1
|
Pioch T, Fischer T, Schneider M. Aspherical, Nano-Structured Drug Delivery System with Tunable Release and Clearance for Pulmonary Applications. Pharmaceutics 2024; 16:232. [PMID: 38399290 PMCID: PMC10891959 DOI: 10.3390/pharmaceutics16020232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/21/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Addressing the challenge of efficient drug delivery to the lungs, a nano-structured, microparticulate carrier system with defined and customizable dimensions has been developed. Utilizing a template-assisted approach and capillary forces, particles were rapidly loaded and stabilized. The system employs a biocompatible alginate gel as a stabilizing matrix, facilitating the breakdown of the carrier in body fluids with the subsequent release of its nano-load, while also mitigating long-term accumulation in the lung. Different gel strengths and stabilizing steps were applied, allowing us to tune the release kinetics, as evaluated by a quantitative method based on a flow-imaging system. The micro-cylinders demonstrated superior aerodynamic properties in Next Generation Impactor (NGI) experiments, such as a smaller median aerodynamic diameter (MMAD), while yielding a higher fine particle fraction (FPF) than spherical particles similar in critical dimensions. They exhibited negligible toxicity to a differentiated macrophage cell line (dTHP-1) for up to 24 h of incubation. The kinetics of the cellular uptake by dTHP-1 cells was assessed via fluorescence microscopy, revealing an uptake-rate dependence on the aspect ratio (AR = l/d); cylinders with high AR were phagocytosed more slowly than shorter rods and comparable spherical particles. This indicates that this novel drug delivery system can modulate macrophage uptake and clearance by adjusting its geometric parameters while maintaining optimal aerodynamic properties and featuring a biodegradable stabilizing matrix.
Collapse
Affiliation(s)
| | | | - Marc Schneider
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, 66123 Saarbrücken, Germany; (T.P.); (T.F.)
| |
Collapse
|
2
|
Al-Fityan S, Diesel B, Fischer T, Ampofo E, Schomisch A, Mashayekhi V, Schneider M, Kiemer AK. Nanostructured Microparticles Repolarize Macrophages and Induce Cell Death in an In Vitro Model of Tumour-Associated Macrophages. Pharmaceutics 2023; 15:1895. [PMID: 37514081 PMCID: PMC10385046 DOI: 10.3390/pharmaceutics15071895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Macrophages (MΦs) in their pro-inflammatory state (M1) suppress tumour growth, while tumour-associated MΦs (TAMs) can promote tumour progression. The aim of this study was to test the hypothesis that targeted delivery of the immune activator poly(I:C) in aspherical silica microrods (µRs) can repolarize TAMs into M1-like cells. µRs (10 µm × 3 µm) were manufactured from silica nanoparticles and stabilized with dextran sulphate and polyethyleneimine. The THP-1 cell line, differentiated into MΦs, and primary human monocyte-derived MΦs (HMDMs) were treated with tumour-cell-conditioned medium (A549), but only HMDMs could be polarized towards TAMs. Flow cytometry and microscopy revealed elevated uptake of µRs by TAMs compared to non-polarized HMDMs. Flow cytometry and qPCR studies on polarization markers showed desirable effects of poly(I:C)-loaded MPs towards an M1 polarization. However, unloaded µRs also showed distinct actions, which were not induced by bacterial contaminations. Reporter cell assays showed that µRs induce the secretion of the inflammatory cytokine IL-1β. Macrophages from Nlrp3 knockout mice showed that µRs in concentrations as low as 0.5 µR per cell can activate the inflammasome and induce cell death. In conclusion, our data show that µRs, even if unloaded, can induce inflammasome activation and cell death in low concentrations.
Collapse
Affiliation(s)
- Salma Al-Fityan
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, 66123 Saarbruecken, Germany
| | - Britta Diesel
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, 66123 Saarbruecken, Germany
| | - Thorben Fischer
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, 66123 Saarbruecken, Germany
| | - Emmanuel Ampofo
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg/Saar, Germany
| | - Annika Schomisch
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, 66123 Saarbruecken, Germany
| | - Vida Mashayekhi
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, 66123 Saarbruecken, Germany
| | - Marc Schneider
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, 66123 Saarbruecken, Germany
| | - Alexandra K Kiemer
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, 66123 Saarbruecken, Germany
| |
Collapse
|
3
|
Kong B, Liu R, Guo J, Lu L, Zhou Q, Zhao Y. Tailoring micro/nano-fibers for biomedical applications. Bioact Mater 2023; 19:328-347. [PMID: 35892003 PMCID: PMC9301605 DOI: 10.1016/j.bioactmat.2022.04.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/31/2022] [Accepted: 04/13/2022] [Indexed: 12/02/2022] Open
Abstract
Nano/micro fibers have evoked much attention of scientists and have been researched as cutting edge and hotspot in the area of fiber science in recent years due to the rapid development of various advanced manufacturing technologies, and the appearance of fascinating and special functions and properties, such as the enhanced mechanical strength, high surface area to volume ratio and special functionalities shown in the surface, triggered by the nano or micro-scale dimensions. In addition, these outstanding and special characteristics of the nano/micro fibers impart fiber-based materials with wide applications, such as environmental engineering, electronic and biomedical fields. This review mainly focuses on the recent development in the various nano/micro fibers fabrication strategies and corresponding applications in the biomedical fields, including tissue engineering scaffolds, drug delivery, wound healing, and biosensors. Moreover, the challenges for the fabrications and applications and future perspectives are presented.
