1
|
Zhang Y, Li B, He J, Meng Y, Zhan M, Lu C, Li Y, Niu F, Wen L. Hemoglobin-loaded hollow mesoporous carbon-gold nanocomposites enhance microwave ablation through hypoxia relief. J Nanobiotechnology 2025; 23:326. [PMID: 40307855 PMCID: PMC12042322 DOI: 10.1186/s12951-025-03387-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 04/14/2025] [Indexed: 05/02/2025] Open
Abstract
Microwave ablation, as a critical minimally invasive technique for tumor treatment, remains challenging in achieving an optimal balance between incomplete and excessive ablation. In addition to selectively elevating the temperature of tumor lesions through the microwave thermal effect, microwave-responsive nanoparticles can also improve the efficacy of single-session ablation by generating reactive oxygen species (ROS) via the microwave dynamic effect, thereby mitigating the thermal damage to normal tissues caused by high temperature. In this study, ultra-small gold nanoparticles anchored hollow mesoporous carbon nanoparticles (HMCNs) are loaded with hemoglobin (Hb) to serve as microwave ablation nano-sensitizers (HMCN/Au@Hb), which will amplify the microwave dynamic effect by alleviating the hypoxic microenvironment of tumors. Upon microwave irradiation, HMCN/Au@Hb not only improves the microwave-thermal conversion efficiency of tumor lesion but also promotes the ROS generation by increasing oxygen content in the hypoxic tumor microenvironment. More importantly, we found that the hypoxia relief will improve the antitumor response and further enhance the clearance of residual tumor after ablation. Nearly complete ablation was achieved in certain tumor-bearing mice, with no recurrence of the primary tumor observed up to 33 days post-ablation. In comparison to traditional microwave ablation, the survival time of the tumor-bearing mice was significantly extended. Therefore, this work presents an innovative ablation sensitization strategy based on the hypoxia relief and provides a nanosensitizer for microwave ablation integrating great microwave-thermal and dynamic effects along with immune modulation capabilities.
Collapse
Affiliation(s)
- Yitian Zhang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology), Beijing Institute of Technology, Zhuhai, 519088, China
| | - Bitao Li
- Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital, The Affiliated Hospital of Beijing Institute of Technology), Zhuhai, 519000, China
| | - Jiawen He
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology), Beijing Institute of Technology, Zhuhai, 519088, China
| | - Ya Meng
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology), Beijing Institute of Technology, Zhuhai, 519088, China
- Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital, The Affiliated Hospital of Beijing Institute of Technology), Zhuhai, 519000, China
| | - Meixiao Zhan
- Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510095, China
| | - Cuixia Lu
- Medical College, Guangxi University, Nanning, 530004, China
| | - Yong Li
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology), Beijing Institute of Technology, Zhuhai, 519088, China.
- Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital, The Affiliated Hospital of Beijing Institute of Technology), Zhuhai, 519000, China.
| | - Feiyu Niu
- Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510095, China.
| | - Liewei Wen
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology), Beijing Institute of Technology, Zhuhai, 519088, China.
| |
Collapse
|
2
|
Hao R, Jiao M, Xu X, Wu D, Wei H, Zeng L. Thermosensitive liposome-encapsulated gold nanocages for photothermal-modulated drug release and synergistic photothermal therapy. J Mater Chem B 2025; 13:2042-2051. [PMID: 39750526 DOI: 10.1039/d4tb02056a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Delivery nanosystems have been widely developed to improve the efficacy of chemotherapy. However, their performance regarding the non-specific leakage of drugs remained unsatisfactory. Herein, gold nanocages (AuNCs) were used as carriers and thermo-sensitive liposome (TSL) as a protective shell to design a camptothecin (CPT)-loaded delivery nanosystem (AuNCs/CPT@TSL) for photothermal-modulated drug release. This approach effectively avoided the non-specific leakage of CPT and enabled the combination of photothermal therapy (PTT) and chemotherapy. In the simulated tumor microenvironment (pH = 5.5), the TSL shell prevented CPT leakage at 37 °C, with a release rate of only 11.4%. However, the release rate of CPT greatly increased to 85.4% when the temperature was elevated to 45 °C. The photothermal conversion efficiency of AuNCs/CPT@TSL reached up to 46.1%. At an incubation temperature of 37 °C, the cell survival rate decreased to 43.6% in AuNCs/CPT but remained above 90% in AuNCs/CPT@TSL, demonstrating the protective effect of the TSL shell. Under the combination of PTT and chemotherapy, cell viability drastically decreased to 10.9%, and the tumors completely disappeared, confirming the safe and reliable antitumor effect of AuNCs/CPT@TSL.
