1
|
Kim BK, Kang DH, Woo J, Yoon W, Ryu H, Han K, Chung S, Kim TS. Control of artificial membrane fusion in physiological ionic solutions beyond the limits of electroformation. Nat Commun 2024; 15:4524. [PMID: 38806492 PMCID: PMC11133453 DOI: 10.1038/s41467-024-48875-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 05/15/2024] [Indexed: 05/30/2024] Open
Abstract
Membrane fusion, merging two lipid bilayers, is crucial for fabricating artificial membrane structures. Over the past 40 years, in contrast to precise and controllable membrane fusion in-vivo through specific molecules such as SNAREs, controlling the fusion in-vitro while fabricating artificial membrane structures in physiological ionic solutions without fusion proteins has been a challenge, becoming a significant obstacle to practical applications. We present an approach consisting of an electric field and a few kPa hydraulic pressure as an additional variable to physically control the fusion, enabling tuning of the shape and size of the 3D freestanding lipid bilayers in physiological ionic solutions. Mechanical model analysis reveals that pressure-induced parallel/normal tensions enhance fusion among membranes in the microwell. In-vitro peptide-membrane assay, mimicking vesicular transport via pressure-assisted fusion, and stability of 38 days with in-chip pressure control via pore size-regulated hydrogel highlight the potential for diverse biological applications.
Collapse
Affiliation(s)
- Bong Kyu Kim
- Center for Brain Technology, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Department of Mechanical Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Dong-Hyun Kang
- Center for Brain Technology, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Bionics Research Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Junhyuk Woo
- Center for Brain Technology, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Wooseung Yoon
- Center for Brain Technology, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Hyunil Ryu
- Center for Brain Technology, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Kyungreem Han
- Center for Brain Technology, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Seok Chung
- Department of Mechanical Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Tae Song Kim
- Center for Brain Technology, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea.
| |
Collapse
|
2
|
Xu Q, Zhang Z, Lui PPY, Lu L, Li X, Zhang X. Preparation and biomedical applications of artificial cells. Mater Today Bio 2023; 23:100877. [PMID: 38075249 PMCID: PMC10701372 DOI: 10.1016/j.mtbio.2023.100877] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/16/2023] [Accepted: 11/19/2023] [Indexed: 10/16/2024] Open
Abstract
Artificial cells have received much attention in recent years as cell mimics with typical biological functions that can be adapted for therapeutic and diagnostic applications, as well as having an unlimited supply. Although remarkable progress has been made to construct complex multifunctional artificial cells, there are still significant differences between artificial cells and natural cells. It is therefore important to understand the techniques and challenges for the fabrication of artificial cells and their applications for further technological advancement. The key concepts of top-down and bottom-up methods for preparing artificial cells are summarized, and the advantages and disadvantages of the bottom-up methods are compared and critically discussed in this review. Potential applications of artificial cells as drug carriers (microcapsules), as signaling regulators for coordinating cellular communication and as bioreactors for biomolecule fabrication, are further discussed. The challenges and future trends for the development of artificial cells simulating the real activities of natural cells are finally described.
Collapse
Affiliation(s)
- Qian Xu
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang, Liaoning, 110819, China
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
| | - Zeping Zhang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Pauline Po Yee Lui
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, 999077, Hong Kong
| | - Liang Lu
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xiaowu Li
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang, Liaoning, 110819, China
| | - Xing Zhang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
3
|
Wang Y, Palzhanov Y, Dang DT, Quaini A, Olshanskii M, Majd S. On Fusogenicity of Positively Charged Phased-Separated Lipid Vesicles: Experiments and Computational Simulations. Biomolecules 2023; 13:1473. [PMID: 37892155 PMCID: PMC10605210 DOI: 10.3390/biom13101473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/19/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
This paper studies the fusogenicity of cationic liposomes in relation to their surface distribution of cationic lipids and utilizes membrane phase separation to control this surface distribution. It is found that concentrating the cationic lipids into small surface patches on liposomes, through phase-separation, can enhance liposome's fusogenicity. Further concentrating these lipids into smaller patches on the surface of liposomes led to an increased level of fusogenicity. These experimental findings are supported by numerical simulations using a mathematical model for phase-separated charged liposomes. Findings of this study may be used for design and development of highly fusogenic liposomes with minimal level of toxicity.
Collapse
Affiliation(s)
- Yifei Wang
- Department of Biomedical Engineering, University of Houston, 3551 Cullen Blvd, Houston, TX 77204, USA; (Y.W.)
| | - Yerbol Palzhanov
- Department of Mathematics, University of Houston, 3551 Cullen Blvd, Houston, TX 77204, USA; (Y.P.); (M.O.)
| | - Dang T. Dang
- Department of Biomedical Engineering, University of Houston, 3551 Cullen Blvd, Houston, TX 77204, USA; (Y.W.)
| | - Annalisa Quaini
- Department of Mathematics, University of Houston, 3551 Cullen Blvd, Houston, TX 77204, USA; (Y.P.); (M.O.)
| | - Maxim Olshanskii
- Department of Mathematics, University of Houston, 3551 Cullen Blvd, Houston, TX 77204, USA; (Y.P.); (M.O.)
| | - Sheereen Majd
- Department of Biomedical Engineering, University of Houston, 3551 Cullen Blvd, Houston, TX 77204, USA; (Y.W.)
| |
Collapse
|
4
|
Wang Y, Majd S. Charged Lipids Modulate the Phase Separation in Multicomponent Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:11371-11378. [PMID: 37485979 DOI: 10.1021/acs.langmuir.3c01199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Phase separation in lipid membranes controls the organization of membrane components and thus regulates membrane-mediated processes. Membrane phase behavior is influenced by the molecular properties of its components and their relative concentrations. Charged lipid species are among the most essential components of lipid membranes, and their impact on the membrane phase behavior is yet to be fully understood. Aiming to provide insight into this impact, this paper investigates how the presence and amount of anionic and cationic lipids affect the phase behavior of multicomponent membranes. Membranes of ternary composition DOPC:DPPC:Chol with two distinct molar ratios were used to test the hypothesis that inclusion of charged lipids with saturated tails, beyond a certain concentration, would impede phase separation in an otherwise phase-separating membrane. Fluorescence microscopy examination of electroformed giant liposomes revealed that when more than half of DOPC in the examined mixtures was replaced with DOPA or DOTAP, phase separation in liposomes was somewhat suppressed, and this effect increased with increasing charged lipid content. This effect depended on the membrane surface charge density as the half-maximal effect was observed at around 0.0072 C Å-2 in all examined cases. The phase-separation suppressing effect of DOPA was neutralized when oppositely charged lipid DOTAP was included in the mixture. Likewise, presence of divalent cation Ca2+ in the solution neutralized the impact of negatively charged DOPA. These results underline the detrimental influence of surface charge density on membrane phase behavior. More importantly, these findings suggest that the charged lipid content in membranes may be a regulator of their phase behavior and open new opportunities for the design of synthetic lipid membranes.
