1
|
Kohle FFE, Sai H, Tait WRT, Beaucage PA, Susca EM, Thedford RP, Wiesner UB. Molecules to Masterpieces: Bridging Materials Science and the Arts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413939. [PMID: 39632699 DOI: 10.1002/adma.202413939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/07/2024] [Indexed: 12/07/2024]
Abstract
Art and materials innovation have always been intertwined, dating back to the earliest human creations. In modern times, however, the increasing specialization of materials science often restricts artists' access to cutting-edge materials. Here, the materials science aspects of an art-science collaboration between artist Kimsooja and the Wiesner Lab at Cornell University, are detailed. The project involves the development of a custom-made iridescent block copolymer coating by means of self-assembly, originally applied to transparent window panels of a façade for the ≈14 m tall art installation: A Needle Woman: Galaxy Is a Memory, Earth is a Souvenir by artist Kimsooja. After several exhibitions in the US and Europe, the installation is now part of the permanent museum collection at Yorkshire Sculpture Park in Wakefield, UK. Full characterization of the solution blade-cast coatings show shear aligned, standing up lamellar morphologies that behave as volume-phase gratings with periodicities between 300 and 400 nm. Coatings are also applied to foldable (origami) paper and converted into iridescent porous ceramic materials. It is hoped this work inspires and informs communities across materials science, the arts, and architecture.
Collapse
Affiliation(s)
- Ferdinand F E Kohle
- Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
- Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Hiroaki Sai
- Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
- Center for Regenerative Nanomedicine, Northwestern University, Chicago, IL, 60611, USA
| | - William R T Tait
- Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Peter A Beaucage
- Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD, 20899, US
| | - Ethan M Susca
- Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - R Paxton Thedford
- Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Ulrich B Wiesner
- Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
- Design Tech, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
2
|
Lyu X, Zheng Z, Shiva A, Han M, Dayan CB, Zhang M, Sitti M. Capillary trapping of various nanomaterials on additively manufactured scaffolds for 3D micro-/nanofabrication. Nat Commun 2024; 15:6693. [PMID: 39107326 PMCID: PMC11303746 DOI: 10.1038/s41467-024-51086-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
High-precision additive manufacturing technologies, such as two-photon polymerization, are mainly limited to photo-curable polymers and currently lacks the possibility to produce multimaterial components. Herein, we report a physically bottom-up assembly strategy that leverages capillary force to trap various nanomaterials and assemble them onto three-dimensional (3D) microscaffolds. This capillary-trapping strategy enables precise and uniform assembly of nanomaterials into versatile 3D microstructures with high uniformity and mass loading. Our approach applies to diverse materials irrespective of their physiochemical properties, including polymers, metals, metal oxides, and others. It can integrate at least four different material types into a single 3D microstructure in a sequential, layer-by-layer manner, opening immense possibilities for tailored functionalities on demand. Furthermore, the 3D microscaffolds are removable, facilitating the creation of pure material-based 3D microstructures. This universal 3D micro-/nanofabrication technique with various nanomaterials enables the creation of advanced miniature devices with potential applications in multifunctional microrobots and smart micromachines.
Collapse
Affiliation(s)
- Xianglong Lyu
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
- Institute for Biomedical Engineering, ETH Zürich, Zürich, Switzerland
| | - Zhiqiang Zheng
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Anitha Shiva
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Mertcan Han
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
- Institute for Biomedical Engineering, ETH Zürich, Zürich, Switzerland
| | - Cem Balda Dayan
- Robotic Materials Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Mingchao Zhang
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany.
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany.
- Institute for Biomedical Engineering, ETH Zürich, Zürich, Switzerland.
- School of Medicine and College of Engineering, Koç University, Istanbul, Turkey.