Collapse
Affiliation(s)
- Bin Kong
- Department of Cardio-Thoracic Surgery, Institute of Translational Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 210008, Nanjing, China
| | - Rui Liu
- Department of Cardio-Thoracic Surgery, Institute of Translational Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 210008, Nanjing, China
| | - Jiahui Guo
- Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 210008, Nanjing, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 210096, Nanjing, China
| | - Ling Lu
- Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 210008, Nanjing, China
| | - Qing Zhou
- Department of Cardio-Thoracic Surgery, Institute of Translational Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 210008, Nanjing, China
| | - Yuanjin Zhao
- Department of Cardio-Thoracic Surgery, Institute of Translational Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 210008, Nanjing, China
- Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 210008, Nanjing, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 210096, Nanjing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, 100101, Beijing, China
| |
Collapse
|
4
|
Fischer T, Winter I, Drumm R, Schneider M. Cylindrical Microparticles Composed of Mesoporous Silica Nanoparticles for the Targeted Delivery of a Small Molecule and a Macromolecular Drug to the Lungs: Exemplified with Curcumin and siRNA. Pharmaceutics 2021; 13:844. [PMID: 34200405 PMCID: PMC8230201 DOI: 10.3390/pharmaceutics13060844] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/31/2022] Open
Abstract
The transport of macromolecular drugs such as oligonucleotides into the lungs has become increasingly relevant in recent years due to their high potency. However, the chemical structure of this group of drugs poses a hurdle to their delivery, caused by the negative charge, membrane impermeability and instability. For example, siRNA to reduce tumour necrosis factor alpha (TNF-α) secretion to reduce inflammatory signals has been successfully delivered by inhalation. In order to increase the effect of the treatment, a co-transport of another anti-inflammatory ingredient was applied. Combining curcumin-loaded mesoporous silica nanoparticles in nanostructured cylindrical microparticles stabilized by the layer-by-layer technique using polyanionic siRNA against TNF-α was used for demonstration. This system showed aerodynamic properties suited for lung deposition (mass median aerodynamic diameter of 2.85 ± 0.44 µm). Furthermore, these inhalable carriers showed no acute in vitro toxicity tested in both alveolar epithelial cells and macrophages up to 48 h incubation. Ultimately, TNF-α release was significantly reduced by the particles, showing an improved activity co-delivering both drugs using such a drug-delivery system for specific inhibition of TNF-α in the lungs.
Collapse
Affiliation(s)
- Thorben Fischer
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, Campus C4 1, 66123 Saarbruecken, Germany; (T.F.); (I.W.)
| | - Inga Winter
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, Campus C4 1, 66123 Saarbruecken, Germany; (T.F.); (I.W.)
| | - Robert Drumm
- INM-Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbruecken, Germany;
| | - Marc Schneider
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, Campus C4 1, 66123 Saarbruecken, Germany; (T.F.); (I.W.)
| |
Collapse
|
5
|
Khan MA, Haase MF. Stabilizing liquid drops in nonequilibrium shapes by the interfacial crosslinking of nanoparticles. SOFT MATTER 2021; 17:2034-2041. [PMID: 33443510 DOI: 10.1039/d0sm02120b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Droplets are spherical due to the principle of interfacial energy minimization. Here, we show that nonequilibrium droplet shapes can be stabilized via the interfacial self-assembly and crosslinking of nanoparticles. This principle allows for the stability of practically infinitely long liquid tubules and monodisperse cylindrical droplets. Droplets of oil-in-water are elongated via gravitational or hydrodynamic forces at a reduced interfacial tension. Silica nanoparticles self-assemble and cross-link on the interface triggered by the synergistic surface modification with hexyltrimethylammonium- and trivalent lanthanum-cations. The droplet length dependence is described by a scaling relationship and the rate of nanoparticle deposition on the droplets is estimated. Our approach potentially enables the 3D-printing of Newtonian Fluids, broadening the array of material options for additive manufacturing techniques.
Collapse
Affiliation(s)
- Mohd A Khan
- Van't Hoff Laboratory of Physical and Colloid Chemistry, Department of Chemistry, Debye Institute of Nanomaterials Science, Utrecht University, Utrecht, CH 3583, The Netherlands.
| | - Martin F Haase
- Van't Hoff Laboratory of Physical and Colloid Chemistry, Department of Chemistry, Debye Institute of Nanomaterials Science, Utrecht University, Utrecht, CH 3583, The Netherlands.
| |
Collapse
|
6
|
siRNA delivery to macrophages using aspherical, nanostructured microparticles as delivery system for pulmonary administration. Eur J Pharm Biopharm 2020; 158:284-293. [PMID: 33285246 DOI: 10.1016/j.ejpb.2020.11.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 11/16/2020] [Accepted: 11/28/2020] [Indexed: 12/13/2022]
Abstract
The delivery of oligonucleotides such as siRNA to the lung is a major challenge, as this group of drugs has difficulties to overcome biological barriers due to its polyanionic character and the associated hydrophilic properties, resulting in inefficient delivery. Especially in diseases such as asthma, chronic obstructive pulmonary disease and cystic fibrosis, where increased proinflammation is present, a targeted RNA therapy is desirable due to the high potency of these oligonucleotides. To address these problems and to ensure efficient uptake of siRNA in macrophages, a microparticulate, cylindrical delivery system was developed. In the first step, this particle system was tested for its aerodynamic characteristics to evaluate the aerodynamic properties to optimize lung deposition. The mass median aerodynamic diameter of 2.52 ± 0.23 µm, indicates that the desired target should be reached. The inhibition of TNF-α release, as one of the main mediators of proinflammatory reactions, was investigated. We could show that our carrier system can be loaded with siRNA against TNF-α. Gel electrophoreses allowed to demonstrate that the load can be incorporated and released without being degraded. The delivery system was found to transport a mass fraction of 0.371% [%w/w] as determined by inductively coupled plasma mass spectroscopy. When investigating the release kinetics, the results showed that several days are necessary to release a major amount of the siRNA indicating a sustained release. The cylindrical microparticles with an aspect ratio of 3.3 (ratio of length divided by width) were then tested in vitro successfully reducing TNF-α release from human macrophages significantly by more than 30%. The developed formulation presents a possible oligonucleotide delivery system allowing due to its internal structure to load and protect siRNA.