Collapse
Affiliation(s)
- Ran Hao
- College of Chemistry and Materials Science, Chemical Biology Key Laboratory of Hebei Province, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding, 071002, P. R. China.
| | - Meng Jiao
- Department of Radiotherapy, Affiliated Hospital of Hebei University, Baoding 071000, P. R. China
| | - Xingguo Xu
- College of Chemistry and Materials Science, Chemical Biology Key Laboratory of Hebei Province, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding, 071002, P. R. China.
| | - Di Wu
- College of Chemistry and Materials Science, Chemical Biology Key Laboratory of Hebei Province, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding, 071002, P. R. China.
| | - Haiying Wei
- College of Chemistry and Materials Science, Chemical Biology Key Laboratory of Hebei Province, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding, 071002, P. R. China.
| | - Leyong Zeng
- College of Chemistry and Materials Science, Chemical Biology Key Laboratory of Hebei Province, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding, 071002, P. R. China.
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Baoding, 071002, P. R. China
| |
Collapse
|
3
|
Hu L, Dong G, Li X, Li S, Lv Y. A free-radical initiator-based carrier-free smart nanobomb for targeted synergistic therapy of hypoxic breast cancer. RSC Adv 2025; 15:3098-3109. [PMID: 39885853 PMCID: PMC11780488 DOI: 10.1039/d4ra07841a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/15/2025] [Indexed: 02/01/2025] Open
Abstract
Thermodynamic therapy (TDT) is a promising alternative to photodynamic therapy (PDT) by absorbing heat through thermosensitive agents (TSAs) to generate oxygen-irrelevant highly toxic free radicals. Therefore, TDT can be a perfect partner for photothermal therapy (PTT) to achieve efficient synergistic treatment of anoxic tumors using a single laser, greatly simplifying the treatment process and overcoming hypoxia limitations. However, the issues of how to improve the stability and delivery efficiency of TSAs still need to be addressed urgently. Herein, polyethylene glycol-folic acid (PEG-FA)-modified and indocyanine green (ICG)-encapsulated nanoscale Zn2+ and 2'-azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride (AIPH) coordinated nanomaterials (IANM-PEG-FA) were developed as a nanobomb for targeted photothermal/thermodynamic/ion-interference cancer therapy. Co-triggered by a single 808 nm laser and mildly acidic tumor microenvironment, the photothermal agent of ICG would induce rapid decomposition of AIPH to generate alkyl radicals and release ICG and Zn2+, resulting in effectively cascaded oxygen-independent photothermal/thermodynamic therapy and co-enhanced synergistic intracellular overload of Zn2+ interference. Additionally, PEG-FA enabled favorable stability and active targeting ability to achieve low side effects and efficient tumor enrichment for good photothermal/near-infrared fluorescence imaging-guided precise tumor therapy. Significantly, the IANM-PEG-FA nanosystem exhibited remarkable anticancer effects even at low doses in hypoxic breast cancer, achieving 80% tumor elimination. Our study might provide a highly effective strategy for developing a multifunctional carrier-free nanosystem with high performance in hypoxic cancer to meet the requirements in the clinic.
