1
|
Tang Z, Shi L, Zhang K, Zhang F, Sun Y, Wang X, Yao Y, Liu X, Wang D, Xie J, Yang Z, Yan YM. Modulating the d-Band Center of Palladium via Ethylene Glycol Modification: Accelerating H ad Desorption for Enhanced Formate Electrooxidation. J Phys Chem Lett 2024:3354-3362. [PMID: 38498427 DOI: 10.1021/acs.jpclett.4c00127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
This study addresses the critical challenge in alkaline direct formate fuel cells (DFFCs) of slow formate oxidation reaction (FOR) kinetics as a result of strong hydrogen intermediate (Had) adsorption on Pd catalysts. We developed WO3-supported Pd nanoparticles (EG-Pd/WO3) via an organic reduction method using ethylene glycol (EG), aiming to modulate the d-band center of Pd and alter Had adsorption dynamics. Cyclic voltammetry demonstrated significantly improved Had desorption kinetics in EG-Pd/WO3 catalysts. Density functional theory (DFT) calculations revealed that the presence of EG reduces the d-band center of Pd, leading to weaker Pd-H bonds and enhanced Had desorption during the FOR. This research provides a new approach to optimize catalyst efficiency in DFFCs, highlighting the potential for more effective and sustainable energy solutions through advanced material engineering.
Collapse
Affiliation(s)
- Zheng Tang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Lanlan Shi
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Kaixin Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Feike Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Yanfei Sun
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Xiaoxuan Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Yebo Yao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Xia Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Dewei Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Jiangzhou Xie
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Zhiyu Yang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Yi-Ming Yan
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| |
Collapse
|
2
|
Chen X, Tian Y. Review of Graphene in Cathode Materials for Lithium-Ion Batteries. ENERGY & FUELS 2021; 35:3572-3580. [DOI: 10.1021/acs.energyfuels.0c04191] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Affiliation(s)
- Xueye Chen
- College of Transportation, Ludong University, Yantai, Shandong 264025, People’s Republic of China
- Faculty of Mechanical Engineering and Automation, Liaoning University of Technology, Jinzhou, Liaoning 121001, People’s Republic of China
- College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, People’s Republic of China
| | - Yue Tian
- Faculty of Mechanical Engineering and Automation, Liaoning University of Technology, Jinzhou, Liaoning 121001, People’s Republic of China
| |
Collapse
|
3
|
Lin P, Zhang Y, Tan X, Xiong R, Sa B, Lin Q. Microscopic origin of graphene nanosheets derived from coal-tar pitch by treating Al 4C 3 as the intermediate. Phys Chem Chem Phys 2021; 23:12449-12455. [PMID: 34037035 DOI: 10.1039/d1cp01575c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of environmentally friendly, simple process and low cost synthesis methods for preparing graphene nanosheets (GNs) has attracted global interest. In this work, a simple and efficient method to synthesize GNs deriving from coal-tar pitch has been proposed from both experimental and theoretical point of views. The XRD, TEM and Raman results demonstrate that precursor Al4C3 could provide a growth environment for the final product of GNs. Innovatively, we have unraveled the microscopic origin for the decomposition of Al4C3 based on density functional theory calculations. It is highlighted that the surface energies and the analysis of elastic constants indicate the fact that the chemical etching process in Al4C3 can happen, which is similar to the exfoliation of well-known transition metal carbides MXenes. Furthermore, different bond breaking mechanisms have been found in Al4C3 at applied tensile and shear strains from the electron localization functions and stress-strain results. Our study not only offers an efficient method to synthesize GNs, but also to unravel the microscopic mechanism of fabrication by theoretical calculations.
Collapse
Affiliation(s)
- Peng Lin
- Key Laboratory of Eco-materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China.
| | - Yinggan Zhang
- College of Materials, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University, Xiamen 361005, P. R. China
| | - Xiaolin Tan
- Key Laboratory of Eco-materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China.
| | - Rui Xiong
- Key Laboratory of Eco-materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China.
| | - Baisheng Sa
- Key Laboratory of Eco-materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China.
| | - Qilang Lin
- Key Laboratory of Eco-materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China.
| |
Collapse
|
4
|
Gas separation using graphene nanosheet: insights from theory and simulation. J Mol Model 2020; 26:322. [PMID: 33118096 DOI: 10.1007/s00894-020-04581-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/19/2020] [Indexed: 10/23/2022]
Abstract
The investigation of porous graphene, especially experimental research, is a challenging issue in related academic and technology and has become a hot topic in recent years. It is well known that the preparation of porous graphene is a difficult problem in experimental techniques. To prepare nanoporous graphene, much attention must focus on the quality of nanoporous structures and throughput array pores. Therefore, a comprehensive summary as much as possible has been made to provide a better understanding of the progress. A summary of synthesis techniques, the properties of nanoporous graphene membranes from the synthesis point of view, and potential applications of porous graphene and graphene oxide for gas separation on the basis of theoretical studies were given attention in this paper. Gas separation, including carbon dioxide capture, gas storage, natural gas sweetening, and flue gas purification through porous graphene, is of great interest. Porous graphene with narrow pore distribution provides exciting opportunities in gas separation processes.