Collapse
|
7
|
Novoselova MV, Loh HM, Trushina DB, Ketkar A, Abakumova TO, Zatsepin TS, Kakran M, Brzozowska AM, Lau HH, Gorin DA, Antipina MN, Brichkina AI. Biodegradable Polymeric Multilayer Capsules for Therapy of Lung Cancer. ACS APPLIED MATERIALS & INTERFACES 2020; 12:5610-5623. [PMID: 31942802 DOI: 10.1021/acsami.9b21381] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Formulated forms of cancer therapeutics enhance the efficacy of treatment by more precise targeting, increased bioavailability of drugs, and an aptitude of some delivery systems to overcome multiple drug resistance of tumors. Drug carriers acquire importance for anti-cancer interventions via targeting tumor-associated macrophages with active molecules capable to either eliminate them or change their polarity. Although several packaged drug forms have reached the market, there is still a high demand for novel carrier systems to hurdle limitations of existing drugs on active molecules, toxicity, bioeffect, and stability. Here, we report a facile assembly and delivery methodology for biodegradable polymeric multilayer capsules (PMC) with the purpose of further use in injectable drug formulations for lung cancer therapy via direct erosion of tumors and suppression of the tumor-promoting function of macrophages in the tumor microenvironment. We demonstrate delivery of low-molecular-weight drug molecules to lung cancer cells and macrophages and provide details on in vivo distribution, cellular uptake, and disintegration of the developed PMC. Poly-l-arginine and dextran sulfate alternately adsorb on a ∼500 nm CaCO3 sacrificial template followed by removal of the inorganic core to obtain hollow capsules for consequent loading with drug molecules, gemcitabine or clodronate. The capsules further compacted upon loading down to ∼250 nm in diameter via heat treatment. A comparative study of the capsule internalization rate in vitro and in vivo reveals the benefits of a diminished carrier size. We show that macrophages and epithelial cells of the lungs and liver internalize capsules with efficacy higher than 75%. Using an in vivo mouse model of lung cancer, we also confirm that tumor lungs better retain smaller capsules than the healthy lung tissue. The pronounced cytotoxic effect of the encapsulated gemcitabine on lung cancer cells and the ability of the encapsulated clodronate to block the tumor-promoting function of macrophages prove the efficacy of the developed capsule loading method in vitro. Our study taken as a whole demonstrates the great potential of the developed PMC for in vivo treatment of cancer via transporting active molecules, including those that are water-soluble with low molecular weight, to both cancer cells and macrophages through the bloodstream.
Collapse
Affiliation(s)
- Marina V Novoselova
- Institute of Materials Research and Engineering, A*STAR , 2 Fusionopolis Way , Innovis, #08-03, Singapore , 138634 , Singapore
- Skolkovo Institute of Science and Technology , Bolshoy Boulevard 30, bld. 1 , Moscow 121205 , Russia
| | - Hui Mun Loh
- Institute of Molecular and Cell Biology, A*STAR , 61 Biopolis Drive , Proteos, Singapore 138673 , Singapore
| | - Daria B Trushina
- Institute of Materials Research and Engineering, A*STAR , 2 Fusionopolis Way , Innovis, #08-03, Singapore , 138634 , Singapore
- I.M. Sechenov First Moscow State Medical University , Bol'shaya Pirogovskaya Ulitsa 19c1 Moscow 119146 , Russia
- A.V. Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences , Leninskiy Prospekt, 59 , Moscow 119333 , Russia
| | - Avanee Ketkar
- Institute of Molecular Oncology , Philipps University of Marburg , member of the German Center for Lung Research (DZL), Hans-Meerwein-Str. 3 35043 Marburg , Germany
| | - Tatiana O Abakumova
- Skolkovo Institute of Science and Technology , Bolshoy Boulevard 30, bld. 1 , Moscow 121205 , Russia
| | - Timofei S Zatsepin
- Skolkovo Institute of Science and Technology , Bolshoy Boulevard 30, bld. 1 , Moscow 121205 , Russia
| | - Mitali Kakran
- Institute of Materials Research and Engineering, A*STAR , 2 Fusionopolis Way , Innovis, #08-03, Singapore , 138634 , Singapore
| | - Agata Maria Brzozowska
- Institute of Materials Research and Engineering, A*STAR , 2 Fusionopolis Way , Innovis, #08-03, Singapore , 138634 , Singapore
| | - Hooi Hong Lau
- Institute of Materials Research and Engineering, A*STAR , 2 Fusionopolis Way , Innovis, #08-03, Singapore , 138634 , Singapore
| | - Dmitry A Gorin
- Skolkovo Institute of Science and Technology , Bolshoy Boulevard 30, bld. 1 , Moscow 121205 , Russia
| | - Maria N Antipina
- Institute of Materials Research and Engineering, A*STAR , 2 Fusionopolis Way , Innovis, #08-03, Singapore , 138634 , Singapore
| | - Anna I Brichkina
- Institute of Molecular and Cell Biology, A*STAR , 61 Biopolis Drive , Proteos, Singapore 138673 , Singapore
- Institute of Molecular Oncology , Philipps University of Marburg , member of the German Center for Lung Research (DZL), Hans-Meerwein-Str. 3 35043 Marburg , Germany
| |
Collapse
|
8
|
Velino C, Carella F, Adamiano A, Sanguinetti M, Vitali A, Catalucci D, Bugli F, Iafisco M. Nanomedicine Approaches for the Pulmonary Treatment of Cystic Fibrosis. Front Bioeng Biotechnol 2019; 7:406. [PMID: 31921811 PMCID: PMC6927921 DOI: 10.3389/fbioe.2019.00406] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 11/27/2019] [Indexed: 12/24/2022] Open
Abstract
Cystic fibrosis (CF) is a genetic disease affecting today nearly 70,000 patients worldwide and characterized by a hypersecretion of thick mucus difficult to clear arising from the defective CFTR protein. The over-production of the mucus secreted in the lungs, along with its altered composition and consistency, results in airway obstruction that makes the lungs susceptible to recurrent and persistent bacterial infections and endobronchial chronic inflammation, which are considered the primary cause of bronchiectasis, respiratory failure, and consequent death of patients. Despite the difficulty of treating the continuous infections caused by pathogens in CF patients, various strategies focused on the symptomatic therapy have been developed during the last few decades, showing significant positive impact on prognosis. Moreover, nowadays, the discovery of CFTR modulators as well as the development of gene therapy have provided new opportunity to treat CF. However, the lack of effective methods for delivery and especially targeted delivery of therapeutics specifically to lung tissues and cells limits the efficiency of the treatments. Nanomedicine represents an extraordinary opportunity for the improvement of current therapies and for the development of innovative treatment options for CF previously considered hard or impossible to treat. Due to the peculiar environment in which the therapies have to operate characterized by several biological barriers (pulmonary tract, mucus, epithelia, bacterial biofilm) the use of nanotechnologies to improve and enhance drug delivery or gene therapies is an extremely promising way to be pursued. The aim of this review is to revise the currently used treatments and to outline the most recent progresses about the use of nanotechnology for the management of CF.
