influencing various aspects such as circulation, retention, targeting, and excretion. Rationally designing and modifying nanomaterials based on the anatomical structure and pathophysiological environment of the kidney to achieve highly specific kidney-targeted nanomaterials or nanodrug delivery systems is both feasible and promising. Based on the targeted therapy of kidney diseases, this review discusses the advantages and limitations of current nanomedicine in the targeted therapy of kidney diseases, and summarizes the application and challenges of current renal active/passive targeting strategies, in order to further promote the development of kidney-targeted nanomedicine through a preliminary summary of previous studies and future prospects.
Collapse
Affiliation(s)
- Zhiwen Wang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
8
|
Fukumitsu N, Matsumoto Y, Chen L, Sugawara Y, Fujisawa N, Niiyama E, Ouchi S, Oe E, Saito T, Ebara M. Development of Layer-by-Layer Magnetic Nanoparticles for Application to Radiotherapy of Pancreatic Cancer. Molecules 2025; 30:1382. [PMID: 40142157 PMCID: PMC11946117 DOI: 10.3390/molecules30061382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/07/2025] [Accepted: 03/18/2025] [Indexed: 03/28/2025] Open
Abstract
Pancreatic cancer is among the deadliest malignancies, with few treatment options for locally advanced, unresectable cases. Conventional therapies, such as chemoradiotherapy and hyperthermia, show promise but face challenges in improving outcomes. This study introduces a novel drug delivery system using gemcitabine (GEM)-loaded layer-by-layer magnetic nanoparticles (LBL MNPs) combined with alternating magnetic field (AMF) application and X-ray irradiation to enhance therapeutic efficacy. LBL MNPs were synthesized using optimized layering techniques to achieve superior drug loading and controlled release. Human pancreatic cancer cells (PANC-1) were treated with LBL MNPs alone, with AMF-induced hyperthermia, and in combination with X-rays. The results demonstrate that the 7-layer LBL MNPs exhibited optimal cytotoxicity, significantly reducing cell viability at concentrations of 30 µg/mL and higher. Combining 7-layer LBL MNPs with AMF increased cell death in a time- and concentration-dependent manner, achieving up to 98% inhibition of cell proliferation. The addition of X-rays to the regimen demonstrated a strong synergistic effect, resulting in a 13-fold increase in cell death compared to controls. These findings highlight the potential of this integrated approach to improve outcomes in patients with pancreatic cancer.
Collapse
Affiliation(s)
| | - Yoshitaka Matsumoto
- Department of Radiation Oncology, Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan;
- Proton Medical Research Center, University of Tsukuba Hospital, Tsukuba 305-8576, Japan;
| | - Lili Chen
- Smart Polymers Group, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Tsukuba 305-0044, Japan; (L.C.); (N.F.); (S.O.); (E.O.); (M.E.)
| | - Yu Sugawara
- Proton Medical Research Center, University of Tsukuba Hospital, Tsukuba 305-8576, Japan;
| | - Nanami Fujisawa
- Smart Polymers Group, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Tsukuba 305-0044, Japan; (L.C.); (N.F.); (S.O.); (E.O.); (M.E.)
| | - Eri Niiyama
- Smart Polymers Group, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Tsukuba 305-0044, Japan; (L.C.); (N.F.); (S.O.); (E.O.); (M.E.)
| | - Sosuke Ouchi
- Smart Polymers Group, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Tsukuba 305-0044, Japan; (L.C.); (N.F.); (S.O.); (E.O.); (M.E.)
| | - Emiho Oe
- Smart Polymers Group, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Tsukuba 305-0044, Japan; (L.C.); (N.F.); (S.O.); (E.O.); (M.E.)
| | - Takashi Saito
- Department of Radiation Oncology, Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan;
- Proton Medical Research Center, University of Tsukuba Hospital, Tsukuba 305-8576, Japan;
| | - Mitsuhiro Ebara
- Smart Polymers Group, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Tsukuba 305-0044, Japan; (L.C.); (N.F.); (S.O.); (E.O.); (M.E.)
