1
|
Xie X, Chen X, Zhou J, Wang T, Yang G, Han F, Wei Z. Dynamic Hydrogels with Tunable Mechanics for 3D Organoid Derivation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2501862. [PMID: 40434214 DOI: 10.1002/smll.202501862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 05/04/2025] [Indexed: 05/29/2025]
Abstract
The mechanical properties of the hydrogel play a pivotal role in governing the formation and development of 3D organoids in vitro. However, commonly employed natural hydrogels, such as Matrigel and other extracellular matrix (ECM)-derived products, are characterized by ill-defined and complex compositions, resulting in non-tunable mechanical properties. This limitation poses challenges in controlling organoids' developmental trajectory and 3D morphology. Although numerous synthetic hydrogels with well-defined chemical structures have recently been adopted to study organoids by modulating stiffness, advanced research emphasizes the importance of dynamic mechanical cues, such as dynamic stiffness softening and dynamic viscoelasticity, for optimal organoid derivation. These cues are essential for mimicking the dynamic physiological states of organoids during their growth. Despite their potential, the concept of dynamic hydrogels is often used interchangeably, and a systematic review is lacking to clarify this ambiguity. Furthermore, the mechanisms through which dynamic mechanical cues regulate organoid formation have not been thoroughly reported. This review endeavors to summarize and categorize dynamic hydrogels and reveal the effects of dynamic mechanics on organoid derivation. Additionally, the prospects of dynamic hydrogels in organoid derivation are deliberated to promote a more rational design of synthetic hydrogels, guiding organoid derivation and propelling organoid technology in biomedicine.
Collapse
Affiliation(s)
- Xueyong Xie
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xuewen Chen
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Jian Zhou
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, P. R. China
| | - Tiansong Wang
- Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Gen Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, P. R. China
- School of Physics, Peking University, Beijing, 100871, P. R. China
| | - Fei Han
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Zhao Wei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
2
|
Combe A, Chen S, Pacella G, Stuart MCA, de Boer JY, Portale G, Feringa BL. Photoactuating artificial muscle from supramolecular assembly of an overcrowded alkene-derived molecular switch. Nat Commun 2025; 16:3897. [PMID: 40274789 PMCID: PMC12022091 DOI: 10.1038/s41467-025-58468-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 03/24/2025] [Indexed: 04/26/2025] Open
Abstract
The amplification of molecular motion along length scales for macroscopic muscle-like functions, based on supramolecular polymers, provides attractive opportunities ranging from soft actuators to responsive biomedical materials. Taking the challenge to reveal dynamic assembly parameters governing muscle functions, we present the design of a photoswitch amphiphile based on an overcrowded alkene-derived core, and developed supramolecular artificial muscles. Going from molecular motor amphiphile (MA) to switch amphiphile (SA), taking advantage of high thermal stability of the switch core, a self-recovering of bent SA artificial muscle is observed in post-photoactuation without external intervention. Eliminating molecular motions in SA artificial muscle during the post-photoactuation and aging process enables us to identify correlations between dynamic assembly transformations and macroscopic actuating functions. These findings provide insights into photoactuation and subsequent self-recovery mechanisms from the aspect of dynamic assembly process, which offers new opportunities for developing amphiphile-based supramolecular artificial muscles.
Collapse
Affiliation(s)
- Adrien Combe
- Centre for System Chemistry, Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands
| | - Shaoyu Chen
- Centre for System Chemistry, Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands.
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Gianni Pacella
- Macromolecular Chemistry and New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Marc C A Stuart
- Centre for System Chemistry, Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands
| | - John Y de Boer
- Centre for System Chemistry, Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands
| | - Giuseppe Portale
- Macromolecular Chemistry and New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Ben L Feringa
- Centre for System Chemistry, Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
3
|
Meng Y, Xu L, Cheng G. Bioelectronics hydrogels for implantable cardiac and brain disease medical treatment application. Int J Biol Macromol 2025; 299:139945. [PMID: 39837454 DOI: 10.1016/j.ijbiomac.2025.139945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/28/2024] [Accepted: 01/14/2025] [Indexed: 01/23/2025]
Abstract
Hydrogel-based bioelectronic systems offer significant benefits for point-of-care diagnosis, treatment of cardiac and cerebral disease, surgical procedures, and other medical applications, ushering in a new era of advancements in medical technology. Progress in hydrogel-based bioelectronics has advanced from basic instrument and sensing capabilities to sophisticated multimodal perceptions and feedback systems. Addressing challenges related to immune responses and inflammation regulation after implantation, physiological dynamic mechanism, biological toxicology as well as device size, power consumption, stability, and signal conversion is crucial for the practical implementation of hydrogel-based bioelectronics in medical implants. Therefore, further exploration of hydrogel-based bioelectronics is imperative, and a comprehensive review is necessary to steer the development of these technologies for use in implantable therapies for cardiac and brain/neural conditions. In this review, a concise overview is provided on the fundamental principles underlying ionic electronic and ionic bioelectronic mechanisms. Additionally, a comprehensive examination is conducted on various bioelectronic materials integrated within hydrogels for applications in implantable medical treatments. The analysis encompasses a detailed discussion on the representative structures and physical attributes of hydrogels. This includes an exploration of their intrinsic properties such as mechanical strength, dynamic capabilities, shape-memory features, stability, stretchability, and water retention characteristics. Moreover, the discussion extends to properties related to interactions with tissues or the environment, such as adhesiveness, responsiveness, and degradability. The intricate relationships between the structure and properties of hydrogels are thoroughly examined, along with an elucidation of how these properties influence their applications in implantable medical treatments. The review also delves into the processing techniques and characterization methods employed for hydrogels. Furthermore, recent breakthroughs in the applications of hydrogels are logically explored, covering aspects such as materials, structure, properties, functions, fabrication procedures, and hybridization with other materials. Finally, the review concludes by outlining the future prospects and challenges associated with hydrogels-based bioelectronics systems.
Collapse
Affiliation(s)
- Yanfang Meng
- School of Mechanical Engineering, Jiangsu University, No.301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Lin Xu
- School of Mechanical Engineering, Jiangsu University, No.301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China.
| | - Guanggui Cheng
- School of Mechanical Engineering, Jiangsu University, No.301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China.
| |
Collapse
|
4
|
Ulrich HF, Pihlamagi CC, Klein T, Bakkali-Hassani C, Catrouillet S, Brendel JC. Injectable biocompatible hydrogels with tunable strength based on crosslinked supramolecular polymer nanofibers. J Mater Chem B 2025; 13:2003-2014. [PMID: 39774563 DOI: 10.1039/d4tb01873g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Hydrogels based on supramolecular assemblies offer attractive features for biomedical applications including injectability or versatile combinations of various building blocks. We here investigate a system combining benzenetrispeptides (BTP), which forms supramolecular fibers, with polymer polyethylene oxide (PEO) forming a dense hydrophilic shell around the fibers. Hydrogels are created through the addition of a bifunctional crosslinker (CL). Rheological studies revealed that shorter hydrophobic n-hexyl spacers (BTP-C6) lead to stronger hydrogels than BTP-C12 comprising n-dodecyl chains. All hydrogels recovered rapidly (<5 s) after deformation in step-strain-measurements. We varied the crosslinker content between 0.1, 1 and 10 mol% and the overall concentration of the gelator. While the shear storage modulus of all BTP-C12 hydrogels remains below 1 kPa independent of the variations, the shear storage modulus of BTP-C6 hydrogels can be tuned from around 0.2 kPa up to almost 8 kPa. Shear rate dependent viscosity measurements further revealed similar shear thinning behavior of all hydrogels, and the calculation of extrusion parameters confirmed that the hydrogels can be easily injected even through thin cannulae. Accordingly, we injected a fluorescein-containing BTP-C6 sample into chicken breast demonstrating the potential for application as an injectable drug depot. Furthermore, BTP-C6 hydrogels prevent the adherence of L929 mouse fibroblasts but preserve their relative metabolic activity (>87%) during incubation on the gel when compared to cells growing on adherent surfaces. Our investigations overall reveal that the BTP-C6 system in particular has attractive features for applications in tissue engineering or as an injectable and biocompatible drug depot.
Collapse
Affiliation(s)
- Hans F Ulrich
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Ceren C Pihlamagi
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Tobias Klein
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | | | | | - Johannes C Brendel
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
- Macromolecular Chemistry I, University of Bayreuth, Universitätsstr. 30, 95447 Bayreuth, Germany
- Institute of Macromolecular Research (BIMF) and Bavarian Polymer Institute (BPI), University of Bayreuth, Universitätsstr. 30, 95447 Bayreuth, Germany
| |
Collapse
|
5
|
van Sprang JF, Smits IPM, Nooten JCH, Fransen PPKH, Söntjens SHM, van Houtem MHCJ, Janssen HM, Rutten MGTA, Schotman MJG, Dankers PYW. From natural to synthetic hydrogels: how much biochemical complexity is required for mechanotransduction? J Mater Chem B 2025; 13:610-621. [PMID: 39601124 DOI: 10.1039/d4tb01774a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The biochemical complexity of a material determines the biological response of cells triggered by a cell-material interaction. The degree in which this complexity influences basic cell-material interactions such as cell adhesion, spreading, and mechanotransduction is not entirely clear. To this end, we compared three different hydrogel systems, ranging from completely natural to synthetic, in their ability to induce mechanotransduction in kidney epithelial cells (HK-2). A natural hydrogel system was developed based on a decellularized kidney extracellular matrix (dECM). Supramolecular ureido-pyrimidinone (UPy)-glycinamide molecules, with self-associative behavior, were used for a hybrid and complete synthetic system. A hybrid system was engineered by co-assembling this monovalent UPy molecule with a hyaluronic acid, functionalized with ∼7 UPy-groups (UPy-HA), into a transient network. A similar approach was used for the synthetic hydrogel system, in which the multivalent UPy-HA was replaced with a bivalent UPy-PEG molecule with bioinert properties. Both hybrid and synthetic hydrogel systems were more mechanically tunable compared to the dECM hydrogel. The higher bulk stiffness in combination with the introduction of collagen type I mimicking UPy-additives allowed these materials to induce more nuclear yes-associated protein translocation in HK-2 cells compared to the biochemically complex dECM hydrogel. This demonstrated that minimal biochemical complexity is sufficient for inducing mechanotransduction.
Collapse
Affiliation(s)
- Johnick F van Sprang
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Laboratory of Cell and Tissue Engineering, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Imke P M Smits
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
- Laboratory of Cell and Tissue Engineering, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Jasper C H Nooten
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Peter-Paul K H Fransen
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | | | | | - Henk M Janssen
- SyMO-Chem B.V., Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Martin G T A Rutten
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Maaike J G Schotman
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - P Y W Dankers
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Laboratory of Cell and Tissue Engineering, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
6
|
Rijns L, Hagelaars MJ, van der Tol JJB, Loerakker S, Bouten CVC, Dankers PYW. The Importance of Effective Ligand Concentration to Direct Epithelial Cell Polarity in Dynamic Hydrogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2300873. [PMID: 37264535 DOI: 10.1002/adma.202300873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/26/2023] [Indexed: 06/03/2023]
Abstract
Epithelial cysts and organoids are multicellular hollow structures formed by correctly polarized epithelial cells. Important in steering these cysts from single cells is the dynamic regulation of extracellular matrix presented ligands, and matrix dynamics. Here, control over the effective ligand concentration is introduced, decoupled from bulk and local mechanical properties, in synthetic dynamic supramolecular hydrogels formed through noncovalent crosslinking of supramolecular fibers. Control over the effective ligand concentration is realized by 1) keeping the ligand concentration constant, but changing the concentration of nonfunctionalized molecules or by 2) varying the ligand concentration, while keeping the concentration of non-functionalized molecules constant. The results show that in 2D, the effective ligand concentration within the supramolecular fibers rather than gel stiffness (from 0.1 to 8 kPa) regulates epithelial polarity. In 3D, increasing the effective ligand concentration from 0.5 × 10-3 to 2 × 10-3 m strengthens the effect of increased gel stiffness from 0.1 to 2 kPa, to synergistically yield more correctly polarized cysts. Through integrin manipulation, it is shown that epithelial polarity is regulated by tension-based homeostasis between cells and matrix. The results reveal the effective ligand concentration as influential factor in regulating epithelial polarity and provide insights on engineering of synthetic biomaterials for cell and organoid culture.