Collapse
Affiliation(s)
- Cecilia Velino
- Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR), Faenza, Italy
| | - Francesca Carella
- Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR), Faenza, Italy
| | - Alessio Adamiano
- Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR), Faenza, Italy
| | - Maurizio Sanguinetti
- Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Dipartimento di Scienze di Laboratorio e Infettivologiche, Rome, Italy
- Istituto di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alberto Vitali
- Institute for the Chemistry of Molecular Recognition (ICRM), National Research Council (CNR), c/o Institute of Biochemistry and Clinical Biochemistry, Catholic University, Rome, Italy
| | - Daniele Catalucci
- Humanitas Clinical and Research Center, Rozzano, Italy
- Institute of Genetic and Biomedical Research (IRGB) - UOS Milan, National Research Council (CNR), Milan, Italy
| | - Francesca Bugli
- Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Dipartimento di Scienze di Laboratorio e Infettivologiche, Rome, Italy
- Istituto di Microbiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Michele Iafisco
- Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR), Faenza, Italy
| |
Collapse
|
9
|
Shang L, Yu Y, Liu Y, Chen Z, Kong T, Zhao Y. Spinning and Applications of Bioinspired Fiber Systems. ACS NANO 2019; 13:2749-2772. [PMID: 30768903 DOI: 10.1021/acsnano.8b09651] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Natural fiber systems provide inspirations for artificial fiber spinning and applications. Through a long process of trial and error, great progress has been made in recent years. The natural fiber itself, especially silks, and the formation mechanism are better understood, and some of the essential factors are implemented in artificial spinning methods, benefiting from advanced manufacturing technologies. In addition, fiber-based materials produced via bioinspired spinning methods find an increasingly wide range of biomedical, optoelectronic, and environmental engineering applications. This paper reviews recent developments in the spinning and application of bioinspired fiber systems, introduces natural fiber and spinning processes and artificial spinning methods, and discusses applications of artificial fiber materials. Views on remaining challenges and the perspective on future trends are also proposed.
Collapse
Affiliation(s)
- Luoran Shang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , Nanjing 210096 , China
- School of Engineering and Applied Sciences , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - Yunru Yu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , Nanjing 210096 , China
| | - Yuxiao Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , Nanjing 210096 , China
| | - Zhuoyue Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , Nanjing 210096 , China
| | - Tiantian Kong
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering , Shenzhen University , Shenzhen 518060 , China
| | - Yuanjin Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , Nanjing 210096 , China
| |
Collapse
|
10
|
Tschernig T, Fischer T, Grissmer A, Beckmann A, Meier C, Lipp P, Schneider M. Silica nanoparticles of microrods enter lung epithelial cells. Biomed Rep 2018; 9:156-160. [PMID: 30083317 PMCID: PMC6073099 DOI: 10.3892/br.2018.1117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/07/2018] [Indexed: 11/12/2022] Open
Abstract
A novel type of microparticle has recently been engineered. It consists of amorphous silica nanoparticles and has a corncob-like shape. It has already been demonstrated in vivo that alveolar macrophages in the lung are able to engulf this particulate carrier and that it also functions successfully as a gene delivery system. This subsequently raises the question as to whether epithelial cells may also be possible targets for these microrods. For this purpose, the alveolar epithelial cell line A549 was used presently. The epithelial character of these confluent cells was documented by the presence of tight junctions using a freeze-fracture technique and transmission electron microscopy. A toxic effect of the particles incubated with these cells was largely excluded. The interaction of the microparticles with the epithelial cells was observed using confocal microscopy and live cell imaging. Interestingly, the particles entered the epithelial cells within hours. After 1 day, the intracellular particles began to disaggregate and release the silica nanoparticles. Thus, even epithelial cells may serve as targets for this novel carrier and gene delivery system. This is particularly important since safe and effective gene delivery remains an unsolved problem. In addition, delivery of anti-cancer and anti-infective drugs may be an application of this novel particulate carrier.