Collapse
Affiliation(s)
- Liefeng Hu
- School of Materials Science and Engineering, Hubei Key Laboratory for New Textile Materials and Applications, Wuhan Textile University Wuhan 430200 P. R. China
- State Key Laboratory for New Textile Materials & Advanced Processing Technology, Wuhan Textile University Wuhan 430200 P. R. China
| | - Ganlin Dong
- State Key Laboratory for New Textile Materials & Advanced Processing Technology, Wuhan Textile University Wuhan 430200 P. R. China
| | - Xiaohong Li
- State Key Laboratory for New Textile Materials & Advanced Processing Technology, Wuhan Textile University Wuhan 430200 P. R. China
| | - Shuting Li
- School of Physical Education, Equine Science Research and Doping Control Center, Wuhan Business University Wuhan 430056 China
| | - Yonggang Lv
- State Key Laboratory for New Textile Materials & Advanced Processing Technology, Wuhan Textile University Wuhan 430200 P. R. China
| |
Collapse
|
4
|
Yang K, Wang L, Chen J, Wang Z, Li J, Chen X, Fu S, Hai L, Deng L, He D. H 2O 2-Activatable Liposomal Nanobomb Capable of Generating Hypoxia-Irrelevant Alkyl Radicals by Photo-Triggered Cascade Reaction for High-Performance Elimination of Biofilm Bacteria. Adv Healthc Mater 2024; 13:e2402136. [PMID: 39155413 DOI: 10.1002/adhm.202402136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/05/2024] [Indexed: 08/20/2024]
Abstract
High H2O2 levels are widely present at the infection sites or in the biofilm microenvironment. Herein, hemin with peroxidase-like catalytic activity and its substrate, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), are simultaneously introduced into a liposomal nanoparticle containing thermosensitive 2,2'-azobis[2-(2-imidazolin-2-yl) propane] dihydrochloride (AIBI)-loaded bovine serum albumin (BAG), rationally constructing an H2O2-activatable liposomal nanobomb (Lipo@BHA) for combating biofilm-associated bacterial infections with high performance. In the presence of H2O2, hemin can catalyze the conversion of ABTS into its oxidized form (ABTS·+) with strong near-infrared (NIR) absorption, which produces photonic hyperpyrexia to cause the decomposition of AIBI into oxygen-independent alkyl radicals (·R) and nitrogen (N2) microbubbles. The former not only directly damage bacterial cells but also significantly accelerates the oxidization of ABTS to ABTS·+ for augmenting photothermal-triggered generation of ·R. Interestingly, the released N2 can induce transient cavitation to rupture lysosomal nanoparticle and improve the biofilm permeability, thereby enhancing the antibiofilm effect of Lipo@BHA. The proposed Lipo@BHA exhibits satisfactory multi-mode combination antibacterial properties. Through endogenous H2O2-activated cascade reaction, Lipo@BHA achieves remarkable hypoxia-irrelevant ·R therapy of biofilm-associated wound infections with low cytotoxicity and good in vivo biosafety. Therefore, this work presents a versatile H2O2-activatable cascade ·R generation strategy for biofilm-specific therapeutic applications.
Collapse
Affiliation(s)
- Ke Yang
- College of Life Science, Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, P. R. China
| | - Li Wang
- College of Life Science, Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, P. R. China
| | - Jinyi Chen
- College of Life Science, Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, P. R. China
| | - Zefeng Wang
- College of Life Science, Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, P. R. China
| | - Junqin Li
- College of Life Science, Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, P. R. China
| | - Xi Chen
- College of Life Science, Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, P. R. China
| | - Shuting Fu
- College of Life Science, Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, P. R. China
| | - Luo Hai
- Central Laboratory & Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, P. R. China
| | - Le Deng
- College of Life Science, Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, P. R. China
| | - Dinggeng He
- College of Life Science, Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, P. R. China
| |
Collapse
|
5
|
Wang X, Peng J, Meng C, Feng F. Recent advances for enhanced photodynamic therapy: from new mechanisms to innovative strategies. Chem Sci 2024; 15:12234-12257. [PMID: 39118629 PMCID: PMC11304552 DOI: 10.1039/d3sc07006a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Photodynamic therapy (PDT) has been developed as a potential cancer treatment approach owing to its non-invasiveness, spatiotemporal control and limited side effects. Currently, great efforts have been made to improve the PDT effect in terms of safety and efficiency. In this review, we highlight recent advances in innovative strategies for enhanced PDT, including (1) the development of novel radicals, (2) design of activatable photosensitizers based on the TME and light, and (3) photocatalytic NADH oxidation to damage the mitochondrial electron transport chain. Additionally, the new mechanisms for PDT are also presented as an inspiration for the design of novel PSs. Finally, we discuss the current challenges and future prospects in the clinical practice of these innovative strategies. It is hoped that this review will provide a new angle for understanding the relationship between the intratumoural redox environment and PDT mechanisms, and new ideas for the future development of smart PDT systems.