Collapse
Affiliation(s)
- Laura Rijns
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, Eindhoven, The Netherlands
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, PO Box 513, Eindhoven, The Netherlands
| | - Maria J Hagelaars
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, Eindhoven, The Netherlands
- Department of Biomedical Engineering, Laboratory for Cell and Tissue Engineering, Eindhoven University of Technology, PO Box 513, Eindhoven, The Netherlands
| | - Joost J B van der Tol
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, Eindhoven, The Netherlands
- Department of Chemical Engineering and Chemistry, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, PO Box 513, Eindhoven, The Netherlands
| | - Sandra Loerakker
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, Eindhoven, The Netherlands
- Department of Biomedical Engineering, Laboratory for Cell and Tissue Engineering, Eindhoven University of Technology, PO Box 513, Eindhoven, The Netherlands
| | - Carlijn V C Bouten
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, Eindhoven, The Netherlands
- Department of Biomedical Engineering, Laboratory for Cell and Tissue Engineering, Eindhoven University of Technology, PO Box 513, Eindhoven, The Netherlands
| | - Patricia Y W Dankers
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, Eindhoven, The Netherlands
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, PO Box 513, Eindhoven, The Netherlands
| |
Collapse
|
7
|
Wallace CM, Rovers MM, Bellan R, Rutten MGTA, Seddon A, Dalby MJ, Dankers PYW, Adams DJ. Investigating the self-assembly of 2NapFF and ureido-pyrimidinone multicomponent systems for cell culture. J Mater Chem B 2024; 12:9283-9288. [PMID: 39171867 PMCID: PMC11340344 DOI: 10.1039/d4tb00836g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024]
Abstract
Low molecular weight gels are formed via the self-assembly of small molecules into fibrous structures. In the case of hydrogels, these networks entrap large volumes of water, yielding soft materials. Such gels tend to have weak mechanical properties and a high permeability for cells, making them particularly appealing for regenerative medicine applications. Ureido-pyrimidinone (UPy) supramolecular gelators are self-assembling systems that have demonstrated excellent capabilities as biomaterials. Here, we combine UPy-gelators with another low molecular weight gelator, the functionalized dipeptide 2NapFF. We have successfully characterized these multicomponent systems on a molecular and bulk scale. The addition of 2NapFF to a crosslinked UPy hydrogel significantly increased hydrogel stiffness from 30 Pa to 1300 Pa. Small-angle X-ray scattering was used to probe the underlying structures of the systems and showed that the mixed UPy and 2NapFF systems resemble the scattering data produced by the pristine UPy systems. However, when a bifunctional UPy-crosslinker was added, the scattering was close to that of the 2NapFF only samples. The results suggest that the crosslinker significantly influences the assembly of the low molecular weight gelators. Finally, we analysed the biocompatibility of the systems using fibroblast cells and found that the cells tended to spread more effectively when the crosslinking species was incorporated. Our results emphasise the need for thorough characterisation at multiple length scales to finely control material properties, which is particularly important for developing novel biomaterials.
Collapse
Affiliation(s)
- Chloe M Wallace
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, Scotland, UK.
| | - Maritza M Rovers
- Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
| | - Riccardo Bellan
- Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
| | - Martin G T A Rutten
- Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
| | - Annela Seddon
- School of Physics, HH Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, UK
| | - Matthew J Dalby
- Centre for Cell Engineering, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | - Patricia Y W Dankers
- Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
| | - Dave J Adams
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, Scotland, UK.
| |
Collapse
|
8
|
Kiebala DJ, Dodero A, Weder C, Schrettl S. Optical Monitoring of Supramolecular Interactions in Polymers. Angew Chem Int Ed Engl 2024; 63:e202405922. [PMID: 38860450 DOI: 10.1002/anie.202405922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/07/2024] [Accepted: 05/15/2024] [Indexed: 06/12/2024]
Abstract
Many stimuli-responsive materials harness the reversible association of supramolecular binding motifs to enable advanced functionalities such as self-healing, switchable adhesion, or mechanical adaptation. Despite extensive research into the structure-property relationships of these materials, direct correlations between molecular-level changes in supramolecular binding and macroscopic material behaviors have mostly remained elusive. Here, we show that this challenge can be overcome with supramolecular binding motifs featuring integrated binding indicators. We demonstrate this using a novel motif that combines a hydrogen-bonding ureido-4-pyrimidinone (UPy) with two strategically placed pyrene fluorophores. Dimerization of this motif promotes pyrene excimer formation, facilitating the straightforward optical quantification of supramolecular assembly under various conditions. We exploit the new motif as a supramolecular cross-linker in poly(methyl acrylate)s to probe the extent of (dis)assembly as a function of cross-linker content, processing history, and applied stimuli. We demonstrate that the stimuli-induced dissociation of hydrogen-bonding linkages strongly depends on the initial cross-link density, which also dictates whether the force-induced dissociation in polymer films correlates with the applied stress or strain. Thus, beyond introducing a robust tool for the in situ study of dynamic (dis)assembly mechanisms in supramolecular systems, our findings provide new insights into the mechanoresponsive behavior of such materials.
Collapse
Affiliation(s)
- Derek J Kiebala
- Adolphe Merkle Institute (AMI), University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
- National Competence Center in Research Bio-inspired Materials, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
- Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Andrea Dodero
- Adolphe Merkle Institute (AMI), University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
- National Competence Center in Research Bio-inspired Materials, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Christoph Weder
- Adolphe Merkle Institute (AMI), University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
- National Competence Center in Research Bio-inspired Materials, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Stephen Schrettl
- Adolphe Merkle Institute (AMI), University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
- National Competence Center in Research Bio-inspired Materials, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
- TUM School of Life Sciences, Technical University of Munich, Maximus-von-Imhof-Forum 2, 85354, Freising, Germany
| |
Collapse
|
9
|
Mondal P, Chatterjee K. Multibiofunctional Self-healing Adhesive Injectable Nanocomposite Polysaccharide Hydrogel. Biomacromolecules 2024; 25:4762-4779. [PMID: 38989826 DOI: 10.1021/acs.biomac.4c00016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Injectable hydrogels with good antimicrobial and antioxidant properties, self-healing characteristics, suitable mechanical properties, and therapeutic effects have great practical significance for developing treatments for pressing healthcare challenges. Herein, we have designed a novel, self-healing injectable hydrogel composite incorporating cross-linked biofunctional nanomaterials by mixing alginate aldehyde (Ox-Alg), quaternized chitosan (QCS), adipic acid dihydrazide (ADH), and copper oxide nanosheets surface functionalized with folic acid as the bioligand (F-CuO). Gelation was achieved under physiological conditions via the dynamic Schiff base cross-linking mechanism. The developed nanocomposite injectable hydrogel demonstrated the fast self-healing ability essential to bear deformation and outstanding antibacterial properties along with ROS scavenging ability. Furthermore, the optimized formulation of our F-CuO-embedded injectable hydrogel exhibited excellent cytocompatibility, blood compatibility, and in vitro wound healing performance. Taken together, the F-CuO nanosheet cross-linked injectable hydrogel composite presented herein offers a promising candidate biomaterial with multifunctional properties to develop solutions for addressing clinical challenges.
Collapse
Affiliation(s)
- Pritiranjan Mondal
- Department of Materials Engineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore 560012, India
| | - Kaushik Chatterjee
- Department of Materials Engineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore 560012, India
| |
Collapse
|
10
|
Wu DJ, Rutten MGTA, Huang J, Schotman MJG, van Sprang JF, Tiemeijer BM, ter Huurne GM, Wijnands SPW, Diba M, Dankers PYW. Tuning Structural Organization via Molecular Design and Hierarchical Assembly to Develop Supramolecular Thermoresponsive Hydrogels. Macromolecules 2024; 57:6606-6615. [PMID: 39071041 PMCID: PMC11270986 DOI: 10.1021/acs.macromol.4c00567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/14/2024] [Accepted: 06/03/2024] [Indexed: 07/30/2024]
Abstract
The cellular microenvironment is composed of a dynamic hierarchical fibrillar architecture providing a variety of physical and bioactive signals to the surrounding cells. This dynamicity, although common in biology, is a challenge to control in synthetic matrices. Here, responsive synthetic supramolecular monomers were designed that are able to assemble into hierarchical fibrous structures, combining supramolecular fiber formation via hydrogen bonding interactions, with a temperature-responsive hydrophobic collapse, resulting in cross-linking and hydrogel formation. Therefore, amphiphilic molecules were synthesized, composed of a hydrogen bonding ureido-pyrimidinone (UPy) unit, a hydrophobic alkyl spacer, and a hydrophilic oligo(ethylene glycol) tail. The temperature responsive behavior was introduced by functionalizing these supramolecular amphiphiles with a relatively short poly(N-isopropylacrylamide) (PNIPAM) chain (M n ∼ 2.5 or 5.5 kg/mol). To precisely control the assembly of these monomers, the length of the alkyl spacer between the UPy moiety and PNIPAM was varied in length. A robust sol-gel transition, with the dodecyl UPy-PNIPAM molecule, was obtained, with a network elasticity enhancing over 2000 times upon heating above room temperature. The UPy-PNIPAM compounds with shorter alkyl spacers were already hydrogels at room temperature. The sol-gel transition of the dodecyl UPy-PNIPAM hydrogelator could be tuned by the incorporation of different UPy-functionalized monomers. Furthermore, we demonstrated the suitability of this system for microfluidic cell encapsulation through a convenient temperature sol-gel transition. Our results indicate that this novel thermoresponsive supramolecular system offers a modular platform to study and guide single-cell behavior.
Collapse
Affiliation(s)
- Dan Jing Wu
- Laboratory
for Cell and Tissue Engineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, PO Box 513 ,Eindhoven MB 5600, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, PO Box 513 ,Eindhoven MB 5600, The Netherlands
- Laboratory
of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513 ,Eindhoven MB 5600, The Netherlands
| | - Martin G. T. A. Rutten
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, PO Box 513 ,Eindhoven MB 5600, The Netherlands
- Laboratory
of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513 ,Eindhoven MB 5600, The Netherlands
| | - Jingyi Huang
- Laboratory
for Cell and Tissue Engineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, PO Box 513 ,Eindhoven MB 5600, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, PO Box 513 ,Eindhoven MB 5600, The Netherlands
- Laboratory
of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513 ,Eindhoven MB 5600, The Netherlands
| | - Maaike J. G. Schotman
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, PO Box 513 ,Eindhoven MB 5600, The Netherlands
- Laboratory
of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513 ,Eindhoven MB 5600, The Netherlands
| | - Johnick F. van Sprang
- Laboratory
for Cell and Tissue Engineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, PO Box 513 ,Eindhoven MB 5600, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, PO Box 513 ,Eindhoven MB 5600, The Netherlands
- Laboratory
of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513 ,Eindhoven MB 5600, The Netherlands
| | - Bart M. Tiemeijer
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, PO Box 513 ,Eindhoven MB 5600, The Netherlands
- Laboratory
of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven MB 5600, The Netherlands
| | - Gijs M. ter Huurne
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, PO Box 513 ,Eindhoven MB 5600, The Netherlands
- Laboratory
of Macromolecular and Organic Chemistry, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, PO Box 513 ,Eindhoven MB 5600, The Netherlands
| | - Sjors P. W. Wijnands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, PO Box 513 ,Eindhoven MB 5600, The Netherlands
- Laboratory
of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513 ,Eindhoven MB 5600, The Netherlands
| | - Mani Diba
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, PO Box 513 ,Eindhoven MB 5600, The Netherlands
- Laboratory
of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513 ,Eindhoven MB 5600, The Netherlands
- Department
of Dentistry-Regenerative Biomaterials, Research Institute for Medical
Innovation, Radboud University Medical Center, 6525EX ,Nijmegen 6500 HB, The Netherlands
| | - Patricia Y. W. Dankers
- Laboratory
for Cell and Tissue Engineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, PO Box 513 ,Eindhoven MB 5600, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, PO Box 513 ,Eindhoven MB 5600, The Netherlands
- Laboratory
of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513 ,Eindhoven MB 5600, The Netherlands
| |
Collapse
|
11
|
Rijns L, Baker MB, Dankers PYW. Using Chemistry To Recreate the Complexity of the Extracellular Matrix: Guidelines for Supramolecular Hydrogel-Cell Interactions. J Am Chem Soc 2024; 146:17539-17558. [PMID: 38888174 PMCID: PMC11229007 DOI: 10.1021/jacs.4c02980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/17/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024]
Abstract
Hydrogels have emerged as a promising class of extracellular matrix (ECM)-mimicking materials in regenerative medicine. Here, we briefly describe current state-of-the-art of ECM-mimicking hydrogels, ranging from natural to hybrid to completely synthetic versions, giving the prelude to the importance of supramolecular interactions to make true ECM mimics. The potential of supramolecular interactions to create ECM mimics for cell culture is illustrated through a focus on two different supramolecular hydrogel systems, both developed in our laboratories. We use some recent, significant findings to present important design principles underlying the cell-material interaction. To achieve cell spreading, we propose that slow molecular dynamics (monomer exchange within fibers) is crucial to ensure the robust incorporation of cell adhesion ligands within supramolecular fibers. Slow bulk dynamics (stress-relaxation─fiber rearrangements, τ1/2 ≈ 1000 s) is required to achieve cell spreading in soft gels (<1 kPa), while gel stiffness overrules dynamics in stiffer gels. Importantly, this resonates with the findings of others which specialize in different material types: cell spreading is impaired in case substrate relaxation occurs faster than clutch binding and focal adhesion lifetime. We conclude with discussing considerations and limitations of the supramolecular approach as well as provide a forward thinking perspective to further understand supramolecular hydrogel-cell interactions. Future work may utilize the presented guidelines underlying cell-material interactions to not only arrive at the next generation of ECM-mimicking hydrogels but also advance other fields, such as bioelectronics, opening up new opportunities for innovative applications.