Collapse
|
5
|
Qiao Y, Gou G, Wu F, Jian J, Li X, Hirtz T, Zhao Y, Zhi Y, Wang F, Tian H, Yang Y, Ren TL. Graphene-Based Thermoacoustic Sound Source. ACS NANO 2020; 14:3779-3804. [PMID: 32186849 DOI: 10.1021/acsnano.9b10020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Thermoacoustic (TA) effect has been discovered for more than 130 years. However, limited by the material characteristics, the performance of a TA sound source could not be compared with magnetoelectric and piezoelectric loudspeakers. Recently, graphene, a two-dimensional material with the lowest heat capacity per unit area, was discovered to have a good TA performance. Compared with a traditional sound source, graphene TA sound sources (GTASSs) have many advantages, such as small volume, no diaphragm vibration, wide frequency range, high transparency, good flexibility, and high sound pressure level (SPL). Therefore, graphene has a great potential as a next-generation sound source. Photoacoustic (PA) imaging can also be applied to the diagnosis and treatment of diseases using the photothermo-acoustic (PTA) effect. Therefore, in this review, we will introduce the history of TA devices. Then, the theory and simulation model of TA will be analyzed in detail. After that, we will talk about the graphene synthesis method. To improve the performance of GTASSs, many strategies such as lowering the thickness and using porous or suspended structures will be introduced. With a good PTA effect and large specific area, graphene PA imaging and drug delivery is a promising prospect in cancer treatment. Finally, the challenges and prospects of GTASSs will be discussed.
Collapse
Affiliation(s)
- Yancong Qiao
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Guangyang Gou
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Fan Wu
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Jinming Jian
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Xiaoshi Li
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Thomas Hirtz
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Yunfei Zhao
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Yao Zhi
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Fangwei Wang
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - He Tian
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Yi Yang
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Tian-Ling Ren
- Institute of Microelectronics and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| |
Collapse
|
6
|
Chhetri S, Ghosh S, Samanta P, Murmu NC, Kuila T. Effect of Fe
3
O
4
‐Decorated N‐Doped Reduced Graphene Oxide Nanohybrid on the Anticorrosion Performance of Epoxy Composite Coating. ChemistrySelect 2019. [DOI: 10.1002/slct.201902348] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Suman Chhetri
- Surface Engineering & Tribology DivisionCouncil of Scientific and Industrial Research-Central Mechanical Engineering Research Institute Durgapur - 713209 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Souvik Ghosh
- Surface Engineering & Tribology DivisionCouncil of Scientific and Industrial Research-Central Mechanical Engineering Research Institute Durgapur - 713209 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Pranab Samanta
- Surface Engineering & Tribology DivisionCouncil of Scientific and Industrial Research-Central Mechanical Engineering Research Institute Durgapur - 713209 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Naresh Chandra Murmu
- Surface Engineering & Tribology DivisionCouncil of Scientific and Industrial Research-Central Mechanical Engineering Research Institute Durgapur - 713209 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Tapas Kuila
- Surface Engineering & Tribology DivisionCouncil of Scientific and Industrial Research-Central Mechanical Engineering Research Institute Durgapur - 713209 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
7
|
Kumar P, Huo P, Zhang R, Liu B. Antibacterial Properties of Graphene-Based Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E737. [PMID: 31086043 PMCID: PMC6567318 DOI: 10.3390/nano9050737] [Citation(s) in RCA: 218] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 02/06/2023]
Abstract
Bacteria mediated infections may cause various acute or chronic illnesses and antibiotic resistance in pathogenic bacteria has become a serious health problem around the world due to their excessive use or misuse. Replacement of existing antibacterial agents with a novel and efficient alternative is the immediate demand to alleviate this problem. Graphene-based materials have been exquisitely studied because of their remarkable bactericidal activity on a wide range of bacteria. Graphene-based materials provide advantages of easy preparation, renewable, unique catalytic properties, and exceptional physical properties such as a large specific surface area and mechanical strength. However, several queries related to the mechanism of action, significance of size and composition toward bacterial activity, toxicity criteria, and other issues are needed to be addressed. This review summarizes the recent efforts that have been made so far toward the development of graphene-based antibacterial materials to face current challenges to combat against the bacterial targets. This review describes the inherent antibacterial activity of graphene-family and recent advances that have been made on graphene-based antibacterial materials covering the functionalization with silver nanoparticles, other metal ions/oxides nanoparticles, polymers, antibiotics, and enzymes along with their multicomponent functionalization. Furthermore, the review describes the biosafety of the graphene-based antibacterial materials. It is hoped that this review will provide valuable current insight and excite new ideas for the further development of safe and efficient graphene-based antibacterial materials.