Collapse
Affiliation(s)
- Xia Wang
- MOE Key Laboratory of High Performance Polymer Materials and Technology, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Jinlei Peng
- MOE Key Laboratory of High Performance Polymer Materials and Technology, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Chi Meng
- MOE Key Laboratory of High Performance Polymer Materials and Technology, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Fude Feng
- MOE Key Laboratory of High Performance Polymer Materials and Technology, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University Nanjing 210023 China
| |
Collapse
|
6
|
Fan J, Dong Y, Sun Y, Ji Y, Feng J, Yan P, Zhu Y. Mucus and Biofilm Penetrating Nanoplatform as an Ultrasound-Induced Free Radical Initiator for Targeted Treatment of Helicobacter pylori Infection. Adv Healthc Mater 2024; 13:e2400363. [PMID: 38558539 DOI: 10.1002/adhm.202400363] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/15/2024] [Indexed: 04/04/2024]
Abstract
Helicobacter pylori (H. pylori) infection is closely associated with the development of various gastric diseases. The effectiveness of current clinical antibiotic therapy is hampered by the rise of drug-resistant strains and the formation of H. pylori biofilm. This paper reports a sonodynamic nanocomposite PtCu3-PDA@AIPH@Fucoidan (PPAF), which consists of dopamine-modified inorganic sonosensitizers PtCu3, alkyl radicals (R•) generator AIPH and fucoidan, can penetrate the mucus layer, target H. pylori, disrupt biofilms, and exhibit excellent bactericidal ability. In vitro experiments demonstrate that PPAF exhibits excellent acoustic kinetic properties, generating a significant amount of reactive oxygen species and oxygen-independent R• for sterilization under ultrasound stimulation. Simultaneously, the produced N2 can enhance the cavitation effect, aiding PPAF nanoparticles in penetrating the gastric mucus layer and disrupting biofilm integrity. This disruption allows more PPAF nanoparticles to bind to biofilm bacteria, facilitating the eradication of H. pylori. In vivo experiments demonstrate that ultrasound-stimulated PPAF exhibited significant antibacterial efficacy against H. pylori. Moreover, it effectively modulated the expression levels of inflammatory factors and maintained gastrointestinal microbiota stability when compared to the antibiotic treatment group. In summary, PPAF nanoparticles present a potential alternative to antibiotics, offering an effective and healthy option for treating H. pylori infection.
Collapse
Affiliation(s)
- Jinjie Fan
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Center for Drug Safety Evaluation and Research, Zhengzhou University, Zhengzhou, 450001, China
| | - Yuze Dong
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Center for Drug Safety Evaluation and Research, Zhengzhou University, Zhengzhou, 450001, China
| | - Yue Sun
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Center for Drug Safety Evaluation and Research, Zhengzhou University, Zhengzhou, 450001, China
| | - Yalan Ji
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Center for Drug Safety Evaluation and Research, Zhengzhou University, Zhengzhou, 450001, China
| | - Jie Feng
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Center for Drug Safety Evaluation and Research, Zhengzhou University, Zhengzhou, 450001, China
| | - Peijuan Yan
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Center for Drug Safety Evaluation and Research, Zhengzhou University, Zhengzhou, 450001, China
| | - Yingnan Zhu
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Center for Drug Safety Evaluation and Research, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
7
|
Wang C, Lan X, Zhu L, Wang Y, Gao X, Li J, Tian H, Liang Z, Xu W. Construction Strategy of Functionalized Liposomes and Multidimensional Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309031. [PMID: 38258399 DOI: 10.1002/smll.202309031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/30/2023] [Indexed: 01/24/2024]
Abstract
Liposomes are widely used in the biological field due to their good biocompatibility and surface modification properties. With the development of biochemistry and material science, many liposome structures and their surface functional components have been modified and optimized one by one, pushing the liposome platform from traditional to functionalized and intelligent, which will better satisfy and expand the needs of scientific research. However, a main limiting factor effecting the efficiency of liposomes is the complicated environmental conditions in the living body. Currently, in order to overcome the above problem, functionalized liposomes have become a very promising strategy. In this paper, binding strategies of liposomes with four main functional elements, namely nucleic acids, antibodies, peptides, and stimuli-responsive motif have been summarized for the first time. In addition, based on the construction characteristics of functionalized liposomes, such as drug-carrying, targeting, long-circulating, and stimulus-responsive properties, a comprehensive overview of their features and respective research progress are presented. Finally, the paper critically presents the limitations of these functionalized liposomes in the current applications and also prospectively suggests the future development directions, aiming to accelerate realization of their industrialization.