Collapse
Affiliation(s)
- Laura Rijns
- Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
- Department
of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Matthew B. Baker
- Department
of Complex Tissue Regeneration, MERLN Institute for Technology Inspired
Regenerative Medicine, Maastricht University, 6200 MD Maastricht, The Netherlands
- Department
of Instructive Biomaterials Engineering, MERLN Institute for Technology
Inspired Regenerative Medicine, Maastricht
University, 6200 MD Maastricht, The Netherlands
| | - Patricia Y. W. Dankers
- Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
- Department
of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Department
of Chemical Engineering and Chemistry, Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
12
|
Ma J, Zhang K, Du L, Wang X, Chen Z, Chen H, Chen C, Qiu P. Intrinsic Self-Healable, Corrosion-Resistant Silicone Coating Based on Quadruple Hydrogen-Bonded Supramolecular Polymer. ACS APPLIED MATERIALS & INTERFACES 2024; 16:34100-34112. [PMID: 38902890 DOI: 10.1021/acsami.4c05347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Corrosion-resistant coatings with self-healing capabilities are still a great challenge for metal protection. In this study, a corrosion-resistant coating with intrinsic self-healing capabilities was developed by compounding hydroxy-terminated silicone oil (HTSO) with 2-ureido-4[1H]-pyrimidone (UPy) derivatives. The smooth surface of the coating was shown by scanning electron microscopy (SEM), and good smoothness was also exhibited in the cross-section, which indicated that the coating is very homogeneous from the top to the bottom. Thermogravimetric analysis (TG) was employed to illustrate the temperature-resistant characteristics of the coating, revealing its significant chemical stability up to 360 °C. The corrosion resistance of the coating is assessed through electrochemical impedance spectroscopy (EIS), the typical impedance at 0.01 Hz is 1.70 × 109 and 2.44 × 108 Ω·cm2 before and after exposure to a 3.5 wt % NaCl solution for 70 days. There was no significant change in the water contact angle of the coatings before and after immersion; however, the adhesion strength was reduced. Notably, the coating demonstrates immediate and multiple self-healing properties. The tensile stress of the associated healing sample experiences an augmentation within the temperature range of 30-120 °C, with the critical fracture strain of the healed sample reaching 235% at 120 °C. The self-healing mechanism of the coating is systematically investigated using in situ Raman spectroscopy.
Collapse
Affiliation(s)
- Ji Ma
- College of New Energy and Materials, China University of Petroleum, Beijing 102200, China
| | - Kaili Zhang
- College of New Energy and Materials, China University of Petroleum, Beijing 102200, China
| | - Lili Du
- College of New Energy and Materials, China University of Petroleum, Beijing 102200, China
| | - Xujie Wang
- College of New Energy and Materials, China University of Petroleum, Beijing 102200, China
| | - Zhijie Chen
- College of New Energy and Materials, China University of Petroleum, Beijing 102200, China
| | - Hao Chen
- College of Safety and Ocean Engineering, China University of Petroleum, Beijing 102200, China
| | - Changfeng Chen
- Beijing Key Laboratory of Failure, Corrosion and Protection of Oil/Gas Facilities, China University of Petroleum, Beijing 102200, China
| | - Ping Qiu
- College of New Energy and Materials, China University of Petroleum, Beijing 102200, China
| |
Collapse
|
13
|
Li X, Guan Z, Zhao J, Bae J. 3D Printable Active Hydrogels with Supramolecular Additive-Driven Adaptiveness. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311164. [PMID: 38295083 DOI: 10.1002/smll.202311164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/18/2024] [Indexed: 02/02/2024]
Abstract
Smart hydrogels are a promising candidate for the development of next-generation soft materials due to their stimuli-responsiveness, deformability, and biocompatibility. However, it remains challenging to enable hydrogels to actively adapt to various environmental conditions like living organisms. In this work, supramolecular additives are introduced to the hydrogel matrix to confer environmental adaptiveness. Specifically, their microstructures, swelling behaviors, mechanical properties, and transparency can adapt to external environmental conditions. Moreover, the presence of hydrogen bonding provides the hydrogel with applicable rheological properties for 3D extrusion printing, thus allowing for the facile preparation of thickness-dependent camouflage and multistimuli responsive complex. The environmentally adaptive hydrogel developed in this study offers new approaches for manipulating supramolecular interactions and broadens the capability of smart hydrogels in information security and multifunctional integrated actuation.
Collapse
Affiliation(s)
- Xiao Li
- Materials Science & Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Zhecun Guan
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jiayu Zhao
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jinhye Bae
- Materials Science & Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
- Chemical Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
14
|
Zhang Z, Lv X, Mu X, Zhao M, Wang S, Ke C, Ding S, Zhou D, Wang M, Zeng R. In-situ noncovalent interaction of ammonium ion enabled C-H bond functionalization of polyethylene glycols. Nat Commun 2024; 15:4445. [PMID: 38789453 PMCID: PMC11126569 DOI: 10.1038/s41467-024-48584-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
The noncovalent interactions of ammonium ion with multidentate oxygen-based host has never been reported as a reacting center in catalytic reactions. In this work, we report a reactivity enhancement process enabled by non-covalent interaction of ammonium ion, achieving the C-H functionalization of polyethylene glycols with acrylates by utilizing photoinduced co-catalysis of iridium and quinuclidine. A broad scope of alkenes can be tolerated without observing significant degradation. Moreover, this cyano-free condition respectively allows the incorporation of bioactive molecules and the PEGylation of dithiothreitol-treated bovine serum albumin, showing great potentials in drug delivery and protein modification. DFT calculations disclose that the formed α-carbon radical adjacent to oxygen-atom is reduced directly by iridium before acrylate addition. And preliminary mechanistic experiments reveal that the noncovalent interaction of PEG chain with the formed quinuclidinium species plays a unique role as a catalytic site by facilitating the proton transfer and ultimately enabling the transformation efficiently.
Collapse
Affiliation(s)
- Zongnan Zhang
- School of Chemistry & School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xueli Lv
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Xin Mu
- School of Chemistry & School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Mengyao Zhao
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, 710065, P. R. China
| | - Sichang Wang
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, 710065, P. R. China
| | - Congyu Ke
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, 710065, P. R. China
| | - Shujiang Ding
- School of Chemistry & School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| | - Dezhong Zhou
- School of Chemistry & School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China.
| | - Rong Zeng
- School of Chemistry & School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| |
Collapse
|
15
|
Song J, Fransen PPKH, Bakker MH, Wijnands SPW, Huang J, Guo S, Dankers PYW. The effect of charge and albumin on cellular uptake of supramolecular polymer nanostructures. J Mater Chem B 2024; 12:4854-4866. [PMID: 38682307 PMCID: PMC11111113 DOI: 10.1039/d3tb02631k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/30/2024] [Indexed: 05/01/2024]
Abstract
Intracellular delivery of functional biomolecules by using supramolecular polymer nanostructures has gained significant interest. Here, various charged supramolecular ureido-pyrimidinone (UPy)-aggregates were designed and formulated via a simple "mix-and-match" method. The cellular internalization of these UPy-aggregates in the presence or absence of serum proteins by phagocytic and non-phagocytic cells, i.e., THP-1 derived macrophages and immortalized human kidney cells (HK-2 cells), was systematically investigated. In the presence of serum proteins the UPy-aggregates were taken up by both types of cells irrespective of the charge properties of the UPy-aggregates, and the UPy-aggregates co-localized with mitochondria of the cells. In the absence of serum proteins only cationic UPy-aggregates could be effectively internalized by THP-1 derived macrophages, and the internalized UPy-aggregates either co-localized with mitochondria or displayed as vesicular structures. While the cationic UPy-aggregates were hardly internalized by HK-2 cells and could only bind to the membrane of HK-2 cells. With adding and increasing the amount of serum albumin in the cell culture medium, the cationic UPy-aggregates were gradually taken up by HK-2 cells without anchoring on the cell membranes. It is proposed that the serum albumin regulates the cellular internalization of UPy-aggregates. These results provide fundamental insights for the fabrication of supramolecular polymer nanostructures for intracellular delivery of therapeutics.
Collapse
Affiliation(s)
- Jiankang Song
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, The Netherlands.
- Department of Biomedical Engineering, Laboratory for Cell and Tissue Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, The Netherlands
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, PO Box 513, 5600 MB, The Netherlands
| | - Peter-Paul K H Fransen
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, The Netherlands.
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, PO Box 513, 5600 MB, The Netherlands
| | - Maarten H Bakker
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, The Netherlands.
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, PO Box 513, 5600 MB, The Netherlands
| | - Sjors P W Wijnands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, The Netherlands.
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, PO Box 513, 5600 MB, The Netherlands
| | - Jingyi Huang
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, The Netherlands.
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, PO Box 513, 5600 MB, The Netherlands
| | - Shuaiqi Guo
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, The Netherlands.
| | - Patricia Y W Dankers
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, The Netherlands.
- Department of Biomedical Engineering, Laboratory for Cell and Tissue Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, The Netherlands
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, PO Box 513, 5600 MB, The Netherlands
| |
Collapse
|
16
|
Llopis-Lorente A, Schotman MJG, Humeniuk HV, van Hest JCM, Dankers PYW, Abdelmohsen LKEA. Artificial cells with viscoadaptive behavior based on hydrogel-loaded giant unilamellar vesicles. Chem Sci 2024; 15:629-638. [PMID: 38179539 PMCID: PMC10763548 DOI: 10.1039/d3sc04687g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/01/2023] [Indexed: 01/06/2024] Open
Abstract
Viscoadaptation is an essential process in natural cells, where supramolecular interactions between cytosolic components drive adaptation of the cellular mechanical features to regulate metabolic function. This important relationship between mechanical properties and function has until now been underexplored in artificial cell research. Here, we have created an artificial cell platform that exploits internal supramolecular interactions to display viscoadaptive behavior. As supramolecular material to mimic the cytosolic component of these artificial cells, we employed a pH-switchable hydrogelator based on poly(ethylene glycol) coupled to ureido-pyrimidinone units. The hydrogelator was membranized in its sol state in giant unilamellar lipid vesicles to include a cell-membrane mimetic component. The resulting hydrogelator-loaded giant unilamellar vesicles (designated as HL-GUVs) displayed reversible pH-switchable sol-gel behavior through multiple cycles. Furthermore, incorporation of the regulatory enzyme urease enabled us to increase the cytosolic pH upon conversion of its substrate urea. The system was able to switch between a high viscosity (at neutral pH) and a low viscosity (at basic pH) state upon addition of substrate. Finally, viscoadaptation was achieved via the incorporation of a second enzyme of which the activity was governed by the viscosity of the artificial cell. This work represents a new approach to install functional self-regulation in artificial cells, and opens new possibilities for the creation of complex artificial cells that mimic the structural and functional interplay found in biological systems.