Collapse
Affiliation(s)
- Parveen Kumar
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Xincun West Road 266, Zibo 255000, China.
| | - Peipei Huo
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Xincun West Road 266, Zibo 255000, China.
| | - Rongzhao Zhang
- Analysis and Testing Center, Shandong University of Technology, Xincun West Road 266, Zibo 255000, China.
| | - Bo Liu
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Xincun West Road 266, Zibo 255000, China.
| |
Collapse
|
8
|
Wu X, Mu F, Zhao H. Synthesis and potential applications of nanoporous graphene: A review. ACTA ACUST UNITED AC 2018. [DOI: 10.11605/j.pnrs.201802003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
9
|
Enzyme Immobilization on Functionalized Graphene Oxide Nanosheets: Efficient and Robust Biocatalysts. Methods Enzymol 2018; 609:371-403. [DOI: 10.1016/bs.mie.2018.06.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
|
10
|
Deng J, Deng D, Bao X. Robust Catalysis on 2D Materials Encapsulating Metals: Concept, Application, and Perspective. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1606967. [PMID: 28940838 DOI: 10.1002/adma.201606967] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 05/31/2017] [Indexed: 05/24/2023]
Abstract
Great endeavors are undertaken to search for low-cost, rich-reserve, and highly efficient alternatives to replace precious-metal catalysts, in order to cut costs and improve the efficiency of catalysts in industry. However, one major problem in metal catalysts, especially nonprecious-metal catalysts, is their poor stability in real catalytic processes. Recently, a novel and promising strategy to construct 2D materials encapsulating nonprecious-metal catalysts has exhibited inimitable advantages toward catalysis, especially under harsh conditions (e.g., strong acidity or alkalinity, high temperature, and high overpotential). The concept, which originates from unique electron penetration through the 2D crystal layer from the encapsulated metals to promote a catalytic reaction on the outermost surface of the 2D crystal, has been widely applied in a variety of reactions under harsh conditions. It has been vividly described as "chainmail for catalyst." Herein, recent progress concerning this chainmail catalyst is reviewed, particularly focusing on the structural design and control with the associated electronic properties of such heterostructure catalysts, and also on their extensive applications in fuel cells, water splitting, CO2 conversion, solar cells, metal-air batteries, and heterogeneous catalysis. In addition, the current challenges that are faced in fundamental research and industrial application, and future opportunities for these fantastic catalytic materials are discussed.
Collapse
Affiliation(s)
- Jiao Deng
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Dehui Deng
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xinhe Bao
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China
| |
Collapse
|
11
|
Khan A, Wang J, Li J, Wang X, Chen Z, Alsaedi A, Hayat T, Chen Y, Wang X. The role of graphene oxide and graphene oxide-based nanomaterials in the removal of pharmaceuticals from aqueous media: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:7938-7958. [PMID: 28111721 DOI: 10.1007/s11356-017-8388-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 01/04/2017] [Indexed: 05/21/2023]
Abstract
In this review paper, the ill effects of pharmaceuticals (PhAs) on the environment and their adsorption on graphene oxide (GO) and graphene oxide-based (GO-based) nanomaterials have been summarised and discussed. The adsorption of prominent PhAs discussed herein includes beta-blockers (atenolol and propranolol), antibiotics (tetracycline, ciprofloxacin and sulfamethoxazole), pharmaceutically active compounds (carbamazepine) and analgesics such as diclofenac. The adsorption of PhAs strictly depends upon the experimental conditions such as pH, adsorbent and adsorbate concentrations, temperature, ionic strength, etc. To understand the adsorption mechanism and feasibility of the adsorption process, the adsorption isotherms, thermodynamics and kinetic studies were also considered. Except for some cases, GO and its derivatives show excellent adsorption capacities for PhAs, which is crucial for their applications in the environmental pollution cleanup.
