1
|
Shrestha B, Rajan SM, Saunders M, Fawzy A. Potential of High-Intensity Focused Ultrasound in Enamel Remineralization. J Dent Res 2025:220345251323869. [PMID: 40108508 DOI: 10.1177/00220345251323869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025] Open
Abstract
Remineralization is an essential interventional strategy for intercepting enamel white spot lesions (WSLs). Given the limitations of both natural and/or fluoride-mediated repair processes, there is a need to develop novel strategies for repairing enamel WSLs via a minimally invasive approach while restoring the unique ultrastructural integrity and functional properties. Inspired by the unique capability of high-intensity focused ultrasound (HIFU) in facilitating the crystallization process, we propose a novel strategy of employing HIFU for in vitro repair of WSLs through synergizing the crystallization process required for hydroxyapatite (HAP) formation from its precursor (calcium phosphate ion clusters; CPICs). Following CPIC formulation and characterization including the resultant amorphous calcium phosphate (ACP), the effect of HIFU on the ACP-to-HAP transition on the amorphous substrate was investigated using transmission electron microscopy and high-resolution transmission electron microscopy, selected area electron diffraction, and X-ray diffraction (XRD). The results showed profound amorphous-to-crystalline phase transition, within 5- to 30-min HIFU exposure, whereas the long axis of the resultant HAP corresponded with the (002) plane, and a lattice spacing of 0.34 nm indicated a preferred c-axis growth direction consistent with the orientation of natural enamel crystallites. For enamel repair, artificial WSLs were created on enamel specimens and then subjected to CPICs, followed by HIFU exposure for 2.5, 5, or 10 min. Scanning electron and atomic force microscopies revealed the decreased surface roughness and the gradual obliteration in the WSL porous structure with continuous linear coaxial arrangement of HAP crystallites filling the prismatic/interprismatic gaps closely resembling sound enamel specifically with 5-min HIFU exposure. Enamel WSL ultrastructural repair was further confirmed from XRD and Raman spectral analyses with the associated regaining of mineral density and nanomechanical properties as reflected from micro-computed tomography (CT) and nanoindentation results, respectively. Micro-CT further validated the subsurface remineralization of WSLs with HIFU exposure. Within the same exposure parameters, HIFU exhibited a potent antibiofilm effect against Streptococcus mutans. This study introduced a new approach for remineralizing enamel WSLs through the potent synergy between HIFU and CPICs.
Collapse
Affiliation(s)
- B Shrestha
- UWA Dental School, The University of Western Australia, WA, Australia
| | - S M Rajan
- UWA Dental School, The University of Western Australia, WA, Australia
| | - M Saunders
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, WA, Australia
| | - A Fawzy
- UWA Dental School, The University of Western Australia, WA, Australia
| |
Collapse
|
2
|
Luo N, Lu BQ, Deng YW, Zeng H, Zhang Y, Zhan JY, Xu XC, Cao GZ, Wen J, Zhang Z, Feng XP, Jiang X, Chen F, Chen X. The glycerol stabilized calcium phosphate cluster for rapid remineralization of tooth enamel by a water-triggered transformation. Nat Commun 2025; 16:58. [PMID: 39746946 PMCID: PMC11695679 DOI: 10.1038/s41467-024-54785-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 11/21/2024] [Indexed: 01/04/2025] Open
Abstract
Remineralization is a common strategy for the repair of early demineralized tooth enamels, but the harsh dynamic oral environment often hampers its efficacy. Rapid remineralization is expected to address this challenge, however, the stabilizers of remineralization materials often resist their transformation required for repair. Here, by dissolving the ions of calcium and phosphate in glycerol-dominant solvents, we obtain the calcium phosphate clusters (1-2 nm), which are stabilized by glycerol (with high viscosity and affinity to clusters), but can perform a fast enamel repair via the water-triggered transformation in both static and dynamic environments. Upon the in vitro and in vivo (female Sprague-Dawley rats) studies, the clusters swiftly enter the nano-/micro-sized enamel defect sites, then form a compact hydroxyapatite repair layer within a short time (30 min, much faster than the conventional materials), and significantly recovers mechanical properties. This material is promising for large-scale preparation and applications in dental remineralization.
Collapse
Affiliation(s)
- Nan Luo
- Department of Preventive Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, PR China
- National Center for Stomatology, Shanghai, PR China
- National Clinical Research Center for Oral Diseases, Shanghai, PR China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, PR China
| | - Bing-Qiang Lu
- Center for Orthopedic Science and Translational Medicine, Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, PR China.
| | - Yu-Wei Deng
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, PR China
- National Center for Stomatology, Shanghai, PR China
- National Clinical Research Center for Oral Diseases, Shanghai, PR China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, PR China
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, PR China
| | - Hua Zeng
- Center for Orthopedic Science and Translational Medicine, Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, PR China
| | - Yu Zhang
- Department of Preventive Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, PR China
- National Center for Stomatology, Shanghai, PR China
- National Clinical Research Center for Oral Diseases, Shanghai, PR China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, PR China
| | - Jing-Yu Zhan
- Department of Preventive Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, PR China
- National Center for Stomatology, Shanghai, PR China
- National Clinical Research Center for Oral Diseases, Shanghai, PR China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, PR China
| | - Xiao-Chen Xu
- Department of Preventive Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, PR China
- National Center for Stomatology, Shanghai, PR China
- National Clinical Research Center for Oral Diseases, Shanghai, PR China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, PR China
| | - Gui-Zhi Cao
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, PR China
- National Center for Stomatology, Shanghai, PR China
- National Clinical Research Center for Oral Diseases, Shanghai, PR China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, PR China
| | - Jin Wen
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, PR China
- National Center for Stomatology, Shanghai, PR China
- National Clinical Research Center for Oral Diseases, Shanghai, PR China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, PR China
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, PR China
| | - Zhiyuan Zhang
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, PR China
- National Center for Stomatology, Shanghai, PR China
- National Clinical Research Center for Oral Diseases, Shanghai, PR China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, PR China
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Xi-Ping Feng
- Department of Preventive Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, PR China
- National Center for Stomatology, Shanghai, PR China
- National Clinical Research Center for Oral Diseases, Shanghai, PR China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, PR China
| | - Xinquan Jiang
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, PR China
- National Center for Stomatology, Shanghai, PR China
- National Clinical Research Center for Oral Diseases, Shanghai, PR China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, PR China
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, PR China
| | - Feng Chen
- Center for Orthopedic Science and Translational Medicine, Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, PR China.
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Stomatological Hospital and School of Stomatology, Fudan University, Shanghai, PR China.
| | - Xi Chen
- Department of Preventive Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, PR China.
- National Center for Stomatology, Shanghai, PR China.
- National Clinical Research Center for Oral Diseases, Shanghai, PR China.
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, PR China.
| |
Collapse
|
3
|
Lu J, Deng J, Wei Y, Yang X, Zhao H, Zhao Q, Liu S, Li F, Li Y, Deng X, Jiang L, Guo L. Hierarchically mimicking outer tooth enamel for restorative mechanical compatibility. Nat Commun 2024; 15:10182. [PMID: 39580511 PMCID: PMC11585591 DOI: 10.1038/s41467-024-54576-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 11/14/2024] [Indexed: 11/25/2024] Open
Abstract
Tooth enamel, and especially the outer tooth enamel, is a load-resistant shell that benefits mastication but is easily damaged, driving the need for enamel-restorative materials with comparable properties to restore the mastication function and protect the teeth. Synthesizing an enamel analog that mimics the components and hierarchical structure of natural tooth enamel is a promising way to achieve these comparable mechanical properties, but it is still challenging to realize. Herein, we fabricate a hierarchical enamel analog with comparable stiffness, hardness, and viscoelasticity as natural enamel by incorporating three hierarchies of outer tooth enamel based on hierarchical assembly of enamel-like hydroxyapatite hybrid nanowires with polyvinyl alcohol as a matrix. This enamel analog possesses enamel-similar inorganic components and a nanowire-microbundle-macroarray hierarchical structure. It exhibits toughness of 19.80 MPa m1/2, which is 3.4 times higher than natural tooth enamel, giving it long-term fatigue durability. This hierarchical design is promising for scalable production of enamel-restorative materials and for optimizing the mechanical performance of engineering composites.
Collapse
Affiliation(s)
- Junfeng Lu
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Jingjing Deng
- Department of Geriatric Dentistry, NMPA Key Laboratory for Dental Materials, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yan Wei
- Department of Geriatric Dentistry, NMPA Key Laboratory for Dental Materials, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xiuyi Yang
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Hewei Zhao
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China.
| | - Qihan Zhao
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Shaojia Liu
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Fengshi Li
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Yangbei Li
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Xuliang Deng
- Department of Geriatric Dentistry, NMPA Key Laboratory for Dental Materials, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, China.
| | - Lei Jiang
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China.
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China.
| | - Lin Guo
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China.
| |
Collapse
|
4
|
Foley B, Nadaud F, Selmane M, Valentin L, Mezzetti A, Egles C, Jolivalt C, El Kirat K, Guibert C, Landoulsi J. Seriation of Enzyme-Functionalized Multilayers for the Design of Scalable Biomimetic Mineralized Structures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402128. [PMID: 39246187 DOI: 10.1002/smll.202402128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/23/2024] [Indexed: 09/10/2024]
Abstract
Biomimetic hydroxyapatites are widely explored for their potential applications in the repair of mineralized tissues, particularly dental enamel, which is acellular and, thus, not naturally reformed after damage. Enamel is formed with a highly-controlled hierarchical structure, which is difficult to replicate up to the macroscale. A biomimetic approach is thus warranted, based on the same principles that drive biomineralization in vivo. Herein, a strategy for the design of enamel-like architectures is described, utilizing enzymes embedded in polyelectrolyte multilayers to generate inorganic phosphate locally, and provide a favorable chemical environment for the nucleation and growth of minerals. Moreover, a method is proposed to build up seriated mineral layers with scalable thicknesses, continuous mineral growth, and tunable morphology. Results show the outstanding growth of cohesive mineral layers, yielding macroscopic standalone fluoride and/or carbonate-substituted hydroxyapatite materials with comparable crystal structure and composition to native human mineralized tissues. This strategy presents a promising path forward for the biomimetic design of biomineral materials, particularly relevant for restorative applications, with an exquisite level of synthetic control over multiple orders of magnitude.