Collapse
Affiliation(s)
- Yifei Wang
- Department of Biomedical Engineering, University of Houston, 3551 Cullen Boulevard, Houston, Texas 77204, United States
| | - Sheereen Majd
- Department of Biomedical Engineering, University of Houston, 3551 Cullen Boulevard, Houston, Texas 77204, United States
| |
Collapse
|
5
|
Nair KS, Bajaj H. Advances in giant unilamellar vesicle preparation techniques and applications. Adv Colloid Interface Sci 2023; 318:102935. [PMID: 37320960 DOI: 10.1016/j.cis.2023.102935] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/23/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023]
Abstract
Giant unilamellar vesicles (GUVs) are versatile and promising cell-sized bio-membrane mimetic platforms. Their applications range from understanding and quantifying membrane biophysical processes to acting as elementary blocks in the bottom-up assembly of synthetic cells. Definite properties and requisite goals in GUVs are dictated by the preparation techniques critical to the success of their applications. Here, we review key advances in giant unilamellar vesicle preparation techniques and discuss their formation mechanisms. Developments in lipid hydration and emulsion techniques for GUV preparation are described. Novel microfluidic-based techniques involving lipid or surfactant-stabilized emulsions are outlined. GUV immobilization strategies are summarized, including gravity-based settling, covalent linking, and immobilization by microfluidic, electric, and magnetic barriers. Moreover, some of the key applications of GUVs as biomimetic and synthetic cell platforms during the last decade have been identified. Membrane interface processes like phase separation, membrane protein reconstitution, and membrane bending have been deciphered using GUVs. In addition, vesicles are also employed as building blocks to construct synthetic cells with defined cell-like functions comprising compartments, metabolic reactors, and abilities to grow and divide. We critically discuss the pros and cons of preparation technologies and the properties they confer to the GUVs and identify potential techniques for dedicated applications.
Collapse
Affiliation(s)
- Karthika S Nair
- Microbial Processes and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, Ghaziabad 201002, India
| | - Harsha Bajaj
- Microbial Processes and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, Ghaziabad 201002, India.
| |
Collapse
|
6
|
Wang Y, Palzhanov Y, Quaini A, Olshanskii M, Majd S. Lipid domain coarsening and fluidity in multicomponent lipid vesicles: A continuum based model and its experimental validation. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183898. [PMID: 35283081 DOI: 10.1016/j.bbamem.2022.183898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 12/11/2022]
Abstract
Liposomes that achieve a heterogeneous and spatially organized surface through phase separation have been recognized to be a promising platform for delivery purposes. However, their design and optimization through experimentation can be expensive and time-consuming. To assist with the design and reduce the associated cost, we propose a computational platform for modeling membrane coarsening dynamics based on the principles of continuum mechanics and thermodynamics. This model couples phase separation to lateral flow and accounts for different membrane fluidity within the different phases, which is known to affect the coarsening dynamics on lipid membranes. The simulation results are in agreement with the experimental data in terms of liquid ordered domains area fraction, total domains perimeter over time, and total number of domains over time for two different membrane compositions (DOPC:DPPC with a 1:1 M ratio with 15% Chol and DOPC:DPPC with a 1:2 M ratio with 25% Chol) that yield opposite and nearly inverse phase behavior. This quantitative validation shows that the developed platform can be a valuable tool in complementing experimental practice.
Collapse
Affiliation(s)
- Y Wang
- Department of Biomedical Engineering, University of Houston, 3551 Cullen Blvd, Houston, TX 77204, United States of America.
| | - Y Palzhanov
- Department of Mathematics, University of Houston, 3551 Cullen Blvd, Houston, TX 77204, United States of America.
| | - A Quaini
- Department of Mathematics, University of Houston, 3551 Cullen Blvd, Houston, TX 77204, United States of America.
| | - M Olshanskii
- Department of Mathematics, University of Houston, 3551 Cullen Blvd, Houston, TX 77204, United States of America.
| | - S Majd
- Department of Biomedical Engineering, University of Houston, 3551 Cullen Blvd, Houston, TX 77204, United States of America.
| |
Collapse
|
7
|
Han WB, Kang DH, Kim TS. 3D Artificial Cell Membranes as Versatile Platforms for Biological Applications. BIOCHIP JOURNAL 2022. [DOI: 10.1007/s13206-022-00066-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Cook AB, Clemons TD. Bottom‐Up versus Top‐Down Strategies for Morphology Control in Polymer‐Based Biomedical Materials. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Alexander B. Cook
- Laboratory of Nanotechnology for Precision Medicine Istituto Italiano di Tecnologia Via Morego 30 Genova 16163 Italy
| | - Tristan D. Clemons
- School of Polymer Science and Engineering University of Southern Mississippi Hattiesburg MS 39406 USA
| |
Collapse
|
9
|
Wang X, Du H, Wang Z, Mu W, Han X. Versatile Phospholipid Assemblies for Functional Synthetic Cells and Artificial Tissues. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2002635. [PMID: 32830387 DOI: 10.1002/adma.202002635] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/09/2020] [Indexed: 06/11/2023]
Abstract
The bottom-up construction of a synthetic cell from nonliving building blocks capable of mimicking cellular properties and behaviors helps to understand the particular biophysical properties and working mechanisms of a cell. A synthetic cell built in this way possesses defined chemical composition and structure. Since phospholipids are native biomembrane components, their assemblies are widely used to mimic cellular structures. Here, recent developments in the formation of versatile phospholipid assemblies are described, together with the applications of these assemblies for functional membranes (protein reconstituted giant unilamellar vesicles), spherical and nonspherical protoorganelles, and functional synthetic cells, as well as the high-order hierarchical structures of artificial tissues. Their biomedical applications are also briefly summarized. Finally, the challenges and future directions in the field of synthetic cells and artificial tissues based on phospholipid assemblies are proposed.
Collapse
Affiliation(s)
- Xuejing Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Hang Du
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
- Marine Antifouling Engineering Technology Center of Shangdong Province, Harbin Institute of Technology, Weihai, 264209, China
| | - Zhao Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Wei Mu
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
10
|
Liu Z, Cui J, Zhan W. Rapid Access to Giant Unilamellar Liposomes with Upper Size Control: Membrane-Gated, Gel-Assisted Lipid Hydration. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:13193-13200. [PMID: 33125237 DOI: 10.1021/acs.langmuir.0c01496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Combining gel-assisted lipid hydration with membrane-based lipid extrusion, we demonstrate here a general procedure for rapid preparation of giant unilamellar liposomes with upper size control. Featured in this procedure are planar lipid stacks deposited on poly(vinyl alcohol) gel, which are further laminated atop with microporous polycarbonate membranes. Control of liposome size is thus realized through the uniform-sized pores of the latter, which provide the only access for the underlying lipids to enter the main aqueous phase upon hydration. Production of both single-phased and biphasic (Janus) liposomes using several commonly employed model lipids, including 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) and cholesterol, is presented. The size distribution, yield and lamellarity of these liposome products are characterized and analyzed in detail by confocal fluorescence microscopy. This procedure thus offers a simple and fast alternative route to giant unilamellar liposomes with upper size control.