| |
Collapse
|
9
|
Xu R, Lin P, Zheng J, Lin Y, Mai Z, Lu Y, Chen X, Zhou Z, Cui L, Zhao X. Orchestrating cancer therapy: Recent advances in nanoplatforms harmonize immunotherapy with multifaceted treatments. Mater Today Bio 2025; 30:101386. [PMID: 39742149 PMCID: PMC11683241 DOI: 10.1016/j.mtbio.2024.101386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/17/2024] [Accepted: 12/05/2024] [Indexed: 01/03/2025] Open
Abstract
Advancements in cancer therapy have increasingly focused on leveraging the synergistic effects of combining immunotherapy with other treatment modalities, facilitated by the use of innovative nanoplatforms. These strategies aim to augment the efficacy of standalone treatments while addressing their inherent limitations. Nanoplatforms enable precise delivery and controlled release of therapeutic agents, which enhances treatment specificity and reduces systemic toxicity. This review highlights the critical role of nanomaterials in enhancing immunotherapy when combined with chemotherapy, radiotherapy, photodynamic therapy, photothermal therapy, and sonodynamic therapy. Additionally, it addresses current challenges, including limited in vivo studies, difficulties in standardizing and scaling production, complexities of combination therapies, lack of comparative analyses, and the need for personalized treatments. Future directions involve refining nanoplatform engineering for improved targeting and minimizing adverse effects, alongside large animal studies to establish the long-term efficacy and safety of these combined therapeutic strategies. These efforts aim to translate laboratory successes into clinically viable treatments, significantly improving therapeutic outcomes and advancing the field of oncology.
Collapse
Affiliation(s)
- Rongwei Xu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Pei Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Jiarong Zheng
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yunfan Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Zizhao Mai
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Ye Lu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Xu Chen
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Zihao Zhou
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Li Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
- School of Dentistry, University of California, Los Angeles, Los Angeles, 90095, CA, USA
| | - Xinyuan Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| |
Collapse
|
10
|
Sun Z, Wang T, Chen E, Xu L, Ding Y, Gu Z, Xiao S. Two birds with one stone: natural polyphenols boosted periodontitis treatment of chlorhexidine via reducing toxicity and regulating microenvironments. MATERIALS HORIZONS 2025; 12:608-622. [PMID: 39508113 DOI: 10.1039/d4mh01137f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Chlorhexidine (CHX) is considered the gold standard for controlling periodontal plaque and has been extensively used as a topical agent in treating periodontitis. Nevertheless, the practical clinical application of CHX is still constrained by the inherent limitations of its properties, including toxicity, inadequate biofilm scavenging capacity, and single biological effect. In this study, polyphenolic epigallocatechin gallate (EGCG) has been employed to integrate with CHX to form an EGCG-CHX nanoplatform via a facile one-pot method. Due to the dynamic bonding between EGCG and CHX, the EGCG-CHX nanoparticles (NPs) show reduced toxicity and excellent response release behavior. Moreover, a series of in vitro and in vivo studies demonstrated that the EGCG-CHX NPs significantly enhanced the antibiofilm, antioxidative, anti-inflammatory, and autophagic flux activation effects of CHX, ultimately achieving an improved therapeutic effect on periodontitis. This study successfully developed a strategy boosting the efficiency of CHX for periodontitis treatment.
Collapse
Affiliation(s)
- Zhiyuan Sun
- Department of Periodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P. R. China.
| | - Tianyou Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China.
| | - Enni Chen
- Department of Periodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P. R. China.
| | - Lingyi Xu
- Department of Periodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P. R. China.
| | - Yi Ding
- Department of Periodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P. R. China.
| | - Zhipeng Gu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China.
| | - Shimeng Xiao
- Department of Periodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P. R. China.
| |
Collapse
|
11
|
Cheng C, Zheng Z, Liu Z, Chen Z, Li X, Liu W, Wang A, Zhou C. A machine vision tool for multi-color H 2O 2 sensing by MoOx nanoparticles with oxygen vacancies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 324:124953. [PMID: 39128385 DOI: 10.1016/j.saa.2024.124953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/03/2024] [Accepted: 08/07/2024] [Indexed: 08/13/2024]
Abstract
Improving the ease of operation and portability of hydrogen peroxide (H2O2) detection in daily production and life holds significant application value. However, it remains a challenge to achieve rapid colorimetric detection of H2O2 and color change quantification. In this study, we achieved rapid and visual detection of H2O2 by MoOx (2 ≤ x ≤ 3) nanoparticles with rich oxygen vacancies using machine vision. As the concentration of H2O2 increases, the detection system exhibited a visible multi-color change from blue to green and then yellow and the absorption peak near 680 nm measured by the UV-visible spectrophotometer gradually decreased. With excellent sensitivity, a wide linear range of 0.1-600 μmol/L, concentrations as low as 0.1 μmol/L can be detected with good selectivity towards H2O2. The sensing mechanism of detecting H2O2 by the change of oxygen vacancies in MoOx was revealed through characterization methods such as XPS, EPR, and DFT. In addition, the Hue, Saturation, Value (HSV) visual analysis system based on MoOx was constructed to assist in the rapid, portable, and sensitive monitoring of H2O2 in practical application scenarios. This work offers an easy-to operate, low cost, and convenience for achieving rapid colorimetric determination of H2O2 and has broad application prospects in daily life and industrial production.