Collapse
Affiliation(s)
- Thomas Tschernig
- Institute of Anatomy and Cell Biology, Saarland University, D-66421 Homburg/Saar, Germany
| | - Thorben Fischer
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, D-66123 Saarbrücken, Germany
| | - Alexander Grissmer
- Institute of Anatomy and Cell Biology, Saarland University, D-66421 Homburg/Saar, Germany
| | - Anja Beckmann
- Institute of Anatomy and Cell Biology, Saarland University, D-66421 Homburg/Saar, Germany
| | - Carola Meier
- Institute of Anatomy and Cell Biology, Saarland University, D-66421 Homburg/Saar, Germany
| | - Peter Lipp
- Institute of Anatomy and Cell Biology, Saarland University, D-66421 Homburg/Saar, Germany.,Center for Molecular Signalling (PZMS), Saarland University, D-66421 Homburg/Saar, Germany
| | - Marc Schneider
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, D-66123 Saarbrücken, Germany
| |
Collapse
|
11
|
|
12
|
Zhao H, Chen S, He Y, Wu C, Zhu Y, Yu K, Fan H. Sandwich-interface inspired strategy for controlled formation of nanoparticles. NANOSCALE 2018; 10:11624-11632. [PMID: 29896603 DOI: 10.1039/c8nr03316a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nanoparticles are functional materials able to offer improved or new synergetic properties. By manipulating the interfacial properties, we demonstrate an innovative sandwich-interface method capable of forming various monodispersed nanostructures including metals, semiconductors, and inorganic and coordinated nanoparticles. By analysing of the reaction mechanism, we show that reaction time, the height of transition and presence of surfactant have the greatest influence on the formation of the products. These advances in the sandwich-interface synthesis significantly extend the scope of interface synthetic methods, facilitating a new level of structural-architectural control which may lead to future developments in the field of crystallography.
Collapse
Affiliation(s)
- Huan Zhao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| | | | | | | | | | | | | |
Collapse
|
13
|
Lai WF, Rogach AL, Wong WT. Chemistry and engineering of cyclodextrins for molecular imaging. Chem Soc Rev 2018; 46:6379-6419. [PMID: 28930330 DOI: 10.1039/c7cs00040e] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cyclodextrins (CDs) are naturally occurring cyclic oligosaccharides bearing a basket-shaped topology with an "inner-outer" amphiphilic character. The abundance of hydroxyl groups enables CDs to be functionalized with multiple targeting ligands and imaging elements. The imaging time, and the payload of different imaging elements, can be tuned by taking advantage of the commercial availability of CDs with different sizes of the cavity. This review aims to offer an outlook of the chemistry and engineering of CDs for the development of molecular probes. Complexation thermodynamics of CDs, and the corresponding implications for probe design, are also presented with examples demonstrating the structural and physiochemical roles played by CDs in the full ambit of molecular imaging. We hope that this review not only offers a synopsis of the current development of CD-based molecular probes, but can also facilitate translation of the incremental advancements from the laboratory to real biomedical applications by illuminating opportunities and challenges for future research.
Collapse
Affiliation(s)
- Wing-Fu Lai
- School of Pharmaceutical Sciences, Health Science Centre, Shenzhen University, Shenzhen, China.
| | | | | |
Collapse
|
14
|
Lee T, Gizynski K, Grzybowski BA. Non-Equilibrium Self-Assembly of Monocomponent and Multicomponent Tubular Structures in Rotating Fluids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1704274. [PMID: 29112327 DOI: 10.1002/adma.201704274] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 08/22/2017] [Indexed: 06/07/2023]
Abstract
When suspended in a denser rotating fluid, lighter particles experience a cylindrically symmetric confining potential that drives their crystallization into either monocomponent or unprecedented binary tubular packing. These assemblies form around the fluid's axis of rotation, can be dynamically interconverted (upon accelerating or decelerating the fluid), can exhibit preferred chirality, and can be made permanent by solidifying the fluid. The assembly can be extended to fluids forming multiple concentric interfaces or to systems of bubbles forming both ordered and "gradient" structures within curable polymers.
Collapse
Affiliation(s)
- Taehoon Lee
- IBS Center for Soft and Living Matter, UNIST-gil 50, Eonyang-eup, Ulju-gun, Ulsan, 689-798, Republic of Korea
- Department of Chemistry, UNIST, UNIST-gil 50, Eonyang-eup, Ulju-gun, Ulsan, 689-798, Republic of Korea
| | - Konrad Gizynski
- IBS Center for Soft and Living Matter, UNIST-gil 50, Eonyang-eup, Ulju-gun, Ulsan, 689-798, Republic of Korea
| | - Bartosz A Grzybowski
- IBS Center for Soft and Living Matter, UNIST-gil 50, Eonyang-eup, Ulju-gun, Ulsan, 689-798, Republic of Korea
- Department of Chemistry, UNIST, UNIST-gil 50, Eonyang-eup, Ulju-gun, Ulsan, 689-798, Republic of Korea
| |
Collapse
|
15
|
Möhwald M, Pinnapireddy SR, Wonnenberg B, Pourasghar M, Jurisic M, Jung A, Fink-Straube C, Tschernig T, Bakowsky U, Schneider M. Aspherical, Nanostructured Microparticles for Targeted Gene Delivery to Alveolar Macrophages. Adv Healthc Mater 2017; 6. [PMID: 28726349 DOI: 10.1002/adhm.201700478] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/06/2017] [Indexed: 12/20/2022]
Abstract
Introducing novel shapes to particulate carrier systems adds unique features to modern drug and gene delivery. Depending on the route of administration, particle geometry can influence deposition and fate within biological environments. In this work, a template-assisted engineering technique is applied, providing full control of size and shape in the preparation of aspherical, nanostructured microparticles. Based on the interconnection of nanoparticles, stabilized by a functional layer-by-layer (LbL) coating, the resulting cylindrical micrometer architecture is especially qualified for pulmonary delivery. Designed as gene delivery system, plasmid-DNA (pCMV-luciferase) and branched polyethylenimine are used to reach both structural integrity of the carrier system and delivery of genes into the cells of interest. Due to their size, particles are exclusively taken up by phagocytes, which also adds a targeting effect to the introduced system. The luciferase expression is demonstrated in macrophages showing increasing levels over a time period of at least 7 d. Furthermore, it is shown for the first time that the expression is depending on the LbL design. From in vivo experiments, corresponding luciferase expression is observed in mice alveolar macrophages. Combining site specific transport with the possibility of genetically engineering immunocompetent phagocytes, the presented system offers promising potential to improve applications for cell-based immunotherapy.