Collapse
Affiliation(s)
- Ayub Khan
- School of Environment and Chemical Engineering, North China Electric Power University, 102206, Beijing, People's Republic of China
| | - Jian Wang
- School of Environment and Chemical Engineering, North China Electric Power University, 102206, Beijing, People's Republic of China
| | - Jun Li
- School of Environment and Chemical Engineering, North China Electric Power University, 102206, Beijing, People's Republic of China
| | - Xiangxue Wang
- School of Environment and Chemical Engineering, North China Electric Power University, 102206, Beijing, People's Republic of China
| | - Zhongshan Chen
- School of Environment and Chemical Engineering, North China Electric Power University, 102206, Beijing, People's Republic of China
| | - Ahmed Alsaedi
- NAAM Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Tasawar Hayat
- NAAM Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Department of Mathematics, Quaid-I-Azam University, Islamabad, 44000, Pakistan
| | - Yuantao Chen
- Department of Chemistry, Qinghai Normal University, 810008, Xining, Qinghai, People's Republic of China
| | - Xiangke Wang
- School of Environment and Chemical Engineering, North China Electric Power University, 102206, Beijing, People's Republic of China.
- NAAM Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions and School for Radiological and Interdisciplinary Sciences, Soochow University, 215123, Suzhou, People's Republic of China.
| |
Collapse
|
12
|
Deng D, Novoselov KS, Fu Q, Zheng N, Tian Z, Bao X. Catalysis with two-dimensional materials and their heterostructures. NATURE NANOTECHNOLOGY 2016; 11:218-30. [PMID: 26936816 DOI: 10.1038/nnano.2015.340] [Citation(s) in RCA: 973] [Impact Index Per Article: 108.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 12/17/2015] [Indexed: 05/21/2023]
Abstract
Graphene and other 2D atomic crystals are of considerable interest in catalysis because of their unique structural and electronic properties. Over the past decade, the materials have been used in a variety of reactions, including the oxygen reduction reaction, water splitting and CO2 activation, and have been shown to exhibit a range of catalytic mechanisms. Here, we review recent advances in the use of graphene and other 2D materials in catalytic applications, focusing in particular on the catalytic activity of heterogeneous systems such as van der Waals heterostructures (stacks of several 2D crystals). We discuss the advantages of these materials for catalysis and the different routes available to tune their electronic states and active sites. We also explore the future opportunities of these catalytic materials and the challenges they face in terms of both fundamental understanding and the development of industrial applications.
Collapse
Affiliation(s)
- Dehui Deng
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - K S Novoselov
- School of Physics and Astronomy, University of Manchester, Oxford Road, M13 9PL Manchester, UK
| | - Qiang Fu
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Nanfeng Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhongqun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xinhe Bao
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| |
Collapse
|
13
|
Abstract
Nano-bioelectronics represents a rapidly expanding interdisciplinary field that combines nanomaterials with biology and electronics and, in so doing, offers the potential to overcome existing challenges in bioelectronics. In particular, shrinking electronic transducer dimensions to the nanoscale and making their properties appear more biological can yield significant improvements in the sensitivity and biocompatibility and thereby open up opportunities in fundamental biology and healthcare. This review emphasizes recent advances in nano-bioelectronics enabled with semiconductor nanostructures, including silicon nanowires, carbon nanotubes, and graphene. First, the synthesis and electrical properties of these nanomaterials are discussed in the context of bioelectronics. Second, affinity-based nano-bioelectronic sensors for highly sensitive analysis of biomolecules are reviewed. In these studies, semiconductor nanostructures as transistor-based biosensors are discussed from fundamental device behavior through sensing applications and future challenges. Third, the complex interface between nanoelectronics and living biological systems, from single cells to live animals, is reviewed. This discussion focuses on representative advances in electrophysiology enabled using semiconductor nanostructures and their nanoelectronic devices for cellular measurements through emerging work where arrays of nanoelectronic devices are incorporated within three-dimensional cell networks that define synthetic and natural tissues. Last, some challenges and exciting future opportunities are discussed.
Collapse
Affiliation(s)
- Anqi Zhang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, 02138, United States
| | - Charles M. Lieber
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, 02138, United States
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, 02138, United States
| |
Collapse
|
14
|
Li J, Wang J, Gao D, Li X, Miao S, Wang G, Bao X. Silicon carbide-supported iron nanoparticles encapsulated in nitrogen-doped carbon for oxygen reduction reaction. Catal Sci Technol 2016. [DOI: 10.1039/c5cy01539a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Iron nanoparticles encapsulated in nitrogen-doped carbon (Fe@N–C) supported on a SiC core with a derived nitrogen-doped carbon shell (SiC@N–C) show much higher activity for oxygen reduction reaction than SiC, SiC@N–C and SiC-supported Fe3Si in alkaline medium.