Collapse
Affiliation(s)
- Antoni Llopis-Lorente
- Department of Chemical Engineering & Chemistry, Laboratory of Bio-Organic Chemistry, Eindhoven University of Technology Het Kranenveld 14 5600 MB Eindhoven The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology Het Kranenveld 14, Eindhoven 5600 MB Eindhoven The Netherlands
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, CIBER de Bioingeniería, Biomateriales y Nanomedicina, Universitat Politècnica de València, Universitat de València Camino de Vera s/n 46022 València Spain
| | - Maaike J G Schotman
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology Eindhoven, Het Kranenveld 14 5600 MB Eindhoven The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology Het Kranenveld 14, Eindhoven 5600 MB Eindhoven The Netherlands
| | - Heorhii V Humeniuk
- Department of Chemical Engineering & Chemistry, Laboratory of Bio-Organic Chemistry, Eindhoven University of Technology Het Kranenveld 14 5600 MB Eindhoven The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology Het Kranenveld 14, Eindhoven 5600 MB Eindhoven The Netherlands
| | - Jan C M van Hest
- Department of Chemical Engineering & Chemistry, Laboratory of Bio-Organic Chemistry, Eindhoven University of Technology Het Kranenveld 14 5600 MB Eindhoven The Netherlands
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology Eindhoven, Het Kranenveld 14 5600 MB Eindhoven The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology Het Kranenveld 14, Eindhoven 5600 MB Eindhoven The Netherlands
| | - Patricia Y W Dankers
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology Eindhoven, Het Kranenveld 14 5600 MB Eindhoven The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology Het Kranenveld 14, Eindhoven 5600 MB Eindhoven The Netherlands
| | - Loai K E A Abdelmohsen
- Department of Chemical Engineering & Chemistry, Laboratory of Bio-Organic Chemistry, Eindhoven University of Technology Het Kranenveld 14 5600 MB Eindhoven The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology Het Kranenveld 14, Eindhoven 5600 MB Eindhoven The Netherlands
| |
Collapse
|
17
|
Sarkar S, Kumar R, Matson JB. Hydrogels for Gasotransmitter Delivery: Nitric Oxide, Carbon Monoxide, and Hydrogen Sulfide. Macromol Biosci 2024; 24:e2300138. [PMID: 37326828 PMCID: PMC11180494 DOI: 10.1002/mabi.202300138] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/08/2023] [Indexed: 06/17/2023]
Abstract
Gasotransmitters, gaseous signaling molecules including nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2 S), maintain myriad physiological processes. Low levels of gasotransmitters are often associated with specific problems or diseases, so NO, CO, and H2 S hold potential in treating bacterial infections, chronic wounds, myocardial infarction, ischemia, and various other diseases. However, their clinical applications as therapeutic agents are limited due to their gaseous nature, short half-life, and broad physiological roles. One route toward the greater application of gasotransmitters in medicine is through localized delivery. Hydrogels are attractive biomedical materials for the controlled release of embedded therapeutics as they are typically biocompatible, possess high water content, have tunable mechanical properties, and are injectable in certain cases. Hydrogel-based gasotransmitter delivery systems began with NO, and hydrogels for CO and H2 S have appeared more recently. In this review, the biological importance of gasotransmitters is highlighted, and the fabrication of hydrogel materials is discussed, distinguishing between methods used to physically encapsulate small molecule gasotransmitter donor compounds or chemically tether them to a hydrogel scaffold. The release behavior and potential therapeutic applications of gasotransmitter-releasing hydrogels are also detailed. Finally, the authors envision the future of this field and describe challenges moving forward.
Collapse
Affiliation(s)
| | | | - John B. Matson
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA
| |
Collapse
|
18
|
Wang H, Mills J, Sun B, Cui H. Therapeutic Supramolecular Polymers: Designs and Applications. Prog Polym Sci 2024; 148:101769. [PMID: 38188703 PMCID: PMC10769153 DOI: 10.1016/j.progpolymsci.2023.101769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The self-assembly of low-molecular-weight building motifs into supramolecular polymers has unlocked a new realm of materials with distinct properties and tremendous potential for advancing medical practices. Leveraging the reversible and dynamic nature of non-covalent interactions, these supramolecular polymers exhibit inherent responsiveness to their microenvironment, physiological cues, and biomolecular signals, making them uniquely suited for diverse biomedical applications. In this review, we intend to explore the principles of design, synthesis methodologies, and strategic developments that underlie the creation of supramolecular polymers as carriers for therapeutics, contributing to the treatment and prevention of a spectrum of human diseases. We delve into the principles underlying monomer design, emphasizing the pivotal role of non-covalent interactions, directionality, and reversibility. Moreover, we explore the intricate balance between thermodynamics and kinetics in supramolecular polymerization, illuminating strategies for achieving controlled sizes and distributions. Categorically, we examine their exciting biomedical applications: individual polymers as discrete carriers for therapeutics, delving into their interactions with cells, and in vivo dynamics; and supramolecular polymeric hydrogels as injectable depots, with a focus on their roles in cancer immunotherapy, sustained drug release, and regenerative medicine. As the field continues to burgeon, harnessing the unique attributes of therapeutic supramolecular polymers holds the promise of transformative impacts across the biomedical landscape.
Collapse
Affiliation(s)
- Han Wang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jason Mills
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Boran Sun
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Center for Nanomedicine, The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
19
|
Yang J, Jin X, Liu W, Wang W. A Programmable Oxygenation Device Facilitates Oxygen Generation and Replenishment to Promote Wound Healing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305819. [PMID: 37695102 DOI: 10.1002/adma.202305819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/06/2023] [Indexed: 09/12/2023]
Abstract
Inadequate oxygenation is one of the chief culprits for delayed wound healing. However, current oxygen therapies, such as hyperbaric oxygen therapy and topical oxygen therapy, face hurdles in providing sustained and long-term oxygenation to reverse wound hypoxia. Furthermore, their efficacy in rejuvenating wound injury is restricted by limited penetration of oxygen in the wound bed. Herein, this study proposes a programmable and portable oxygenation device (named GUFO oxydevice) by ingeniously integrating i) a controllable oxygen generation and unidirectional transmission system (COGT-UTS), and ii) a supramolecular assembled perfluorinated hyperbranched polymer/gelatin (GUF) hydrogel in which the perfluorinated hyperbranched polymer (FHBP) acts as an oxygen reservoir to ensure sustained and convenient oxygen replenishment and thus directly regulate the hypoxic wound microenvironment. Accelerating the wound healing process by GUFO oxydevice is achieved in both a diabetic rat and an acute porcine wound model without any secondary tissue damages. The present study demonstrates that the GUFO oxydevice holds promise as a practically feasible candidate for wound treatment.
Collapse
Affiliation(s)
- Jumin Yang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Xin Jin
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Wenguang Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Wei Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang, 311215, China
| |
Collapse
|
20
|
Braet H, Fransen PP, Mariën R, Lollo G, Ceelen W, Vervaet C, Balcaen L, Vanhaecke F, Vanhove C, van der Vegte S, Gasthuys E, Vermeulen A, Dankers PYW, De Smedt SC, Remaut K. CO 2-Driven Nebulization of pH-Sensitive Supramolecular Polymers for Intraperitoneal Hydrogel Formation and the Treatment of Peritoneal Metastasis. ACS APPLIED MATERIALS & INTERFACES 2023; 15:49022-49034. [PMID: 37819736 DOI: 10.1021/acsami.3c11274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Because peritoneal metastasis (PM) from ovarian cancer is characterized by non-specific symptoms, it is often diagnosed at advanced stages. Pressurized intraperitoneal aerosol chemotherapy (PIPAC) can be considered a promising drug delivery method for unresectable PM. Currently, the efficacy of intraperitoneal (IP) drug delivery is limited by the off-label use of IV chemotherapeutic solutions, which are rapidly cleared from the IP cavity. Hence, this research aimed to improve PM treatment by evaluating a nanoparticle-loaded, pH-switchable supramolecular polymer hydrogel as a controlled release drug delivery system that can be IP nebulized. Moreover, a multidirectional nozzle was developed to allow nebulization of viscous materials such as hydrogels and to reach an even IP gel deposition. We demonstrated that acidification of the nebulized hydrogelator solution by carbon dioxide, used to inflate the IP cavity during laparoscopic surgery, stimulated the in situ gelation, which prolonged the IP hydrogel retention. In vitro experiments indicated that paclitaxel nanocrystals were gradually released from the hydrogel depot formed, which sustained the cytotoxicity of the formulation for 10 days. Finally, after aerosolization of this material in a xenograft model of PM, tumor progression could successfully be delayed, while the overall survival time was significantly increased compared to non-treated animals.
Collapse
Affiliation(s)
- Helena Braet
- Department of Pharmaceutics, Ghent University, Ghent 9000, Belgium
- CRIG - Cancer Research Institute Ghent, Ghent 9000, Belgium
| | | | - Remco Mariën
- Department of Pharmaceutics, Ghent University, Ghent 9000, Belgium
| | - Giovanna Lollo
- Laboratoire d'Automatique, de Génie des Procédés et de Génie Pharmaceutique (LAGEPP), Université Claude Bernard Lyon 1, Lyon 69622, France
| | - Wim Ceelen
- CRIG - Cancer Research Institute Ghent, Ghent 9000, Belgium
- Department of Human Structure and Repair, Ghent University, Ghent 9000, Belgium
| | - Chris Vervaet
- Department of Pharmaceutics, Ghent University, Ghent 9000, Belgium
| | - Lieve Balcaen
- Department of Chemistry, Ghent University, Ghent 9000, Belgium
| | - Frank Vanhaecke
- CRIG - Cancer Research Institute Ghent, Ghent 9000, Belgium
- Department of Chemistry, Ghent University, Ghent 9000, Belgium
| | - Christian Vanhove
- CRIG - Cancer Research Institute Ghent, Ghent 9000, Belgium
- Department of Electronics and Information Systems, Ghent University, Ghent 9000, Belgium
| | | | - Elke Gasthuys
- Department of Bioanalysis, Ghent University, Ghent 9000, Belgium
| | - An Vermeulen
- Department of Bioanalysis, Ghent University, Ghent 9000, Belgium
| | - Patricia Y W Dankers
- Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Stefaan C De Smedt
- Department of Pharmaceutics, Ghent University, Ghent 9000, Belgium
- CRIG - Cancer Research Institute Ghent, Ghent 9000, Belgium
| | - Katrien Remaut
- Department of Pharmaceutics, Ghent University, Ghent 9000, Belgium
- CRIG - Cancer Research Institute Ghent, Ghent 9000, Belgium
| |
Collapse
|
21
|
Braet H, Fransen PP, Chen Y, Van Herck S, Mariën R, Vanhoorne V, Ceelen W, Madder A, Ballet S, Hoogenboom R, De Geest B, Hoorens A, Dankers PYW, De Smedt SC, Remaut K. Smart hydrogels delivered by high pressure aerosolization can prevent peritoneal adhesions. J Control Release 2023; 362:138-150. [PMID: 37619864 DOI: 10.1016/j.jconrel.2023.08.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
Postoperative peritoneal adhesions occur in the majority of patients undergoing intra-abdominal surgery and are one of the leading causes of hospital re-admission. There is an unmet clinical need for effective anti-adhesive biomaterials, which can be applied evenly across the damaged tissues. We examined three different responsive hydrogel types, i.e. a thermosensitive PLGA-PEG-PLGA, a pH responsive UPy-PEG and a shear-thinning hexapeptide for this purpose. More specifically, their potential to be homogeneously distributed in the peritoneal cavity by high pressure nebulization and prevent peritoneal adhesions was evaluated. Solutions of each polymer type could be successfully nebulized while retaining their responsive gelation behavior in vitro and in vivo. Furthermore, none of the polymers caused in vitro toxicity on SKOV3-IP2 cells. Following intraperitoneal administration, both the PLGA-PEG-PLGA and the hexapeptide hydrogels resulted in local inflammation and fibrosis and failed in preventing peritoneal adhesions 7 days after adhesion induction. In contrast, the pH sensitive UPy-PEG formulation was well tolerated and could significantly reduce the formation of peritoneal adhesions, even outperforming the commercially available Hyalobarrier® as positive control. To conclude, local nebulization of the bioresponsive UPy-PEG hydrogel can be considered as a promising approach to prevent postsurgical peritoneal adhesions.
Collapse
Affiliation(s)
- Helena Braet
- Department of Pharmaceutics, Ghent University, Ghent, Belgium; CRIG - Cancer Research Institute Ghent, Ghent, Belgium
| | | | - Yong Chen
- Department of Pharmaceutics, Ghent University, Ghent, Belgium; CRIG - Cancer Research Institute Ghent, Ghent, Belgium
| | - Simon Van Herck
- Department of Pharmaceutics, Ghent University, Ghent, Belgium; CRIG - Cancer Research Institute Ghent, Ghent, Belgium
| | - Remco Mariën
- Department of Pharmaceutics, Ghent University, Ghent, Belgium
| | | | - Wim Ceelen
- CRIG - Cancer Research Institute Ghent, Ghent, Belgium; Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Annemieke Madder
- CRIG - Cancer Research Institute Ghent, Ghent, Belgium; Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Steven Ballet
- Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Richard Hoogenboom
- CRIG - Cancer Research Institute Ghent, Ghent, Belgium; Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Bruno De Geest
- Department of Pharmaceutics, Ghent University, Ghent, Belgium; CRIG - Cancer Research Institute Ghent, Ghent, Belgium
| | - Anne Hoorens
- CRIG - Cancer Research Institute Ghent, Ghent, Belgium; Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | - Patricia Y W Dankers
- Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Stefaan C De Smedt
- Department of Pharmaceutics, Ghent University, Ghent, Belgium; CRIG - Cancer Research Institute Ghent, Ghent, Belgium
| | - Katrien Remaut
- Department of Pharmaceutics, Ghent University, Ghent, Belgium; CRIG - Cancer Research Institute Ghent, Ghent, Belgium.