Collapse
Affiliation(s)
- Brittany Foley
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface (LRS), Paris, F-75005, France
- Laboratoire de Biomécanique & Bioingénierie, CNRS, Université de Technologie de Compiègne, BP 20529, Compiègne Cedex, F-60205, France
| | - Frédéric Nadaud
- Service Analyses Physico-Chimiques SAPC, Université de Technologie de Compiègne, BP 20529, Compiègne Cedex, F-60205, France
| | - Mohamed Selmane
- Fédération de Chimie et Matériaux de Paris-Centre (FCMat) FR2482, Paris, F-75005, France
| | - Laetitia Valentin
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface (LRS), Paris, F-75005, France
| | - Alberto Mezzetti
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface (LRS), Paris, F-75005, France
| | - Christophe Egles
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, Polymères Biopolymères et Surfaces (PBS, UMR 6270), 55 Rue Saint-Germain, Évreux, 27 000, France
| | - Claude Jolivalt
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface (LRS), Paris, F-75005, France
| | - Karim El Kirat
- Laboratoire de Biomécanique & Bioingénierie, CNRS, Université de Technologie de Compiègne, BP 20529, Compiègne Cedex, F-60205, France
| | - Clément Guibert
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface (LRS), Paris, F-75005, France
| | - Jessem Landoulsi
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface (LRS), Paris, F-75005, France
- Laboratoire de Biomécanique & Bioingénierie, CNRS, Université de Technologie de Compiègne, BP 20529, Compiègne Cedex, F-60205, France
| |
Collapse
|
5
|
Dai D, Li D, Zhang C. Unraveling Nanomaterials in Biomimetic Mineralization of Dental Hard Tissue: Focusing on Advantages, Mechanisms, and Prospects. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405763. [PMID: 39206945 PMCID: PMC11516058 DOI: 10.1002/advs.202405763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/31/2024] [Indexed: 09/04/2024]
Abstract
The demineralization of dental hard tissue imposes considerable health and economic burdens worldwide, but an optimal method that can repair both the chemical composition and complex structures has not been developed. The continuous development of nanotechnology has created new opportunities for the regeneration and repair of dental hard tissue. Increasingly studies have reported that nanomaterials (NMs) can induce and regulate the biomimetic mineralization of dental hard tissue, but few studies have examined how they are involved in the different stages, let alone the relevant mechanisms of action. Besides their nanoscale dimensions and excellent designability, NMs play a corresponding role in the function of the raw materials for mineralization, mineralized microenvironment, mineralization guidance, and the function of mineralized products. This review comprehensively summarizes the advantages of NMs and examines the specific mineralization mechanisms. Design strategies to promote regeneration and repair are summarized according to the application purpose of NMs in the oral cavity, and limitations and development directions in dental hard tissue remineralization are proposed. This review can provide a theoretical basis to understand the interaction between NMs and the remineralization of dental hard tissue, thereby optimizing design strategy, rational development, and clinical application of NMs in the field of remineralization.
Collapse
Affiliation(s)
- Danni Dai
- Stomatological HospitalSchool of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Dan Li
- Stomatological HospitalSchool of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Chao Zhang
- Stomatological HospitalSchool of StomatologySouthern Medical UniversityGuangzhou510280China
| |
Collapse
|
6
|
Rafiee A, Memarpour M, Amiri M, Azadi A, Fekri N, Mozafari N, Razmjouei F. Comparison of various chitosan-based in situ forming gels with sodium fluoride varnish for enamel biomineralization: an in-vitro pH cycling model. Sci Rep 2024; 14:21100. [PMID: 39256460 PMCID: PMC11387775 DOI: 10.1038/s41598-024-71993-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024] Open
Abstract
This study aimed to evaluate chitosan (CS)-based formulations loaded with 5% sodium fluoride (NaF) and/or 10% nanohydroxyapatite (nHA) to remineralize the demineralized primary tooth enamel surface. Ninety enamel blocks were demineralized and were divided into six groups (n = 15): (1) CS-based hydrogel, (2) CS-based hydrogel loaded with NaF, (3) CS-based hydrogel loaded with nHA, (4) CS-based hydrogel loaded with NaF and nHA, (5) 5% NaF varnish, and (6) negative control with no intervention. After intervention, the specimens were pH cycled by 2 h immersion in demineralizing solution and 22 h immersion in remineralizing solution for 8 days. The remineralization effects were evaluated by Vickers microhardness measurements and field emission scanning electron microscopy coupled with energy-dispersive X-ray spectrometry (FESEM-EDS). The best mean ± SD percentage microhardness recovery in remineralized enamel (%REMH) was found in group 4 (56.90 ± 5.49). The %REMH of groups 2 (30.74 ± 3.51) and 5 (29.23 ± 5.65) were statistically the same (p = 0.943). FESEM images confirmed partial coverage of the porous demineralized enamel with a newly formed mineralized layer. Based on EDS findings, the Ca/P ratio values of the treated enamel surfaces with CS-based hydrogels ranged between 1.71 and 1.87, and the highest F content was noticed in group 2 (1.02 ± 0.03). Although, all tested CS-based hydrogels demonstrated the potential to repair demineralized enamel, nHA- and NaF-containing CS-based hydrogel showed the highest remineralization effect. We infer that this new hybrid hydrogel is a potentially useful dental material for tooth biomineralization.
Collapse
Affiliation(s)
- Azade Rafiee
- Oral and Dental Disease Research Center, Department of Pediatric Dentistry, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mahtab Memarpour
- Oral and Dental Disease Research Center, Department of Pediatric Dentistry, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Milad Amiri
- Student Research Committee, Dental School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Azadi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Neda Fekri
- Oral and Dental Disease Research Center, Department of Pediatric Dentistry, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negin Mozafari
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Faranak Razmjouei
- Oral and Dental Disease Research Center, Department of Pediatric Dentistry, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
7
|
Liao J, Qiu J, Lin Y, Li Z. The application of hydrogels for enamel remineralization. Heliyon 2024; 10:e33574. [PMID: 39040369 PMCID: PMC11261051 DOI: 10.1016/j.heliyon.2024.e33574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/02/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
Enamel is composed of numerous uniformly wide, well-oriented hydroxyapatite crystals. It possesses an acellular structure that cannot be repaired after undergoing damage. Therefore, remineralization after enamel defects has become a focal point of research. Hydrogels, which are materials with three-dimensional structures derived from cross-linking polymers, have garnered significant attention in recent studies. Their exceptional properties make them valuable in the application of enamel remineralization. In this review, we summarize the structure and formation of enamel, present the design considerations of hydrogels for enamel remineralization, explore diverse hydrogels types in this context, and finally, shed light on the potential future applications in this field.
Collapse
Affiliation(s)
- Jiayi Liao
- School of Stomatology, Jiangxi Medical College, Nanchang University, 330000, Nanchang, China
- The Key Laboratory of Oral Biomedicine, Jiangxi Province, China
- Jiangxi Province Clinical Research Center for Oral Diseases, China
| | - Junhong Qiu
- School of Stomatology, Jiangxi Medical College, Nanchang University, 330000, Nanchang, China
- The Key Laboratory of Oral Biomedicine, Jiangxi Province, China
- Jiangxi Province Clinical Research Center for Oral Diseases, China
| | - Yanfang Lin
- School of Stomatology, Jiangxi Medical College, Nanchang University, 330000, Nanchang, China
| | - Zhihua Li
- School of Stomatology, Jiangxi Medical College, Nanchang University, 330000, Nanchang, China
- The Key Laboratory of Oral Biomedicine, Jiangxi Province, China
- Jiangxi Province Clinical Research Center for Oral Diseases, China
| |
Collapse
|
8
|
Li Y, Chang R, Liu YJ, Chen F, Chen YX. Self-assembled branched polypeptides as amelogenin mimics for enamel repair. J Mater Chem B 2024; 12:6452-6465. [PMID: 38860913 DOI: 10.1039/d3tb02709k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
The regeneration of demineralized enamel holds great significance in the treatment of dental caries. Amelogenin (Ame), an essential protein for mediating natural enamel growth, is no longer secreted after enamel has fully matured in childhood. Although biomimetic mineralization based on peptides or proteins has made significant progress, easily accessible, low-cost, biocompatible and highly effective Ame mimics are still lacking. Herein, we construct a series of amphiphilic branched polypeptides (CAMPs) by facile coupling of the Ame's C-terminal segment and poly(γ-benzyl-L-glutamate), which serves to simulate the Ame's hydrophobic N-terminal segment. Among them, CAMP15 is the best biomimetic mineralization template with great self-assembly performance to guide the oriented crystallization of hydroxyapatite and is capable of inhibiting the adhesion of Streptococcus mutans and Staphylococcus aureus on the enamel surfaces. This work highlights the potential application of amphiphilic branched polypeptide as Ame mimics in repairing defected enamel, providing a promising strategy for prevention and treatment of dental caries.
Collapse
Affiliation(s)
- Yue Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Rong Chang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Yang-Jia Liu
- Central Laboratory Peking University Hospital of Stomatology, Beijing 100081, China.
| | - Feng Chen
- Central Laboratory Peking University Hospital of Stomatology, Beijing 100081, China.
| | - Yong-Xiang Chen
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
9
|
Shrestha B, Maria Rajan S, Aati S, Yusiharni E, Kujan O, Saunders M, Fawzy A. The Synergistic Effect of High Intensity Focused Ultrasound on In-vitro Remineralization of Tooth Enamel by Calcium Phosphate Ion Clusters. Int J Nanomedicine 2024; 19:5365-5380. [PMID: 38859951 PMCID: PMC11164203 DOI: 10.2147/ijn.s464998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/20/2024] [Indexed: 06/12/2024] Open
Abstract
Background Remineralization of dental enamel is an important intervention strategy for the treatment of demineralized lesions. Existing approaches have limitations such as failure to adequately reproduce both the ideal structural and mechanical properties of the native tooth. The ability of ultrasound to control and accelerate the crystallization processes has been widely reported. Therefore, a new approach was explored for in-vitro enamel remineralization involving the synergistic effect of high-intensity focused ultrasound (HIFU) coupled with calcium phosphate ion clusters (CPICs). Methods The demineralized enamel was treated with CPICs, with or without subsequent HIFU exposure for different periods (2.5, 5, and 10 min). The specimens were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), and Raman spectroscopy. The surface hardness and crystallographic properties of the treated specimens were evaluated using Vickers microhardness testing and X-ray diffraction (XRD), respectively. Results SEM revealed distinct, organized, and well-defined prismatic structures, showing clear evidence of remineralization in the combined CPIC/HIFU treatment groups. AFM further revealed a decrease in the surface roughness values with increasing HIFU exposure time up to 5 min, reflecting the obliteration of interprismatic spaces created during demineralization. The characteristic Raman band at 960 cm-1 associated with the inorganic phase of enamel dominated well in the HIFU-treated specimens. Importantly, microhardness testing further demonstrated that new mineral growth also recovered the mechanical properties of the enamel in the HIFU-exposed groups. Critical to our aspirations for developing this into a clinical process, these results were achieved in only 5 min. Conclusion HIFU exposure can synergise and significantly accelerate in-vitro enamel remineralization process via calcium phosphate ion clusters. Therefore, this synergistic approach has the potential for use in future clinical interventions.
