1
|
Wang X, Wang H, Dai Y, Lu R, Chen J, Kong Q. Application potential of injectable hydrogels in the post-surgical window period following tumor surgery. Int J Pharm 2025; 679:125754. [PMID: 40425056 DOI: 10.1016/j.ijpharm.2025.125754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2025] [Revised: 05/17/2025] [Accepted: 05/20/2025] [Indexed: 05/29/2025]
Abstract
Chemotherapy is one of the primary modalities for the treatment of malignant diseases. The outcomes, however, are different between tumors of various origins, which hinder clinical applications. The advantages of chemotherapies in patients with hematological lesions are more obvious than those seen in solid tumors. This might be attributed to the availability of drug concentration and exposure time. Based on this phenomenon, we hypothesis that localized drug administration is expected to be more potential for solid tumors, particularly for the residual tumors in post-operative "window period". The presence of residual tumors after surgical resection are the major factors leading to tumor recurrence after surgery. The methods of dealing with this problem are yet to be found. Conventional chemotherapies are scarcely applied in the post-surgical window period due to their unselected and unexpected side effects. This article studied the advantages and disadvantages of prominent formulations currently utilized in the field of local implantation in cancer treatment, with the notable superiority of injectable hydrogel platforms being most appealing. These platforms not only enhance wound healing of the patients with less side effects, during the "window period" following tumor surgery, but also effectively eradicate residual tumors by facilitating the establishment of a favorable microenvironment. Additionally, the challenges seen in this field and future directions are discussed, which is expected to provide insights for pharmaceutical professionals and clinical applications.
Collapse
Affiliation(s)
- Xilei Wang
- Marine College, Shandong University, No. 180 Wenhua West Road, Weihai 264209, China; Taizhong Pharmaceutical Co., Ltd, No. 799 Yaocheng Avenue, Medical High-Tech Zone (Fudan University Taizhou Institute of Health Sciences), Taizhou 225326, China.
| | - Huan Wang
- Marine College, Shandong University, No. 180 Wenhua West Road, Weihai 264209, China.
| | - Yue Dai
- Marine College, Shandong University, No. 180 Wenhua West Road, Weihai 264209, China.
| | - Rong Lu
- Marine College, Shandong University, No. 180 Wenhua West Road, Weihai 264209, China.
| | - Jingdi Chen
- Marine College, Shandong University, No. 180 Wenhua West Road, Weihai 264209, China.
| | - Qingzhong Kong
- Taizhong Pharmaceutical Co., Ltd, No. 799 Yaocheng Avenue, Medical High-Tech Zone (Fudan University Taizhou Institute of Health Sciences), Taizhou 225326, China.
| |
Collapse
|
2
|
Li S, Li YR, Nan H, Liu Z, Fang Y, Zhu Y, Lyu Z, Shao Z, Zhu E, Zhang B, Yang Y, Shen X, Chen Y, Hsiai T, Yang L. Engineering an in vivo charging station for CAR-redirected invariant natural killer T cells to enhance cancer therapy. RESEARCH SQUARE 2025:rs.3.rs-6215345. [PMID: 40297706 PMCID: PMC12036460 DOI: 10.21203/rs.3.rs-6215345/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Invariant natural killer T (iNKT) cells are a distinct subset of T lymphocytes that possess unique properties making them highly suitable for addressing the challenges of solid tumor immunotherapy. Unlike conventional T cells, which are restricted by polymorphic major histocompatibility complex (MHC) molecules and recognize peptide antigens, iNKT cells are restricted by the non-polymorphic CD1d molecule and respond to lipid antigens. Chimeric antigen receptor (CAR)-redirected iNKT (CAR-iNKT) cells represent a significant advancement in cancer immunotherapy. However, optimizing sustained activation and long-term persistence of CAR-iNKT cells remains a critical need for effective solid tumor treatment. To address these limitations, we develop the iNKT cell-targeted microparticle recruitment and activation system (iMRAS), a biomimetic platform designed to enhance iNKT cell functionality through localized immunostimulation in vivo. This biomimetic platform is designed to function as an in vivo "charging station" containing chemotactic and activation signals for the recruitment, activation, and expansion of CAR-iNKT cells, leading to more effective tumor killing and longer persistence of CAR-iNKT cells, as demonstrated in the therapy of lymphoma and melanoma. Through its biomimetic design and localized immunostimulatory effects, iMRAS helps overcome the limitations of current therapies for solid tumors, establishing a robust platform for enhancing systemic CAR-iNKT cell-mediated immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zibai Lyu