| |
Collapse
|
22
|
Turrina C, Cookman J, Bellan R, Song J, Paar M, Dankers PYW, Berensmeier S, Schwaminger SP. Iron Oxide Nanoparticles with Supramolecular Ureido-Pyrimidinone Coating for Antimicrobial Peptide Delivery. Int J Mol Sci 2023; 24:14649. [PMID: 37834098 PMCID: PMC10573039 DOI: 10.3390/ijms241914649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/15/2023] [Accepted: 09/16/2023] [Indexed: 10/15/2023] Open
Abstract
Antimicrobial peptides (AMPs) can kill bacteria by disrupting their cytoplasmic membrane, which reduces the tendency of antibacterial resistance compared to conventional antibiotics. Their possible toxicity to human cells, however, limits their applicability. The combination of magnetically controlled drug delivery and supramolecular engineering can help to reduce the dosage of AMPs, control the delivery, and improve their cytocompatibility. Lasioglossin III (LL) is a natural AMP form bee venom that is highly antimicrobial. Here, superparamagnetic iron oxide nanoparticles (IONs) with a supramolecular ureido-pyrimidinone (UPy) coating were investigated as a drug carrier for LL for a controlled delivery to a specific target. Binding to IONs can improve the antimicrobial activity of the peptide. Different transmission electron microscopy (TEM) techniques showed that the particles have a crystalline iron oxide core with a UPy shell and UPy fibers. Cytocompatibility and internalization experiments were carried out with two different cell types, phagocytic and nonphagocytic cells. The drug carrier system showed good cytocompatibility (>70%) with human kidney cells (HK-2) and concentration-dependent toxicity to macrophagic cells (THP-1). The particles were internalized by both cell types, giving them the potential for effective delivery of AMPs into mammalian cells. By self-assembly, the UPy-coated nanoparticles can bind UPy-functionalized LL (UPy-LL) highly efficiently (99%), leading to a drug loading of 0.68 g g-1. The binding of UPy-LL on the supramolecular nanoparticle system increased its antimicrobial activity against E. coli (MIC 3.53 µM to 1.77 µM) and improved its cytocompatible dosage for HK-2 cells from 5.40 µM to 10.6 µM. The system showed higher cytotoxicity (5.4 µM) to the macrophages. The high drug loading, efficient binding, enhanced antimicrobial behavior, and reduced cytotoxicity makes ION@UPy-NH2 an interesting drug carrier for AMPs. The combination with superparamagnetic IONs allows potential magnetically controlled drug delivery and reduced drug amount of the system to address intracellular infections or improve cancer treatment.
Collapse
Affiliation(s)
- Chiara Turrina
- Chair of Bioseparation Engineering, School of Engineering and Design, Technical University of Munich, Boltzmannstr. 15, 85748 Garching, Germany; (C.T.)
| | - Jennifer Cookman
- Department of Chemical Sciences, Bernal Institute, University of Limerick, V94 T9PX Castletroy, Ireland;
| | - Riccardo Bellan
- Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands; (R.B.)
| | - Jiankang Song
- Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands; (R.B.)
| | - Margret Paar
- Division of Medicinal Chemistry, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
| | - Patricia Y. W. Dankers
- Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands; (R.B.)
| | - Sonja Berensmeier
- Chair of Bioseparation Engineering, School of Engineering and Design, Technical University of Munich, Boltzmannstr. 15, 85748 Garching, Germany; (C.T.)
| | - Sebastian P. Schwaminger
- Chair of Bioseparation Engineering, School of Engineering and Design, Technical University of Munich, Boltzmannstr. 15, 85748 Garching, Germany; (C.T.)
- Division of Medicinal Chemistry, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
- BioTechMed-Graz, Mozartgasse 12, 8010 Graz, Austria
| |
Collapse
|
23
|
Hafeez S, Aldana AA, Duimel H, Ruiter FAA, Decarli MC, Lapointe V, van Blitterswijk C, Moroni L, Baker MB. Molecular Tuning of a Benzene-1,3,5-Tricarboxamide Supramolecular Fibrous Hydrogel Enables Control over Viscoelasticity and Creates Tunable ECM-Mimetic Hydrogels and Bioinks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207053. [PMID: 36858040 DOI: 10.1002/adma.202207053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 02/13/2023] [Indexed: 06/16/2023]
Abstract
Traditional synthetic covalent hydrogels lack the native tissue dynamics and hierarchical fibrous structure found in the extracellular matrix (ECM). These dynamics and fibrous nanostructures are imperative in obtaining the correct cell/material interactions. Consequently, the challenge to engineer functional dynamics in a fibrous hydrogel and recapitulate native ECM properties remains a bottle-neck to biomimetic hydrogel environments. Here, the molecular tuning of a supramolecular benzene-1,3,5-tricarboxamide (BTA) hydrogelator via simple modulation of hydrophobic substituents is reported. This tuning results in fibrous hydrogels with accessible viscoelasticity over 5 orders of magnitude, while maintaining a constant equilibrium storage modulus. BTA hydrogelators are created with systematic variations in the number of hydrophobic carbon atoms, and this is observed to control the viscoelasticity and stress-relaxation timescales in a logarithmic fashion. Some of these BTA hydrogels are shear-thinning, self-healing, extrudable, and injectable, and can be 3D printed into multiple layers. These hydrogels show high cell viability for chondrocytes and human mesenchymal stem cells, establishing their use in tissue engineering applications. This simple molecular tuning by changing hydrophobicity (with just a few carbon atoms) provides precise control over the viscoelasticity and 3D printability in fibrillar hydrogels and can be ported onto other 1D self-assembling structures. The molecular control and design of hydrogel network dynamics can push the field of supramolecular chemistry toward the design of new ECM-mimicking hydrogelators for numerous cell-culture and tissue-engineering applications and give access toward highly biomimetic bioinks for bioprinting.
Collapse
Affiliation(s)
- Shahzad Hafeez
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Ana A Aldana
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Hans Duimel
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Floor A A Ruiter
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Monize Caiado Decarli
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Vanessa Lapointe
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Clemens van Blitterswijk
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Lorenzo Moroni
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Matthew B Baker
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| |
Collapse
|
24
|
Chau AKH, Leung FKC. Exploration of molecular machines in supramolecular soft robotic systems. Adv Colloid Interface Sci 2023; 315:102892. [PMID: 37084547 DOI: 10.1016/j.cis.2023.102892] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/05/2023] [Accepted: 04/03/2023] [Indexed: 04/23/2023]
Abstract
Soft robotic system, a new era of material science, is rapidly developing with advanced processing technology in soft matters, featured with biomimetic nature. An important bottom-up approach is through the implementation of molecular machines into polymeric materials, however, the synchronized molecular motions, acumination of strain across multiple length-scales, and amplification into macroscopic actuations remained highly challenging. This review presents the significances, key design strategies, and outlook of the hierarchical supramolecular systems of molecular machines to develop novel types of supramolecular-based soft robotic systems.
Collapse
Affiliation(s)
- Anson Kwok-Hei Chau
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Franco King-Chi Leung
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China; The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China.
| |
Collapse
|
25
|
Zhang Z, Li X, Zhou D, Ding S, Wang M, Zeng R. Controllable C-H Alkylation of Polyethers via Iron Photocatalysis. J Am Chem Soc 2023; 145:7612-7620. [PMID: 36962002 DOI: 10.1021/jacs.3c01100] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
The efficient conversion of a C-H bond in the polyether chain to other functional groups provides great opportunities for development of novel applications in many research fields. However, this field is quite underdeveloped due to the key challenge on controlling the selectivity of the C-H bond functionalization over the chain cleavage. In this work, we report a controllable C-H bond alkylation of polyethers under mild conditions via photoinduced iron catalysis. The level of functionalization could be controlled by using different amounts of alkenes and various reaction times, while the molecular weight distributions were maintained narrow. A broad scope of electron-deficient alkenes containing nitrile, ester, epoxide, terminal alkynyl, 2,5-dioxotetrafuranyl, and 2,5-dioxopyrrolidinyl groups could be utilized to functionalize the different polyethers with great efficiencies. The potential applications of the modified polyethylene glycols and polyethylene oxides were explored by the preparation of novel hydrogels and solid-state electrolytes with enhancement of lithium ion conductivities. Moreover, the density functional theory calculation disclosed the plausible mechanism and explained the high selectivity for the C-H alkylation.
Collapse
Affiliation(s)
- Zongnan Zhang
- School of Chemistry and School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Xinyang Li
- School of Chemistry and School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Dezhong Zhou
- School of Chemistry and School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Shujiang Ding
- School of Chemistry and School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Rong Zeng
- School of Chemistry and School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, Guangdong, P. R. China
| |
Collapse
|
26
|
Shi QQ, Zhou X, Xu J, Wang N, Zhang JL, Hu XL, Liu SY. Controlled Fabrication of Uniform Digital Nanorods from Precise Sequence-Defined Amphiphilic Polymers in Aqueous Media. CHINESE JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1007/s10118-023-2946-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
27
|
Vonk NH, van Adrichem SCA, Wu DJ, Dankers PYW, Hoefnagels JPM. Full‐field hygroscopic characterization of tough
3D
‐printed supramolecular hydrogels. JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1002/pol.20220648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- N. H. Vonk
- Department of Mechanical Engineering Eindhoven University of Technology Eindhoven The Netherlands
| | - S. C. A. van Adrichem
- Department of Mechanical Engineering Eindhoven University of Technology Eindhoven The Netherlands
| | - D. J. Wu
- Institute for Complex Molecular Systems Eindhoven University of Technology Eindhoven The Netherlands
- Laboratory of Chemical Biology, Department of Biomedical Engineering Eindhoven University of Technology Eindhoven The Netherlands
| | - P. Y. W. Dankers
- Institute for Complex Molecular Systems Eindhoven University of Technology Eindhoven The Netherlands
- Laboratory of Chemical Biology, Department of Biomedical Engineering Eindhoven University of Technology Eindhoven The Netherlands
| | - J. P. M. Hoefnagels
- Department of Mechanical Engineering Eindhoven University of Technology Eindhoven The Netherlands
| |
Collapse
|
28
|
Huysecom AS, Thielemans W, Moldenaers P, Cardinaels R. A Generalized Mechano-statistical Transient Network Model for Unravelling the Network Topology and Elasticity of Hydrophobically Associating Multiblock Copolymers in Aqueous Solutions. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c01500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- An-Sofie Huysecom
- Soft Matter, Rheology and Technology, Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200J, 3001Leuven, Belgium
| | - Wim Thielemans
- Sustainable Materials Lab, Department of Chemical Engineering, KU Leuven, campus Kulak Kortrijk, Etienne Sabbelaan 53, 8500Kortrijk, Belgium
| | - Paula Moldenaers
- Soft Matter, Rheology and Technology, Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200J, 3001Leuven, Belgium
| | - Ruth Cardinaels
- Soft Matter, Rheology and Technology, Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200J, 3001Leuven, Belgium
- Processing and Performance of Materials, Department of Mechanical Engineering, TU Eindhoven, Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
29
|
Katashima T, Kobayashi R, Ishikawa S, Naito M, Miyata K, Chung UI, Sakai T. Decoupling between Translational Diffusion and Viscoelasticity in Transient Networks with Controlled Network Connectivity. Gels 2022; 8:gels8120830. [PMID: 36547354 PMCID: PMC9778075 DOI: 10.3390/gels8120830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
The mobility of sustained molecules is influenced by viscoelasticity, which is strongly correlated with the diffusional property in polymeric liquid. However, the study of transient networks formed by a reversible crosslink, which is the viscoelastic liquid, was insufficient due to the absence of a model system. We compare the viscoelastic and diffusional properties of the transient networks, using the model system with controlled network connectivity (Tetra-PEG slime). According to independent measurements of viscoelasticity and diffusion, the root-mean-square distance the polymer diffuses during the viscoelastic relaxation time shows a large deviation from the self-size of the polymer, which is contrary to the conventional understanding. This decoupling between viscoelasticity and diffusion is unique for transient networks, suggesting that the viscoelastic relaxation is not induced by the diffusion of one prepolymer, particularly in the network with low connectivity. These findings will provide a definite basis for discussion to understand the viscoelasticity in transient networks.
Collapse
Affiliation(s)
- Takuya Katashima
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Correspondence: ; Tel.: +81-3-(5841)-1873
| | - Ryunosuke Kobayashi
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shohei Ishikawa
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Mitsuru Naito
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kanjiro Miyata
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Ung-il Chung
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takamasa Sakai
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
30
|
Blache U, Ford EM, Ha B, Rijns L, Chaudhuri O, Dankers PY, Kloxin AM, Snedeker JG, Gentleman E. Engineered hydrogels for mechanobiology. NATURE REVIEWS. METHODS PRIMERS 2022; 2:98. [PMID: 37461429 PMCID: PMC7614763 DOI: 10.1038/s43586-022-00179-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 10/17/2022] [Indexed: 07/20/2023]
Abstract
Cells' local mechanical environment can be as important in guiding cellular responses as many well-characterized biochemical cues. Hydrogels that mimic the native extracellular matrix can provide these mechanical cues to encapsulated cells, allowing for the study of their impact on cellular behaviours. Moreover, by harnessing cellular responses to mechanical cues, hydrogels can be used to create tissues in vitro for regenerative medicine applications and for disease modelling. This Primer outlines the importance and challenges of creating hydrogels that mimic the mechanical and biological properties of the native extracellular matrix. The design of hydrogels for mechanobiology studies is discussed, including appropriate choice of cross-linking chemistry and strategies to tailor hydrogel mechanical cues. Techniques for characterizing hydrogels are explained, highlighting methods used to analyze cell behaviour. Example applications for studying fundamental mechanobiological processes and regenerative therapies are provided, along with a discussion of the limitations of hydrogels as mimetics of the native extracellular matrix. The article ends with an outlook for the field, focusing on emerging technologies that will enable new insights into mechanobiology and its role in tissue homeostasis and disease.