Collapse
Affiliation(s)
- Barsha Shrestha
- UWA Dental School, The University of Western Australia, Perth, WA, Australia
| | - Sheetal Maria Rajan
- UWA Dental School, The University of Western Australia, Perth, WA, Australia
| | - Sultan Aati
- UWA Dental School, The University of Western Australia, Perth, WA, Australia
- Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Emielda Yusiharni
- UWA XRD Facility, Material & Environmental Analysis Platform, The University of Western Australia, Perth, WA, Australia
| | - Omar Kujan
- UWA Dental School, The University of Western Australia, Perth, WA, Australia
| | - Martin Saunders
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, WA, Australia
| | - Amr Fawzy
- UWA Dental School, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
10
|
Yu HP, Zhu YJ. Guidelines derived from biomineralized tissues for design and construction of high-performance biomimetic materials: from weak to strong. Chem Soc Rev 2024; 53:4490-4606. [PMID: 38502087 DOI: 10.1039/d2cs00513a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Living organisms in nature have undergone continuous evolution over billions of years, resulting in the formation of high-performance fracture-resistant biomineralized tissues such as bones and teeth to fulfill mechanical and biological functions, despite the fact that most inorganic biominerals that constitute biomineralized tissues are weak and brittle. During the long-period evolution process, nature has evolved a number of highly effective and smart strategies to design chemical compositions and structures of biomineralized tissues to enable superior properties and to adapt to surrounding environments. Most biomineralized tissues have hierarchically ordered structures consisting of very small building blocks on the nanometer scale (nanoparticles, nanofibers or nanoflakes) to reduce the inherent weaknesses and brittleness of corresponding inorganic biominerals, to prevent crack initiation and propagation, and to allow high defect tolerance. The bioinspired principles derived from biomineralized tissues are indispensable for designing and constructing high-performance biomimetic materials. In recent years, a large number of high-performance biomimetic materials have been prepared based on these bioinspired principles with a large volume of literature covering this topic. Therefore, a timely and comprehensive review on this hot topic is highly important and contributes to the future development of this rapidly evolving research field. This review article aims to be comprehensive, authoritative, and critical with wide general interest to the science community, summarizing recent advances in revealing the formation processes, composition, and structures of biomineralized tissues, providing in-depth insights into guidelines derived from biomineralized tissues for the design and construction of high-performance biomimetic materials, and discussing recent progress, current research trends, key problems, future main research directions and challenges, and future perspectives in this exciting and rapidly evolving research field.
Collapse
Affiliation(s)
- Han-Ping Yu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.
| | - Ying-Jie Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
11
|
Deng J, Yu W, Wei Y, Deng X. A new era in restorative dentistry: in situ growth strategy. Sci Bull (Beijing) 2024; 69:17-21. [PMID: 38052699 DOI: 10.1016/j.scib.2023.11.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Affiliation(s)
- Jingjing Deng
- Beijing Laboratory of Biomedical Materials, Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Weiyi Yu
- Beijing Laboratory of Biomedical Materials, Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Yan Wei
- Beijing Laboratory of Biomedical Materials, Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, China.
| | - Xuliang Deng
- Beijing Laboratory of Biomedical Materials, Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, China.
| |
Collapse
|
12
|
Biomimetic Construction of the Enamel-like Hierarchical Structure. Chem Res Chin Univ 2023. [DOI: 10.1007/s40242-023-2336-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
13
|
Oyane A, Sakamaki I, Nakamura M, Koga K, Shitomi K, Tanaka S, Miyaji H. Fluoridated Apatite Coating on Human Dentin via Laser-Assisted Pseudo-Biomineralization with the Aid of a Light-Absorbing Molecule. Int J Mol Sci 2022; 23:ijms232415981. [PMID: 36555621 PMCID: PMC9781595 DOI: 10.3390/ijms232415981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/08/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
A simple, area-specific coating technique for fluoridated apatite (FAp) on teeth would be useful in dental applications. Recently, we achieved area-specific FAp coating on a human dentin substrate within 30 min by a laser-assisted biomimetic (LAB) process; pulsed Nd:YAG laser irradiation in a fluoride-containing supersaturated calcium phosphate solution (FCP solution). The LAB-processed, FAp-coated dentin substrate exhibited antibacterial activity against a major oral bacterium, Streptococcus mutans. In the present study, we refined the LAB process with a combination of a dental diode laser and a clinically approved light-absorbing molecule, indocyanine green (ICG). A micron-thick FAp layer was successfully formed on the dentin surface within only 3 min by the refined LAB process, i.e., dental diode laser irradiation in the FCP solution following ICG treatment. The ICG layer precoated on the dentin substrate played a crucial role in inducing rapid pseudo-biomineralization (FAp layer formation) on the dentin surface by absorbing laser light at the solid-liquid interface. In the refined LAB process, the precoated ICG layer was eliminated and replaced with the newly formed FAp layer composed of vertically oriented pillar-like nanocrystals. Cross-sectional ultrastructural analysis revealed a smooth interface between the FAp layer and the dentin substrate. The refined LAB process has potential as a tool for the tooth surface functionalization and hence, is worth further process refinement and in vitro and in vivo studies.
Collapse
Affiliation(s)
- Ayako Oyane
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Japan
- Correspondence: ; Tel.: +81-29-861-4693
| | - Ikuko Sakamaki
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | - Maki Nakamura
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | - Kenji Koga
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | - Kanako Shitomi
- Division of Periodontology and Endodontology, Department of Oral Rehabilitation, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Tobetsu-cho, Ishikari-gun 061-0293, Japan
| | - Saori Tanaka
- Division of General Dentistry Center for Dental Clinics, Hokkaido University Hospital, N14W5, Kita-ku, Sapporo 060-8648, Japan
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, N13W7, Kita-ku, Sapporo 060-8586, Japan
| | - Hirofumi Miyaji
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, N13W7, Kita-ku, Sapporo 060-8586, Japan
| |
Collapse
|
14
|
Yan L, Zheng C, Yuan D, Guo Z, Cui Y, Xie Z, Chen Z, Tang R, Liu Z. Fast Construction of Biomimetic Organic-Inorganic Interface by Crosslinking of Calcium Phosphate Oligomers: A Strategy for Instant Regeneration of Hard Tissue. Adv Healthc Mater 2022; 11:e2201161. [PMID: 36103604 DOI: 10.1002/adhm.202201161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/09/2022] [Indexed: 01/28/2023]
Abstract
The organic-inorganic structure in biological hard tissues ensures their marvelous characteristics but these hybrids are easily destroyed by the demineralization of inorganic components, e.g., the damage of dentin. Current clinical materials for hard tissue regeneration commonly act as "fillers" and their therapeutic effect is limited by the failures of biological-linked organic-inorganic interface reconstruction. Herein, a fast in situ crosslinking of calcium phosphate oligomers (CPOs) on collagen matrixes for efficient organic-inorganic interface re-construction, which can result in a biomimetic hybrid, is demonstrated. By using damaged dentin as an example, the inorganic ionic crosslinking can instantly infiltrate into the dentin matrix to rebuild a dense and continuous calcium phosphate-collagen hybrid within only 5 min, where the structurally integrated organic-inorganic interface is identical to natural dentin. As a result, the damaged dentin can be fully recovered to a healthy one, which is superior to any current dentin treatments. The fast construction of biomimetic hybrid by inorganic ionic crosslinking provides a promising strategy for hard tissue repair and follows great potentials of CPOs as advanced biomedical materials in future.
Collapse
Affiliation(s)
- Lumiao Yan
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Chen Zheng
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Disease of Zhejiang province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang university, Hangzhou, Zhejiang, 310006, China
| | - Ding Yuan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, 430079, China
| | - Zhengxi Guo
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Yihao Cui
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Zhijian Xie
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Disease of Zhejiang province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang university, Hangzhou, Zhejiang, 310006, China
| | - Zhi Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, 430079, China
| | - Ruikang Tang
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China.,State Key Laboratory for Silicon Materials, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Zhaoming Liu
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China.,State Key Laboratory for Silicon Materials, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| |
Collapse
|
15
|
Biomimetic Mineralization of Tooth Enamel Using Nanocrystalline Hydroxyapatite under Various Dental Surface Pretreatment Conditions. Biomimetics (Basel) 2022; 7:biomimetics7030111. [PMID: 35997431 PMCID: PMC9397024 DOI: 10.3390/biomimetics7030111] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
In this report, we demonstrated the formation of a biomimetic mineralizing layer obtained on the surface of dental enamel (biotemplate) using bioinspired nanocrystalline carbonate-substituted calcium hydroxyapatite (ncHAp), whose physical and chemical properties are closest to the natural apatite dental matrix, together with a complex of polyfunctional organic and polar amino acids. Using a set of structural, spectroscopy, and advanced microscopy techniques, we confirmed the formation of a nanosized ncHAp-based mineralized layer, as well as studying its chemical, substructural, and morphological features by means of various methods for the pretreatment of dental enamel. The pretreatment of a biotemplate in an alkaline solution of Ca(OH)2 and an amino acid booster, together with the executed subsequent mineralization with ncHAp, led to the formation of a mineralized layer with homogeneous micromorphology and the preferential orientation of the ncHAp nanocrystals. It was shown that the homogeneous crystallization of hydroxyapatite on the biotemplate surface and binding of individual nanocrystals and agglomerates into a single complex by an amino acid booster resulted in an increase (~15%) in the nanohardness value in the enamel rods area, compared to that of healthy natural enamel. Obtaining a similar hierarchy and cleavage characteristics as natural enamel in the mineralized layer, taking into account the micromorphological features of dental tissue, is an urgent problem for future research.
Collapse
|
16
|
Zhang L, Zhang Y, Yu T, Peng L, Sun Q, Han B. Engineered Fabrication of Enamel-Mimetic Materials. ENGINEERING 2022; 14:113-123. [DOI: 10.1016/j.eng.2021.02.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
|
17
|
Qi K, Zhu W, Zhang X, Liu M, Ao H, Wu X, Zhu Y. Enamel-like Layer of Nanohydroxyapatite Stabilizes Zn Metal Anodes by Ion Exchange Adsorption and Electrolyte pH Regulation. ACS NANO 2022; 16:9461-9471. [PMID: 35588279 DOI: 10.1021/acsnano.2c02448] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The instability of Zn anode caused by severe dendrite growth and side reactions has restricted the practical applications of aqueous zinc-ion batteries (AZIBs). Herein, an enamel-like layer of nanohydroxyapatite (Ca5(PO4)3(OH), nano-HAP) is constructed on Zn anode to enhance its stability. Benefiting from the ion exchange between Zn2+ and Ca2+, the adsorption for Zn2+ in enamel-like nano-HAP (E-nHAP) layer can effectively guide Zn deposition, ensuring homogeneous Zn2+ flux and even nucleation sites to suppress Zn dendrites. Meanwhile, the low pH of acidic electrolyte can be regulated by slightly soluble nano-HAP, restraining electrolyte corrosion and hydrogen evolution. Moreover, the E-nHAP layer features high mechanical flexibility due to its enamel-like organic-inorganic composite nanostructure. Hence, symmetric cells assembled by E-nHAP@Zn show superior stability of long-term cycling at different current densities (0.1, 0.5, 1, 5, and 10 mA cm-2). The E-nHAP@Zn∥E-nHAP@Cu cell exhibits an outstanding cycling life with high Coulombic efficiency of 99.8% over 1000 cycles. Notably, the reversibility of full cell based on CNT/MnO2 cathode can be effectively enhanced. This work shows the potential of drawing inspiration from biological nanostructure in nature to develop stable metal electrodes.