Collapse
Affiliation(s)
- Jiayuan Li
- State Key Laboratory of Catalysis
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Jing Wang
- State Key Laboratory of Catalysis
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Dunfeng Gao
- State Key Laboratory of Catalysis
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Xingyun Li
- State Key Laboratory of Catalysis
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Shu Miao
- Dalian National Laboratory for Clean Energy
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian
- China
| | - Guoxiong Wang
- State Key Laboratory of Catalysis
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Xinhe Bao
- State Key Laboratory of Catalysis
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| |
Collapse
|
15
|
Deng D, Chen X, Yu L, Wu X, Liu Q, Liu Y, Yang H, Tian H, Hu Y, Du P, Si R, Wang J, Cui X, Li H, Xiao J, Xu T, Deng J, Yang F, Duchesne PN, Zhang P, Zhou J, Sun L, Li J, Pan X, Bao X. A single iron site confined in a graphene matrix for the catalytic oxidation of benzene at room temperature. SCIENCE ADVANCES 2015; 1:e1500462. [PMID: 26665170 PMCID: PMC4672762 DOI: 10.1126/sciadv.1500462] [Citation(s) in RCA: 405] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 10/22/2015] [Indexed: 05/19/2023]
Abstract
Coordinatively unsaturated (CUS) iron sites are highly active in catalytic oxidation reactions; however, maintaining the CUS structure of iron during heterogeneous catalytic reactions is a great challenge. Here, we report a strategy to stabilize single-atom CUS iron sites by embedding highly dispersed FeN4 centers in the graphene matrix. The atomic structure of FeN4 centers in graphene was revealed for the first time by combining high-resolution transmission electron microscopy/high-angle annular dark-field scanning transmission electron microscopy with low-temperature scanning tunneling microscopy. These confined single-atom iron sites exhibit high performance in the direct catalytic oxidation of benzene to phenol at room temperature, with a conversion of 23.4% and a yield of 18.7%, and can even proceed efficiently at 0°C with a phenol yield of 8.3% after 24 hours. Both experimental measurements and density functional theory calculations indicate that the formation of the Fe═O intermediate structure is a key step to promoting the conversion of benzene to phenol. These findings could pave the way toward highly efficient nonprecious catalysts for low-temperature oxidation reactions in heterogeneous catalysis and electrocatalysis.
Collapse
Affiliation(s)
- Dehui Deng
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Xiaoqi Chen
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Liang Yu
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Xing Wu
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
| | - Qingfei Liu
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Yun Liu
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Huaixin Yang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Huanfang Tian
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yongfeng Hu
- Canadian Light Source Inc., University of Saskatchewan, 44 Innovation Boulevard, Saskatoon, Saskatchewan S7N 2V3, Canada
| | - Peipei Du
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
| | - Rui Si
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
| | - Junhu Wang
- Mössbauer Effect Data Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Xiaoju Cui
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Haobo Li
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Jianping Xiao
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Tao Xu
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
| | - Jiao Deng
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Fan Yang
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Paul N. Duchesne
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Peng Zhang
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Jigang Zhou
- Canadian Light Source Inc., University of Saskatchewan, 44 Innovation Boulevard, Saskatoon, Saskatchewan S7N 2V3, Canada
| | - Litao Sun
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
| | - Jianqi Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiulian Pan
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Xinhe Bao
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| |
Collapse
|
16
|
Abstract
Abstract
Catalysis, as a key and enabling technology, plays an increasingly important role in fields ranging from energy, environment and agriculture to health care. Rational design and synthesis of highly efficient catalysts has become the ultimate goal of catalysis research. Thanks to the rapid development of nanoscience and nanotechnology, and in particular a theoretical understanding of the tuning of electronic structure in nanoscale systems, this element of design is becoming possible via precise control of nanoparticles’ composition, morphology, structure and electronic states. At the same time, it is important to develop tools for in situ characterization of nanocatalysts under realistic reaction conditions, and for monitoring the dynamics of catalysis with high spatial, temporal and energy resolution. In this review, we discuss confinement effects in nanocatalysis, a concept that our group has put forward and developed over several years. Taking the confined catalytic systems of carbon nanotubes, metal-confined nano-oxides and 2D layered nanocatalysts as examples, we summarize and analyze the fundamental concepts, the research methods and some of the key scientific issues involved in nanocatalysis. Moreover, we present a perspective on the challenges and opportunities in future research on nanocatalysis from the aspects of: (1) controlled synthesis of nanocatalysts and rational design of catalytically active centers; (2) in situ characterization of nanocatalysts and dynamics of catalytic processes; (3) computational chemistry with a complexity approximating that of experiments; and (4) scale-up and commercialization of nanocatalysts.