Collapse
Affiliation(s)
- Cheng Cheng
- Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, Center for Advanced Material Diagnostic Technology, and College of Engineering Physics, Shenzhen Technology University, Shenzhen 518118, China
| | - Zhaokang Zheng
- Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, Center for Advanced Material Diagnostic Technology, and College of Engineering Physics, Shenzhen Technology University, Shenzhen 518118, China
| | - Zhen Liu
- Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, Center for Advanced Material Diagnostic Technology, and College of Engineering Physics, Shenzhen Technology University, Shenzhen 518118, China
| | - Zhiwei Chen
- Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, Center for Advanced Material Diagnostic Technology, and College of Engineering Physics, Shenzhen Technology University, Shenzhen 518118, China
| | - Xingying Li
- Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, Center for Advanced Material Diagnostic Technology, and College of Engineering Physics, Shenzhen Technology University, Shenzhen 518118, China
| | - Weiyong Liu
- Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, Center for Advanced Material Diagnostic Technology, and College of Engineering Physics, Shenzhen Technology University, Shenzhen 518118, China
| | - Aiwu Wang
- Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, Center for Advanced Material Diagnostic Technology, and College of Engineering Physics, Shenzhen Technology University, Shenzhen 518118, China.
| | - Cangtao Zhou
- Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, Center for Advanced Material Diagnostic Technology, and College of Engineering Physics, Shenzhen Technology University, Shenzhen 518118, China
| |
Collapse
|
12
|
Wang H, He W, Liao J, Wang S, Dai X, Yu M, Xie Y, Chen Y. Catalytic Biomaterials-Activated In Situ Chemical Reactions: Strategic Modulation and Enhanced Disease Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2411967. [PMID: 39498674 DOI: 10.1002/adma.202411967] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/19/2024] [Indexed: 11/07/2024]
Abstract
Chemical reactions underpin biological processes, and imbalances in critical biochemical pathways within organisms can lead to the onset of severe diseases. Within this context, the emerging field of "Nanocatalytic Medicine" leverages nanomaterials as catalysts to modulate fundamental chemical reactions specific to the microenvironments of diseases. This approach is designed to facilitate the targeted synthesis and localized accumulation of therapeutic agents, thus enhancing treatment efficacy and precision while simultaneously reducing systemic side effects. The effectiveness of these nanocatalytic strategies critically hinges on a profound understanding of chemical kinetics and the intricate interplay of reactions within particular pathological microenvironments to ensure targeted and effective catalytic actions. This review methodically explores in situ catalytic reactions and their associated biomaterials, emphasizing regulatory strategies that control therapeutic responses. Furthermore, the discussion encapsulates the crucial elements-reactants, catalysts, and reaction conditions/environments-necessary for optimizing the thermodynamics and kinetics of these reactions, while rigorously addressing both the biochemical and biophysical dimensions of the disease microenvironments to enhance therapeutic outcomes. It seeks to clarify the mechanisms underpinning catalytic biomaterials and evaluate their potential to revolutionize treatment strategies across various pathological conditions.
Collapse
Affiliation(s)
- Huijing Wang
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Wenjin He
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Jing Liao
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Shuangshuang Wang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Xinyue Dai
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Meihua Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Yujie Xie
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Yu Chen
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
- Shanghai Institute of Materdicine, Shanghai, 200051, P. R. China
| |
Collapse
|
13
|
Si R, Hu T, Williams GR, Yang Y, Yang S, Yan D, Liang R, Ji W. Coupling Probiotics with CaO 2 Nanoparticle-Loaded CoFeCe-LDH Nanosheets to Remodel the Tumor Microenvironment for Precise Chemodynamic Therapy. Adv Healthc Mater 2025; 14:e2403373. [PMID: 39648554 DOI: 10.1002/adhm.202403373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/23/2024] [Indexed: 12/10/2024]
Abstract
Chemodynamic therapy (CDT) has become an emerging cancer treatment strategy with advantages of tumor-specificity, high selectivity, and low systemic toxicity. However, it usually suffers from low therapeutic efficacy. This is caused by low hydroxyl radical (·OH) yield arising because of the relatively high pH, overexpressed glutathione, and low H2O2 concentration in the tumor microenvironment (TME). Herein, a probiotic metabolism-initiated pH reduction and H2O2 supply-enhanced CDT strategy is reported to eradicate tumors by generating ·OH, in which Lactobacillus acidophilus is coupled with CoFeCe-layered double hydroxide nanosheets loaded with CaO2 nanoparticles (NPs) as a chemodynamic platform for high-efficiency CDT (CaO2/LDH@L. acidophilus). Owing to the hypoxia tropism of L. acidophilus, CaO2/LDH@L. acidophilus exhibits increased accumulation at tumor sites compared with the CaO2/LDH. The CaO2 NPs loaded on CoFeCe-LDH nanosheets are decomposed into H2O2 in the TME. L. acidophilus metabolite-induced pH reduction (<5.5) and CaO2-mediated in situ H2O2 generation synergistically boost ·OH generation activity of the CoFeCe-LDH nanosheets, effectively damaging cancer cells and ablating tumors with a tumor inhibition rate of 96.4%, 2.32-fold higher than that of CaO2/LDH. This work demonstrates that probiotics can function as a tumor-targeting platform to remodel the TME and amplify ROS generation for highly efficient and precise CDT.