Collapse
Affiliation(s)
- Kaiwen Qi
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, P.R. China
| | - Weiduo Zhu
- School of Physics, Hefei University of Technology, Hefei 230009, P. R. China
| | - Xiaotan Zhang
- School of Materials Science and Engineering, Central South University, Changsha 410083, P. R. China
| | - Mengke Liu
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, P.R. China
| | - Huaisheng Ao
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, P.R. China
| | - Xiaojun Wu
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, P.R. China
| | - Yongchun Zhu
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, P.R. China
| |
Collapse
|
18
|
Fu Z, Zhuang Y, Cui J, Sheng R, Tomás H, Rodrigues J, Zhao B, Wang X, Lin K. Development and challenges of cells- and materials-based tooth regeneration. ENGINEERED REGENERATION 2022; 3:163-181. [DOI: 10.1016/j.engreg.2022.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
19
|
Diez-García S, Sánchez-Martín MJ, Amigo JM, Valiente M. Combination of Two Synchrotron Radiation-Based Techniques and Chemometrics to Study an Enhanced Natural Remineralization of Enamel. Anal Chem 2022; 94:5359-5366. [PMID: 35319204 PMCID: PMC8988122 DOI: 10.1021/acs.analchem.1c05498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The limitations to
assess dental enamel remineralization have been
overcome by a methodology resulting from the appropriate combination
of synchrotron radiation-based techniques on both, infrared microspectroscopy
and micro X-ray diffraction, with the help of specific data mining.
Since amelogenin plays a key role in modulating the mineralization
of tooth enamel, we propose a controlled ion release for fluorapatite
structural ions (Ca2+, PO43–, and F–, also including Zn2+) by using
weak acid and weak base ion-exchange resins in the presence of amelogenin
to remineralize the surface of etched teeth. This combination provides
the necessary ions for enamel remineralization and a guide for crystal
growth due to the protein. Remineralized tooth samples were analyzed
by applying the indicated methodology. The synchrotron data were treated
using principal component analysis and multivariate curve resolution
to analyze the mineral layer formed in the presence and absence of
amelogenin. The remineralizing treatment created a fluorapatite layer
free of carbonate impurities and with a similar orientation to that
of the natural enamel thanks to amelogenin contribution.
Collapse
Affiliation(s)
- Sandra Diez-García
- GTS Research Group, Department of Chemistry, Faculty of Science, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - María-Jesús Sánchez-Martín
- GTS Research Group, Department of Chemistry, Faculty of Science, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - José Manuel Amigo
- Ikerbasque, Basque Foundation for Science, María Díaz de Haro, 48013 Bilbao, Spain.,Department of Analytical Chemistry, University of the Basque Country UPV/EHU, P.O. Box 644, 15 48080 Bilbao, Basque Country, Spain
| | - Manuel Valiente
- GTS Research Group, Department of Chemistry, Faculty of Science, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
20
|
The power of weak ion-exchange resins assisted by amelogenin for natural remineralization of dental enamel: an in vitro study. Odontology 2022; 110:545-556. [PMID: 35147809 PMCID: PMC9170625 DOI: 10.1007/s10266-022-00688-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 01/20/2022] [Indexed: 10/28/2022]
Abstract
This study aims to develop an innovative dental product to remineralize dental enamel by a proper combination of ion-exchange resins as controlled release of mineral ions that form dental enamel, in the presence of amelogenin to guide the appropriate crystal growth. The novel product proposed consists of a combination of ion-exchange resins (weak acid and weak base) individually loaded with the remineralizing ions: Ca2+, PO43- and F-, also including Zn2+ in a minor amount as antibacterial, together with the protein amelogenin. Such cocktail provides onsite controlled release of the ions necessary for enamel remineralization due to the weak character of the resins and at the same time, a guiding tool for related crystal growth by the indicated protein. Amelogenin protein is involved in the structural development of natural enamel and takes a key role in controlling the crystal growth morphology and alignment at the enamel surface. Bovine teeth were treated by applying the resins and protein together with artificial saliva. Treated teeth were evaluated with nanoindentation, scanning electron microscopy and energy-dispersive X-ray spectroscopy. The innovative material induces the dental remineralization creating a fluorapatite layer with a hardness equivalent to sound enamel, with the appropriate alignment of corresponding nanocrystals, being the fluorapatite more acid resistant than the original mineral. Our results suggest that the new product shows potential for promoting long-term remineralization leading to the inhibition of caries and protection of dental structures.
Collapse
|
21
|
Khosalim IP, Zhang YY, Yiu CKY, Wong HM. Electrophoresis-Aided Biomimetic Mineralization System Using Graphene Oxide for Regeneration of Hydroxyapatite on Dentin. MATERIALS (BASEL, SWITZERLAND) 2021; 15:199. [PMID: 35009350 PMCID: PMC8746163 DOI: 10.3390/ma15010199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Graphene oxide (GO) is an emerging luminescent carbon nanomaterial with the ability to foster hydroxyapatite (HA). A specially designed electrophoresis system can be used to accelerate the mineralization process. The aim of this study was to promote HA crystal growth on demineralized dentin using a GO incorporated electrophoresis system. GO was successfully synthesized by carbonization of citric acid and its presence was confirmed by Fourier transform infrared and UV-visible spectrophotometry evaluation. Dentin slices were placed in demineralized solution and divided into control (without the electrophoresis system) and experimental group. Demineralized dentin slices in the experimental group were remineralized using the electrophoresis system for 8 h/1.0 mA, with one subgroup treated without GO and the other with GO. Energy dispersive spectroscopy evaluation showed that the calcium/phosphate ratio of the crystal formed in control and experimental group with addition of GO was close to natural hydroxyapatite. However, scanning electron microscopy evaluation showed that the exposed dentinal tubules were occluded with rod-like crystals, which is similar to native enamel morphology, in the experimental group with addition of GO compared to the flake-like crystal in the control group. Mechanical evaluation revealed that the nanohardness and modulus of remineralized dentin were significantly higher in the experimental group. In conclusion, GO is a promising material to remineralize dentin and the introduction of an electrophoresis system can accelerate its process.
Collapse
Affiliation(s)
| | | | | | - Hai Ming Wong
- Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China; (I.P.K.); (Y.Y.Z.); (C.K.Y.Y.)
| |
Collapse
|
22
|
Tang S, Dong Z, Ke X, Luo J, Li J. Advances in biomineralization-inspired materials for hard tissue repair. Int J Oral Sci 2021; 13:42. [PMID: 34876550 PMCID: PMC8651686 DOI: 10.1038/s41368-021-00147-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 12/24/2022] Open
Abstract
Biomineralization is the process by which organisms form mineralized tissues with hierarchical structures and excellent properties, including the bones and teeth in vertebrates. The underlying mechanisms and pathways of biomineralization provide inspiration for designing and constructing materials to repair hard tissues. In particular, the formation processes of minerals can be partly replicated by utilizing bioinspired artificial materials to mimic the functions of biomolecules or stabilize intermediate mineral phases involved in biomineralization. Here, we review recent advances in biomineralization-inspired materials developed for hard tissue repair. Biomineralization-inspired materials are categorized into different types based on their specific applications, which include bone repair, dentin remineralization, and enamel remineralization. Finally, the advantages and limitations of these materials are summarized, and several perspectives on future directions are discussed.
Collapse
Affiliation(s)
- Shuxian Tang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, PR China
| | - Zhiyun Dong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, PR China
| | - Xiang Ke
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, PR China
| | - Jun Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, PR China.
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, PR China.
- Med-X Center for Materials, Sichuan University, Chengdu, PR China.
| |
Collapse
|
23
|
Chang MP, Huang W, Mai DJ. Monomer‐scale design of functional protein polymers using consensus repeat sequences. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Marina P. Chang
- Department of Materials Science and Engineering Stanford University Stanford California USA
| | - Winnie Huang
- Department of Chemical Engineering Stanford University Stanford California USA
| | - Danielle J. Mai
- Department of Chemical Engineering Stanford University Stanford California USA
| |
Collapse
|
24
|
Ma Z, Li B, Tang R. Biomineralization: Biomimetic Synthesis of Materials and Biomimetic Regulation of Organisms. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Zaiqiang Ma
- Department of Chemistry, Zhejiang University Hangzhou Zhejiang 310027 China
| | - Benke Li
- Department of Chemistry, Zhejiang University Hangzhou Zhejiang 310027 China
| | - Ruikang Tang
- Department of Chemistry, Zhejiang University Hangzhou Zhejiang 310027 China
- Qiushi Academy for Advanced Studies, Zhejiang University Hangzhou Zhejiang 310027 China
| |
Collapse
|
25
|
Fang Z, Guo M, Zhou Q, Li Q, Wong HM, Cao CY. Enamel-like tissue regeneration by using biomimetic enamel matrix proteins. Int J Biol Macromol 2021; 183:2131-2141. [PMID: 34111481 DOI: 10.1016/j.ijbiomac.2021.06.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/04/2021] [Accepted: 06/04/2021] [Indexed: 01/15/2023]
Abstract
Enamel regeneration currently -is limited by our inability to duplicate artificially its complicated and well-aligned hydroxyapatite structure. The initial formation of enamel occurs in enamel organs where the ameloblasts secret enamel extracellular matrix formed a unique gel-like microenvironment. The enamel extracellular matrix is mainly composed by amelogenin and non-amelogenin. In this study, an innovative strategy was proposed to regenerate enamel-like tissue by constructing a microenvironment using biomimetic enamel matrix proteins (biomimetic EMPs) composed of modified leucine-rich amelogenin peptide (mLRAP) and non-amelogenin analog (NAA). Impressively, the regenerated enamel in this biomimetic EMPs on etched enamel surface produced prismatic structures, and showed similar mechanical properties to natural enamel. The results of X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) showed that regenerated crystal was hydroxyapatite. Molecular dynamics simulation analysis showed the binding energy between mLRAP and NAA were electrostatic forces and Van der Walls. These results introduced a promising strategy to induce crystal growth of enamel-like hydroxyapatite for biomimetic reproduction of materials with complicated hierarchical microstructures.
Collapse
Affiliation(s)
- Zehui Fang
- Stomatologic Hospital & College, Anhui Medical University, Key Lab.of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Mengxi Guo
- Stomatologic Hospital & College, Anhui Medical University, Key Lab.of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Qingli Zhou
- Stomatologic Hospital & College, Anhui Medical University, Key Lab.of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Quanli Li
- Stomatologic Hospital & College, Anhui Medical University, Key Lab.of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Hai Ming Wong
- Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Hong Kong
| | - Chris Ying Cao
- Stomatologic Hospital & College, Anhui Medical University, Key Lab.of Oral Diseases Research of Anhui Province, Hefei, 230032, China.
| |
Collapse
|
26
|
Wang Y, Hu D, Cui J, Zeng Y, Gan X, Chen Z, Ren Q, Zhang L. Unraveling the mechanism for an amelogenin-derived peptide regulated hydroxyapatite mineralization via specific functional domain identification. J Mater Chem B 2020; 8:10373-10383. [PMID: 33112349 DOI: 10.1039/d0tb00949k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Amelogenin and its various derived peptides play important roles in promoting biomimetic mineralization of enamel. Previously, an amelogenin-derived peptide named QP5 was proved to be able to repair demineralized enamel. The objective here was to interpret the mechanism of QP5 by elucidating the specific function of each domain for further sequence and efficacy improvement. Peptide QP5 was separated into domains (QPX)5 and C-tail. (QPX)3 was also synthesized to investigate how QPX repeats affect the mineralization process. Circular dichroism spectroscopy showed that two (QPX) repeats adopted a β-sheet structure, while C-tail exhibited a disordered structure. (QPX)5 showed more absorption in confocal laser scanning microscopy observation and a higher K value in Langmuir adsorption isotherms compared to C-tail, while (QPX)3 with better hydropathy had greater adsorption capability than (QPX)5. Meanwhile, calcium consumption kinetics, transmission electron microscopy and selected area electron diffraction indicated that (QPX)5, C-tail and (QPX)3 had similar inhibitory effects on the spontaneous calcium consumption and the morphology of their nucleation products were alike, while QP5 had a greater inhibitory effect than them and induced elongated plate-like crystals. X-Ray diffraction further showed that both C-tail and (QPX)3 had greater potential in improving the apatite crystal orientation degree. In conclusion, (QPX)5 was the major adsorption region, both (QPX)5 and C-tail inhibited the nucleation, and C-tail contributed more to improve the HAP orientation degree, so QP5 could exert a significant remineralization effect. By reducing two repeats, (QPX)3 showed higher hydropathicity than (QPX)5 and achieved higher binding affinity, and it was more potential in improving the HAP orientation degree with lower economic cost.