Collapse
Affiliation(s)
- Fan Yang
- State Key Laboratory of Catalysis, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Dehui Deng
- State Key Laboratory of Catalysis, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiulian Pan
- State Key Laboratory of Catalysis, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qiang Fu
- State Key Laboratory of Catalysis, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xinhe Bao
- State Key Laboratory of Catalysis, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
17
|
Chen K, Song S, Liu F, Xue D. Structural design of graphene for use in electrochemical energy storage devices. Chem Soc Rev 2015; 44:6230-57. [DOI: 10.1039/c5cs00147a] [Citation(s) in RCA: 345] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review elucidates the structural design methodologies toward high-performance graphene-based electrode materials for electrochemical energy storage devices.
Collapse
Affiliation(s)
- Kunfeng Chen
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Shuyan Song
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Fei Liu
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Dongfeng Xue
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| |
Collapse
|
18
|
Dai J, Li Y, Huang Z, Huang X. Pyrrolidine-functionalized fluorine-containing graphene sheets. NEW J CHEM 2015. [DOI: 10.1039/c5nj02092a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pyrrolidine-functionalized fluorine-containing graphene sheets with high stability were prepared through the functionalization of graphite via 1,3-dipolar cycloaddition chemistry followed by exfoliation in various solvents.
Collapse
Affiliation(s)
- Jing Dai
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- People's Republic of China
| | - Yongjun Li
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- People's Republic of China
| | - Zhong Huang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- People's Republic of China
| | - Xiaoyu Huang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- People's Republic of China
| |
Collapse
|
19
|
Graphene from amorphous titanium carbide by chlorination under 200 °C and atmospheric pressures. Sci Rep 2014; 4:5494. [PMID: 24974942 PMCID: PMC4074788 DOI: 10.1038/srep05494] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 06/11/2014] [Indexed: 11/16/2022] Open
Abstract
The synthesis of graphene via decomposition of SiC has opened a promising route for large-scale production of graphene. However, extremely high requirements for almost perfectly ordered crystal SiC and harsh process conditions such as high temperatures (>1200°C) and ultra-high vacuum are two significant challenges hindering its wide use to synthesize graphene by decomposition of SiC. Here, we show that the readily available precursor of carbides, amorphous TiC (a-Ti1-xCx), can be transformed into graphene nanosheets (GNS) with tunable layers by chlorination method at very low temperatures (200°C) and ambient pressures. Moreover, freestanding GNS can be achieved by stripping off GNS from the surface of resulting particles. Therefore, our strategy, the direct transformation of a-Ti1-xCx into graphene, is simple and expected to be easily scaled up.
Collapse
|
20
|
Liu L, Niu Z, Zhang L, Chen X. Structural diversity of bulky graphene materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:2200-2214. [PMID: 24668900 DOI: 10.1002/smll.201400144] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 02/12/2014] [Indexed: 06/03/2023]
Abstract
The unique two-dimensional (2D) structure and chemical properties of graphene and its derivatives make it a distinctive nanoscale building block for constructing novel bulky architectures with different dimensions, such as 1D fibers, 2D films and 3D architectures. These bulky graphene materials, depending on the manner in which graphene sheets are assembled, show a variety of fascinating features that cannot be achieved from individual graphene sheet or conventional materials. Thus, over the past several years, considerable effort has been expended in fabricating various structures of bulky graphene materials and developing their corresponding applications. Here, we present a broad and comprehensive overview of the recent developments in expanding the structural diversity of bulky graphene materials and their applications in energy storage and conversion, composites, environmental remediation, etc. Finally, prospects and further developments in this exciting field of bulky graphene materials are also suggested.
Collapse
Affiliation(s)
- Lili Liu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798
| | | | | | | |
Collapse
|
21
|
Kim J, Kim S. Preparation and electrochemical analysis of graphene/polyaniline composites prepared by aniline polymerization. RESEARCH ON CHEMICAL INTERMEDIATES 2014. [DOI: 10.1007/s11164-014-1663-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Zhang B, Song J, Yang G, Han B. Large-scale production of high-quality graphene using glucose and ferric chloride. Chem Sci 2014. [DOI: 10.1039/c4sc01950d] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel method to prepare high-quality graphene is developed using simple calcination of a mixture of glucose and FeCl3.