Collapse
Affiliation(s)
- Chengyun Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, No. 17, Qinghua East Road, Beijing, 100083, China
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei, 071000, China
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| | - Xinyue Lan
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| | - Longjiao Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| | - Yanhui Wang
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| | - Xinru Gao
- College of Food Science and Nutritional Engineering, China Agricultural University, No. 17, Qinghua East Road, Beijing, 100083, China
| | - Jie Li
- College of Food Science and Nutritional Engineering, China Agricultural University, No. 17, Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| | - Hongtao Tian
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Zhihong Liang
- College of Food Science and Nutritional Engineering, China Agricultural University, No. 17, Qinghua East Road, Beijing, 100083, China
| | - Wentao Xu
- College of Food Science and Nutritional Engineering, China Agricultural University, No. 17, Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| |
Collapse
|
8
|
Zhou Y, Shu G, Luo Y, Wang F, Jing X, Pan J, Sun SK. Achieving Complete Tumor Clearance: A Minimalist Manganese Hydrogel for Magnetic Resonance Imaging-Guided Synergetic Microwave Ablation and Chemodynamic Therapy. Adv Healthc Mater 2024; 13:e2303268. [PMID: 38140916 DOI: 10.1002/adhm.202303268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/29/2023] [Indexed: 12/24/2023]
Abstract
The combination of microwave ablation (MWA) and chemodynamic therapy (CDT) presents a promising strategy for complete eradication of residual tumor after MWA. However, it remains challenging and urgent to develop a facile, biocompatible, and imaging-guided platform for the achievement of this goal. Herein, a minimalist manganese hydrogel (ALG-Mn hydrogel) is proposed for synergistic MWA and CDT to completely eradicate tumor in vivo. The ALG-Mn hydrogel is prepared using a simple mixing method and exhibits excellent syringeability, remarkable microwave sensitivity, and potent Fenton-like activity. By assisting in MWA procedures, the ALG-Mn hydrogel enables both elimination of primary tumor mass through enhanced MWA efficacy and eradication of potential residual tumor tissues via robust CDT. This approach achieves complete tumor clearance without additional drug loading. Furthermore, the paramagnetic Mn2+ component allows real-time dynamic visualization of the ALG-Mn hydrogel at the tumor site via magnetic resonance imaging. To the best of knowledge, the proposed ALG-Mn hydrogel represents the minimalist biocompatible platform for imaging-guided synergistic MWA and CDT toward achieving complete tumor clearance.