- University of California, Los Angeles
| | | | | | - Bo Zhang
- University of California, Los Angeles
| | | | | | | | | | - Lili Yang
- University of California, Los Angeles
| |
Collapse
|
3
|
Khan ZM, Zhang J, Gannon J, Johnson BN, Verbridge SS, Vlaisavljevich E. Development of an Injectable Hydrogel for Histotripsy Ablation Toward Future Glioblastoma Therapy Applications. Ann Biomed Eng 2024; 52:3157-3171. [PMID: 39210157 PMCID: PMC11561036 DOI: 10.1007/s10439-024-03601-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
Glioblastoma (GBM) is the most common and malignant type of primary brain tumor. Even after surgery and chemoradiotherapy, residual GBM cells can infiltrate the healthy brain parenchyma to form secondary tumors. To mitigate GBM recurrence, we recently developed an injectable hydrogel that can be crosslinked in the resection cavity to attract, collect, and ablate residual GBM cells. We previously optimized a thiol-Michael addition hydrogel for physical, chemical, and biological compatibility with the GBM microenvironment and demonstrated CXCL12-mediated chemotaxis can attract and entrap GBM cells into this hydrogel. In this study, we synthesize hydrogels under conditions mimicking GBM resection cavities and assess feasibility of histotripsy to ablate hydrogel-encapsulated cells. The results showed the hydrogel synthesis was bio-orthogonal, not shear-thinning, and can be scaled up for injection into GBM resection mimics in vitro. Experiments also demonstrated ultrasound imaging can distinguish the synthetic hydrogel from healthy porcine brain tissue. Finally, a 500 kHz transducer applied focused ultrasound treatment to the synthetic hydrogels, with results demonstrating precise histotripsy bubble clouds could be sustained in order to uniformly ablate red blood cells encapsulated by the hydrogel for homogeneous, mechanical fractionation of the entrapped cells. Overall, this hydrogel is a promising platform for biomaterials-based GBM treatment.
Collapse
Affiliation(s)
- Zerin Mahzabin Khan
- Virginia Tech - Wake Forest University School of Biomedical Engineering and Sciences, Blacksburg, VA, 24061, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Junru Zhang
- Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Jessica Gannon
- Virginia Tech - Wake Forest University School of Biomedical Engineering and Sciences, Blacksburg, VA, 24061, USA
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Blake N Johnson
- Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Scott S Verbridge
- Virginia Tech - Wake Forest University School of Biomedical Engineering and Sciences, Blacksburg, VA, 24061, USA
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Eli Vlaisavljevich
- Virginia Tech - Wake Forest University School of Biomedical Engineering and Sciences, Blacksburg, VA, 24061, USA.
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
4
|
Parès L, Naasri S, Delattre L, Therriault H, Liberelle B, De Crescenzo G, Lauzon MA, Faucheux N, Paquette B, Virgilio N. Macroporous chitosan/alginate hydrogels crosslinked with genipin accumulate and retain glioblastoma cancer cells. RSC Adv 2024; 14:35286-35304. [PMID: 39502176 PMCID: PMC11537210 DOI: 10.1039/d4ra06197g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/14/2024] [Indexed: 11/08/2024] Open
Abstract
Grade IV multiforme glioblastoma (GBM) is an aggressive cancer that remains incurable due to the GBM cells invading and proliferating in the surrounding healthy tissues, even after tumor resection. A new therapeutic paradigm to treat GBM is to attract and accumulate GBM cells in a macroporous hydrogel inserted in the surgical cavity after tumor resection, followed by a targeted high dose of radiotherapy. This work presents a molding-based method to prepare macroporous hydrogels composed of sodium alginate and chitosan, homogeneously mixed in solution using sodium bicarbonate, and subsequently crosslinked with genipin and calcium chloride. The gels display a blue color, the result of chitosan crosslinking with genipin, fully interconnected pores with an average diameter of 180 μm (and tunable over a wide range), with a compression modulus of 10 kPa, close to the value of brain tissues. The gels are stable in cell culture media and keep their integrity after radiation doses comparable to current GBM treatment levels. Finally, F98 GBM cells accumulate relatively homogeneously and are retained within the gels.