Collapse
Affiliation(s)
- Yufei Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Disease, Sichuan University, No. 14, Section 3 of Renmin Road South, Chengdu, China. and Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Die Hu
- State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Disease, Sichuan University, No. 14, Section 3 of Renmin Road South, Chengdu, China. and Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jingyao Cui
- State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Disease, Sichuan University, No. 14, Section 3 of Renmin Road South, Chengdu, China.
| | - Yuhao Zeng
- State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Disease, Sichuan University, No. 14, Section 3 of Renmin Road South, Chengdu, China. and Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xinyan Gan
- State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Disease, Sichuan University, No. 14, Section 3 of Renmin Road South, Chengdu, China.
| | - Zhongxin Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Disease, Sichuan University, No. 14, Section 3 of Renmin Road South, Chengdu, China.
| | - Qian Ren
- State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Disease, Sichuan University, No. 14, Section 3 of Renmin Road South, Chengdu, China. and Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Linglin Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Disease, Sichuan University, No. 14, Section 3 of Renmin Road South, Chengdu, China. and Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
27
|
Ding Q, Cui J, Shen H, He C, Wang X, Shen SGF, Lin K. Advances of nanomaterial applications in oral and maxillofacial tissue regeneration and disease treatment. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1669. [PMID: 33090719 DOI: 10.1002/wnan.1669] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/20/2020] [Accepted: 08/01/2020] [Indexed: 12/13/2022]
Abstract
Using bioactive nanomaterials in clinical treatment has been widely aroused. Nanomaterials provide substantial improvements in the prevention and treatment of oral and maxillofacial diseases. This review aims to discuss new progresses in nanomaterials applied to oral and maxillofacial tissue regeneration and disease treatment, focusing on the use of nanomaterials in improving the quality of oral and maxillofacial healthcare, and discuss the perspectives of research in this arena. Details are provided on the tissue regeneration, wound healing, angiogenesis, remineralization, antitumor, and antibacterial regulation properties of nanomaterials including polymers, micelles, dendrimers, liposomes, nanocapsules, nanoparticles and nanostructured scaffolds, etc. Clinical applications of nanomaterials as nanocomposites, dental implants, mouthwashes, biomimetic dental materials, and factors that may interact with nanomaterials behaviors and bioactivities in oral cavity are addressed as well. In the last section, the clinical safety concerns of their usage as dental materials are updated, and the key knowledge gaps for future research with some recommendation are discussed. This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement.
Collapse
Affiliation(s)
- Qinfeng Ding
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jinjie Cui
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Hangqi Shen
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Chuanglong He
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Xudong Wang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Steve G F Shen
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
- Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Kaili Lin
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
28
|
Antibacterial tooth surface created by laser-assisted pseudo-biomineralization in a supersaturated solution. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111170. [PMID: 32806265 DOI: 10.1016/j.msec.2020.111170] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/21/2020] [Accepted: 06/05/2020] [Indexed: 11/27/2022]
Abstract
A technique for implementing biocompatible and antibacterial functions to a targeted region on tooth surfaces has potential in dental treatments. We have recently demonstrated pseudo-biomineralization, i.e., the growth of an apatite layer on a human dentin substrate by a laser-assisted biomimetic (LAB) process, based on pulsed laser irradiation in a supersaturated CaP solution. In this study, pseudo-biomineralization was induced in the presence of fluoride ions using the LAB process in order to fabricate an antibacterial fluoride-incorporated apatite (FAp) layer on the dentin surface. After processing for 30 min, a micron-thick FAp layer was formed heterogeneously at the laser-irradiated solid-liquid interface via pseudo-biomineralization. A time-course study revealed that the LAB process first eliminated the pre-existing organic layer, while allowing fluoride incorporation into the dentin surface within 1 min. Within 5 min, FAp nanocrystals precipitated on the dentin surface. Within 30 min, these nanocrystals acquired a pillar-like structure that was weakly oriented in the direction normal to the substrate surface to form a dense micron-thick layer. This layer was integrated seamlessly with the underlying dentin without any apparent gaps. The FAp layer exhibited antibacterial activity against a major oral bacterium, Streptococcus mutans. The proposed LAB process is expected to be a useful new tool for tooth surface functionalization via facile and area-specific pseudo-biomineralization.
Collapse
|
29
|
Wang D, Deng J, Deng X, Fang C, Zhang X, Yang P. Controlling Enamel Remineralization by Amyloid-Like Amelogenin Mimics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002080. [PMID: 32583928 DOI: 10.1002/adma.202002080] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/16/2020] [Indexed: 06/11/2023]
Abstract
In situ regeneration of the enamel-like structure of hydroxyapatite (HAp) crystals under oral conditions is significant for dental caries treatment. However, it is still a challenge for dentists to duplicate the elegant and well-aligned apatite structure bonding to the surface of demineralized enamel. A biocompatible amelogenin-inspired matrix, a phase-transited lysozyme (PTL) film mimicking an N-terminal amelogenin with central domain (N-Ame) combined with synthetic peptide (C-AMG) based on the functional domains of C-terminal telopeptide (C-Ame) is shown here, which is formed by amyloid-like lysozyme aggregation at the enamel interface through a rapid one-step aqueous coating process. In the PTL/C-AMG matrix, C-AMG facilitated the oriented arrangement of amorphous calcium phosphate (ACP) nanoparticles and their transformation to ordered enamel-like HAp crystals, while PTL served as a strong interfacial anchor to immobilize the C-AMG peptide and PTL/C-AMG matrix on versatile substrate surfaces. PTL/C-AMG film-coated enamel induced both of the in vivo and in vitro synthesis of HAp crystals, facilitated epitaxial growth of HAp crystals and recovered the highly oriented structure and mechanical properties to levels nearly identical to those of natural enamel. This work underlines the importance of amyloid-like protein aggregates in the biomineralization of enamel, providing a promising strategy for treating dental caries.
Collapse
Affiliation(s)
- Dong Wang
- School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an, 710048, China
| | - Jingjing Deng
- School and Hospital of Stomatology, Tianjin Medical University, 12 Observatory Road, Tianjin, 30070, China
| | - Xuliang Deng
- Department of Geriatric Dentistry, School and Hospital of Stomatology, Peking University, 22 Zhongguancun South Street, Beijing, 100081, China
| | - Changqing Fang
- School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an, 710048, China
- The Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an, 710048, China
| | - Xu Zhang
- School and Hospital of Stomatology, Tianjin Medical University, 12 Observatory Road, Tianjin, 30070, China
| | - Peng Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
30
|
Wang S, Zhang L, Chen W, Jin H, Zhang Y, Wu L, Shao H, Fang Z, He X, Zheng S, Cao CY, Wong HM, Li Q. Rapid regeneration of enamel-like-oriented inorganic crystals by using rotary evaporation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 115:111141. [PMID: 32600729 DOI: 10.1016/j.msec.2020.111141] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/20/2020] [Accepted: 05/28/2020] [Indexed: 10/24/2022]
Abstract
Enamel, the hardest tissue in the human body, has excellent mechanical properties, mainly due to its highly ordered spatial structure. Fabricating enamel-like structure is still a challenge today. In this work, a simple and highly efficient method was introduced, using the silk fibroin as a template to regulate calcium- and phosphate- supersaturated solution to regenerate enamel-like hydroxyapatite crystals on various substrates (enamel, dentin, titanium, and polyethylene) under rotary evaporation. The enamel-like zinc oxide nanorod array structure was also successfully synthesized using the aforementioned method. This strategy provides a new approach to design and fabricate mineral crystals with particular orientation coatings for materials.
Collapse
Affiliation(s)
- Shengrui Wang
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Le Zhang
- Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, The Prince Philip Dental Hospital, Hong Kong 999077, China
| | - Wendy Chen
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Huimin Jin
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Ya Zhang
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Leping Wu
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Hui Shao
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Zehui Fang
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Xiaoxue He
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Shunli Zheng
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Chris Ying Cao
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Hai Ming Wong
- Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, The Prince Philip Dental Hospital, Hong Kong 999077, China.
| | - Quanli Li
- Key Lab. of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
31
|
Hanafy RA, Mostafa D, Abd El-Fattah A, Kandil S. Biomimetic chitosan against bioinspired nanohydroxyapatite for repairing enamel surfaces. BIOINSPIRED, BIOMIMETIC AND NANOBIOMATERIALS 2020; 9:85-94. [DOI: 10.1680/jbibn.19.00008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
In this study, chitosan was employed as a novel biomimetic mineralization model to repair damaged enamel to compare its performance with that of bioinspired zinc-doped nanohydroxyapatite. Fifty human premolar tooth slices were prepared, and artificial caries lesions were induced to produce demineralized enamel surfaces. The etched slices were randomly divided into two groups: a chitosan-hydrogel-treated group and a zinc-doped nanohydroxyapatite-treated group. In vitro assessment using energy-dispersive X-ray analysis, X-ray diffraction analysis and scanning electron microscopy was conducted at the baseline, demineralization and remineralization stages. Baseline results were matched with those for normal enamel; a marked reduction in the calcium (Ca)/phosphorus (P) ratio to 1·12 and the lack of the characteristic hydroxyapatite diffraction peaks were detected for demineralized enamel. The remineralization stage revealed evident recovery of the mineral contents (the calcium/phosphorus ratio was 1·61 for the chitosan-treated group and 1·58 for the bioinspired-nanohydroxyapatite-treated one), with apparent distinctive X-ray diffraction patterns of hydroxyapatite in both groups. Scanning electron microscopic analysis showed the absence of etched enamel porosity, with the formation of a newly formed rod-like apatite layer, similar to natural enamel, which extended over the treated enamel surfaces of both groups. Chitosan hydrogel is recommended as a biomimetic mineralization smart system for repairing demineralized carious enamel.