Collapse
Affiliation(s)
- Zening Liu
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Jinyan Cui
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Wei Zhan
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
11
|
Peng Z, Kanno S, Shimba K, Miyamoto Y, Yagi T. Preparation of Size-controlled Giant Vesicles Under Physiological Conditions. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:2198-2201. [PMID: 33018443 DOI: 10.1109/embc44109.2020.9175877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Giant vesicles (GVs) are model cell membranes that function as tools for the study of cell membrane properties. Recently, researchers have been calling for GVs of specific sizes for use in studies with precise needs. In this paper, we report a method of forming GVs of specific sizes by using an agarose-swelling approach. The resulting GVs had a narrow size distribution and were successfully formed under physiological conditions.
Collapse
|
12
|
Zhiliakov A, Wang Y, Quaini A, Olshanskii M, Majd S. Experimental validation of a phase-field model to predict coarsening dynamics of lipid domains in multicomponent membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183446. [PMID: 32828848 DOI: 10.1016/j.bbamem.2020.183446] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/05/2020] [Accepted: 08/17/2020] [Indexed: 10/23/2022]
Abstract
Membrane phase-separation is a mechanism that biological membranes often use to locally concentrate specific lipid species in order to organize diverse membrane processes. Phase separation has also been explored as a tool for the design of liposomes with heterogeneous and spatially organized surfaces. These "patchy" liposomes are promising platforms for delivery purposes, however their design and optimization through experimentation can be expensive and time-consuming. We developed a computationally efficient method based on the surface Cahn-Hilliard phase-field model to complement experimental investigations in the design of patchy liposomes. The method relies on thermodynamic considerations to set the initial state for numerical simulations. We show that our computational approach delivers not only qualitative pictures, but also accurate quantitative information about the dynamics of the membrane organization. In particular, the computational and experimental results are in excellent agreement in terms of lipid domain area fraction, total lipid domain perimeter over time and total number of lipid domains over time for two different membrane compositions (DOPC:DPPC with a 2:1 M ratio with 20% Chol and DOPC:DPPC with a 3:1 M ratio with 20% Chol). Thus, the computational phase-field model informed by experiments has a considerable potential to assist in the design of liposomes with spatially organized surfaces, thereby containing the cost and time required by the design process.
Collapse
Affiliation(s)
- A Zhiliakov
- Department of Mathematics, University of Houston, 3551 Cullen Blvd, Houston, TX 77204, United States of America.
| | - Y Wang
- Department of Biomedical Engineering, University of Houston, 3551 Cullen Blvd, Houston, TX 77204, United States of America.
| | - A Quaini
- Department of Mathematics, University of Houston, 3551 Cullen Blvd, Houston, TX 77204, United States of America.
| | - M Olshanskii
- Department of Mathematics, University of Houston, 3551 Cullen Blvd, Houston, TX 77204, United States of America.
| | - S Majd
- Department of Biomedical Engineering, University of Houston, 3551 Cullen Blvd, Houston, TX 77204, United States of America.
| |
Collapse
|
13
|
Wang X, Tian L, Du H, Li M, Mu W, Drinkwater BW, Han X, Mann S. Chemical communication in spatially organized protocell colonies and protocell/living cell micro-arrays. Chem Sci 2019; 10:9446-9453. [PMID: 32055320 PMCID: PMC6991169 DOI: 10.1039/c9sc04522h] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 12/12/2022] Open
Abstract
Arrays of giant unilamellar vesicles (GUVs) with controllable geometries and occupancies are prepared by acoustic trapping and used to implement chemical signaling in protocell colonies and protocell/living cell consortia.
Micro-arrays of discrete or hemifused giant unilamellar lipid vesicles (GUVs) with controllable spatial geometries, lattice dimensions, trapped occupancies and compositions are prepared by acoustic standing wave patterning, and employed as platforms to implement chemical signaling in GUV colonies and protocell/living cell consortia. The methodology offers an alternative approach to GUV micro-array fabrication and provides new opportunities in protocell research and bottom-up synthetic biology.
Collapse
Affiliation(s)
- Xuejing Wang
- State Key Laboratory of Urban Water Resource and Environment , School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin , 150001 , China . .,Centre for Protolife Research and Centre for Organized Matter Chemistry , School of Chemistry University of Bristol , Bristol , BS8 1TS UK .
| | - Liangfei Tian
- Centre for Protolife Research and Centre for Organized Matter Chemistry , School of Chemistry University of Bristol , Bristol , BS8 1TS UK .
| | - Hang Du
- State Key Laboratory of Urban Water Resource and Environment , School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin , 150001 , China .
| | - Mei Li
- Centre for Protolife Research and Centre for Organized Matter Chemistry , School of Chemistry University of Bristol , Bristol , BS8 1TS UK .
| | - Wei Mu
- State Key Laboratory of Urban Water Resource and Environment , School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin , 150001 , China .
| | | | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment , School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin , 150001 , China .
| | - Stephen Mann
- Centre for Protolife Research and Centre for Organized Matter Chemistry , School of Chemistry University of Bristol , Bristol , BS8 1TS UK .
| |
Collapse
|
14
|
Preparation Methods for Phospholipid Vesicle Arrays and Their Applications in Biological Analysis. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1016/s1872-2040(19)61179-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Schultze J, Vagias A, Ye L, Prantl E, Breising V, Best A, Koynov K, Marques CM, Butt HJ. Preparation of Monodisperse Giant Unilamellar Anchored Vesicles Using Micropatterned Hydrogel Substrates. ACS OMEGA 2019; 4:9393-9399. [PMID: 31460029 PMCID: PMC6648857 DOI: 10.1021/acsomega.9b00912] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/16/2019] [Indexed: 06/10/2023]
Abstract
Giant unilamellar vesicles (GUVs) are model membrane systems consisting of a single lipid bilayer separating an inner lumen from the outer solution, with dimensions comparable to that of eukaryotic cells. The importance of these biomimetic systems has recently grown with the development of easy and safe methods to assemble GUVs from complex biorelevant compositions. However, size and position control is still a key challenge for GUV formation and manipulation. Here, a gel-assisted formation method is introduced, able to produce arrays of giant unilamellar anchored vesicles (GUAVs) with a predetermined narrow size distribution. The approach based on micropatterned gel substrates of cross-linked poly(N-isopropylacrylamide) allows performing parallel measurements on thousands of immobile unilamellar vesicles. Such power and flexibility will respond to the growing need for developing platforms of biomimetic constructs from cell-sized single bilayers.