Collapse
Affiliation(s)
- Ruxue Si
- Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, P. R. China
| | - Tingting Hu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Gareth R Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Yu Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Shuqing Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Dan Yan
- Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, P. R. China
| | - Ruizheng Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, 324000, P. R. China
| | - Weiping Ji
- Department of Genaral Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324002, P. R. China
- Department of Genaral Surgery, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325088, P. R. China
| |
Collapse
|
14
|
Zheng M, Zhou F, Ma H, Song X, Wu G. Hydroxyapatite supported molybdenum oxide catalyst for selective dehydrogenation of cyclohexane to cyclohexene: studies of dispersibility and chemical environment. RSC Adv 2024; 14:36461-36470. [PMID: 39553280 PMCID: PMC11565164 DOI: 10.1039/d4ra06259k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/25/2024] [Indexed: 11/19/2024] Open
Abstract
The selective oxidative dehydrogenation of cyclohexane to cyclohexene was conducted using molybdenum oxide (MoO x ) as a catalyst and hydroxyapatite (HAP) and Ca5(OH)(PO4)3 as carriers. Two series of MO x /HAP catalysts with varying MoO x loading capacity and calcination temperature were prepared via the co-impregnation method. The impact of dispersibility and chemical environment on the catalytic performance of MoO x was investigated. The catalysts were characterized using XRD, XPS, H2-TPR, and UV-Vis spectra. These MoO x /HAP catalysts were employed for the oxidative dehydrogenation (ODH) of cyclohexane to cyclohexene. MoO x /HAP catalysts with lower loading capacity exhibited higher dispersion of MoO x and selectivity towards cyclohexane. The calcination temperature directly influenced the chemical environment of MoO x , thereby affecting its catalytic performance. Samples calcinated at lower temperatures (500 °C and 600 °C) demonstrated higher conversion rates for cyclohexane, while samples calcinated at higher temperatures (above 700 °C) displayed greater selectivity towards cyclohexane. At 430 °C, when the conversion rate of cyclohexane reached 13.1%, the selectivity of cyclohexene over MHAP-0.05-800 catalyst reached 58.2%.
Collapse
Affiliation(s)
- Mingxiao Zheng
- School of Chemistry and Materials Sciences, Research Institute of Crop Science, Heilongjiang University Harbin 150080 China
| | - Feng Zhou
- Dalian Reserch Institute of Petroleum and Petrochemicals, SINOPEC Dalian 116045 China
| | - Huixia Ma
- Dalian Reserch Institute of Petroleum and Petrochemicals, SINOPEC Dalian 116045 China
| | - Xuefeng Song
- School of Chemistry and Materials Sciences, Research Institute of Crop Science, Heilongjiang University Harbin 150080 China
| | - Guang Wu
- School of Chemistry and Materials Sciences, Research Institute of Crop Science, Heilongjiang University Harbin 150080 China
| |
Collapse
|
15
|
Wang S, Mao Y, Rong S, Liu G, Cao Y, Yang Z, Yu H, Zhang X, Fang H, Cai Z, Chen Y, Huang H, Li H. Engineering Magnetic Extracellular Vesicles Mimetics for Enhanced Targeting Chemodynamic Therapy to Overcome Ovary Cancer. ACS APPLIED MATERIALS & INTERFACES 2024; 16:39021-39034. [PMID: 39033517 DOI: 10.1021/acsami.4c06862] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Chemodynamic therapy (CDT), employing metal ions to transform endogenous H2O2 into lethal hydroxyl radicals (•OH), has emerged as an effective approach for tumor treatment. Yet, its efficacy is diminished by glutathione (GSH), commonly overexpressed in tumors. Herein, a breakthrough strategy involving extracellular vesicle (EV) mimetic nanovesicles (NVs) encapsulating iron oxide nanoparticles (IONPs) and β-Lapachone (Lapa) was developed to amplify intracellular oxidative stress. The combination, NV-IONP-Lapa, created through a serial extrusion from ovarian epithelial cells showed excellent biocompatibility and leveraged magnetic guidance to enhance endocytosis in ovarian cancer cells, resulting in selective H2O2 generation through Lapa catalysis by NADPH quinone oxidoreductase 1 (NQO1). Meanwhile, the iron released from IONPs ionization under acidic conditions triggered the conversion of H2O2 into •OH by the Fenton reaction. Additionally, the catalysis process of Lapa eliminated GSH in tumor, further amplifying oxidative stress. The designed NV-IONP-Lapa demonstrated exceptional tumor targeting, facilitating MR imaging, and enhanced tumor suppression without significant side effects. This study presents a promising NV-based drug delivery system for exploiting CDT against NQO1-overexpressing tumors by augmenting intratumoral oxidative stress.