Collapse
Affiliation(s)
- Rania Ahmed Hanafy
- Department of Materials Science, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt; Department of Dental Biomaterials, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Dawlat Mostafa
- Department of Dental Biomaterials, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Ahmed Abd El-Fattah
- Department of Materials Science, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt; Department of Chemistry, College of Science, University of Bahrain, Sakhir, Kingdom of Bahrain
| | - Sherif Kandil
- Department of Materials Science, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| |
Collapse
|
32
|
Wei Y, Liu S, Xiao Z, Zhao H, Luo J, Deng X, Guo L. Enamel Repair with Amorphous Ceramics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907067. [PMID: 31930630 DOI: 10.1002/adma.201907067] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/09/2019] [Indexed: 06/10/2023]
Abstract
Developing high-performance materials in physiological conditions to clinically repair stiff tissue for long lifespan remains a great challenge. Here, an enamel repair strategy is reported by efficiently growing a biocompatible ZrO2 ceramic layer on defective enamel through controllable hydrolysis of Zr4+ in oral-tolerable conditions. Detailed analysis of the grown layer indicates that the grown ZrO2 ceramic is amorphous without grain boundary and dislocation, which endows the repaired enamel with natural enamel comparable mechanical performance (modulus ≈82.5 GPa and hardness ≈5.2 GPa). Besides, the strong chemical connection between unsaturated coordinated Zr4+ in amorphous structure and PO4 3- greatly strengthen the crystalline-amorphous interface of the repaired enamel to endure the long-time mastication damage. Moreover, these ZrO2 ceramics provide hydrophilic, electronegative, and smooth surfaces to resist the adhesion and proliferation of cariogenic bacteria. The hybrid amorphous-crystalline interface design with advantages in biomechanical compatibility would promote the evolution of a variety of cutting-edge functional materials for medical and engineering application.
Collapse
Affiliation(s)
- Yan Wei
- Department of Geriatric Dentistry, NMPA Key Laboratory for Dental Materials, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Shaojia Liu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Zuohui Xiao
- Department of Geriatric Dentistry, NMPA Key Laboratory for Dental Materials, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Hewei Zhao
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Jun Luo
- Center for Electron Microscopy, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| | - Xuliang Deng
- Department of Geriatric Dentistry, NMPA Key Laboratory for Dental Materials, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Lin Guo
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|
33
|
Šupová M. The Significance and Utilisation of Biomimetic and Bioinspired Strategies in the Field of Biomedical Material Engineering: The Case of Calcium Phosphat-Protein Template Constructs. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E327. [PMID: 31936830 PMCID: PMC7013803 DOI: 10.3390/ma13020327] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/03/2020] [Accepted: 01/07/2020] [Indexed: 02/07/2023]
Abstract
This review provides a summary of recent research on biomimetic and bioinspired strategies applied in the field of biomedical material engineering and focusing particularly on calcium phosphate-protein template constructs inspired by biomineralisation. A description of and discussion on the biomineralisation process is followed by a general summary of the application of the biomimetic and bioinspired strategies in the fields of biomedical material engineering and regenerative medicine. Particular attention is devoted to the description of individual peptides and proteins that serve as templates for the biomimetic mineralisation of calcium phosphate. Moreover, the review also presents a description of smart devices including delivery systems and constructs with specific functions. The paper concludes with a summary of and discussion on potential future developments in this field.
Collapse
Affiliation(s)
- Monika Šupová
- Department of Composites and Carbon Materials, Institute of Rock Structure and Mechanics, The Czech Academy of Sciences, V Holešovičkách 41, 182 09 Prague, Czech Republic
| |
Collapse
|
34
|
Li Z, Ren Q, Cui J, Hu D, Tian T, He T, Wang K, Jiang W, Zhang L. Comparing the efficacy of hydroxyapatite nucleation regulated by amino acids, poly-amino acids and an amelogenin-derived peptide. CrystEngComm 2020. [DOI: 10.1039/c9ce01925a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The efficacy of HAP nucleation regulated by amino acids, poly-amino acids and an amelogenin-derived peptide named QP5 was compared systematically. Poly-amino acids and QP5 regulated HAP nucleation and enamel remineralization more effectively.
Collapse
Affiliation(s)
- Zhongcheng Li
- State Key Laboratory of Oral Diseases
- National Clinical Research Centre for Oral Diseases
- Dept. of Cariology and Endodontics
- West China Hospital of Stomatology
- Sichuan University
| | - Qian Ren
- State Key Laboratory of Oral Diseases
- National Clinical Research Centre for Oral Diseases
- Dept. of Cariology and Endodontics
- West China Hospital of Stomatology
- Sichuan University
| | - Jingyao Cui
- State Key Laboratory of Oral Diseases
- National Clinical Research Centre for Oral Diseases
- Dept. of Cariology and Endodontics
- West China Hospital of Stomatology
- Sichuan University
| | - Die Hu
- State Key Laboratory of Oral Diseases
- National Clinical Research Centre for Oral Diseases
- Dept. of Cariology and Endodontics
- West China Hospital of Stomatology
- Sichuan University
| | - Tian Tian
- State Key Laboratory of Oral Diseases
- National Clinical Research Centre for Oral Diseases
- Dept. of Cariology and Endodontics
- West China Hospital of Stomatology
- Sichuan University
| | - Ting He
- State Key Laboratory of Oral Diseases
- National Clinical Research Centre for Oral Diseases
- Dept. of Cariology and Endodontics
- West China Hospital of Stomatology
- Sichuan University
| | - Kun Wang
- State Key Laboratory of Oral Diseases
- National Clinical Research Centre for Oral Diseases
- Dept. of Cariology and Endodontics
- West China Hospital of Stomatology
- Sichuan University
| | - Wentao Jiang
- State Key Laboratory of Oral Diseases
- National Clinical Research Centre for Oral Diseases
- Dept. of Cariology and Endodontics
- West China Hospital of Stomatology
- Sichuan University
| | - Linglin Zhang
- State Key Laboratory of Oral Diseases
- National Clinical Research Centre for Oral Diseases
- Dept. of Cariology and Endodontics
- West China Hospital of Stomatology
- Sichuan University
| |
Collapse
|
35
|
The potential of dendrimer in delivery of therapeutics for dentistry. Heliyon 2019; 5:e02544. [PMID: 31687479 PMCID: PMC6820096 DOI: 10.1016/j.heliyon.2019.e02544] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/25/2019] [Accepted: 09/26/2019] [Indexed: 12/29/2022] Open
Abstract
Dendrimers are hyperbranched nanoparticle structures along with its surface modifications can to be used in dental biomaterials for biomimetic remineralisation of enamel and dentin. The review highlights the therapeutic applications of dendrimers in the field of dentistry. It addresses the possible mechanisms of enhancement of mechanical properties of adhesives and resins structure. Dendrimers due to its unique construction of possessing inner hydrophobic and outer hydrophilic structure can act as drug carrier for delivery of antimicrobial drugs for treatment of periodontal diseases and at peripheral dental implant areas. Dendrimers due to its hyperbranched structures can provides a unique drug delivery vehicle for delivery of a drug at specific site for sustained release for therapeutic effects. Thus, dendrimers can be one of the most important constituents which can be incorporated in dental biomaterials for better outcomes in dentistry.
Collapse
|
36
|
Crosslinking ionic oligomers as conformable precursors to calcium carbonate. Nature 2019; 574:394-398. [PMID: 31619792 DOI: 10.1038/s41586-019-1645-x] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 08/01/2019] [Indexed: 11/08/2022]
Abstract
Inorganic materials have essential roles in society, including in building construction, optical devices, mechanical engineering and as biomaterials1-4. However, the manufacture of inorganic materials is limited by classical crystallization5, which often produces powders rather than monoliths with continuous structures. Several precursors that enable non-classical crystallization-such as pre-nucleation clusters6-8, dense liquid droplets9,10, polymer-induced liquid precursor phases11-13 and nanoparticles14-have been proposed to improve the construction of inorganic materials, but the large-scale application of these precursors in monolith preparations is limited by availability and by practical considerations. Inspired by the processability of polymeric materials that can be manufactured by crosslinking monomers or oligomers15, here we demonstrate the construction of continuously structured inorganic materials by crosslinking ionic oligomers. Using calcium carbonate as a model, we obtain a large quantity of its oligomers (CaCO3)n with controllable molecular weights, in which triethylamine acts as a capping agent to stabilize the oligomers. The removal of triethylamine initiates crosslinking of the (CaCO3)n oligomers, and thus the rapid construction of pure monolithic calcium carbonate and even single crystals with a continuous internal structure. The fluid-like behaviour of the oligomer precursor enables it to be readily processed or moulded into shapes, even for materials with structural complexity and variable morphologies. The material construction strategy that we introduce here arises from a fusion of classic inorganic and polymer chemistry, and uses the same cross-linking process for the manufacture the materials.
Collapse
|
37
|
Laser-assisted biomineralization on human dentin for tooth surface functionalization. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110061. [PMID: 31546361 DOI: 10.1016/j.msec.2019.110061] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/26/2019] [Accepted: 08/07/2019] [Indexed: 12/18/2022]
Abstract
A technique for tooth surface modification with biocompatible calcium phosphate (CaP) has huge potential in dental applications. Recently, we achieved a facile and area-specific CaP coating on artificial materials by a laser-assisted biomimetic process (LAB process), which consists of pulsed laser irradiation in a supersaturated CaP solution. In this study, we induced the rapid biomineralization on the surface of human dentin by using the LAB process. A human dentin substrate was immersed in a supersaturated CaP solution, then its surface was irradiated with weak pulsed laser light for 30 min (LAB process). Ultrastructural analyses revealed that the pristine substrate had a demineralized collagenous layer on its surface due to the previous EDTA surface cleaning. After the LAB process, this collagenous layer disappeared and was replaced with a submicron-thick hydroxyapatite layer. We believe that the laser irradiation induced pseudo-biomineralization through the laser ablation of the collagenous layer, followed by CaP nucleation and growth at the dentin-liquid interface. The mineralized layer on the dentin substrate consisted of needle-like hydroxyapatite nanocrystals, whose c-axes were weakly oriented along the direction perpendicular to the substrate surface. This LAB process would offer a new tool enabling tooth surface modification and functionalization through the in situ pseudo-biomineralization.
Collapse
|
38
|
Shao C, Jin B, Mu Z, Lu H, Zhao Y, Wu Z, Yan L, Zhang Z, Zhou Y, Pan H, Liu Z, Tang R. Repair of tooth enamel by a biomimetic mineralization frontier ensuring epitaxial growth. SCIENCE ADVANCES 2019; 5:eaaw9569. [PMID: 31497647 PMCID: PMC6716959 DOI: 10.1126/sciadv.aaw9569] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 07/16/2019] [Indexed: 05/18/2023]
Abstract
The regeneration of tooth enamel, the hardest biological tissue, remains a considerable challenge because its complicated and well-aligned apatite structure has not been duplicated artificially. We herein reveal that a rationally designed material composed of calcium phosphate ion clusters can be used to produce a precursor layer to induce the epitaxial crystal growth of enamel apatite, which mimics the biomineralization crystalline-amorphous frontier of hard tissue development in nature. After repair, the damaged enamel can be recovered completely because its hierarchical structure and mechanical properties are identical to those of natural enamel. The suggested phase transformation-based epitaxial growth follows a promising strategy for enamel regeneration and, more generally, for biomimetic reproduction of materials with complicated structure.