Collapse
Affiliation(s)
- Lauriane Parès
- Research Center for High Performance Polymer and Composite Systems (CREPEC), Department of Chemical Engineering, Polytechnique Montréal Montréal H3C 3A7 Québec Canada
| | - Sahar Naasri
- Center for Research in Radiotherapy, Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke Sherbrooke J1H 5N4 Québec Canada
| | - Lisa Delattre
- Research Center for High Performance Polymer and Composite Systems (CREPEC), Department of Chemical Engineering, Polytechnique Montréal Montréal H3C 3A7 Québec Canada
| | - Hélène Therriault
- Center for Research in Radiotherapy, Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke Sherbrooke J1H 5N4 Québec Canada
| | - Benoît Liberelle
- Department of Chemical Engineering, Polytechnique Montréal Montréal H3C 3A7 Québec Canada
| | - Gregory De Crescenzo
- Department of Chemical Engineering, Polytechnique Montréal Montréal H3C 3A7 Québec Canada
| | - Marc-Antoine Lauzon
- Department of Chemical and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke Sherbrooke J1K 2R1 Québec Canada
| | - Nathalie Faucheux
- Department of Chemical and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke Sherbrooke J1K 2R1 Québec Canada
| | - Benoit Paquette
- Center for Research in Radiotherapy, Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke Sherbrooke J1H 5N4 Québec Canada
| | - Nick Virgilio
- Research Center for High Performance Polymer and Composite Systems (CREPEC), Department of Chemical Engineering, Polytechnique Montréal Montréal H3C 3A7 Québec Canada
| |
Collapse
|
5
|
Li F, Li Z, Wei C, Xu L, Liang Y, Yan J, Li Y, He B, Sun C. Application of hydrogels for targeting cancer stem cells in cancer treatment. Biomed Pharmacother 2024; 180:117486. [PMID: 39321506 DOI: 10.1016/j.biopha.2024.117486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/28/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024] Open
Abstract
Cancer stem cells (CSCs) are a major hindrance to clinical cancer treatment. Owing to their high tumorigenic and metastatic potential, CSCs are vital in malignant tumor initiation, growth, metastasis, and therapeutic resistance, leading to tumorigenesis and recurrence. Compared with normal tumor cells, CSCs express high levels of surface markers (CD44, CD90, CD133, etc.) and activate specific signaling pathways (Wnt/β-catenin, Notch, and Hedgehog). Although Current drug delivery systems (DDS) precisely target CSCs, the heterogeneity and multidrug resistance of CSCs impede CSC isolation and screening. Conversely, hydrogel DDSs exhibit good biocompatibility and high drug delivery efficiency. Hydrogels are three-dimensional (3D) spatial structures for drug encapsulation that facilitate the controlled release of bioactive molecules. Hence, hydrogels can be loaded with drugs to precisely target CSCs. Their 3D structure can also culture non-CSCs and facilitate their transformation into CSCs. for identification and isolation. Given that their elastic modulus and stiffness characteristics reflect those of the cellular microenvironment, hydrogels can simulate extracellular matrix pathways and markers to regulate CSCs, disrupting the equilibrium between CSC and non-CSC transformation. This article reviews the CSC microenvironment, metabolism, signaling pathway, and surface markers. Additionally, we summarize the existing CSC targeting strategies and explore the application of hydrogels for CSC screening and treatment. Finally, we discuss potential advances in CSC research that may lead to curative measures for tumors through targeted and precise attacks on CSCs.
Collapse
Affiliation(s)
- Fashun Li
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266003, China; Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266073, China
| | - Zhipeng Li
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266073, China
| | - Chen Wei
- Department of Pharmacy, Qingdao Women and Children's Hospital, Qingdao 266034, China
| | - Long Xu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Yan Liang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266073, China.
| | - Jianqin Yan
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266073, China
| | - Yifei Li
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266073, China
| | - Bin He
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Chong Sun
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| |
Collapse
|
6
|
Patel DK, Jung E, Priya S, Won SY, Han SS. Recent advances in biopolymer-based hydrogels and their potential biomedical applications. Carbohydr Polym 2024; 323:121408. [PMID: 37940291 DOI: 10.1016/j.carbpol.2023.121408] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 11/10/2023]
Abstract
Hydrogels are three-dimensional networks of polymer chains containing large amounts of water in their structure. Hydrogels have received significant attention in biomedical applications owing to their attractive physicochemical properties, including flexibility, softness, biodegradability, and biocompatibility. Different natural and synthetic polymers have been intensely explored in developing hydrogels for the desired applications. Biopolymers-based hydrogels have advantages over synthetic polymers regarding improved cellular activity and weak immune response. These properties can be further improved by grafting with other polymers or adding nanomaterials, and they structurally mimic the living tissue environments, which opens their broad applicability. The hydrogels can be physically or chemically cross-linked depending on the structure. The use of different biopolymers-based hydrogels in biomedical applications has been reviewed and discussed earlier. However, no report is still available to comprehensively introduce the synthesis, advantages, disadvantages, and biomedical applications of biopolymers-based hydrogels from the material point of view. Herein, we systematically overview different synthesis methods of hydrogels and provide a holistic approach to biopolymers-based hydrogels for biomedical applications, especially in bone regeneration, wound healing, drug delivery, bioimaging, and therapy. The current challenges and prospects of biopolymers-based hydrogels are highlighted rationally, giving an insight into the progress of these hydrogels and their practical applications.