Collapse
Affiliation(s)
- Michael Möhwald
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology; Saarland University; D-66123 Saarbrücken Germany
| | | | - Bodo Wonnenberg
- Anatomy and Cell Biology; Medical Faculty; Saarland University; D-66424 Homburg Germany
| | - Marcel Pourasghar
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology; Saarland University; D-66123 Saarbrücken Germany
| | - Marijas Jurisic
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology; Saarland University; D-66123 Saarbrücken Germany
| | - Andrea Jung
- INM - Leibniz-Institut für Neue Materialien gGmbH; D-66123 Saarbrücken Germany
| | | | - Thomas Tschernig
- Anatomy and Cell Biology; Medical Faculty; Saarland University; D-66424 Homburg Germany
| | - Udo Bakowsky
- Pharmaceutics and Biopharmaceutics; Philipps University Marburg; D-35037 Marburg Germany
| | - Marc Schneider
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology; Saarland University; D-66123 Saarbrücken Germany
| |
Collapse
|
16
|
Lai WF, He ZD. Design and fabrication of hydrogel-based nanoparticulate systems for in vivo drug delivery. J Control Release 2016; 243:269-282. [DOI: 10.1016/j.jconrel.2016.10.013] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 10/12/2016] [Accepted: 10/12/2016] [Indexed: 12/27/2022]
|
17
|
Saghazadeh S, Zhang S, Lefèvre D, Le Beulze A, Jonas AM, Demoustier-Champagne S. Universal Method to Transfer Membrane-Templated Nano-Objects to Aqueous Solutions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:7264-7273. [PMID: 26075831 DOI: 10.1021/acs.langmuir.5b01648] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A wide range of nano-objects are synthesized by combining template synthesis, using polycarbonate membrane as template, with different material deposition methods. The resulting nanostructures varied from robust inorganic gold nanowires grown by electrodeposition to rigid polypyrrole nanotubes synthesized by chemical polymerization and softer nanotubes made of different combinations of synthetic and natural polyelectrolytes fabricated by layer-by-layer (LbL) assembly. The morphology of these various nano-objects is characterized prior to and after their immersion in water, revealing that the rigidity degree of LbL nanotubes strongly decreases after being in contact with water, leading to highly swollen and flexible nanotubes in aqueous solution that tend to stick to any surface and are very difficult to collect and disperse quantitatively in aqueous solution. Different processes to collect these nano-objects and disperse them in aqueous medium for further analysis and application were then studied. Among them, a method based on simple filtration of nanotubes in the presence of a powdered dextran adjuvant leads to the quantitative collection and dispersion in water of all types of tested cylindrical nano-objects. This universal method to efficiently collect membrane templated nano-objects paves the way to further characterization of a large variety of nanotubes in aqueous solution and to their potential use as cargo nanocarriers or as nanoreactors.
Collapse
|
18
|
Macrophage uptake of cylindrical microparticles investigated with correlative microscopy. Eur J Pharm Biopharm 2015; 95:151-5. [PMID: 25779350 DOI: 10.1016/j.ejpb.2015.03.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 03/03/2015] [Accepted: 03/06/2015] [Indexed: 11/20/2022]
Abstract
Cylindrical particles offer the opportunity to develop controlled and sustained release systems for the respiratory tract. One reason is that macrophages can phagocyte such particles only from either of the two ends. We investigated the uptake behaviour of murine alveolar macrophages incubated with elongated submicron-structured particles. For that purpose, fluorescent model silica nanoparticles were interconnected with the biocompatible polysaccharide agarose, building up cylindrical particles within the pores of track-etched membranes. In contrast to common approaches we determined the uptake at different time points with scanning electron microscopy, fluorescence microscopy, and the combination of both techniques - correlative microscopy (CLEM). As a consequence, we could securely identify uptake events and observe in detail the engulfment of particles and confirm, that phagocytosis could only be observed from the tips of the cylinders. CLEM allowed a comparison of the uptake measured with different techniques at identical macrophages. Qualitative and quantitative evaluation of this cylindrical particle uptake showed substantial differences between fluorescence microscopy, electron microscopy and the combination of both (CLEM) within 24h.
Collapse
|
19
|
Pappas CG, Frederix PWJM, Mutasa T, Fleming S, Abul-Haija YM, Kelly SM, Gachagan A, Kalafatovic D, Trevino J, Ulijn RV, Bai S. Alignment of nanostructured tripeptide gels by directional ultrasonication. Chem Commun (Camb) 2015; 51:8465-8. [DOI: 10.1039/c5cc02049b] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We demonstrate an in situ ultrasonic approach to generate anisotropic organo- and hydrogels consisting of oriented tripeptides self-assembled structures.
Collapse
|
20
|
Anselmo AC, Gilbert JB, Kumar S, Gupta V, Cohen RE, Rubner MF, Mitragotri S. Monocyte-mediated delivery of polymeric backpacks to inflamed tissues: a generalized strategy to deliver drugs to treat inflammation. J Control Release 2014; 199:29-36. [PMID: 25481443 DOI: 10.1016/j.jconrel.2014.11.027] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 11/03/2014] [Accepted: 11/23/2014] [Indexed: 12/31/2022]
Abstract
Targeted delivery of drugs and imaging agents to inflamed tissues, as in the cases of cancer, Alzheimer's disease, Parkinson's disease, and arthritis, represents one of the major challenges in drug delivery. Monocytes possess a unique ability to target and penetrate into sites of inflammation. Here, we describe a broad approach to take advantage of the natural ability of monocytes to target and deliver flat polymeric particles ("Cellular Backpacks") to inflamed tissues. Cellular backpacks attach strongly to the surface of monocytes but do not undergo phagocytosis due to backpack's size, disk-like shape and flexibility. Following attachment of backpacks, monocytes retain important cellular functions including transmigration through an endothelial monolayer and differentiation into macrophages. In two separate in vivo inflammation models, backpack-laden monocytes exhibit increased targeting to inflamed tissues. Cellular backpacks, and their abilities to attach to monocytes without impairing monocyte functions and 'hitchhike' to a variety of inflamed tissues, offer a new platform for both cell-mediated therapies and broad targeting of inflamed tissues.