Collapse
Affiliation(s)
- Changyu Shao
- Department of Chemistry and Center for Biomaterials and Biopathways, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Biao Jin
- Department of Chemistry and Center for Biomaterials and Biopathways, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Zhao Mu
- Department of Chemistry and Center for Biomaterials and Biopathways, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Hao Lu
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Jiujiang Research Institute, Xiamen University, Xiamen, Fujian 361005, China
| | - Yueqi Zhao
- Department of Chemistry and Center for Biomaterials and Biopathways, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Zhifang Wu
- Department of Prosthodontics, Hospital of Stomatology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Lumiao Yan
- Department of Chemistry and Center for Biomaterials and Biopathways, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Zhisen Zhang
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Jiujiang Research Institute, Xiamen University, Xiamen, Fujian 361005, China
| | - Yanchun Zhou
- Zhejiang University Hospital, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Haihua Pan
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Zhaoming Liu
- Department of Chemistry and Center for Biomaterials and Biopathways, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Ruikang Tang
- Department of Chemistry and Center for Biomaterials and Biopathways, Zhejiang University, Hangzhou, Zhejiang 310027, China
- State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
39
|
Joseph Nathanael A, Oyane A, Nakamura M, Mahanti M, Koga K, Shitomi K, Miyaji H. Rapid and area-specific coating of fluoride-incorporated apatite layers by a laser-assisted biomimetic process for tooth surface functionalization. Acta Biomater 2018; 79:148-157. [PMID: 30149210 DOI: 10.1016/j.actbio.2018.08.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/31/2018] [Accepted: 08/21/2018] [Indexed: 02/07/2023]
Abstract
Surface functionalization of teeth with fluoride-incorporated apatite layers displays great potential in treatments and prevention of dental disorders. In this study, we used a sintered hydroxyapatite (sHA) substrate as a model material of teeth, and established a rapid and area-specific coating technique of fluoride-incorporated apatite layers by using a laser-assisted biomimetic (LAB) process. In this technique, a sHA substrate was irradiated on the surface with a Nd:YAG pulsed UV laser for 30 min in supersaturated calcium phosphate (CaP) solutions with various fluoride concentrations. The fluoride concentration in the CaP solution was varied to control morphology, crystalline structure, and fluoride content of the resulting layers. Without fluoride in the CaP solution, an octacalcium phosphate (OCP) layer with a flake-like structure was formed on the laser-irradiated surface of the substrate. The addition of fluoride (1000 µM and 3000 µM) to the CaP solution led to the formation of fluoride-incorporated apatite layers with an enamel-like needle-like nanostructure. The fluoride-incorporated apatite layers adhered firmly to the sHA surface and reduced acid dissolution of the sHA substrate by acting as a protective covering. Additionally, the layers released fluoride ions for more than 24 h, and exhibited antibacterial activity relative to a caries-causing bacterium, namely Streptococcus mutans. Thus, our LAB process can potentially act as a new tool for functionalization of tooth surfaces. STATEMENT OF SIGNIFICANCE We used a sintered hydroxyapatite (sHA) substrate as a model material of teeth, and established a rapid and area-specific coating technique of fluoride-incorporated apatite layers on the sHA surface by using our laser-assisted biomimetic (LAB) process. In this process, pulsed laser was utilized to accelerate seeded crystal growth in supersaturated calcium phosphate solutions supplemented with NaF. The thus-fabricated fluoride-incorporated apatite layers consisted of enamel-like needle-like nanocrystals with c-axis orientation. These fluoride-incorporated apatite layers adhered firmly to the sHA surface, reduced acid dissolution of the sHA substrate by acting as a protective covering, and exhibited antibacterial activity against Streptococcus mutans through the fluoride release. Thus, our LAB process can potentially act as a new tool for functionalization of tooth surfaces.
Collapse
|
40
|
Li B, Wang F, Gui L, He Q, Yao Y, Chen H. The potential of biomimetic nanoparticles for tumor-targeted drug delivery. Nanomedicine (Lond) 2018; 13:2099-2118. [DOI: 10.2217/nnm-2018-0017] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Bowen Li
- Department of Bioengineering, University of Washington, Seattle, Washington WA 98195, USA
| | - Fei Wang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 24 Tongjia Lane, Gulou District, Nanjing 210009, PR China
| | - Lijuan Gui
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 24 Tongjia Lane, Gulou District, Nanjing 210009, PR China
| | - Qing He
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 24 Tongjia Lane, Gulou District, Nanjing 210009, PR China
| | - Yuxin Yao
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 24 Tongjia Lane, Gulou District, Nanjing 210009, PR China
| | - Haiyan Chen
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 24 Tongjia Lane, Gulou District, Nanjing 210009, PR China
| |
Collapse
|
41
|
Song J, Wang H, Yang Y, Xiao Z, Lin H, Jin L, Xue Y, Lin M, Chen F, Zhu M, Zhao Y, Qiu Z, Li Y, Zhang X. Nanogels of carboxymethyl chitosan and lysozyme encapsulated amorphous calcium phosphate to occlude dentinal tubules. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:84. [PMID: 29892913 DOI: 10.1007/s10856-018-6094-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 05/26/2018] [Indexed: 06/08/2023]
Abstract
This study aimed to develop of a rapid and effective method to occlude dentinal tubules using carboxymethyl chitosan and lysozyme (CMC/LYZ) nanogels with encapsulated amorphous calcium phosphate (ACP) based on the transformation of ACP to HAP. In this work, CMC/LYZ was used to stabilize ACP and form CMC/LYZ-ACP nanogels, and then the nanogel-encapsulated ACP was applied to exposed dentinal tubule surfaces. The morphology of the nanogels was examined by transmission electron microscopy (TEM). Distribution and quantity of elements in CMC/LYZ-ACP nanogels were determined by element mapping and energy dispersive X-Ray spectroscopy (EDX). Scanning electron microscopy (SEM) images, XRD measurements and nanoindentation were applied to check the efficacy of tubular occlusion. TEM revealed that CMC/LYZ-ACP nanogels were spherical dense gel particles with size approximately 50-500 nm. Element mapping and EDX indicated that C, N, O, Ca, P, and S in the microspheres are thoroughly represented. SEM images shows that the thickness of the coating layer was approximately 1-2 μm and the depth to which the mineralized substance enters the dentinal tubule was approximately 4-8 μm. XRD measurements and nanoindentation indicated that the occluding mineralized substance observed were similar to nature dentin. CMC can form spherical dense nanogels loaded with ACP under the participation of lysozyme. The CMC/LYZ-ACP nanogels could increase the dentinal tubule occluding effectiveness. These results indicated that finding and developing novel nanomaterials of CMC/LYZ-ACP would be an effective strategy for the treatment of dentin hypersensitivity.
Collapse
Affiliation(s)
- Jinhua Song
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Haorong Wang
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Yunqi Yang
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Zuohui Xiao
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Haibao Lin
- School and Hospital of Stomatology, Jiamusi University, Jiamusi, China
| | - Lichun Jin
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Yan Xue
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Mingli Lin
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Fuyu Chen
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Mengqi Zhu
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Yanhong Zhao
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Zhongjun Qiu
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin, China
| | - Yanqiu Li
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China.
| | - Xu Zhang
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
42
|
Zhao C, Wang X, Gao L, Jing L, Zhou Q, Chang J. The role of the micro-pattern and nano-topography of hydroxyapatite bioceramics on stimulating osteogenic differentiation of mesenchymal stem cells. Acta Biomater 2018; 73:509-521. [PMID: 29678674 DOI: 10.1016/j.actbio.2018.04.030] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 04/14/2018] [Accepted: 04/16/2018] [Indexed: 02/07/2023]
Abstract
The micro/nano hybrid structure is considered to be a biomaterial characteristic to stimulate osteogenesis by mimicking the three-dimensional structure of the bone matrix. However, the mechanism of the hybrid structure induced osteogenic differentiation of stem cells is still unknown. For elucidating the mechanisms, one of the challenge is to directly fabricate micro/nano hybrid structure on bioceramics because of its brittleness. In this study, hydroxyapatite (HA) bioceramics with the micro/nano hybrid structure were firstly fabricated via a hydrothermal treatment and template method, and the effect of the different surface structures on the expression of integrins, BMP2 signaling pathways and cell-cell communication was investigated. Interestingly, the results suggested that the osteogenic differentiation induced by micro/nano structures was modulated first through activating integrins and then further activating BMP2 signaling pathway and cell-cell communication, while activated BMP2 could in turn activate integrins and Cx43-related cell-cell communication. Furthermore, differences in activation of integrins, BMP2 signaling pathway, and gap junction-mediated cell-cell communication were observed, in which nanorod and micropattern structures activated different integrin subunits, BMP downstream receptors and Cx43. This finding may explain the synergistic effect of the micro/nano hybrid structure on the activation of osteogenic differentiation of BMSCs. Based on our study, we concluded that the different activation mechanisms of micro- and nano-structures led to the synergistic stimulatory effect on integrin activation and osteogenesis, in which not only the direct contact of cells on micro/nano structure played an important role, but also other surface characteristics such as protein adsorption might contribute to the bioactive effect. STATEMENT OF SIGNIFICANCE The micro/nano hybrid structure has been found to have synergistic bioactivity on osteogenesis. However, it is still a challenge to fabricate the hybrid structure directly on the bioceramics, and the role of micro- and nano-structure, in particular the mechanism of the micro/nano-hybrid structure induced stem cell differentiation is still unknown. In this study, we firstly fabricated hydroxyapatite bioceramics with the micro/nano hybrid structure, and then investigated the effect of different surface structure on expression of integrins, BMP2 signaling pathways and cell-cell communication. Interestingly, we found that the osteogenic differentiation induced by structure was modulated first through activating integrins and then further activating BMP2 signaling pathway and cell-cell communication, and activated BMP2 could in turn activate some integrin subunits and Cx43-related cell-cell communication. Furthermore, differences in activation of integrins, BMP2 signaling pathway, and gap junction-mediated cell-cell communication were observed, in which nanorod and micropattern structures activated different integrin subunits, BMP downstream receptors and Cx43. This finding may explain the synergistic effect of the micro/nano hybrid structure on the activation of osteogenic differentiation of BMSCs. Based on our study, we concluded that the different activation mechanisms of micro- and nano-structures led to the synergistic stimulatory effect on integrin activation and osteogenesis, in which not only the direct contact of cells on micro/nano structure played an important role, but also other surface characteristics such as protein adsorption might contribute to the bioactive effect.
Collapse
|
43
|
Mukherjee K, Ruan Q, Nutt S, Tao J, De Yoreo JJ, Moradian-Oldak J. Peptide-Based Bioinspired Approach to Regrowing Multilayered Aprismatic Enamel. ACS OMEGA 2018; 3:2546-2557. [PMID: 29623301 PMCID: PMC5879487 DOI: 10.1021/acsomega.7b02004] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 02/22/2018] [Indexed: 05/28/2023]
Abstract
The gradual discovery of functional domains in native enamel matrix proteins has enabled the design of smart bioinspired peptides for tooth enamel mimetics and repair. In this study, we expanded upon the concept of biomineralization to design smaller amelogenin-inspired peptides with conserved functional domains for clinical translation. The synthetic peptides displayed a characteristic nanostructured scaffold reminiscent of 'nanospheres' seen in the enamel matrix and effectively controlled apatite nucleation in vitro resulting in the formation of smaller crystallites. Following application of the peptides to sectioned human molar teeth, a robust, oriented, synthetic aprismatic enamel was observed after 7 days of incubation in situ. There was a two-fold increase in the hardness and modulus of the regrown enamel-like apatite layers and an increase in the attachment of the tooth-regrown layer interface compared to control samples. Repeated peptide applications generated multiple enamel-like hydroxyapatite (HAP) layers of limited thickness produced by epitaxial growth in which c-axis oriented nanorods evolved on the surface of native enamel. We conclude that peptide analogues with active domains can effectively regulate the orientation of regenerated HAP layers to influence functional response. Moreover, this enamel biofabrication approach demonstrates the peptide-mediated growth of multiple microscale HAP arrays of organized microarchitecture with potential for enamel repair.