Collapse
Affiliation(s)
- Dinesh K Patel
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Eunseo Jung
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Sahariya Priya
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - So-Yeon Won
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
7
|
Morrison N, Vogel BM. Factors That Influence Base-Catalyzed Thiol-Ene Hydrogel Synthesis. Gels 2023; 9:917. [PMID: 37999007 PMCID: PMC10671550 DOI: 10.3390/gels9110917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 11/25/2023] Open
Abstract
Injectable, localized drug delivery using hydrogels made from ethoxylated trimethylolpropane tri-3-mercaptopropionate (ETTMP) and poly(ethylene glycol) diacrylate (PEGDA) has shown great potential due to these hydrogels' ability to exhibit non-swelling behavior and tunable drug release properties. However, current synthesis methods in the literature suffer from poor ETTMP solubility in water, slow gelation times exceeding 20 min, and a lack of reproducibility. To address these limitations, we have developed a reliable synthesis procedure and conducted a sensitivity analysis of key variables. This has enabled us to synthesize ETTMP-PEGDA hydrogels in a polymer concentration range of 15 to 90 wt% with gelation times of less than 2 min and moduli ranging from 3.5 to 190 kPa. We overcame two synthesis limitations by identifying the impact of residual mercaptopropionic acid and alumina purification column height on gelation time and by premixing ETTMP and PEGDA to overcome low ETTMP solubility in water. Our ETTMP-PEGDA mixture can be stored at -20 °C for up to 2 months without crosslinking, allowing easy storage and shipment. These and previous results demonstrate the potential of ETTMP-PEGDA hydrogels as promising candidates for injectable, localized drug delivery with tunable drug release properties.
Collapse
Affiliation(s)
| | - Brandon M. Vogel
- Department of Chemical Engineering, Bucknell University, Lewisburg, PA 17837, USA;
| |
Collapse
|
8
|
Khan ZM, Munson JM, Long TE, Vlaisavljevich E, Verbridge SS. Development of a Synthetic, Injectable Hydrogel to Capture Residual Glioblastoma and Glioblastoma Stem-Like Cells with CXCL12-Mediated Chemotaxis. Adv Healthc Mater 2023; 12:e2300671. [PMID: 37014179 PMCID: PMC11469263 DOI: 10.1002/adhm.202300671] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/30/2023] [Indexed: 04/05/2023]
Abstract
Glioblastoma (GBM), characterized by high infiltrative capacity, is the most common and deadly type of primary brain tumor in adults. GBM cells, including therapy-resistant glioblastoma stem-like cells (GSCs), invade the healthy brain parenchyma to form secondary tumors even after patients undergo surgical resection and chemoradiotherapy. New techniques are therefore urgently needed to eradicate these residual tumor cells. A thiol-Michael addition injectable hydrogel for compatibility with GBM therapy is previously characterized and optimized. This study aims to develop the hydrogel further to capture GBM/GSCs through CXCL12-mediated chemotaxis. The release kinetics of hydrogel payloads are investigated, migration and invasion assays in response to chemoattractants are performed, and the GBM-hydrogel interactions in vitro are studied. With a novel dual-layer hydrogel platform, it is demonstrated that CXCL12 released from the synthetic hydrogel can induce the migration of U251 GBM cells and GSCs from the extracellular matrix microenvironment and promote invasion into the synthetic hydrogel via amoeboid migration. The survival of GBM cells entrapped deep into the synthetic hydrogel is limited, while live cells near the surface reinforce the hydrogel through fibronectin deposition. This synthetic hydrogel, therefore, demonstrates a promising method to attract and capture migratory GBM cells and GSCs responsive to CXCL12 chemotaxis.
Collapse
Affiliation(s)
- Zerin Mahzabin Khan
- Virginia Tech – Wake Forest University School of Biomedical Engineering and SciencesVirginia TechBlacksburgVA24061USA
| | - Jennifer M. Munson
- Virginia Tech – Wake Forest University School of Biomedical Engineering and SciencesVirginia TechBlacksburgVA24061USA
- Wake Forest Baptist Comprehensive Cancer CenterWake Forest UniversityWinston‐SalemNC27157USA
- Fralin Biomedical Research Institute at Virginia Tech – CarillionRoanokeVA24016USA
| | - Timothy E. Long
- Biodesign Center for Sustainable Macromolecular Materials and ManufacturingArizona State UniversityTempeAZ85287USA
| | - Eli Vlaisavljevich
- Virginia Tech – Wake Forest University School of Biomedical Engineering and SciencesVirginia TechBlacksburgVA24061USA
| | - Scott S. Verbridge
- Virginia Tech – Wake Forest University School of Biomedical Engineering and SciencesVirginia TechBlacksburgVA24061USA
- Wake Forest Baptist Comprehensive Cancer CenterWake Forest UniversityWinston‐SalemNC27157USA
| |
Collapse
|