Collapse
Affiliation(s)
- Shuai Wang
- Centre for Diseases Prevention and Control of Eastern Theater, Nanjing 210002, China
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Yinghua Mao
- Centre for Diseases Prevention and Control of Eastern Theater, Nanjing 210002, China
| | - Shu Rong
- Centre for Diseases Prevention and Control of Eastern Theater, Nanjing 210002, China
| | - Guangquan Liu
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210001, China
| | - Yongping Cao
- Centre for Diseases Prevention and Control of Eastern Theater, Nanjing 210002, China
| | - Zhan Yang
- Centre for Diseases Prevention and Control of Eastern Theater, Nanjing 210002, China
| | - Huanhuan Yu
- Department of Clinical Pharmacy, General Hospital of Eastern Theater Command, Nanjing 210002, China
| | - Xinrui Zhang
- Centre for Diseases Prevention and Control of Eastern Theater, Nanjing 210002, China
| | - Hongyue Fang
- Department of Third Outpatient, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhipeng Cai
- Centre for Diseases Prevention and Control of Eastern Theater, Nanjing 210002, China
| | - Yonghong Chen
- Centre for Diseases Prevention and Control of Eastern Theater, Nanjing 210002, China
| | - Hao Huang
- Department of Obstetrics and Gynecology, Foshan Fosun Chancheng Hospital, Foshan 528000, China
| | - Hong Li
- Centre for Diseases Prevention and Control of Eastern Theater, Nanjing 210002, China
| |
Collapse
|
16
|
Lin J, Huang C, Wang P, He Y, Luo Q, Liu X, Li Y. Tumor-Microenvironment-Responsive Cerium-Enriched Copper Nanozyme with O 2 Supply and Oxidative Stress Amplification for In Situ Disulfiram Chemotherapy and Chemodynamic Therapy Intensification. Adv Healthc Mater 2024; 13:e2303955. [PMID: 38271271 DOI: 10.1002/adhm.202303955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/03/2024] [Indexed: 01/27/2024]
Abstract
Traditional chemotherapy has faced tough challenges of systemic toxicity, hypoxia resistance, and inadequacy of monotherapy. Developing the tumor-specific O2-supply-enhanced chemotherapy without toxic drugs while combing other precise treatments can substantially improve therapeutic efficacy. Herein, a CeO2-enriched CuO nanozyme with O2 supply and oxidative stress amplification for tumor-specific disulfiram (DSF) chemotherapy and intensified chemodynamic therapy by synergistic in situ "nontoxicity-toxicity" activation is developed. Notably, CeO2 can not only act as a morphological "regulator," but also serve as a cascaded enzyme-mimetic catalyst via tumor-microenvironment-responsive cascaded-logical programmable valence conversion. Once internalized inside tumor cells, the nanozyme can be degraded by lysosomal acidity to release nontoxic DSF and Cu2+, which can trigger in situ "Cu2+-DSF" chelation, generating a highly toxic Cu(DTC)2 for in situ chemotherapy. Moreover, the enriched CeO2 with catalase-mimetic activity can decompose the endogenous H2O2 into O2, which can relieve the hypoxia to enhance the chemotherapeutic efficacy. Furthermore, the simultaneously generated Ce3+ can exert peroxidase-mimetic activity to catalyze H2O2 into hydroxyl radicals (•OH) for chemodynamic therapy. This Fenton-like chemistry is accompanied by the regeneration of Ce4+, which can deplete the intracellular overproduced GSH to amplify the oxidative stress. Therefore, this nanozyme can provide an alternative to precise cancer treatment.