Collapse
Affiliation(s)
- Jennifer Schultze
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Apostolos Vagias
- Zernike
Institute for Advanced Materials, Macromolecular Chemistry and New
Polymeric Materials, University of Groningen, Nijenborgh 4, NL-9747 AG Groningen, Netherlands
| | - Lijun Ye
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Ephraim Prantl
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Valentina Breising
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Andreas Best
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Kaloian Koynov
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Carlos M. Marques
- Institut
Charles Sadron, Université de Strasbourg,
CNRS, 23 rue du Loess, 67034 Strasbourg, France
| | - Hans-Jürgen Butt
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
16
|
Mirab F, Kang YJ, Majd S. Preparation and characterization of size-controlled glioma spheroids using agarose hydrogel microwells. PLoS One 2019; 14:e0211078. [PMID: 30677075 PMCID: PMC6345430 DOI: 10.1371/journal.pone.0211078] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/07/2019] [Indexed: 01/20/2023] Open
Abstract
Treatment of glioblastoma, the most common and aggressive type of primary brain tumors, is a major medical challenge and the development of new alternatives requires simple yet realistic models for these tumors. In vitro spheroid models offer attractive platforms to mimic the tumor behavior in vivo and have thus, been increasingly applied for assessment of drug efficacy in various tumors. The aim of this study was to produce and characterize size-controlled U251 glioma spheroids towards application in glioma drug evaluation studies. To this end, we fabricated agarose hydrogel microwells with cylindrical shape and diameters of 70-700 μm and applied these wells without any surface modification for glioma spheroid formation. The resultant spheroids were homogeneous in size and shape, exhibited high cell viability (> 90%), and had a similar growth rate to that of natural brain tumors. The final size of spheroids depended on cell seeding density and microwell size. The spheroids' volume increased linearly with the cell seeding density and the rate of this change increased with the well size. Lastly, we tested the therapeutic effect of an anti-cancer drug, Di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT) on the resultant glioma spheroids and demonstrated the applicability of this spheroid model for drug efficacy studies.
Collapse
Affiliation(s)
- Fereshtehsadat Mirab
- Department of Biomedical Engineering, University of Houston, Houston, Texas, United States of America
| | - You Jung Kang
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Sheereen Majd
- Department of Biomedical Engineering, University of Houston, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
17
|
Stano P. Is Research on "Synthetic Cells" Moving to the Next Level? Life (Basel) 2018; 9:E3. [PMID: 30587790 PMCID: PMC6463193 DOI: 10.3390/life9010003] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 12/15/2022] Open
Abstract
"Synthetic cells" research focuses on the construction of cell-like models by using solute-filled artificial microcompartments with a biomimetic structure. In recent years this bottom-up synthetic biology area has considerably progressed, and the field is currently experiencing a rapid expansion. Here we summarize some technical and theoretical aspects of synthetic cells based on gene expression and other enzymatic reactions inside liposomes, and comment on the most recent trends. Such a tour will be an occasion for asking whether times are ripe for a sort of qualitative jump toward novel SC prototypes: is research on "synthetic cells" moving to a next level?
Collapse
Affiliation(s)
- Pasquale Stano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento; Ecotekne-S.P. Lecce-Monteroni, I-73100 Lecce, Italy.
| |
Collapse
|
18
|
Kang DH, Han WB, Choi N, Kim YJ, Kim TS. Tightly Sealed 3D Lipid Structure Monolithically Generated on Transparent SU-8 Microwell Arrays for Biosensor Applications. ACS APPLIED MATERIALS & INTERFACES 2018; 10:40401-40410. [PMID: 30404433 DOI: 10.1021/acsami.8b13458] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Artificial lipid membranes are excellent candidates for new biosensing platforms because their structures are similar to cell membranes and it is relatively easy to modify the composition of the membrane. The freestanding structure is preferable for this purpose because of the more manageable reconstitution of the membrane protein. Therefore, most of the lipid membranes for biosensing are based on two-dimensional structures that are fixed on a solid substrate (unlike floating liposomes) even though they have some disadvantages, such as low stability, small surface area, and potential retention of solvent in the membrane. In this paper, three-dimensional freestanding lipid bilayer (3D FLB) arrays were fabricated uniformly on SU-8 microwells without any toxic solvent. The 3D FLBs have better stability and larger surface area due to their cell-like structure. In order to improve the sealing characteristics of the 3D FLBs, the applied frequency of the ac field was controlled during the electroformation. The 3D FLBs were observed through transparent SU-8 microwell arrays using confocal microscopy and demonstrated perfect sealing until 5.5 days after the electroformation at more than 1 kHz. Also, the details of the sealing of a fixed 3D freestanding lipid structure were discussed for the first time. The unilamellarity and biofunctionality of the 3D FLBs were verified by a transport protein (α-hemolysin) assay.
Collapse
Affiliation(s)
- Dong-Hyun Kang
- Center for BioMicrosystems , Korea Institute of Science and Technology , 5, Hwarang-ro 14-gil, Seongbuk-gu , Seoul 02792 , Republic of Korea
- Department of Mechanical Engineering , Yonsei University , 50, Yonsei-ro, Seodaemun-gu , Seoul 03722 , Republic of Korea
| | - Won Bae Han
- Center for BioMicrosystems , Korea Institute of Science and Technology , 5, Hwarang-ro 14-gil, Seongbuk-gu , Seoul 02792 , Republic of Korea
| | - Nakwon Choi
- Center for BioMicrosystems , Korea Institute of Science and Technology , 5, Hwarang-ro 14-gil, Seongbuk-gu , Seoul 02792 , Republic of Korea
| | - Yong-Jun Kim
- Department of Mechanical Engineering , Yonsei University , 50, Yonsei-ro, Seodaemun-gu , Seoul 03722 , Republic of Korea
| | - Tae Song Kim
- Center for BioMicrosystems , Korea Institute of Science and Technology , 5, Hwarang-ro 14-gil, Seongbuk-gu , Seoul 02792 , Republic of Korea
| |
Collapse
|
19
|
Zhu C, Li Q, Dong M, Han X. Giant Unilamellar Vesicle Microarrays for Cell Function Study. Anal Chem 2018; 90:14363-14367. [PMID: 30481002 DOI: 10.1021/acs.analchem.8b03825] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Chuntao Zhu
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin 150001, China
| | - Qingchuan Li
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin 150001, China
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin 150001, China
| |
Collapse
|
20
|
Fan T, Wang Q, Hu N, Liao Y, Chen X, Wang Z, Yang Z, Yang J, Qian S. Preparation of giant lipid vesicles with controllable sizes by a modified hydrophilic polydimethylsiloxane microarray chip. J Colloid Interface Sci 2018; 536:53-61. [PMID: 30347293 DOI: 10.1016/j.jcis.2018.10.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/10/2018] [Accepted: 10/13/2018] [Indexed: 12/24/2022]
Abstract
This paper presents an accessible method to prepare giant lipid vesicles (GLVs) with controllable sizes based on the quick formation of patterned lipid films. Lipid solutions naturally penetrate into arrayed micro-apertures on a modified hydrophilic Polydimethylsiloxane (PDMS) chip, and excess lipid films on the surface are removed by a glass slide. Three main factors, the depth and diameter of the micro-apertures and concentration of the lipid solution, were investigated to obtain an optimal preparation condition. Based on this condition, the formed GLVs have a controllable size and narrow size distribution (the standard deviation < 5 μm). By controlling the diameter of the micro-aperture and concentration of the lipid solution, GLVs with various sizes (23, 48, 66 and 82 μm) can be formed.