Collapse
Affiliation(s)
- Ulrich Blache
- Fraunhofer Institute for Cell Therapy and Immunology and Fraunhofer Cluster of Excellence for Immune-Mediated Disease, Leipzig, Germany
| | - Eden M. Ford
- Department of Chemical and Biomolecular Engineering, University of Delaware, DE, USA
| | - Byunghang Ha
- Department of Mechanical Engineering, Stanford University, CA, USA
| | - Laura Rijns
- Institute for Complex Molecular Systems, Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Ovijit Chaudhuri
- Department of Mechanical Engineering, Stanford University, CA, USA
| | - Patricia Y.W. Dankers
- Institute for Complex Molecular Systems, Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - April M. Kloxin
- Department of Chemical and Biomolecular Engineering, University of Delaware, DE, USA
- Department of Material Science and Engineering, University of Delaware, DE, USA
| | - Jess G. Snedeker
- University Hospital Balgrist and ETH Zurich, Zurich, Switzerland
| | - Eileen Gentleman
- Centre for Craniofacial and Regenerative Biology, King’s College London, London SE1 9RT, UK
| |
Collapse
|
31
|
Wanasinghe SV, Dodo OJ, Konkolewicz D. Dynamic Bonds: Adaptable Timescales for Responsive Materials. Angew Chem Int Ed Engl 2022; 61:e202206938. [PMID: 36167937 PMCID: PMC10092857 DOI: 10.1002/anie.202206938] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Indexed: 11/05/2022]
Abstract
Dynamic bonds introduce unique properties such as self-healing, recyclability, shape memory, and malleability to polymers. Significant efforts have been made to synthesize a variety of dynamic linkers, creating a diverse library of materials. In addition to the development of new dynamic chemistries, fine-tuning of dynamic bonds has emerged as a technique to modulate dynamic properties. This Review highlights approaches for controlling the timescales of dynamic bonds in polymers. Particularly, eight dynamic bonds are considered, including urea/urethanes, boronic esters, Thiol-Michael exchange, Diels-Alder adducts, transesterification, imine bonds, coordination bonds, and hydrogen bonding. This Review emphasizes how structural modifications and external factors have been used as tools to tune the dynamic character of materials. Finally, this Review proposes strategies for tailoring the timescales of dynamic bonds in polymer materials through both kinetic effects and modulating bond thermodynamics.
Collapse
Affiliation(s)
- Shiwanka V. Wanasinghe
- Department of Chemistry and BiochemistryMiami University651 East High StreetOxfordOH 45056USA
| | - Obed J. Dodo
- Department of Chemistry and BiochemistryMiami University651 East High StreetOxfordOH 45056USA
| | - Dominik Konkolewicz
- Department of Chemistry and BiochemistryMiami University651 East High StreetOxfordOH 45056USA
| |
Collapse
|
32
|
Self-Healing Hydrogels: Development, Biomedical Applications, and Challenges. Polymers (Basel) 2022; 14:polym14214539. [PMID: 36365532 PMCID: PMC9654449 DOI: 10.3390/polym14214539] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/19/2022] [Accepted: 10/23/2022] [Indexed: 11/22/2022] Open
Abstract
Polymeric hydrogels have drawn considerable attention as a biomedical material for their unique mechanical and chemical properties, which are very similar to natural tissues. Among the conventional hydrogel materials, self-healing hydrogels (SHH) are showing their promise in biomedical applications in tissue engineering, wound healing, and drug delivery. Additionally, their responses can be controlled via external stimuli (e.g., pH, temperature, pressure, or radiation). Identifying a suitable combination of viscous and elastic materials, lipophilicity and biocompatibility are crucial challenges in the development of SHH. Furthermore, the trade-off relation between the healing performance and the mechanical toughness also limits their real-time applications. Additionally, short-term and long-term effects of many SHH in the in vivo model are yet to be reported. This review will discuss the mechanism of various SHH, their recent advancements, and their challenges in tissue engineering, wound healing, and drug delivery.
Collapse
|
33
|
Jindal S, Awasthi R, Goyal K, Kulkarni GT. Hydrogels for localized drug delivery: A special emphasis on dermatologic applications. Dermatol Ther 2022; 35:e15830. [DOI: 10.1111/dth.15830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/06/2022] [Accepted: 09/12/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Shammy Jindal
- Laureate Institute of Pharmacy, Kathog Jawalamukhi Himachal Pradesh India
| | - Rajendra Awasthi
- Department of Pharmaceutical Sciences School of Health Sciences & Technology, University of Petroleum and Energy Studies (UPES), Energy Acres, P.O. Bidholi, Via‐Prem Nagar Dehradun Uttarakhand India
| | - Kamya Goyal
- Laureate Institute of Pharmacy, Kathog Jawalamukhi Himachal Pradesh India
| | | |
Collapse
|
34
|
Lou J, Mooney DJ. Chemical strategies to engineer hydrogels for cell culture. Nat Rev Chem 2022; 6:726-744. [PMID: 37117490 DOI: 10.1038/s41570-022-00420-7] [Citation(s) in RCA: 160] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2022] [Indexed: 12/12/2022]
Abstract
Two-dimensional and three-dimensional cell culture systems are widely used for biological studies, and are the basis of the organoid, tissue engineering and organ-on-chip research fields in applications such as disease modelling and drug screening. The natural extracellular matrix of tissues, a complex scaffold with varying chemical and mechanical properties, has a critical role in regulating important cellular functions such as spreading, migration, proliferation and differentiation, as well as tissue morphogenesis. Hydrogels are biomaterials that are used in cell culture systems to imitate critical features of a natural extracellular matrix. Chemical strategies to synthesize and tailor the properties of these hydrogels in a controlled manner, and manipulate their biological functions in situ, have been developed. In this Review, we provide the rational design criteria for predictably engineering hydrogels to mimic the properties of the natural extracellular matrix. We highlight the advances in using biocompatible strategies to engineer hydrogels for cell culture along with recent developments to dynamically control the cellular environment by exploiting stimuli-responsive chemistries. Finally, future opportunities to engineer hydrogels are discussed, in which the development of novel chemical methods will probably have an important role.
Collapse
|
35
|
Hafeez S, Passanha FR, Feliciano AJ, Ruiter FAA, Malheiro A, Lafleur RPM, Matsumoto NM, van Blitterswijk C, Moroni L, Wieringa P, LaPointe VLS, Baker MB. Modular mixing of benzene-1,3,5-tricarboxamide supramolecular hydrogelators allows tunable biomimetic hydrogels for control of cell aggregation in 3D. Biomater Sci 2022; 10:4740-4755. [PMID: 35861034 PMCID: PMC9400794 DOI: 10.1039/d2bm00312k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/31/2022] [Indexed: 11/21/2022]
Abstract
Few synthetic hydrogels can mimic both the viscoelasticity and supramolecular fibrous structure found in the naturally occurring extracellular matrix (ECM). Furthermore, the ability to control the viscoelasticity of fibrous supramolecular hydrogel networks to influence cell culture remains a challenge. Here, we show that modular mixing of supramolecular architectures with slow and fast exchange dynamics can provide a suitable environment for multiple cell types and influence cellular aggregation. We employed modular mixing of two synthetic benzene-1,3,5-tricarboxamide (BTA) architectures: a small molecule water-soluble BTA with slow exchange dynamics and a telechelic polymeric BTA-PEG-BTA with fast exchange dynamics. Copolymerisation of these two supramolecular architectures was observed, and all tested formulations formed stable hydrogels in water and cell culture media. We found that rational tuning of mechanical and viscoelastic properties is possible by mixing BTA with BTA-PEG-BTA. These hydrogels showed high viability for both chondrocyte (ATDC5) and human dermal fibroblast (HDF) encapsulation (>80%) and supported neuronal outgrowth (PC12 and dorsal root ganglion, DRG). Furthermore, ATDC5s and human mesenchymal stem cells (hMSCs) were able to form spheroids within these viscoelastic hydrogels, with control over cell aggregation modulated by the dynamic properties of the material. Overall, this study shows that modular mixing of supramolecular architectures enables tunable fibrous hydrogels, creating a biomimetic environment for cell encapsulation. These materials are suitable for the formation and culture of spheroids in 3D, critical for upscaling tissue engineering approaches towards cell densities relevant for physiological tissues.
Collapse
Affiliation(s)
- Shahzad Hafeez
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Fiona R Passanha
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Antonio J Feliciano
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Floor A A Ruiter
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Afonso Malheiro
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - René P M Lafleur
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Nicholas M Matsumoto
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Clemens van Blitterswijk
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Lorenzo Moroni
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Paul Wieringa
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Vanessa L S LaPointe
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Matthew B Baker
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| |
Collapse
|
36
|
Pardeshi S, Damiri F, Zehravi M, Joshi R, Kapare H, Prajapati MK, Munot N, Berrada M, Giram PS, Rojekar S, Ali F, Rahman MH, Barai HR. Functional Thermoresponsive Hydrogel Molecule to Material Design for Biomedical Applications. Polymers (Basel) 2022; 14:polym14153126. [PMID: 35956641 PMCID: PMC9371082 DOI: 10.3390/polym14153126] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/18/2022] [Accepted: 07/22/2022] [Indexed: 02/04/2023] Open
Abstract
Temperature-induced, rapid changes in the viscosity and reproducible 3-D structure formation makes thermos-sensitive hydrogels an ideal delivery system to act as a cell scaffold or a drug reservoir. Moreover, the hydrogels’ minimum invasiveness, high biocompatibility, and facile elimination from the body have gathered a lot of attention from researchers. This review article attempts to present a complete picture of the exhaustive arena, including the synthesis, mechanism, and biomedical applications of thermosensitive hydrogels. A special section on intellectual property and marketed products tries to shed some light on the commercial potential of thermosensitive hydrogels.
Collapse
Affiliation(s)
- Sagar Pardeshi
- Department of Pharmaceutical Technology, University Institute of Chemical Technology, KBC North Maharashtra University, Jalgaon 425001, Maharashtra, India;
| | - Fouad Damiri
- Laboratory of Biomolecules and Organic Synthesis (BIOSYNTHO), Department of Chemistry, Faculty of Sciences Ben M’sick, University Hassan II of Casablanca, Casablanca 20000, Morocco; (F.D.); (M.B.)
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy Girls Section, Prince Sattam Bin Abdul Aziz University Alkharj, Al-Kharj 11942, Saudi Arabia;
| | - Rohit Joshi
- Precision Nanosystems Inc., Vancouver, BC V6P 6T7, Canada;
| | - Harshad Kapare
- Department of Pharmaceutics, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pune 41118, Maharashtra, India;
| | - Mahendra Kumar Prajapati
- Department of Pharmaceutics, School of Pharmacy and Technology Management, SVKM’s NMIMS, Shirpur 425405, Maharashtra, India;
| | - Neha Munot
- Department of Pharmaceutics, School of Pharmacy, Vishwakarma University, Pune 411048, Maharashtra, India;
| | - Mohammed Berrada
- Laboratory of Biomolecules and Organic Synthesis (BIOSYNTHO), Department of Chemistry, Faculty of Sciences Ben M’sick, University Hassan II of Casablanca, Casablanca 20000, Morocco; (F.D.); (M.B.)
| | - Prabhanjan S. Giram
- Department of Pharmaceutics, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pune 41118, Maharashtra, India;
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
- Correspondence: (P.S.G.); (S.R.); (H.R.B.)
| | - Satish Rojekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, Maharashtra, India
- Departments of Medicine and Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Correspondence: (P.S.G.); (S.R.); (H.R.B.)
| | - Faraat Ali
- Laboratory Services, Department of Licensing and Enforcement, Botswana Medicines Regulatory Authority (BoMRA), Gaborone 999106, Botswana;
| | - Md. Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea;
| | - Hasi Rani Barai
- School of Mechanical and IT Engineering, Yeungnam University, Gyeongsan 38541, Korea
- Correspondence: (P.S.G.); (S.R.); (H.R.B.)