Collapse
Affiliation(s)
- Jinyan Lin
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, China
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- Department of Translational Medicine & Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare-Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, P. R. China
| | - Cailin Huang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, China
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- Department of Translational Medicine & Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare-Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, P. R. China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, Jiangxi, 341000, China
| | - Peiyuan Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, China
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- Department of Translational Medicine & Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare-Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, P. R. China
| | - Yueyang He
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- Department of Translational Medicine & Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare-Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, P. R. China
- Cancer Center and Department of Breast and Thyroid Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361100, China
| | - Qiang Luo
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- Department of Translational Medicine & Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare-Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, P. R. China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, China
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- Department of Translational Medicine & Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare-Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, P. R. China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, Jiangxi, 341000, China
| | - Yang Li
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, China
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- Department of Translational Medicine & Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare-Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, P. R. China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, Jiangxi, 341000, China
| |
Collapse
|
17
|
Zhou Z, Wang T, Hu T, Xu H, Cui L, Xue B, Zhao X, Pan X, Yu S, Li H, Qin Y, Zhang J, Ma L, Liang R, Tan C. Synergistic Interaction between Metal Single-Atoms and Defective WO 3- x Nanosheets for Enhanced Sonodynamic Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2311002. [PMID: 38408758 DOI: 10.1002/adma.202311002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/03/2024] [Indexed: 02/28/2024]
Abstract
Although metal single-atom (SA)-based nanomaterials are explored as sonosensitizers for sonodynamic therapy (SDT), they normally exhibit poor activities and need to combine with other therapeutic strategies. Herein, the deposition of metal SAs on oxygen vacancy (OV)-rich WO3- x nanosheets to generate a synergistic effect for efficient SDT is reported. Crystalline WO3 and OV-rich WO3- x nanosheets are first prepared by simple calcination of the WO3 ·H2 O nanosheets under an air and N2 atmosphere, respectively. Pt, Cu, Fe, Co, and Ni metal SAs are then deposited on WO3- x nanosheets to obtain metal SA-decorated WO3- x nanocomposites (M-WO3- x ). Importantly, the Cu-WO3- x sonosensitizer exhibits a much higher activity for ultrasound (US)-induced production of reactive oxygen species than that of the WO3- x and Cu SA-decorated WO3 , which is also higher than other M-WO3- x nanosheets. Both the experimental and theoretical results suggest that the excellent SDT performance of the Cu-WO3- x nanosheets should be attributed to the synergistic effect between Cu SAs and WO3- x OVs. Therefore, after polyethylene glycol modification, the Cu-WO3- x can quickly kill cancer cells in vitro and effectively eradicate tumors in vivo under US irradiation. Transcriptome sequencing analysis and further molecular validation suggest that the Cu-WO3- x -mediated SDT-activated apoptosis and TNF signaling pathways are potential drivers of tumor apoptosis induction.
Collapse
Affiliation(s)
- Zhan Zhou
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, P. R. China
| | - Tao Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Tingting Hu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, 999077, P. R. China
| | - Hao Xu
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Lin Cui
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Baoli Xue
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, P. R. China
| | - Xinshuo Zhao
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, P. R. China
| | - Xiangrong Pan
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, P. R. China
| | - Shilong Yu
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLoFE), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Hai Li
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLoFE), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Yong Qin
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, P. R. China
| | - Jiankang Zhang
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Lufang Ma
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, P. R. China
| | - Ruizheng Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, 324000, P. R. China
| | - Chaoliang Tan
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, 999077, P. R. China
| |
Collapse
|
18
|
Li C, Fang X, Zhang H, Zhang B. Recent Advances of Emerging Metal-Containing Two-Dimensional Nanomaterials in Tumor Theranostics. Int J Nanomedicine 2024; 19:805-824. [PMID: 38283201 PMCID: PMC10822123 DOI: 10.2147/ijn.s444471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/15/2024] [Indexed: 01/30/2024] Open
Abstract
In recent years, metal-containing two-dimensional (2D) nanomaterials, among various 2D nanomaterials have attracted widespread attention because of their unique physical and chemical properties, especially in the fields of biomedical applications. Firstly, the review provides a brief introduction to two types of metal-containing 2D nanomaterials, based on whether metal species take up the major skeleton of the 2D nanomaterials. After this, the synthetical approaches are summarized, focusing on two strategies similar to other 2D nanomaterials, top-down and bottom-up methods. Then, the performance and evaluation of these 2D nanomaterials when applied to cancer therapy are discussed in detail. The specificity of metal-containing 2D nanomaterials in physics and optics makes them capable of killing cancer cells in a variety of ways, such as photodynamic therapy, photothermal therapy, sonodynamic therapy, chemodynamic therapy and so on. Besides, the integrated platform of diagnosis and treatment and the clinical translatability through metal-containing 2D nanomaterials is also introduced in this review. In the summary and perspective section, advanced rational design, challenges and promising clinical contributions to cancer therapy of these emerging metal-containing 2D nanomaterials are discussed.