Collapse
Affiliation(s)
- Ting Fan
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400030, China
| | - Qiong Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400030, China
| | - Ning Hu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400030, China; Chongqing Engineering Research Center of Medical Electronics Technology (Chongqing University), Chongqing University, Chongqing 400030, China.
| | - Yanjian Liao
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400030, China; Chongqing Engineering Research Center of Medical Electronics Technology (Chongqing University), Chongqing University, Chongqing 400030, China
| | - Xi Chen
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400030, China
| | - Zhenyu Wang
- Department of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Zhong Yang
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Jun Yang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400030, China; Chongqing Engineering Research Center of Medical Electronics Technology (Chongqing University), Chongqing University, Chongqing 400030, China.
| | - Shizhi Qian
- Department of Mechanical and Aerospace Engineering, Old Dominion University, Norfolk, VA 23529, USA
| |
Collapse
|
21
|
Methods of reconstitution to investigate membrane protein function. Methods 2018; 147:126-141. [DOI: 10.1016/j.ymeth.2018.02.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 02/13/2018] [Indexed: 02/06/2023] Open
|
22
|
Park S, Majd S. Reconstitution and functional studies of hamster P-glycoprotein in giant liposomes. PLoS One 2018; 13:e0199279. [PMID: 29912971 PMCID: PMC6005519 DOI: 10.1371/journal.pone.0199279] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 06/05/2018] [Indexed: 11/18/2022] Open
Abstract
This paper describes the preparation of giant unilamellar vesicles with reconstituted hamster P-glycoprotein (Pgp, ABCB1) for studying the transport activity of this efflux pump in individual liposomes using optical microscopy. Pgp, a member of ABC (ATP-binding cassette) transporter family, is known to contribute to the cellular multidrug resistance (MDR) against variety of drugs. The efficacy of many therapeutics is, thus, hampered by this efflux pump, leading to a high demand for simple and effective strategies to monitor the interactions of candidate drugs with this protein. Here, we applied small Pgp proteoliposomes to prepare giant Pgp-bearing liposomes via modified electroformation techniques. The presence of Pgp in the membrane of giant proteoliposomes was confirmed using immunohistochemistry. Assessment of Pgp ATPase activity suggested that this transporter retained its activity upon reconstitution into giant liposomes, with an ATPase specific activity of 439 ± 103 nmol/mg protein/min. For further confirmation, we assessed the transport activity of Pgp in these proteoliposomes by monitoring the translocation of rhodamine 123 (Rho123) across the membrane using confocal microscopy at various ATP concentrations (0-2 mM) and in the presence of Pgp inhibitors. Rate of change in Rho123 concentration inside the liposomal lumen was used to estimate the Rho123 transport rates (1/s) for various ATP concentrations, which were then applied to retrieve the Michaelis-Menten constant (Km) of ATP in Rho123 transport (0.42 ± 0.75 mM). Similarly, inhibitory effects of verapamil, colchicine, and cyclosporin A on Pgp were studied in this system and the IC50 values for these Pgp inhibitors were found 26.6 ± 6.1 μM, 94.6 ± 47.6 μM, and 0.21 ± 0.07 μM, respectively. We further analyzed the transport data using a kinetic model that enabled dissecting the passive diffusion of Rho123 from its Pgp-mediated transport across the membrane. Based on this model, the permeability coefficient of Rho123 across the liposomal membrane was approximately 1.25×10-7 cm/s. Comparing the membrane permeability in liposomes with and without Pgp revealed that the presence of this protein did not have a significant impact on membrane integrity and permeability. Furthermore, we used this model to obtain transport rate constants for the Pgp-mediated transport of Rho123 (m3/mol/s) at various ATP and inhibitor concentrations, which were then applied to estimate values of 0.53 ± 0.66 mM for Km of ATP and 25.2 ± 5.0 μM for verapamil IC50, 61.8 ± 34.8 μM for colchicine IC50, and 0.23 ± 0.09 μM for cyclosporin A IC50. The kinetic parameters obtained from the two analyses were comparable, suggesting a minimal contribution from the passive Rho123 diffusion across the membrane. This approach may, therefore, be applied for screening the transport activity of Pgp against potential drug candidates.
Collapse
Affiliation(s)
- SooHyun Park
- The Brown Foundation Institute of Molecular Medicine and Texas Therapeutics Institute, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Sheereen Majd
- Department of Biomedical Engineering, University of Houston, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
23
|
Gertrude Gutierrez M, Yoshida S, Malmstadt N, Takeuchi S. Photolithographic patterned surface forms size-controlled lipid vesicles. APL Bioeng 2018; 2:016104. [PMID: 31069289 PMCID: PMC6481701 DOI: 10.1063/1.5002604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/17/2017] [Indexed: 12/14/2022] Open
Abstract
Using traditional 2-D photolithographic methods, surface patterns are made on agarose and used to form lipid vesicles with controlled size and layout. Depending on the size and layout of the patterned structures, the lipid bilayer vesicle size can be tuned and placement can be predetermined. Vesicles formed on 2-D patterned surfaces can be harvested for further investigations or can be assayed directly on the patterned surface. Lipid vesicles on the patterned surface are assayed for unilamellarity and protein incorporation, and vesicles are indeed unilamellar as observed from outer leaflet fluorescence quenching. Vesicles successfully incorporate the integral membrane protein α-hemolysin and maintain its membrane transport function.