| |
Collapse
|
37
|
Schotman MJG, Fransen PP, Song J, Dankers PYW. Tuning the affinity of amphiphilic guest molecules in a supramolecular polymer transient network. RSC Adv 2022; 12:14052-14060. [PMID: 35558837 PMCID: PMC9088426 DOI: 10.1039/d2ra00346e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/11/2022] [Indexed: 11/25/2022] Open
Abstract
Dynamicity plays a central role in biological systems such as in the cellular microenvironment. Here, the affinity and dynamics of different guest molecules in a transient supramolecular polymer hydrogel system, i.e. the host network, are investigated. The hydrogel system consists of bifunctional ureido-pyrimidinone (UPy) poly(ethylene glycol) polymers. A monofunctional complementary UPy guest is introduced, designed to interact with the host network based on UPy–UPy interactions. Furthermore, two other guest molecules are synthesized, being cholesterol and dodecyl (c12) guests; both designed to interact with the host network via hydrophobic interactions. At the nanoscale in solution, differences in morphology of the guest molecules were observed. The UPy–guest molecule formed fibers, and the cholesterol and c12 guests formed aggregates. Furthermore, cellular internalization of fluorescent guest molecules was studied. No cellular uptake of the UPy–cy5 guest was observed, whereas the cholesterol–cy5 guest showed membrane binding and cellular uptake. Also the c12–cy5 guest showed cellular uptake. Formulation of the guest molecules into the UPy hydrogel system was done to study the guest–host affinity. No changes in mechanical properties as measured with rheology were found upon guest–hydrogel formulation. Fluorescence recovery after photobleaching showed the diffusive properties of the cy5-functionalized guests throughout the host network. The c12 guest displayed a relatively fast mobility, the UPy guest displayed a decrease in mobility, and the cholesterol–guest remained relatively stable in the host network with little mobility. This demonstrates the tunable dynamic differences of affinity-based interaction between guest molecules and the host network. Interestingly, the cholesterol guest is internalized in cells and is robustly incorporated in the hydrogel network, while the UPy guest is not taken up by cells but shows an affinity to the hydrogel network. These results show the importance of guest–hydrogel affinity for future drug release. However, if modified with cholesterol these guests, or future drugs, will be taken up by cells; if modified with a UPy unit this does not occur. In this way both the drug–hydrogel interaction and the cell internalization behavior can be tuned. Regulating the host–guest dynamics in transient hydrogels opens the door to various drug delivery purposes and tissue engineering. Dynamicity plays a central role in biological systems, which can be mimicked by tuning dynamicity in hydrogel networks.![]()
Collapse
Affiliation(s)
- Maaike J G Schotman
- Institute for Complex Molecular Systems, Eindhoven University of Technology P. O. Box 513 Eindhoven 5600 MB The Netherlands .,Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology P. O. Box 513 Eindhoven 5600 MB The Netherlands
| | - Peter-Paul Fransen
- Institute for Complex Molecular Systems, Eindhoven University of Technology P. O. Box 513 Eindhoven 5600 MB The Netherlands .,Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology P. O. Box 513 Eindhoven 5600 MB The Netherlands
| | - Jiankang Song
- Institute for Complex Molecular Systems, Eindhoven University of Technology P. O. Box 513 Eindhoven 5600 MB The Netherlands .,Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology P. O. Box 513 Eindhoven 5600 MB The Netherlands
| | - Patricia Y W Dankers
- Institute for Complex Molecular Systems, Eindhoven University of Technology P. O. Box 513 Eindhoven 5600 MB The Netherlands .,Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology P. O. Box 513 Eindhoven 5600 MB The Netherlands.,Department of Biomedical Engineering, Laboratory for Cell and Tissue Engineering, Eindhoven University of Technology P. W. Box 513 5600 MB The Netherlands
| |
Collapse
|
38
|
Chrisnandy A, Blondel D, Rezakhani S, Broguiere N, Lutolf MP. Synthetic dynamic hydrogels promote degradation-independent in vitro organogenesis. NATURE MATERIALS 2022; 21:479-487. [PMID: 34782747 DOI: 10.1038/s41563-021-01136-7] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Epithelial organoids are most efficiently grown from mouse-tumour-derived, reconstituted extracellular matrix hydrogels, whose poorly defined composition, batch-to-batch variability and immunogenicity limit clinical applications. Efforts to replace such ill-defined matrices for organoid culture have largely focused on non-adaptable hydrogels composed of covalently crosslinked hydrophilic macromolecules. However, the excessive forces caused by tissue expansion in such elastic gels severely restrict organoid growth and morphogenesis. Chemical or enzymatic degradation schemes can partially alleviate this problem, but due to their irreversibility, long-term applicability is limited. Here we report a family of synthetic hydrogels that promote extensive organoid morphogenesis through dynamic rearrangements mediated by reversible hydrogen bonding. These tunable matrices are stress relaxing and thus promote efficient crypt budding in intestinal stem-cell epithelia through increased symmetry breaking and Paneth cell formation dependent on yes-associated protein 1. As such, these well-defined gels provide promising versatile matrices for fostering elaborate in vitro morphogenesis.
Collapse
Affiliation(s)
- Antonius Chrisnandy
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences (SV) and School of Engineering (STI), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Delphine Blondel
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences (SV) and School of Engineering (STI), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Saba Rezakhani
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences (SV) and School of Engineering (STI), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Nicolas Broguiere
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences (SV) and School of Engineering (STI), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Matthias P Lutolf
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences (SV) and School of Engineering (STI), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- Institute of Chemical Sciences and Engineering, School of Basic Science (SB), EPFL, Lausanne, Switzerland.
- Roche Institute for Translational Bioengineering (ITB), Pharma Research and Early Development (pRED), F. Hoffmann-La Roche Ltd, Basel, Switzerland.
| |
Collapse
|
39
|
Baker MB, Bosman T, Cox MAJ, Dankers P, Dias A, Jonkheijm P, Kieltyka R. Supramolecular Biomaterials in the Netherlands. Tissue Eng Part A 2022; 28:511-524. [PMID: 35316128 DOI: 10.1089/ten.tea.2022.0010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Synthetically designed biomaterials strive to recapitulate and mimic the complex environment of natural systems. Using natural materials as a guide, the ability to create high performance biomaterials that control cell fate, and support the next generation of cell and tissue-based therapeutics, is starting to emerge. Supramolecular chemistry takes inspiration from the wealth of non-covalent interactions found in natural materials that are inherently complex, and using the skills of synthetic and polymer chemistry, recreates simple systems to imitate their features. Within the past decade, supramolecular biomaterials have shown utility in tissue engineering and the progress predicts a bright future. On this 30th anniversary of the Netherlands Biomaterials and Tissue Engineering society, we will briefly recount the state of supramolecular biomaterials in the Dutch academic and industrial research and development context. This review will provide the background, recent advances, industrial successes and challenges, as well as future directions of the field, as we see it. Throughout this work, we notice the intricate interplay between simplicity and complexity in creating more advanced solutions. We hope that the interplay and juxtaposition between these two forces can propel the field forward.
Collapse
Affiliation(s)
- Matthew B Baker
- Maastricht University, 5211, Complex Tissue Regeneration Department, MERLN Institute for Technology Inspired Regenerative Medicine, 6211LK, Limburg, Netherlands.,Maastricht University, 5211, MERLN/CTR, Maastricht, Limburg, Netherlands;
| | | | - Martijn A J Cox
- Xeltis BV, Lismortel 31, PO Box 80, Eindhoven, Netherlands, 5600AB;
| | - Patricia Dankers
- Eindhoven University of Technology, 3169, Department of Pathology, Eindhoven, Noord-Brabant, Netherlands;
| | | | - Pascal Jonkheijm
- MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente , Molecular Nanofabrication group, Enschede, Netherlands;
| | | |
Collapse
|
40
|
Abstract
Many structures in nature look symmetric, but this is not completely accurate, because absolute symmetry is close to death. Chirality (handedness) is one form of living asymmetry. Chirality has been extensively investigated at different levels. Many rules were coined in attempts made for many decades to have control over the selection of handedness that seems to easily occur in nature. It is certain that if good control is realized on chirality, the roads will be ultimately open towards numerous developments in pharmaceutical, technological, and industrial applications. This tutorial review presents a report on chirality from single molecules to supramolecular assemblies. The realized functions are still in their infancy and have been scarcely converted into actual applications. This review provides an overview for starters in the chirality field of research on concepts, common methodologies, and outstanding accomplishments. It starts with an introductory section on the definitions and classifications of chirality at the different levels of molecular complexity, followed by highlighting the importance of chirality in biological systems and the different means of realizing chirality and its inversion in solid and solution-based systems at molecular and supramolecular levels. Chirality-relevant important findings and (bio-)technological applications are also reported accordingly.
Collapse
|
41
|
Ullah A, Lim SI. Bioinspired tunable hydrogels: An update on methods of preparation, classification, and biomedical and therapeutic applications. Int J Pharm 2022; 612:121368. [PMID: 34896566 DOI: 10.1016/j.ijpharm.2021.121368] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/26/2021] [Accepted: 12/06/2021] [Indexed: 12/24/2022]
Abstract
Hydrogels exhibit water-insoluble three-dimensional polymeric networks capable of absorbing large amounts of biological fluids. Both natural and synthetic polymers are used for the preparation of hydrogel networks. Such polymeric networks are fabricated through chemical or physical mechanisms of crosslinking. Chemical crosslinking is accomplished mainly through covalent bonding, while physical crosslinking involves self-healing secondary forces like H-bonding, host-guest interactions, and antigen-antibody interactions. The building blocks of the hydrogels play an important role in determining the mechanical, biological, and physicochemical properties. Hydrogels are used in a variety of biomedical applications like diagnostics (biodetection and bioimaging), delivery of therapeutics (drugs, immunotherapeutics, and vaccines), wound dressing and skin materials, cardiac complications, contact lenses, tissue engineering, and cell culture because of the inherent characteristics like enhanced water uptake and structural similarity with the extracellular matrix (ECM). This review highlights the recent trends and advances in the roles of hydrogels in biomedical and therapeutic applications. We also discuss the classification and methods of hydrogels preparation. A brief outlook on the future directions of hydrogels is also presented.
Collapse
Affiliation(s)
- Aziz Ullah
- Department of Chemical Engineering, Pukyong National University, Busan 48513, Republic of Korea; Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University Dera Ismail Khan 29050, Khyber Pakhtunkhwa, Pakistan
| | - Sung In Lim
- Department of Chemical Engineering, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
42
|
Trinh CK, Choi JW, Tran TK, Ahmad Z, Lee JS. Intermolecular interactions of an isoindigo-based organic semiconductor with various crosslinkers through hydrogen bonding. RSC Adv 2022; 12:26400-26405. [PMID: 36275086 PMCID: PMC9479677 DOI: 10.1039/d2ra05190g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/05/2022] [Indexed: 11/21/2022] Open
Abstract
The effects of crosslinkers, functioning via hydrogen bonding, on controlling the arrangement of molecules were investigated. The hole mobility of hydrogen-bonded organic materials displaying long-range order was significantly enhanced.
Collapse
Affiliation(s)
- Cuc Kim Trinh
- Chemical Engineering in Advanced Materials and Renewable Energy Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - Jin Woo Choi
- Department of Data Information and Physics, Kongju National University, 56 Gongjudaehak-ro, Gongju, Chungcheongnam-do 32588, Republic of Korea
| | - Thien Khanh Tran
- Chemical Engineering in Advanced Materials and Renewable Energy Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - Zubair Ahmad
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Jae-Suk Lee
- School of Materials Science & Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| |
Collapse
|
43
|
|
44
|
Huang Z, Chen X, O'Neill SJK, Wu G, Whitaker DJ, Li J, McCune JA, Scherman OA. Highly compressible glass-like supramolecular polymer networks. NATURE MATERIALS 2022; 21:103-109. [PMID: 34819661 DOI: 10.1038/s41563-021-01124-x] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Supramolecular polymer networks are non-covalently crosslinked soft materials that exhibit unique mechanical features such as self-healing, high toughness and stretchability. Previous studies have focused on optimizing such properties using fast-dissociative crosslinks (that is, for an aqueous system, dissociation rate constant kd > 10 s-1). Herein, we describe non-covalent crosslinkers with slow, tuneable dissociation kinetics (kd < 1 s-1) that enable high compressibility to supramolecular polymer networks. The resultant glass-like supramolecular networks have compressive strengths up to 100 MPa with no fracture, even when compressed at 93% strain over 12 cycles of compression and relaxation. Notably, these networks show a fast, room-temperature self-recovery (< 120 s), which may be useful for the design of high-performance soft materials. Retarding the dissociation kinetics of non-covalent crosslinks through structural control enables access of such glass-like supramolecular materials, holding substantial promise in applications including soft robotics, tissue engineering and wearable bioelectronics.