Collapse
Affiliation(s)
- Aaron C Anselmo
- Department of Chemical Engineering, Center for Bioengineering, University of California, Santa Barbara, CA 93106, United States
| | - Jonathan B Gilbert
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Sunny Kumar
- Department of Chemical Engineering, Center for Bioengineering, University of California, Santa Barbara, CA 93106, United States
| | - Vivek Gupta
- School of Pharmacy, Keck Graduate Institute, 535 Watson Dr., Claremont, CA 91711, United States
| | - Robert E Cohen
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Michael F Rubner
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Samir Mitragotri
- Department of Chemical Engineering, Center for Bioengineering, University of California, Santa Barbara, CA 93106, United States.
| |
Collapse
|
21
|
Mathaes R, Winter G, Besheer A, Engert J. Non-spherical micro- and nanoparticles: fabrication, characterization and drug delivery applications. Expert Opin Drug Deliv 2014; 12:481-92. [PMID: 25327886 DOI: 10.1517/17425247.2015.963055] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Micro- and nanoparticles in drug and vaccine delivery have opened up new possibilities in pharmaceutics. In the past, researchers focused mainly on particle size, surface chemistry and the use of various materials to control particle characteristics and functions. Lately, shape has been acknowledged as an important design parameter having an impact on the interaction with biological systems. AREAS COVERED In this review, we report on the latest developments in fabrication methods to tailor particle geometry, summarize analytical techniques for non-spherical particles and highlight the most important findings regarding their interaction with biological systems and their potential applications in drug delivery. EXPERT OPINION The impact of shape on particle internalization into different cell types and particle biodistribution has been extensively studied in the past. Current research focuses on shape-dependent uptake mechanisms and applications for tumour therapy and vaccination. Different fabrication methods can be used to produce a variety of different particle types and shapes. Key challenges will be the transfer of new non-spherical particle fabrication methods from lab-scale to industrial large-scale production. Not all techniques may be scalable for the production of high quantities of particles. It will also be challenging to transfer the promising in vitro findings to suitable in vivo models.
Collapse
Affiliation(s)
- Roman Mathaes
- Pharmacist, PhD Student,Ludwig-Maximillians-University Munich, Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics , Butenandtstr. 5, D-81377 Munich , Germany
| | | | | | | |
Collapse
|
22
|
Lu J, Zheng F, Cheng Y, Ding H, Zhao Y, Gu Z. Hybrid inverse opals for regulating cell adhesion and orientation. NANOSCALE 2014; 6:10650-10656. [PMID: 25088946 DOI: 10.1039/c4nr02626h] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Cell adhesion and alignment are two important considerations in tissue engineering applications as they can regulate the subsequent cell proliferation activity and differentiation program. Although many effects have been applied to regulate the adhesion or alignment of cells by using physical and chemical methods, it is still a challenge to regulate these cell behaviors simultaneously. Here, we present novel substrates with tunable nanoscale patterned structures for regulating the adhesion and alignment of cells. The substrates with different degrees of pattern orientation were achieved by customizing the amount of stretching applied to polymer inverse opal films. Cells cultured on these substrates showed an adjustable morphology and alignment. Moreover, soft hydrogels, which have poor plasticity and are difficult to cast into patterned structures, were applied to infiltrate the inverse opal structure. We demonstrated that the adhesion ratio of cells could be regulated by these hybrid substrates, as well as adjusting the cell morphology and alignment. These features of functional inverse opal substrates make them suitable for important applications in tissue engineering.
Collapse
Affiliation(s)
- Jie Lu
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, China.
| | | | | | | | | | | |
Collapse
|
23
|
Carrier interactions with the biological barriers of the lung: advanced in vitro models and challenges for pulmonary drug delivery. Adv Drug Deliv Rev 2014; 75:129-40. [PMID: 24880145 DOI: 10.1016/j.addr.2014.05.014] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 05/15/2014] [Accepted: 05/23/2014] [Indexed: 11/22/2022]
Abstract
In recent years significant progress has been made to improve particle deposition in the lung. However, the development of strategies to overcome the air-blood lung barrier is still needed. The combination of complex in vitro models and sophisticated particulate carriers is promising as a strategy by which that goal could be achieved. In this review we discuss currently available in vitro lung models, including some recent tissue-engineering approaches, as well as the challenges associated to implement such complex in vitro systems. Furthermore, we discuss available carrier technologies, often based on nanotechnology, to target specific regions of the lungs and to overcome the respective biological barriers, ideally resulting in safe and effective delivery to the desired pulmonary destination.
Collapse
|
24
|
Wang Y, Qi W, Huang R, Su R, He Z. Jet flow directed supramolecular self-assembly at aqueous liquid–liquid interface. RSC Adv 2014. [DOI: 10.1039/c3ra47483f] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
25
|
Ruge CA, Kirch J, Lehr CM. Pulmonary drug delivery: from generating aerosols to overcoming biological barriers-therapeutic possibilities and technological challenges. THE LANCET RESPIRATORY MEDICINE 2013; 1:402-13. [PMID: 24429205 DOI: 10.1016/s2213-2600(13)70072-9] [Citation(s) in RCA: 180] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Research in pulmonary drug delivery has focused mainly on new particle or device technologies to improve the aerosol generation and pulmonary deposition of inhaled drugs. Although substantial progress has been made in this respect, no significant advances have been made that would lead pulmonary drug delivery beyond the treatment of some respiratory diseases. One main reason for this stagnation is the still very scarce knowledge about the fate of inhaled drug or carrier particles after deposition in the lungs. Improvement of the aerosol component alone is no longer sufficient for therapeutic success of inhalation drugs; a paradigm shift is needed, with an increased focus on the pulmonary barriers to drug delivery. In this Review, we discuss some pathophysiological disorders that could benefit from better control of the processes after aerosol deposition, and pharmaceutical approaches to achieve improved absorption across the alveolar epithelium, prolonged pulmonary clearance, and targeted delivery to specific cells or tissues.