Collapse
Affiliation(s)
| | - Shotaro Yoshida
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, Japan
| | | | - Shoji Takeuchi
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, Japan
| |
Collapse
|
24
|
Electroformation of double vesicles using an amplitude modulated electric field. Colloids Surf B Biointerfaces 2017; 160:697-703. [PMID: 29035817 DOI: 10.1016/j.colsurfb.2017.10.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/04/2017] [Accepted: 10/07/2017] [Indexed: 01/06/2023]
Abstract
Double vesicles are a promising model to mimic eukaryotic cells, yet effective preparation methods with high yields and stable double vesicles are scarce. Previously reported electroformation methods were mainly based on sinusoidal AC fields. Using a combination of sinusoidal and amplitude modulated (AM) electric fields lipid double vesicles could be produced for the first time by a simple electroformation process. First lipid domes formed in a sinusoidal AC field. The domes grew into tubes during the subsequent application of an AM field. These tubes deformed into double vesicles to minimize their free energy in accordance with the area-difference-elasticity model. Two forces are involved to explain the mechanism behind tube formation. The pulling force (F) is responsible to drag the domes into tubular vesicles, but has to overcome a critical force (Fc). The most important parameters of the electrical field were explored systematically. In our work, a maximum yield for double vesicles of 63% was achieved. These vesicles proved to be stable for one week at least. Hence our method could provide a way to fabricate novel cell models.
Collapse
|
25
|
Sugawara M. Transmembrane Signaling with Lipid-Bilayer Assemblies as a Platform for Channel-Based Biosensing. CHEM REC 2017; 18:433-444. [PMID: 29135061 DOI: 10.1002/tcr.201700046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/02/2017] [Indexed: 11/08/2022]
Abstract
Artificial and natural lipid membranes that elicit transmembrane signaling is are useful as a platform for channel-based biosensing. In this account we summarize our research on the design of transmembrane signaling associated with lipid bilayer membranes containing nanopore-forming compounds. Channel-forming compounds, such as receptor ion-channels, channel-forming peptides and synthetic channels, are embedded in planar and spherical bilayer lipid membranes to develop highly sensitive and selective biosensing methods for a variety of analytes. The membrane-bound receptor approach is useful for introducing receptor sites on both planar and spherical bilayer lipid membranes. Natural receptors in biomembranes are also used for designing of biosensing methods.
Collapse
Affiliation(s)
- Masao Sugawara
- Department of chemistry, College of humanities and sciences, Nihon University, Tokyo, Japan
| |
Collapse
|
26
|
Mazur F, Bally M, Städler B, Chandrawati R. Liposomes and lipid bilayers in biosensors. Adv Colloid Interface Sci 2017; 249:88-99. [PMID: 28602208 DOI: 10.1016/j.cis.2017.05.020] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/30/2017] [Indexed: 10/19/2022]
Abstract
Biosensors for the rapid, specific, and sensitive detection of analytes play a vital role in healthcare, drug discovery, food safety, and environmental monitoring. Although a number of sensing concepts and devices have been developed, many longstanding challenges to obtain inexpensive, easy-to-use, and reliable sensor platforms remain largely unmet. Nanomaterials offer exciting possibilities for enhancing the assay sensitivity and for lowering the detection limits down to single-molecule resolution. In this review, we present an overview of liposomes and lipid bilayers in biosensing applications. Lipid assemblies in the form of spherical liposomes or two-dimensional planar membranes have been widely used in the design of biosensing assays; in particular, we highlight a number of recent promising developments of biosensors based on liposomes in suspension, liposome arrays, and lipid bilayers arrays. Assay sensitivity and specificity are discussed, advantages and drawbacks are reviewed, and possible further developments are outlined.
Collapse
|
27
|
Frequency-Dependent Electroformation of Giant Unilamellar Vesicles in 3D and 2D Microelectrode Systems. MICROMACHINES 2017. [PMCID: PMC6190065 DOI: 10.3390/mi8010024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A giant unilamellar vesicle (GUV), with similar properties to cellular membrane, has been widely studied. Electroformation with its simplicity and accessibility has become the most common method for GUV production. In this work, GUV electroformation in devices with traditional 3D and new 2D electrode structures were studied with respect to the applied electric field. An optimal frequency (10 kHz in the 3D and 1 kHz in the 2D systems) was found in each system. A positive correlation was found between GUV formation and applied voltage in the 3D electrode system from 1 to 10 V. In the 2D electrode system, the yield of the generated GUV increased first but decreased later as voltage increased. These phenomena were further confirmed by numerically calculating the load that the lipid film experienced from the generated electroosmotic flow (EOF). The discrepancy between the experimental and numerical results of the 3D electrode system may be because the parameters that were adopted in the simulations are quite different from those of the lipid film in experiments. The lipid film was not involved in the simulation of the 2D system, and the numerical results matched well with the experiments.
Collapse
|
28
|
Park MC, Sukumar P, Kim SK, Kang JY, Manz A, Kim TS. Selective and vertical microfabrication of lipid tubule arrays on glass substrates using template-guided gentle hydration. LAB ON A CHIP 2016; 16:4732-4741. [PMID: 27813541 DOI: 10.1039/c6lc01095d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Generally, asymmetric tubular lipid structures have been formed under the specific condition of gentle hydration or by using hydrodynamic and/or electrical elongation of vesicular lipid structures. Small-size lipid tubes are, however, very difficult to allocate or align in the vertical direction on the specific site of the substrate and, therefore, the ability to produce them selectively and in large quantities as an array form is limited. Herein, we propose an easy and novel method to fabricate selective and vertical lipid tube arrays using template-guided gentle hydration of dried lipid films without any external forces. A lipid solution was drop-dispensed onto a porous membrane and dried to form a lipid film. Then, the lipid-coated porous membrane was transferred to a glass substrate by using a UV-cured polymer layer to achieve tight bonding. Upon swelling with an appropriate buffer, expansion forces due to osmotic pressure during the gentle hydration process were highly constrained to confined pores, thereby resulting in the nucleation of tube-like lipid structures through the pores. Interestingly, according to the aspect ratio of pores (ARpore, pore length/pore diameter), different shapes of lipid structures, including vesicular, oval, and tube-like, were generated, which indicates the importance of the ARpore, as well as the pore diameter, during fabrication of tubular lipid structures. Also, this approach was easily modified with 1% chitosan to enhance the stability of the lipid tubes (>30 min in life time), by lipid coating twice and by using unsaturated lipids to increase tube length (>30 μm in length). Therefore, in the future, the simple but robust template-guided gentle hydration method will be a useful tool for fabricating addressable and engineered lipid tube arrays as a sensory unit.
Collapse
Affiliation(s)
- Min Cheol Park
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.
| | - Pavithra Sukumar
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea. and Department of Biomedical Engineering, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Sang Kyung Kim
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea. and Department of Biomedical Engineering, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Ji Yoon Kang
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea. and Department of Biomedical Engineering, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Andreas Manz
- Korea Institute of Science and Technology in Europe, 66123 Saarbrücken, Germany
| | - Tae Song Kim
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea. and Department of Biomedical Engineering, University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
29
|
Wang D, Ha Y, Gu J, Li Q, Zhang L, Yang P. 2D Protein Supramolecular Nanofilm with Exceptionally Large Area and Emergent Functions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:7414-23. [PMID: 27337177 DOI: 10.1002/adma.201506476] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 05/02/2016] [Indexed: 05/06/2023]
Abstract
2D nanofilms assembled by pure protein with a macroscopic area and multiple functions can be directly formed at the air/water interface or at the solid surface at a timescale of several minutes. The multifunctionality of the nanofilm coating is demonstrated by both top-down and bottom-up micro-/nanoscale interfacial engineering, including surface modification, all-water-based photo/electron-beam lithography, and electroless deposition.