Collapse
Affiliation(s)
- Zehuan Huang
- Melville Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Xiaoyi Chen
- Melville Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Stephen J K O'Neill
- Melville Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Guanglu Wu
- Melville Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Daniel J Whitaker
- Melville Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Jiaxuan Li
- Melville Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Jade A McCune
- Melville Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Oren A Scherman
- Melville Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
45
|
El-Husseiny HM, Mady EA, Hamabe L, Abugomaa A, Shimada K, Yoshida T, Tanaka T, Yokoi A, Elbadawy M, Tanaka R. Smart/stimuli-responsive hydrogels: Cutting-edge platforms for tissue engineering and other biomedical applications. Mater Today Bio 2022; 13:100186. [PMID: 34917924 PMCID: PMC8669385 DOI: 10.1016/j.mtbio.2021.100186] [Citation(s) in RCA: 155] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/14/2021] [Accepted: 12/08/2021] [Indexed: 02/07/2023] Open
Abstract
Recently, biomedicine and tissue regeneration have emerged as great advances that impacted the spectrum of healthcare. This left the door open for further improvement of their applications to revitalize the impaired tissues. Hence, restoring their functions. The implementation of therapeutic protocols that merge biomimetic scaffolds, bioactive molecules, and cells plays a pivotal role in this track. Smart/stimuli-responsive hydrogels are remarkable three-dimensional (3D) bioscaffolds intended for tissue engineering and other biomedical purposes. They can simulate the physicochemical, mechanical, and biological characters of the innate tissues. Also, they provide the aqueous conditions for cell growth, support 3D conformation, provide mechanical stability for the cells, and serve as potent delivery matrices for bioactive molecules. Many natural and artificial polymers were broadly utilized to design these intelligent platforms with novel advanced characteristics and tailored functionalities that fit such applications. In the present review, we highlighted the different types of smart/stimuli-responsive hydrogels with emphasis on their synthesis scheme. Besides, the mechanisms of their responsiveness to different stimuli were elaborated. Their potential for tissue engineering applications was discussed. Furthermore, their exploitation in other biomedical applications as targeted drug delivery, smart biosensors, actuators, 3D and 4D printing, and 3D cell culture were outlined. In addition, we threw light on smart self-healing hydrogels and their applications in biomedicine. Eventually, we presented their future perceptions in biomedical and tissue regeneration applications. Conclusively, current progress in the design of smart/stimuli-responsive hydrogels enhances their prospective to function as intelligent, and sophisticated systems in different biomedical applications.
Collapse
Affiliation(s)
- Hussein M. El-Husseiny
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo, 1838509, Japan
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya, 13736, Egypt
| | - Eman A. Mady
- Department of Animal Hygiene, Behavior and Management, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya, 13736, Egypt
| | - Lina Hamabe
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo, 1838509, Japan
| | - Amira Abugomaa
- Faculty of Veterinary Medicine, Mansoura University, Mansoura, Dakahliya, 35516, Egypt
| | - Kazumi Shimada
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo, 1838509, Japan
- Division of Research Animal Laboratory and Translational Medicine, Research and Development Center, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki City, Osaka, 569-8686, Japan
| | - Tomohiko Yoshida
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo, 1838509, Japan
| | - Takashi Tanaka
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo, 1838509, Japan
| | - Aimi Yokoi
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo, 1838509, Japan
| | - Mohamed Elbadawy
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya, 13736, Egypt
| | - Ryou Tanaka
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo, 1838509, Japan
| |
Collapse
|
46
|
Lv X, Xia D, Cheng Y, Chao J, Wei X, Wang P. Construction of a pillararene-based supramolecular polymer network and its application in efficient removal of dyes from water. Dalton Trans 2021; 51:910-917. [PMID: 34935804 DOI: 10.1039/d1dt03390e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An AB-type monomer based on a pillar[5]arene host and an imidazolium salt guest was successfully synthesized through a facile way. This monomer can self-assemble into linear supramolecular polymers in chloroform. After the addition of silver ions, the imidazolium salt group coordinated with silver ions to crosslink the linear supramolecular polymers at their ends, resulting in the formation of supramolecular polymer networks. Meanwhile, after further adding iodide ions, the supramolecular polymer network changed back to the linear supramolecular polymer. As a result, the topological structure of the system can be reversibly tuned. Furthermore, this supramolecular polymer network can be applied to remove organic dyes in water, suggesting its great potential in the treatment of waste water.
Collapse
Affiliation(s)
- Xiaoqing Lv
- Scientific Instrument Center, Shanxi University, Taiyuan 030006, P. R. China. .,School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China
| | - Danyu Xia
- Scientific Instrument Center, Shanxi University, Taiyuan 030006, P. R. China.
| | - Yujie Cheng
- Scientific Instrument Center, Shanxi University, Taiyuan 030006, P. R. China. .,School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China
| | - Jianbin Chao
- Scientific Instrument Center, Shanxi University, Taiyuan 030006, P. R. China.
| | - Xuehong Wei
- Scientific Instrument Center, Shanxi University, Taiyuan 030006, P. R. China. .,School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China
| | - Pi Wang
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, P.R. China.
| |
Collapse
|
47
|
Sonker M, Bajpai S, Khan MA, Yu X, Tiwary SK, Shreyash N. Review of Recent Advances and Their Improvement in the Effectiveness of Hydrogel-Based Targeted Drug Delivery: A Hope for Treating Cancer. ACS APPLIED BIO MATERIALS 2021; 4:8080-8109. [PMID: 35005919 DOI: 10.1021/acsabm.1c00857] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Using hydrogels for delivering cancer therapeutics is advantageous in pharmaceutical usage as they have an edge over traditional delivery, which is tainted due to the risk of toxicity that it imbues. Hydrogel usage leads to the development of a more controlled drug release system owing to its amenability for structural metamorphosis, its higher porosity to seat the drug molecules, and its ability to shield the drug from denaturation. The thing that makes its utility even more enhanced is that they make themselves more recognizable to the body tissues and hence can stay inside the body for a longer time, enhancing the efficiency of the delivery, which otherwise is negatively affected since the drug is identified by the human immunity as a foreign substance, and thus, an attack of the immunity begins on the drug injected. A variety of hydrogels such as thermosensitive, pH-sensitive, and magnetism-responsive hydrogels have been included and their potential usage in drug delivery has been discussed in this review that aims to present recent studies on hydrogels that respond to alterations under a variety of circumstances in "reducing" situations that mimic the microenvironment of cancerous cells.
Collapse
Affiliation(s)
- Muskan Sonker
- Department of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30318, United States
| | - Sushant Bajpai
- Department of Petroleum Engineering, Rajiv Gandhi Institute of Petroleum Technology, Jais, Amethi 229304, India
| | - Mohd Ashhar Khan
- Department of Chemical Engineering, Rajiv Gandhi Institute of Petroleum Technology, Jais, Amethi 229304, India
| | - Xiaojun Yu
- Department of Biomedical Engineering Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Saurabh Kr Tiwary
- Department of Chemical Engineering, Rajiv Gandhi Institute of Petroleum Technology, Jais, Amethi 229304, India
| | - Nehil Shreyash
- Department of Chemical Engineering, Rajiv Gandhi Institute of Petroleum Technology, Jais, Amethi 229304, India
| |
Collapse
|
48
|
Vleugels MEJ, Varela-Aramburu S, de Waal BFM, Schoenmakers SMC, Maestro B, Palmans ARA, Sanz JM, Meijer EW. Choline-Functionalized Supramolecular Copolymers: Toward Antimicrobial Activity against Streptococcus pneumoniae. Biomacromolecules 2021; 22:5363-5373. [PMID: 34846847 PMCID: PMC8672346 DOI: 10.1021/acs.biomac.1c01293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dynamic binding events are key to arrive at functionality in nature, and these events are often governed by electrostatic or hydrophobic interactions. Synthetic supramolecular polymers are promising candidates to obtain biomaterials that mimic this dynamicity. Here, we created four new functional monomers based on the benzene-1,3,5-tricarboxamide (BTA) motif. Choline or atropine groups were introduced to obtain functional monomers capable of competing with the cell wall of Streptococcus pneumoniae for binding of essential choline-binding proteins (CBPs). Atropine-functionalized monomers BTA-Atr and BTA-Atr3 were too hydrophobic to form homogeneous assemblies, while choline-functionalized monomers BTA-Chol and BTA-Chol3 were unable to form fibers due to charge repulsion. However, copolymerization of BTA-Chol3 with non-functionalized BTA-(OH)3 yielded dynamic fibers, similar to BTA-(OH)3. These copolymers showed an increased affinity toward CBPs compared to free choline due to multivalent effects. BTA-based supramolecular copolymers are therefore a versatile platform to design bioactive and dynamic supramolecular polymers with novel biotechnological properties.
Collapse
Affiliation(s)
- Marle E J Vleugels
- Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Silvia Varela-Aramburu
- Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Bas F M de Waal
- Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Sandra M C Schoenmakers
- Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Beatriz Maestro
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid Spain
| | - Anja R A Palmans
- Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Jesús M Sanz
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - E W Meijer
- Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
49
|
Gilpin A, Zeng Y, Hoque J, Ryu JH, Yang Y, Zauscher S, Eward W, Varghese S. Self-Healing of Hyaluronic Acid to Improve In Vivo Retention and Function. Adv Healthc Mater 2021; 10:e2100777. [PMID: 34601809 PMCID: PMC8666142 DOI: 10.1002/adhm.202100777] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 09/23/2021] [Indexed: 12/15/2022]
Abstract
Convergent advances in the field of soft matter, macromolecular chemistry, and engineering have led to the development of biomaterials that possess autonomous, adaptive, and self-healing characteristics similar to living systems. These rationally designed biomaterials can surpass the capabilities of their parent material. Herein, the modification of hyaluronic acid (HA) to exhibit self-healing properties is described, and its physical and biological function both in vitro and in vivo is studied. The in vitro findings showed that self-healing HA designed to undergo self-repair improves lubrication, enhances free radical scavenging, and attenuates enzymatic degradation compared to unmodified HA. Longitudinal imaging following intraarticular injection of self-healing HA shows improved in vivo retention despite its low molecular weight. Concomitant with these functions, intraarticular injection of self-healing HA mitigates anterior cruciate ligament injury-mediated cartilage degeneration in rodents. This proof-of-concept study shows how incorporation of functional properties such as self-healing can be used to surpass the existing capabilities of biolubricants.
Collapse
Affiliation(s)
- Anna Gilpin
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27710
- Department of Orthopaedic Surgery, Duke University School of Medicine, Duke University, Durham, NC 27710
| | - Yuze Zeng
- Department of Orthopaedic Surgery, Duke University School of Medicine, Duke University, Durham, NC 27710
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27710
| | - Jiaul Hoque
- Department of Orthopaedic Surgery, Duke University School of Medicine, Duke University, Durham, NC 27710
| | - Ji Hyun Ryu
- Department of Orthopaedic Surgery, Duke University School of Medicine, Duke University, Durham, NC 27710
| | - Yong Yang
- Department of Orthopaedic Surgery, Duke University School of Medicine, Duke University, Durham, NC 27710
| | - Stefan Zauscher
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27710
| | - William Eward
- Department of Orthopaedic Surgery, Duke University School of Medicine, Duke University, Durham, NC 27710
| | - Shyni Varghese
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27710
- Department of Orthopaedic Surgery, Duke University School of Medicine, Duke University, Durham, NC 27710
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27710
| |
Collapse
|
50
|
Huang J, Li C, Gao Y, Cai Y, Guo X, Cohen Stuart MA, Wang J. Dendrimer-Based Polyion Complex Vesicles: Loops Make Loose. Macromol Rapid Commun 2021; 43:e2100594. [PMID: 34699665 DOI: 10.1002/marc.202100594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/10/2021] [Indexed: 01/24/2023]
Abstract
Associations of amphiphiles assume their various morphologies according to the so-called packing parameter under thermodynamic control. However, one may raise the question of whether polymers can always relax fast enough to obey thermodynamic control, and how this may be checked. Here, a case of polyion complex (PIC) assemblies where the morphology appears to be subject to kinetic control is discussed. Poly (ethylene oxide)-b-(styrene sulfonate) block copolymers are combined with cationic PAMAM dendrimers of various generations (2-7). The PEO-PSS diblocks, and the corresponding PSS-PEO-PSS triblocks should have nearly identical packing parameters, but surprisingly creat different assemblies, namely core-shell micelles and vesicles, respectively. Moreover, the micelles are very stable against added salt, whereas the vesicles are not only much more sensitive to added salt, but also appear to exchange matter on relevant time scales. The small and largely quenched early-stage precursor complexes are responsible for the morphological and dynamic differences, implying that kinetic control may also be a way to obtain particles with well-defined and useful properties. The exciting new finding that triblocks produce more "active" vesicles will hopefully trigger the exploration of more pathways, and so learn how to tune PICsomes toward specific applications.
Collapse
Affiliation(s)
- Jianan Huang
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Chendan Li
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Yifan Gao
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Ying Cai
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Xuhong Guo
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Martien A Cohen Stuart
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Junyou Wang
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| |
Collapse
|