Collapse
Affiliation(s)
- Kaushik Mukherjee
- Center
for Craniofacial Molecular Biology, Division of Biomedical Sciences,
Herman Ostrow School of Dentistry, University
of Southern California, 2250 Alcazar Street, 90033 Los Angeles, United States
| | - Qichao Ruan
- Center
for Craniofacial Molecular Biology, Division of Biomedical Sciences,
Herman Ostrow School of Dentistry, University
of Southern California, 2250 Alcazar Street, 90033 Los Angeles, United States
| | - Steven Nutt
- Mork
Family Department of Chemical Engineering and Materials Science, University of Southern California, 3651 Watt Way, 90089 Los Angeles, United States
| | - Jinhui Tao
- Physical
Sciences Division, Pacific Northwest National
Laboratory, 902 Battelle
Blvd, 99352 Richland, United States
| | - James J. De Yoreo
- Physical
Sciences Division, Pacific Northwest National
Laboratory, 902 Battelle
Blvd, 99352 Richland, United States
| | - Janet Moradian-Oldak
- Center
for Craniofacial Molecular Biology, Division of Biomedical Sciences,
Herman Ostrow School of Dentistry, University
of Southern California, 2250 Alcazar Street, 90033 Los Angeles, United States
| |
Collapse
|
44
|
Zhou Y, Zhou Y, Gao L, Wu C, Chang J. Synthesis of artificial dental enamel by an elastin-like polypeptide assisted biomimetic approach. J Mater Chem B 2018; 6:844-853. [DOI: 10.1039/c7tb02576a] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The synthesized artificial enamel assisted by an elastin-like polypeptide revealed a similar structure and excellent mechanical properties to those of natural enamel.
Collapse
Affiliation(s)
- Yang Zhou
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
- University of Chinese Academy of Sciences
| | - Yanling Zhou
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
| | - Long Gao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
- University of Chinese Academy of Sciences
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
| | - Jiang Chang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
| |
Collapse
|
45
|
Guo YR, Yang X, Feng XW, Sa Y, Wang M, Li P, Jiang T. New Insights into Effects of Aromatic Amino Acids on Hydroxyapatite. J Dent Res 2017; 97:402-408. [PMID: 29130776 DOI: 10.1177/0022034517741274] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Biomimetics inspired by superstructures and extraordinary properties of teeth have resulted in tooth repair and the generation of novel materials. However, little attention has been paid to tooth color, whose origin remains unknown. Based on recent studies, fluorophores-mainly aromatic amino acids (AAAs) in proteins-might be responsible for tooth color. We synthesized carbonated hydroxyapatite (HA; the mineral phase of teeth) in the presence of different amino acids (AAs; the basic units of protein matrix of teeth) as a simplified model of teeth to explore the color source at the AA level. After measuring the fluorescence and color characteristics of HA-AAs before and after bleaching treatment, we found that only HA, synthesized in the presence of AAAs, exhibited remarkable fluorescence and color property. Furthermore, linearly increased fluorescence intensity and deeper color were observed with an increase in AAA content in HA-AAAs. Similarly, significantly decreased absorbance of HA-AAAs between 250 and 300 nm in ultraviolet spectra, declined fluorescence intensity, and decolored performance of HA-AAAs were observed after bleaching treatment. The results showed that AAAs contributed to the fluorescence and color properties of HA and that hydrogen peroxide might whiten HA-AAAs by oxidizing the benzene ring in AAAs. These findings are of great significance in promoting the synthesis of advanced tooth-colored materials and furthering our understanding of the possible mechanisms of hydrogen peroxide. Moreover, our study shed light on the importance of AAAs and might provide new ideas for investigations of biomineralization and biomimetics.
Collapse
Affiliation(s)
- Y R Guo
- 1 The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - X Yang
- 2 Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - X W Feng
- 1 The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - Y Sa
- 1 The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China.,3 Department of Prosthodontics, Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - M Wang
- 1 The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - P Li
- 1 The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - T Jiang
- 1 The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China.,3 Department of Prosthodontics, Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| |
Collapse
|
46
|
Abstract
As one of the biominerals, hydroxyapatite (HAP) plays important roles in biology, and inspires researchers to investigate HAP-based materials for the applications in various biomedical fields. Among them, one-dimensional (1-D) micro-/nanostructured HAP materials have attracted great interest in the last decades. This review summarizes the preparation and applications of 1-D HAP materials, and discusses different aspects of 1-D HAP materials. Various synthetic methods have been developed to prepare 1-D HAP materials with different morphologies, sizes, surface properties and crystallinities. In addition, elements-substituted 1-D HAP materials and composites have also been prepared. Surfactants and additives are usually adopted to control the nucleation and growth of 1-D HAP materials, but the related mechanisms are not very clear yet. The applications of 1-D HAP materials have been widely investigated, and the biomedical applications show great prospect but still need further improvements. A new kind of highly flexible fire-resistant inorganic paper made of ultralong HAP nanowires has been developed and is a promising alternative of the traditional cellulose paper for valuable archives and important documents. Regardless of the advances, further studies should be made for preparing 1-D HAP materials with controlled structures, sizes and morphologies and for boosting their various applications.
Collapse
Affiliation(s)
- Bing-Qiang Lu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| | - Ying-Jie Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| |
Collapse
|
47
|
Xiao Z, Que K, Wang H, An R, Chen Z, Qiu Z, Lin M, Song J, Yang J, Lu D, Shen M, Guan B, Wang Y, Deng X, Yang X, Cai Q, Deng J, Ma L, Zhang X, Zhang X. Rapid biomimetic remineralization of the demineralized enamel surface using nano-particles of amorphous calcium phosphate guided by chimaeric peptides. Dent Mater 2017; 33:1217-1228. [DOI: 10.1016/j.dental.2017.07.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/05/2017] [Accepted: 07/13/2017] [Indexed: 12/30/2022]
|
48
|
Yao S, Jin B, Liu Z, Shao C, Zhao R, Wang X, Tang R. Biomineralization: From Material Tactics to Biological Strategy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1605903. [PMID: 28229486 DOI: 10.1002/adma.201605903] [Citation(s) in RCA: 189] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/31/2017] [Indexed: 05/23/2023]
Abstract
Biomineralization is an important tactic by which biological organisms produce hierarchically structured minerals with marvellous functions. Biomineralization studies typically focus on the mediation function of organic matrices on inorganic minerals, which helps scientists to design and synthesize bioinspired functional materials. However, the presence of inorganic minerals may also alter the native behaviours of organic matrices and even biological organisms. This progress report discusses the latest achievements relating to biomineralization mechanisms, the manufacturing of biomimetic materials and relevant applications in biological and biomedical fields. In particular, biomineralized vaccines and algae with improved thermostability and photosynthesis, respectively, demonstrate that biomineralization is a strategy for organism evolution via the rational design of organism-material complexes. The successful modification of biological systems using materials is based on the regulatory effect of inorganic materials on organic organisms, which is another aspect of biomineralization control. Unlike previous studies, this study integrates materials and biological science to achieve a more comprehensive view of the mechanisms and applications of biomineralization.
Collapse
Affiliation(s)
- Shasha Yao
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Biao Jin
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Zhaoming Liu
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Changyu Shao
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Ruibo Zhao
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Xiaoyu Wang
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Ruikang Tang
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| |
Collapse
|
49
|
Han M, Li QL, Cao Y, Fang H, Xia R, Zhang ZH. In vivo remineralization of dentin using an agarose hydrogel biomimetic mineralization system. Sci Rep 2017; 7:41955. [PMID: 28167823 PMCID: PMC5294398 DOI: 10.1038/srep41955] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 01/03/2017] [Indexed: 11/16/2022] Open
Abstract
A novel agarose hydrogel biomimetic mineralization system loaded with calcium and phosphate was used to remineralize dentin and induce the oriented densely parallel packed HA layer on defective dentin surface in vivo in a rabbit model. Firstly, the enamel of the labial surface of rabbits' incisor was removed and the dentin was exposed to oral environment. Secondly, the hydrogel biomimetic mineralization system was applied to the exposed dentin surface by using a custom tray. Finally, the teeth were extracted and evaluated by scanning electron microscopy, X-ray diffraction, and nanoindentation test after a certain time of mineralization intervals. The regenerated tissue on the dentin surface was composed of highly organised HA crystals. Densely packed along the c axis, these newly precipitated HA crystals were perpendicular to the underlying dental surface with a tight bond. The demineralized dentin was remineralized and dentinal tubules were occluded by the grown HA crystals. The nanohardness and elastic modulus of the regenerated tissue were similar to natural dentin. The results indicated a potential clinical use for repairing dentin-exposed related diseases, such as erosion, wear, and dentin hypersensitivity.
Collapse
Affiliation(s)
- Min Han
- College & Hospital of Stomatology, Anhui Medical University, Key Lab of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Quan-Li Li
- College & Hospital of Stomatology, Anhui Medical University, Key Lab of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Ying Cao
- College & Hospital of Stomatology, Anhui Medical University, Key Lab of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Hui Fang
- College & Hospital of Stomatology, Anhui Medical University, Key Lab of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Rong Xia
- Department of Stomatology, the Second Hospital affiliated to Anhui Medical University, Hefei, 230601, China
| | - Zhi-Hong Zhang
- Department of Stomatology, the Hospital of Anhui Province, Hefei, 230001, China
| |
Collapse
|
50
|
Dong LY, Zhu YJ. A New Kind of Fireproof, Flexible, Inorganic, Nanocomposite Paper and Its Application to the Protection Layer in Flame-Retardant Fiber-Optic Cables. Chemistry 2017; 23:4597-4604. [PMID: 27943477 DOI: 10.1002/chem.201604552] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Indexed: 12/14/2022]
Abstract
An innovative method for making a new kind of highly flexible, fireproof, inorganic, nanocomposite paper made from glass fibers (GFs) coated with network-structured hydroxyapatite ultralong nanowires (NS-HANWs) is reported. The NS-HANW/GF paper is fireproof, high-temperature resistant, highly flexible, highly exquisite, and smooth, which is comparable to high-quality advanced coated paper. The most incredible characteristic of the NS-HANW/GF paper is its incombustibility. The as-prepared NS-HANW/GF paper, with the addition of optimized inorganic additives, has high mechanical properties (tensile strength ≈16 MPa) and the tensile strength is nearly 15 times that of GF paper. In addition, the NS-HANW/GF paper exhibits a high biocompatibility, owing to the coating effect of NS-HANWs on GFs. Thermal analysis indicates that the NS-HANW/GF paper has high thermal stability at high temperatures up to 1000 °C. Competitive to conventional insulation materials, the NS-HANW/GF paper exhibits a low thermal conductivity and excellent heat insulation performance. Experiments show that the NS-HANW/GF paper is promising for application in the protection layer of fire-retardant fiber-optic cable. The NS-HANW/GF paper can also be used as printing, copying, or writing paper; nonflammable China paper; fire-retardant wallpaper; specialty fireproof paper; and so on.
Collapse
Affiliation(s)
- Li-Ying Dong
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P.R. China
| | - Ying-Jie Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P.R. China
| |
Collapse
|