Collapse
Affiliation(s)
- Dehui Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Yuan Ha
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Jin Gu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Qian Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Liangliang Zhang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Peng Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China.
| |
Collapse
|
30
|
Impacts of electrical parameters on the electroformation of giant vesicles on ITO glass chips. Colloids Surf B Biointerfaces 2016; 140:560-566. [DOI: 10.1016/j.colsurfb.2015.11.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 11/06/2015] [Accepted: 11/10/2015] [Indexed: 11/20/2022]
|
31
|
Zhu C, Zhang Y, Wang Y, Li Q, Mu W, Han X. Point-to-Plane Nonhomogeneous Electric-Field-Induced Simultaneous Formation of Giant Unilamellar Vesicles (GUVs) and Lipid Tubes. Chemistry 2016; 22:2906-9. [PMID: 26756162 DOI: 10.1002/chem.201504389] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Chuntao Zhu
- State Key Laboratory of Urban Water Resource and Environment; School of Chemical Engineering and Technology; Harbin Institute of Technology; 92 West Da-Zhi Street Harbin 150001 P. R. China
| | - Ying Zhang
- State Key Laboratory of Urban Water Resource and Environment; School of Chemical Engineering and Technology; Harbin Institute of Technology; 92 West Da-Zhi Street Harbin 150001 P. R. China
| | - Yinan Wang
- State Key Laboratory of Urban Water Resource and Environment; School of Chemical Engineering and Technology; Harbin Institute of Technology; 92 West Da-Zhi Street Harbin 150001 P. R. China
| | - Qingchuan Li
- State Key Laboratory of Urban Water Resource and Environment; School of Chemical Engineering and Technology; Harbin Institute of Technology; 92 West Da-Zhi Street Harbin 150001 P. R. China
| | - Wei Mu
- State Key Laboratory of Urban Water Resource and Environment; School of Chemical Engineering and Technology; Harbin Institute of Technology; 92 West Da-Zhi Street Harbin 150001 P. R. China
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment; School of Chemical Engineering and Technology; Harbin Institute of Technology; 92 West Da-Zhi Street Harbin 150001 P. R. China
| |
Collapse
|
32
|
Lowry TW, Hariri H, Prommapan P, Kusi-Appiah A, Vafai N, Bienkiewicz EA, Van Winkle DH, Stagg SM, Lenhert S. Quantification of Protein-Induced Membrane Remodeling Kinetics In Vitro with Lipid Multilayer Gratings. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:506-15. [PMID: 26649649 PMCID: PMC4843995 DOI: 10.1002/smll.201502398] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/28/2015] [Indexed: 05/08/2023]
Abstract
The dynamic self-organization of lipids in biological systems is a highly regulated process that enables the compartmentalization of living systems at micro- and nanoscopic scales. Consequently, quantitative methods for assaying the kinetics of supramolecular remodeling such as vesicle formation from planar lipid bilayers or multilayers are needed to understand cellular self-organization. Here, a new nanotechnology-based method for quantitative measurements of lipid-protein interactions is presented and its suitability for quantifying the membrane binding, inflation, and budding activity of the membrane-remodeling protein Sar1 is demonstrated. Lipid multilayer gratings are printed onto surfaces using nanointaglio and exposed to Sar1, resulting in the inflation of lipid multilayers into unilamellar structures, which can be observed in a label-free manner by monitoring the diffracted light. Local variations in lipid multilayer volume on the surface is used to vary substrate availability in a microarray format. A quantitative model is developed that allows quantification of binding affinity (K D ) and kinetics (kon and koff ). Importantly, this assay is uniquely capable of quantifying membrane remodeling. Upon Sar1-induced inflation of single bilayers from surface supported multilayers, the semicylindrical grating lines are observed to remodel into semispherical buds when a critical radius of curvature is reached.
Collapse
Affiliation(s)
- Troy W. Lowry
- Department of Physics, Florida State University, Tallahassee, FL 32306-4350, USA
| | - Hanaa Hariri
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4380, USA
| | - Plengchart Prommapan
- Department of Physics, Florida State University, Tallahassee, FL 32306-4350, USA
| | - Aubrey Kusi-Appiah
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4370, USA
| | - Nicholas Vafai
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4370, USA
| | - Ewa A. Bienkiewicz
- Department of Biomedical Science, College of Medicine, Florida State University, Tallahassee, FL 32306-4300, USA
| | - David H. Van Winkle
- Department of Physics, Florida State University, Tallahassee, FL 32306-4350, USA
| | - Scott M. Stagg
- Institute of Molecular Biophysics and Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4380, USA
| | - Steven Lenhert
- Department of Biological Science and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4370, USA
| |
Collapse
|
33
|
Lowry TW, Prommapan P, Rainer Q, Van Winkle D, Lenhert S. Lipid Multilayer Grating Arrays Integrated by Nanointaglio for Vapor Sensing by an Optical Nose. SENSORS 2015; 15:20863-72. [PMID: 26308001 PMCID: PMC4570451 DOI: 10.3390/s150820863] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 07/29/2015] [Accepted: 08/17/2015] [Indexed: 01/06/2023]
Abstract
Lipid multilayer gratings are recently invented nanomechanical sensor elements that are capable of transducing molecular binding to fluid lipid multilayers into optical signals in a label free manner due to shape changes in the lipid nanostructures. Here, we show that nanointaglio is suitable for the integration of chemically different lipid multilayer gratings into a sensor array capable of distinguishing vapors by means of an optical nose. Sensor arrays composed of six different lipid formulations are integrated onto a surface and their optical response to three different vapors (water, ethanol and acetone) in air as well as pH under water is monitored as a function of time. Principal component analysis of the array response results in distinct clustering indicating the suitability of the arrays for distinguishing these analytes. Importantly, the nanointaglio process used here is capable of producing lipid gratings out of different materials with sufficiently uniform heights for the fabrication of an optical nose.
Collapse
Affiliation(s)
- Troy W Lowry
- Department of Biological Science and Integrative Nanoscience Institute, Florida State University, 89 Chieftan Way, Tallahassee, FL 32304, USA.