Collapse
Affiliation(s)
- Yan Zhou
- School of Medicine, Nankai University, Tianjin, 300071, China
- Department of Ultrasound, Tianjin Third Central Hospital, Tianjin, 300170, China
| | - Gang Shu
- School of Medical Imaging, Tianjin Medical University, Tianjin, 300203, China
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Ying Luo
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Institute of Hepatobiliary Disease, Tianjin Third Central Hospital, Tianjin, 300170, China
| | - Fengmei Wang
- School of Medicine, Nankai University, Tianjin, 300071, China
- Department of Ultrasound, Tianjin Third Central Hospital, Tianjin, 300170, China
- Tianjin Key Laboratory of Molecular Diagnosis and Treatment of Liver Cancer, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Xiang Jing
- Department of Ultrasound, Tianjin Third Central Hospital, Tianjin, 300170, China
| | - Jinbin Pan
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Shao-Kai Sun
- School of Medical Imaging, Tianjin Medical University, Tianjin, 300203, China
| |
Collapse
|
9
|
Mehrotra N, Pal K. Tumor targeted nanohybrid for dual stimuli responsive and NIR amplified photothermal/photo-induced thermodynamic/chemodynamic combination therapy. Biomed Mater 2024; 19:035019. [PMID: 38471148 DOI: 10.1088/1748-605x/ad330f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/12/2024] [Indexed: 03/14/2024]
Abstract
The combination of photodynamic (PDT) and chemodynamic therapy (CDT) for cancer treatment has gathered a lot of attention in recent years. However, its efficacy is severely limited by elevated levels of hypoxia and glutathione (GSH) in the tumor microenvironment (TME). Multifunctional nanoparticles that can help remodel the TME while facilitating PDT/CDT combination therapy are the need of the hour. To this effect, we have developed O2self-supplying, free radical generating nanohybrids that exhibit near infra-red (NIR) triggered photothermal (PTT)/photo-induced thermodynamic (P-TDT) and CDT for efficient breast cancer treatment. The surface of nanohybrids has been further modified by biointerfacing with cancer cell membrane. The biomimetic nanohybrids have been comprehensively characterized and found to exhibit high 2,2'-azobis-[2-(2-imidazolin-2-yl)propane] dihydrochloride (AIPH) loading, GSH depletion, oxygen self-supply with TME responsive AIPH release. Biological activity assays demonstrate efficient cellular uptake with homotypic targeting, excellent hemo- and cytocompatibility as well as high intracellular reactive oxygen species generation with synergistic cytotoxicity against tumor cells. The multifunctional nanohybrid proposed in the present study provides an attractive strategy for achieving NIR responsive, tumor targeted PTT/P-TDT/CDT combination therapy for breast cancer treatment.
Collapse
Affiliation(s)
- Neha Mehrotra
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Kaushik Pal
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
- Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| |
Collapse
|
10
|
Yu M, Li S, Ren X, Liu N, Guo W, Xue J, Tan L, Fu C, Wu Q, Niu M, Du Y, Meng X. Magnetic Bimetallic Heterointerface Nanomissiles with Enhanced Microwave Absorption for Microwave Thermal/Dynamics Therapy of Breast Cancer. ACS NANO 2024; 18:3636-3650. [PMID: 38227493 DOI: 10.1021/acsnano.3c11433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Microwave thermotherapy (MWT) has shown great potential in cancer treatment due to its deep tissue penetration and minimally invasive nature. However, the poor microwave absorption (MA) properties of the microwave thermal sensitizer in the medical frequency band significantly limit the thermal effect of MWT and then weaken the therapeutic efficacy. In this paper, a Ni-based multilayer heterointerface nanomissile of MOFs-Ni-Ru@COFs (MNRC) with improved MA performance in the desired frequency band via introducing magnetic loss and dielectric loss is developed for MWT-based treatment. The loading of the Ni nanoparticle in MNRC mediates the magnetic loss, introducing the MA in the medical frequency band. The heterointerface formed in the MNRC by nanoengineering induces significant interfacial polarization, increasing the dielectric loss and then enhancing the generated MA performance. Moreover, MNRC with the strong MA performance in the desired frequency range not only enhances the MW thermal effect of MWT but also facilitates the electron and energy transfer, generating reactive oxygen species (ROS) at tumor sites to mediate microwave dynamic therapy (MDT). The strategy of strengthening the MA performance of the sensitizer in the medical frequency band to improve MWT-MDT provides a direction for expanding the clinical application of MWT in tumor treatment.
Collapse
Affiliation(s)
- Min Yu
- Key Laboratory of Cryogenics Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing,100190, China
- School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Shimei Li
- Key Laboratory of Cryogenics Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing,100190, China
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiangling Ren
- Key Laboratory of Cryogenics Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing,100190, China
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Nan Liu
- Key Laboratory of Cryogenics Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing,100190, China
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wenna Guo
- Key Laboratory of Cryogenics Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing,100190, China
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jian Xue
- Department of Interventional Radiology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Longfei Tan
- Key Laboratory of Cryogenics Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing,100190, China
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Changhui Fu
- Key Laboratory of Cryogenics Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing,100190, China
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Qiong Wu
- Key Laboratory of Cryogenics Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing,100190, China
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Meng Niu
- Department of Interventional Radiology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Yongxing Du
- School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Xianwei Meng
- Key Laboratory of Cryogenics Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing,100190, China
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|