Collapse
Affiliation(s)
- Binbin Zhang
- Beijing National Laboratory for Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190, China
| | - Jinliang Song
- Beijing National Laboratory for Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190, China
| | - Guanying Yang
- Beijing National Laboratory for Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190, China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190, China
| |
Collapse
|
23
|
Kuang Y, Chen J, Zheng X, Zhang X, Zhou Q, Lu C. Synthesis of carboxylate-functionalized graphene nanosheets for high dispersion of platinum nanoparticles based on the reduction of graphene oxide via 1-pyrenecarboxaldehyde. NANOTECHNOLOGY 2013; 24:395604. [PMID: 24013585 DOI: 10.1088/0957-4484/24/39/395604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A one-step reduction/functionalization strategy for the synthesis of carboxylate-functionalized graphene nanosheets is reported in this paper. 1-pyrenecarboxaldehyde (PCA) is introduced as a new reductant for the chemical reduction of graphene oxide (GO), serving three roles: reducing GO to graphene nanosheets (GNs), stabilizing the as-prepared GNs due to the electrostatic repulsion of the oxidation products of PCA (1-pyrenecarboxylate, PC⁻) on the surface of the GNs and anchoring Pt nanoparticles (Pt NPs) with high dispersion and small particle size. Transmission electron microscopy shows that Pt NPs with an average diameter of 1.3 ± 0.2 nm are uniformly dispersed on the surface of the PC⁻-functionalized GNs (PC⁻-GNs). The obtained Pt NPs/PC⁻-GNs nanohybrids have higher electrocatalytic activity and stability towards methanol oxidation in comparison with Pt NPs supported on GNs obtained by the chemical reduction of GO with the typical reductant, hydrazine.
Collapse
Affiliation(s)
- Yinjie Kuang
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha, 410114, People's Republic of China. State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China
| | | | | | | | | | | |
Collapse
|
24
|
Yadav P, Chanmal C, Basu A, Mandal L, Jog J, Ogale S. Catalyst free novel synthesis of graphene and its application in high current OFET and phototransistor based on P3HT/G composite. RSC Adv 2013. [DOI: 10.1039/c3ra42243g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
25
|
Yadav P, Banerjee A, Unni S, Jog J, Kurungot S, Ogale S. A 3D hexaporous carbon assembled from single-layer graphene as high performance supercapacitor. CHEMSUSCHEM 2012; 5:2159-64. [PMID: 23047529 DOI: 10.1002/cssc.201200421] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 08/27/2012] [Indexed: 05/17/2023]
Affiliation(s)
- Prasad Yadav
- National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, Network Institute of Solar Energy-CSIR-NISE, New Delhi, India
| | | | | | | | | | | |
Collapse
|
26
|
Zhang J, Zhao XS. On the configuration of supercapacitors for maximizing electrochemical performance. CHEMSUSCHEM 2012; 5:818-41. [PMID: 22550045 DOI: 10.1002/cssc.201100571] [Citation(s) in RCA: 175] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Supercapacitors, which are attracting rapidly growing interest from both academia and industry, are important energy-storage devices for acquiring sustainable energy. Recent years have seen a number of significant breakthroughs in the research and development of supercapacitors. The emergence of innovative electrode materials (e.g., graphene) has clearly provided great opportunities for advancing the science in the field of electrochemical energy storage. Conversely, smart configurations of electrode materials and new designs of supercapacitor devices have, in many cases, boosted the electrochemical performance of the materials. We attempt to summarize recent research progress towards the design and configuration of electrode materials to maximize supercapacitor performance in terms of energy density, power density, and cycle stability. With a brief description of the structure, energy-storage mechanism, and electrode configuration of supercapacitor devices, the design and configuration of symmetric supercapacitors are discussed, followed by that of asymmetric and hybrid supercapacitors. Emphasis is placed on the rational design and configuration of supercapacitor electrodes to maximize the electrochemical performance of the device.
Collapse
Affiliation(s)
- Jintao Zhang
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore,117576 Singapore
| | | |
Collapse
|
27
|
A brief review of graphene-based material synthesis and its application in environmental pollution management. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s11434-012-4986-5] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
28
|
Yao J, Sun Y, Yang M, Duan Y. Chemistry, physics and biology of graphene-based nanomaterials: new horizons for sensing, imaging and medicine. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm31632c] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
29
|
Jiang H. Chemical preparation of graphene-based nanomaterials and their applications in chemical and biological sensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2011; 7:2413-2427. [PMID: 21638780 DOI: 10.1002/smll.201002352] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 02/18/2011] [Indexed: 05/30/2023]
Abstract
Graphene is a flat monolayer of carbon atoms packed tightly into a 2D honeycomb lattice that shows many intriguing properties meeting the key requirements for the implementation of highly excellent sensors, and all kinds of proof-of-concept sensors have been devised. To realize the potential sensor applications, the key is to synthesize graphene in a controlled way to achieve enhanced solution-processing capabilities, and at the same time to maintain or even improve the intrinsic properties of graphene. Several production techniques for graphene-based nanomaterials have been developed, ranging from the mechanical cleavage and chemical exfoliation of high-quality graphene to direct growth onto different substrates and the chemical routes using graphite oxide as a precusor to the newly developed bottom-up approach at the molecular level. The current review critically explores the recent progress on the chemical preparation of graphene-based nanomaterials and their applications in sensors.