- Department of Physics, Florida State University, 77 Chieftan Way, Tallahassee, FL 32304, USA.
| | - Plengchart Prommapan
- Department of Physics, Florida State University, 77 Chieftan Way, Tallahassee, FL 32304, USA.
| | - Quinn Rainer
- Department of Biological Science and Integrative Nanoscience Institute, Florida State University, 89 Chieftan Way, Tallahassee, FL 32304, USA.
| | - David Van Winkle
- Department of Physics, Florida State University, 77 Chieftan Way, Tallahassee, FL 32304, USA.
| | - Steven Lenhert
- Department of Biological Science and Integrative Nanoscience Institute, Florida State University, 89 Chieftan Way, Tallahassee, FL 32304, USA.
| |
Collapse
|
34
|
Ca-mediated electroformation of cell-sized lipid vesicles. Sci Rep 2015; 5:9839. [PMID: 25950604 PMCID: PMC4423497 DOI: 10.1038/srep09839] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 03/23/2015] [Indexed: 01/17/2023] Open
Abstract
Cell-sized lipid giant unilamellar vesicles (GUVs) are formed when lipid molecules self-assemble to construct a single bilayer compartment with similar morphology to living cells. The physics of self-assembly process is only generally understood and the size distribution of GUVs tends to be very polydisperse. Herein we report a strategy for the production of controlled size distributions of GUVs by a novel mechanism dissecting the mediation ability of calcium (Ca) on the conventional electroformation of GUVs. We finely construct both of the calcium ion (Ca2+) and calcium carbonate (CaCO3) mineral adsorption layers on a lipid film surface respectively during the electroformation of GUVs. It is found that Ca2+ Slip plane polarized by alternating electric field could induce a pattern of electroosmotic flow across the surface, and thus confine the fusion and growth of GUVs to facilitate the formation of uniform GUVs. The model is further improved by directly using CaCO3 that is in situ formed on a lipid film surface, providing a GUV population with narrow polydispersity. The two models deciphers the new biological function of calcium on the birth of cell-like lipid vesicles, and thus might be potentially relevant to the construction of new model to elucidate the cellular development process.
Collapse
|
35
|
Wang D, Wu Z, Gao A, Zhang W, Kang C, Tao Q, Yang P. Soft landing of cell-sized vesicles on solid surfaces for robust vehicle capture/release. SOFT MATTER 2015; 11:3094-3099. [PMID: 25787226 DOI: 10.1039/c5sm00049a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Based on a concept of a smooth and steady landing of fragile objects without destruction via a soft cushion, we have developed a model for the soft landing of deformable lipid giant unilamellar vesicles (GUVs) on solid surfaces. The foundation for a successful soft landing is a solid substrate with a two-layer coating, including a bottom layer of positively charged lysozymes and an upper lipid membrane layer. We came to a clear conclusion that anionic GUVs when sedimented on a surface, the vesicle rupture occurs upon the direct contact with the positively charged lysozyme layer due to the strong coulombic interactions. In contrast, certain separation distances was achieved by the insertion of a soft lipid membrane cushion between the charged GUVs and the lysozyme layer, which attenuated the coulombic force and created a mild buffer zone, ensuring the robust capture of GUVs on the substrate without their rupture. The non-covalent bonding facilitated a fully reversible stimuli-responsive capture/release of GUVs from the biomimetic solid surface, which has never been demonstrated before due to the extreme fragility of GUVs. Moreover, the controllable capture/release of cells has been proven to be of vital importance in biotechnology, and similarity the present approach to capture/release cells is expected to open the previously inaccessible avenues of research.
Collapse
Affiliation(s)
- Dehui Wang
- Key Laboratory of Applied Surface and Colloids Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | | | | | | | | | | | | |
Collapse
|
36
|
Schmid EM, Richmond DL, Fletcher DA. Reconstitution of proteins on electroformed giant unilamellar vesicles. Methods Cell Biol 2015; 128:319-38. [PMID: 25997355 DOI: 10.1016/bs.mcb.2015.02.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In vitro reconstitution of simplified biological systems from molecular parts has proven to be a powerful method for investigating the biochemical and biophysical principles underlying cellular processes. In recent years, there has been a growing interest in reconstitution of protein-membrane interactions to understand the critical role played by membranes in organizing molecular-scale events into micron-scale patterns and protrusions. However, while all reconstitution experiments depend on identifying and isolating an essential set of soluble biomolecules, such as proteins, DNA, and RNA, reconstitution of membrane-based processes involves the additional challenge of forming and working with lipid bilayer membranes with composition, fluidity, and mechanical properties appropriate for the process at hand. Here we discuss a selection of methods for forming synthetic lipid bilayer membranes and present a versatile electroformation protocol that our lab uses for reconstituting proteins on giant unilamellar vesicles. This synthetic membrane-based approach to reconstitution offers the ability to study protein organization and activity at membranes under more cell-like conditions, addressing a central challenge to accomplishing the grand goal of "building the cell."
Collapse
Affiliation(s)
- Eva M Schmid
- Department of Bioengineering & Biophysics Program, University of California, Berkeley, CA, USA
| | - David L Richmond
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Daniel A Fletcher
- Department of Bioengineering & Biophysics Program, University of California, Berkeley, CA, USA; Physical Biosciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
37
|
Gutierrez MG, Malmstadt N. Human serotonin receptor 5-HT(1A) preferentially segregates to the liquid disordered phase in synthetic lipid bilayers. J Am Chem Soc 2014; 136:13530-3. [PMID: 25211019 PMCID: PMC4183657 DOI: 10.1021/ja507221m] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
![]()
We
demonstrate successful incorporation of the G protein coupled
receptor 5-HT1A into giant unilamellar vesicles using an
agarose rehydration method. With direct observation using fluorescence
techniques, we report preferential segregation of 5-HT1A into the cholesterol-poor liquid disordered phase of the membrane,
contradicting previous reports of lipid raft segregation. Furthermore,
altering the concentration of cholesterol and sphingomyelin
in ternary mixtures does not alter 5-HT1A segregation into
the liquid disordered phase.
Collapse
Affiliation(s)
- M Gertrude Gutierrez
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California , 925 Bloom Walk, Los Angeles, California 90089, United States
| | | |
Collapse
|
38
|
Park S, Yang G, Madduri N, Abidian MR, Majd S. Hydrogel-mediated direct patterning of conducting polymer films with multiple surface chemistries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:2782-7. [PMID: 24623531 PMCID: PMC5805559 DOI: 10.1002/adma.201306093] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 01/15/2014] [Indexed: 05/22/2023]
Abstract
A new methodology for selective electropolymerization of conducting polymer films using wet hydrogel stamps is presented. The ability of this simple method to generate patterned films of conducting polymers with multiple surface chemistries in a one-step process and to incorporate fragile biomolecules in these films is demonstrated.
Collapse
Affiliation(s)
- SooHyun Park
- Department of Biomedical Engineering, The Pennsylvania State University, 205 Hallowell Building, University Park, PA, 16802, USA
| | | | | | | | | |
Collapse
|