Collapse
Affiliation(s)
- Christian A Ruge
- Department of Biopharmaceutics and Pharmaceutical Technology, Saarland University, Saarbrücken, Germany; Institut Galien Paris-Sud, CNRS UMR 8612, LabEx, LERMIT, University Paris-Sud, Paris, France
| | - Julian Kirch
- Department of Biopharmaceutics and Pharmaceutical Technology, Saarland University, Saarbrücken, Germany
| | - Claus-Michael Lehr
- Department of Biopharmaceutics and Pharmaceutical Technology, Saarland University, Saarbrücken, Germany; Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, Saarbrücken, Germany.
| |
Collapse
|
26
|
Zhai T, Xie S, Lu X, Xiang L, Yu M, Li W, Liang C, Mo C, Zeng F, Luan T, Tong Y. Porous Pr(OH)3 nanostructures as high-efficiency adsorbents for dye removal. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:11078-11085. [PMID: 22775312 DOI: 10.1021/la3013156] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Herein we report the electrochemical synthesis of porous Pr(OH)(3) nanobelt arrays (NBAs), nanowire arrays (NWAs), nanowire bundles (NWBs), and nanowires (NWs) and their applications as dye absorbents in water treatment. These Pr(OH)(3) nanostructures exhibit high efficient and selective adsorption of the dyes with amine (-NH(2)) functional groups such as Congo red, reactive yellow, and reactive blue. The high efficiency and selectivity is attributed to the large effective surface area of the porous structure, plentiful hydroxyl groups, and basic sites on the Pr(OH)(3) surface. Furthermore, the toxicity studies of these porous Pr(OH)(3) nanostructure show a negligible effect on seed germination, indicating that they hold great potential as environmentally friendly absorbents in water treatment.
Collapse
Affiliation(s)
- Teng Zhai
- Key Laboratory of Environment and Energy Chemistry of Guangdong Higher Education Institutes, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Nunes JK, Sadlej K, Tam JI, Stone HA. Control of the length of microfibers. LAB ON A CHIP 2012; 12:2301-2304. [PMID: 22570000 DOI: 10.1039/c2lc40280g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Uniform polymeric microfibers of prescribed lengths were synthesized in microfluidic devices using two different approaches--valve actuation and pulses of ultraviolet (UV) light. The more versatile valve approach was employed to demonstrate control of the length of the microfiber as a function of the frequency of valve actuation.
Collapse
Affiliation(s)
- Janine K Nunes
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA.
| | | | | | | |
Collapse
|
28
|
Yan X, Li J, Möhwald H. Templating assembly of multifunctional hybrid colloidal spheres. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2012; 24:2663-7. [PMID: 22529033 DOI: 10.1002/adma.201200408] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Revised: 03/11/2012] [Indexed: 05/24/2023]
Abstract
3D hybrid colloidal spheres with integrated functions and collective properties are fabricated using a variety of common inorganic nano-objects as building blocks in association with polyelectrolyte encapsulation through a facile template strategy. The fabrication strategy is generally suited for design of functional colloidal spheres in a simple and controllable manner, and thus opens a new avenue for developing hybrid materials with multiple functions and collective properties.
Collapse
Affiliation(s)
- Xuehai Yan
- Max Planck Institute of Colloids and Interfaces, Potsdam/Golm, Germany.
| | | | | |
Collapse
|
29
|
Kohler D, Madaboosi N, Delcea M, Schmidt S, De Geest BG, Volodkin DV, Möhwald H, Skirtach AG. Patchiness of embedded particles and film stiffness control through concentration of gold nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2012; 24:1095-1100. [PMID: 22266798 DOI: 10.1002/adma.201103958] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Indexed: 05/31/2023]
Abstract
Patchy particles are fabricated using a method of embedding-into and extracting-from thick, biocompatible, gel-like HA/PLL films. Control over the patchiness is achieved by adjusting the stiffness of films, which affects embedding and masking of particles. The stiffness is adjusted by the concentration of gold nanoparticles adsorbed onto the surface of the films.
Collapse
Affiliation(s)
- D Kohler
- Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Daum N, Tscheka C, Neumeyer A, Schneider M. Novel approaches for drug delivery systems in nanomedicine: effects of particle design and shape. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2011; 4:52-65. [PMID: 22140017 DOI: 10.1002/wnan.165] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The identification of novel drug candidates for the treatment of diseases like cancer, infectious diseases, or allergies (especially asthma) assigns new tasks for pharmaceutical technology. With respect to drug delivery several problems occur such as low solubility and hence low bioavailability or restriction to inconvenient routes of administration. Nanotechnological approaches promise to circumvent some of these problems, therefore being well suited for future applications as nanomedicines. Furthermore, efficient and sufficient loading is a critical issue that is approached through mesoporous particles and/or through nonspherical particles both offering larger volumes and surfaces. Special interest is laid on the effect of shape of particulate materials on the body and related physiological mechanisms. The modified response of biological systems on different shapes opens a new dimension to adjust particle system interaction. Finally, the biological response to these systems will determine the fate with respect to their therapeutic value. Therefore, the interaction pattern between nonspherical particulate materials and biological systems as well as the production processes are highlighted.
Collapse
Affiliation(s)
- Nicole Daum
- Drug Delivery, Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, Saarland University, Saarbrücken, Germany
| | | | | | | |
Collapse
|