Collapse
Affiliation(s)
- Chenxi Li
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Institute of Translational Medicine Department of Otolaryngology Shenzhen Second People’s Hospital, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, 518035, People’s Republic of China
- Graduate Collaborative Training Base of Shenzhen Second People’s Hospital, Heng Yang Medical School, University of South China, Hengyang, Hunan, 421001, People’s Republic of China
| | - Xueyang Fang
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Institute of Translational Medicine Department of Otolaryngology Shenzhen Second People’s Hospital, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, 518035, People’s Republic of China
| | - Han Zhang
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Institute of Translational Medicine Department of Otolaryngology Shenzhen Second People’s Hospital, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, 518035, People’s Republic of China
- International Collaborative Laboratory of 2D, Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, People’s Republic of China
| | - Bin Zhang
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Institute of Translational Medicine Department of Otolaryngology Shenzhen Second People’s Hospital, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, 518035, People’s Republic of China
| |
Collapse
|
19
|
Zhang J, Yang Y, Qin F, Hu T, Zhao X, Zhao S, Cao Y, Gao Z, Zhou Z, Liang R, Tan C, Qin Y. Catalyzing Generation and Stabilization of Oxygen Vacancies on CeO 2-x Nanorods by Pt Nanoclusters as Nanozymes for Catalytic Therapy. Adv Healthc Mater 2023; 12:e2302056. [PMID: 37708844 PMCID: PMC11468536 DOI: 10.1002/adhm.202302056] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/09/2023] [Indexed: 09/16/2023]
Abstract
Although CeO2 nanomaterials have been widely explored as nanozymes for catalytic therapy, they still suffer from relatively low activities. Herein, the catalyzing generation and stabilization of oxygen vacancies on CeO2 nanorods by Pt nanoclusters via H2 gas reduction under mild temperature (350 °C) to obtain Pt/CeO2- x , which can serve as a highly efficient nanozyme for catalytic cancer therapy, is reported. The deposited Pt on CeO2 by the atomic layer deposition technique not only can serve as the catalyst to generate oxygen vacancies under mild temperature reduction through the hydrogen spillover effect, but also can stabilize the generated oxygen vacancies. Meanwhile, the oxygen vacancies also provide anchoring sites for Pt forming strong metal-support interactions and thus preventing their agglomerations. Importantly, the Pt/CeO2- x reduced at 350 °C (Pt/CeO2- x -350R) exhibits excellent enzyme-mimicking catalytic activity for generation of reactive oxygen species (e.g., ·OH) as compared to other control samples, including CeO2 , Pt/CeO2 , and Pt/CeO2- x reduced at other temperatures, thus achieving excellent performance for tumor-specific catalytic therapy to efficiently eliminate cancer cells in vitro and ablate tumors in vivo. The excellent enzyme-mimicking catalytic activity of Pt/CeO2- x -350R originates from the good catalytic activities of oxygen vacancy-rich CeO2- x and Pt nanoclusters.
Collapse
Affiliation(s)
- Jiankang Zhang
- Interdisciplinary Research Center of Biology and CatalysisSchool of Life SciencesNorthwestern Polytechnical UniversityXi'an710072P. R. China
| | - Yu Yang
- State Key Laboratory of Chemical Resource EngineeringBeijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Fengmin Qin
- Interdisciplinary Research Center of Biology and CatalysisSchool of Life SciencesNorthwestern Polytechnical UniversityXi'an710072P. R. China
| | - Tingting Hu
- State Key Laboratory of Chemical Resource EngineeringBeijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Xinshuo Zhao
- College of Chemistry and Chemical EngineeringHenan Key Laboratory of Function‐Oriented Porous MaterialsLuoyang Normal UniversityLuoyang471934P. R. China
| | - Shichao Zhao
- State Key Laboratory of Coal ConversionInstitute of Coal ChemistryChinese Academy of SciencesTaiyuan030001P. R. China
| | - Yueqiang Cao
- State Key Laboratory of Chemical EngineeringSchool of Chemical EngineeringEast China University of Science and TechnologyShanghai200237P. R. China
| | - Zhe Gao
- State Key Laboratory of Coal ConversionInstitute of Coal ChemistryChinese Academy of SciencesTaiyuan030001P. R. China
| | - Zhan Zhou
- College of Chemistry and Chemical EngineeringHenan Key Laboratory of Function‐Oriented Porous MaterialsLuoyang Normal UniversityLuoyang471934P. R. China
| | - Ruizheng Liang
- State Key Laboratory of Chemical Resource EngineeringBeijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
- Quzhou Institute for Innovation in Resource Chemical EngineeringQuzhou324000P. R. China
| | - Chaoliang Tan
- Department Electrical and Electronic EngineeringThe University of Hong KongPokfulam RoadHong KongSAR999077P. R. China
| | - Yong Qin
- Interdisciplinary Research Center of Biology and CatalysisSchool of Life SciencesNorthwestern Polytechnical UniversityXi'an710072P. R. China
- State Key Laboratory of Coal ConversionInstitute of Coal ChemistryChinese Academy of SciencesTaiyuan030001P. R. China
| |
Collapse
|
20
|