Collapse
Affiliation(s)
- Hongji Jiang
- Key Laboratory for Organic Electronics & Information Displays, Institute of Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210046, China.
| |
Collapse
|
30
|
Vogt AP, Gibson CT, Tune DD, Bissett MA, Voelcker NH, Shapter JG, Ellis AV. High-order graphene oxide nanoarchitectures. NANOSCALE 2011; 3:3076-3079. [PMID: 21701748 DOI: 10.1039/c1nr10406c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We fabricate unique photoluminescent three dimensional graphene oxide (GO) architectures, so-called GO flowers, by self-assembly onto silicon substrates via solvent-mediated volume-controlled growth. The GO flowers exhibited bright photoluminescence and a photoresponse demonstrating their potential for advanced optical and electronic applications, such as advanced photovoltaic devices and organic light emitting diodes.
Collapse
Affiliation(s)
- Andrew P Vogt
- Centre for Nanoscale Science and Technology, School of Chemical and Physical Sciences, Flinders University, Sturt Rd, Bedford Park, Adelaide, SA 5042, Australia
| | | | | | | | | | | | | |
Collapse
|
31
|
Zhang Y, Gao T, Gao Y, Xie S, Ji Q, Yan K, Peng H, Liu Z. Defect-like structures of graphene on copper foils for strain relief investigated by high-resolution scanning tunneling microscopy. ACS NANO 2011; 5:4014-4022. [PMID: 21500831 DOI: 10.1021/nn200573v] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Understanding of the continuity and the microscopic structure of as-grown graphene on Cu foils through the chemical vapor deposition (CVD) method is of fundamental significance for optimizing the growth parameters toward high-quality graphene. Because of the corrugated nature of the Cu foil surface, few experimental efforts on this issue have been made so far. We present here a high-resolution scanning tunneling microscopy (STM) study of CVD graphene directly on Cu foils. Our work indicates that graphene can be grown with a perfect continuity extending over both crystalline and noncrystalline regions, highly suggestive of weak graphene-substrate interactions. Due to thermal expansion mismatch, defect-like wrinkles and ripples tend to evolve either along the boundaries of crystalline terraces or on noncrystalline areas for strain relief. Furthermore, the strain effect arising from the conforming of perfect two-dimensional graphene to the highly corrugated surface of Cu foils is found to induce local bonding configuration change of carbon from sp(2) to sp(3), evidenced by the formation of "three-for-six" lattices.
Collapse
Affiliation(s)
- Yanfeng Zhang
- Center for Nanochemistry (CNC), Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
|
33
|
Page AJ, Chandrakumar KRS, Irle S, Morokuma K. Thermal annealing of SiC nanoparticles induces SWNT nucleation: evidence for a catalyst-independent VSS mechanism. Phys Chem Chem Phys 2011; 13:15673-80. [DOI: 10.1039/c1cp21236b] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Alister J Page
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan.
| | | | | | | |
Collapse
|
34
|
Guo S, Dong S. Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chem Soc Rev 2011; 40:2644-72. [DOI: 10.1039/c0cs00079e] [Citation(s) in RCA: 1099] [Impact Index Per Article: 78.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
35
|
Liang R, Cao H, Qian D, Zhang J, Qu M. Designed synthesis of SnO2-polyaniline-reduced graphene oxide nanocomposites as an anode material for lithium-ion batteries. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1jm13934g] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
36
|
Lü X, Wu J, Lin T, Wan D, Huang F, Xie X, Jiang M. Low-temperature rapid synthesis of high-quality pristine or boron-doped graphene via Wurtz-type reductive coupling reaction. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1jm11184a] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Youn SC, Kim DW, Yang SB, Cho HM, Lee JH, Jung HT. Vertical alignment of reduced graphene oxide/Fe-oxide hybrids using the magneto-evaporation method. Chem Commun (Camb) 2011; 47:5211-3. [DOI: 10.1039/c1cc10943j] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Deng D, Yu L, Pan X, Wang S, Chen X, Hu P, Sun L, Bao X. Size effect of graphene on electrocatalytic activation of oxygen. Chem Commun (Camb) 2011; 47:10016-8. [DOI: 10.1039/c1cc13033a] [Citation(s) in RCA: 178] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
39
|
Chen XM, Wu GH, Jiang YQ, Wang YR, Chen X. Graphene and graphene-based nanomaterials: the promising materials for bright future of electroanalytical chemistry. Analyst 2011; 136:4631-40. [DOI: 10.1039/c1an15661f] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|