Chen W, Xie W, Gao Z, Lin C, Tan M, Zhang Y, Hou Z. Mild-Photothermal Effect Induced High Efficiency Ferroptosis-Boosted-Cuproptosis Based on Cu 2 O@Mn 3 Cu 3 O 8 Nanozyme. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303694. [PMID: 37822154 PMCID: PMC10667815 DOI: 10.1002/advs.202303694] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/02/2023] [Indexed: 10/13/2023]
Abstract
A core-shell-structured Cu2 O@Mn3 Cu3 O8 (CMCO) nanozyme is constructed to serve as a tumor microenvironment (TME)-activated copper ionophore to achieve safe and efficient cuproptosis. The Mn3 Cu3 O8 shell not only prevents exposure of normal tissues to the Cu2 O core to reduce systemic toxicity but also exhibits enhanced enzyme-mimicking activity owing to the better band continuity near the Fermi surface. The glutathione oxidase (GSHOx)-like activity of CMCO depletes glutathione (GSH), which diminishes the ability to chelate Cu ions, thereby exerting Cu toxicity and inducing cuproptosis in cancer cells. The catalase (CAT)-like activity catalyzes the overexpressed H2 O2 in the TME, thereby generating O2 in the tricarboxylic acid (TCA) cycle to enhance cuproptosis. More importantly, the Fenton-like reaction based on the release of Mn ions and the inactivation of glutathione peroxidase 4 induced by the elimination of GSH results in ferroptosis, accompanied by the accumulation of lipid peroxidation and reactive oxygen species that can cleave stress-induced heat shock proteins to compromise their protective capacity of cancer cells and further sensitize cuproptosis. CMCO nanozymes are partially sulfurized by hydrogen sulfide in the colorectal TME, exhibiting excellent photothermal properties and enzyme-mimicking activity. The mild photothermal effect enhances the enzyme-mimicking activity of the CMCO nanozymes, thus inducing high-efficiency ferroptosis-boosted-cuproptosis.
Collapse
Affiliation(s)
- Wei Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and DegradationSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhou511436P. R. China
| | - Wenyu Xie
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and DegradationSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhou511436P. R. China
| | - Zhimin Gao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and DegradationSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhou511436P. R. China
| | - Chen Lin
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and DegradationSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhou511436P. R. China
| | - Meiling Tan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and DegradationSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhou511436P. R. China
| | - Yaru Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and DegradationSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhou511436P. R. China
| | - Zhiyao Hou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and DegradationSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhou511436P. R. China
| |
Collapse
|
21
|
Chen H, Zhao X, Cui B, Cui H, Zhao M, Shi J, Li J, Zhou Z. Peroxidase-like MoS 2/Ag nanosheets with synergistically enhanced NIR-responsive antibacterial activities. Front Chem 2023; 11:1148354. [PMID: 36970408 PMCID: PMC10033522 DOI: 10.3389/fchem.2023.1148354] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/17/2023] [Indexed: 03/29/2023] Open
Abstract
Pathogenic microbial infections have been threatening public health all over the world, which makes it highly desirable to develop an antibiotics-free material for bacterial infection. In this paper, molybdenum disulfide (MoS2) nanosheets loaded with silver nanoparticles (Ag NPs) were constructed to inactive bacteria rapidly and efficiently in a short period under a near infrared (NIR) laser (660 nm) in the presence of H2O2. The designed material presented favorable features of peroxidase-like ability and photodynamic property, which endowed it with fascinating antimicrobial capacity. Compared with free MoS2 nanosheets, the MoS2/Ag nanosheets (denoted as MoS2/Ag NSs) exhibited better antibacterial performance against Staphylococcus aureus by the generated reactive oxygen species (ROS) from both peroxidase-like catalysis and photodynamic, and the antibacterial efficiency of MoS2/Ag NSs could be further improved by increasing the amount of Ag. Results from cell culture tests proved that MoS2/Ag3 nanosheets had a negligible impact on cell growth. This work provided new insight into a promising method for eliminating bacteria without using antibiotics, and could serve as a candidate strategy for efficient disinfection to treat other bacterial infections.
Collapse
Affiliation(s)
- Huiying Chen
- Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China
| | - Xinshuo Zhao
- Henan Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, China
| | - Bingbing Cui
- Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China
| | - Haohao Cui
- Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China
| | - Mengyang Zhao
- Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Jun Shi
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China
| | - Jingguo Li
- Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Jingguo Li, ; Zhan Zhou,
| | - Zhan Zhou
- Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, China
- *Correspondence: Jingguo Li, ; Zhan Zhou,
| |
Collapse
|