| |
Collapse
|
3
|
Kagdada HL, Bhojani AK, Singh DK. An Overview of Nanomaterials: History, Fundamentals, and Applications. NANOMATERIALS 2023:1-26. [DOI: 10.1007/978-981-19-7963-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Hong Y. Application of convolution neural networks‐based hierarchical perception technology in 3D clothing designs. IET NETWORKS 2022. [DOI: 10.1049/ntw2.12047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Yu Hong
- Fashion School Zhejiang Fashion Institute of Technology Ningbo China
| |
Collapse
|
5
|
Socoliuc V, Avdeev MV, Kuncser V, Turcu R, Tombácz E, Vékás L. Ferrofluids and bio-ferrofluids: looking back and stepping forward. NANOSCALE 2022; 14:4786-4886. [PMID: 35297919 DOI: 10.1039/d1nr05841j] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ferrofluids investigated along for about five decades are ultrastable colloidal suspensions of magnetic nanoparticles, which manifest simultaneously fluid and magnetic properties. Their magnetically controllable and tunable feature proved to be from the beginning an extremely fertile ground for a wide range of engineering applications. More recently, biocompatible ferrofluids attracted huge interest and produced a considerable increase of the applicative potential in nanomedicine, biotechnology and environmental protection. This paper offers a brief overview of the most relevant early results and a comprehensive description of recent achievements in ferrofluid synthesis, advanced characterization, as well as the governing equations of ferrohydrodynamics, the most important interfacial phenomena and the flow properties. Finally, it provides an overview of recent advances in tunable and adaptive multifunctional materials derived from ferrofluids and a detailed presentation of the recent progress of applications in the field of sensors and actuators, ferrofluid-driven assembly and manipulation, droplet technology, including droplet generation and control, mechanical actuation, liquid computing and robotics.
Collapse
Affiliation(s)
- V Socoliuc
- Romanian Academy - Timisoara Branch, Center for Fundamental and Advanced Technical Research, Laboratory of Magnetic Fluids, Mihai Viteazu Ave. 24, 300223 Timisoara, Romania.
| | - M V Avdeev
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie Str. 6, 141980 Dubna, Moscow Reg., Russia.
| | - V Kuncser
- National Institute of Materials Physics, Bucharest-Magurele, 077125, Romania
| | - Rodica Turcu
- National Institute for Research and Development of Isotopic and Molecular Technologies (INCDTIM), Donat Str. 67-103, 400293 Cluj-Napoca, Romania
| | - Etelka Tombácz
- University of Szeged, Faculty of Engineering, Department of Food Engineering, Moszkvai krt. 5-7, H-6725 Szeged, Hungary.
- University of Pannonia - Soós Ernő Water Technology Research and Development Center, H-8800 Zrínyi M. str. 18, Nagykanizsa, Hungary
| | - L Vékás
- Romanian Academy - Timisoara Branch, Center for Fundamental and Advanced Technical Research, Laboratory of Magnetic Fluids, Mihai Viteazu Ave. 24, 300223 Timisoara, Romania.
- Politehnica University of Timisoara, Research Center for Complex Fluids Systems Engineering, Mihai Viteazul Ave. 1, 300222 Timisoara, Romania
| |
Collapse
|
6
|
Lamprecht B, Ulm A, Lichtenegger P, Leiner C, Nemitz W, Sommer C. Origination of free-form micro-optical elements using one- and two-photon grayscale laser lithography. APPLIED OPTICS 2022; 61:1863-1875. [PMID: 35297875 DOI: 10.1364/ao.448897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
We discuss and describe the development of an origination process for planar free-form micro-optical elements from a given optical design. The targeted masters serve as origination structures for a roll-to-roll mass fabrication process. Specifically targeted are complex, optically smooth, surface relief structures with variable structure heights in the range of 1-20 µm, with typical lateral sizes of more than 5 µm. The area of the targeted masters is in the range of 1cm2. The main part of the paper is devoted to the description of a self-developed grayscale laser direct-write platform enabling one- and two-photon absorption lithography, also in combination on one and the same sample. In the following, we describe both methods and show that both lead to excellent structural quality of surface micro-relief structures. As a showcase of what the system can do in principle, we designed and fabricated free-form micro-optical elements to project light from an LED as a defined light pattern onto a wall. The proper optical functionality of the fabricated element was shown within a demonstrator setup.
Collapse
|
7
|
Barhoum A, García-Betancourt ML, Jeevanandam J, Hussien EA, Mekkawy SA, Mostafa M, Omran MM, S. Abdalla M, Bechelany M. Review on Natural, Incidental, Bioinspired, and Engineered Nanomaterials: History, Definitions, Classifications, Synthesis, Properties, Market, Toxicities, Risks, and Regulations. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:177. [PMID: 35055196 PMCID: PMC8780156 DOI: 10.3390/nano12020177] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/26/2021] [Accepted: 12/31/2021] [Indexed: 02/04/2023]
Abstract
Nanomaterials are becoming important materials in several fields and industries thanks to their very reduced size and shape-related features. Scientists think that nanoparticles and nanostructured materials originated during the Big Bang process from meteorites leading to the formation of the universe and Earth. Since 1990, the term nanotechnology became very popular due to advances in imaging technologies that paved the way to specific industrial applications. Currently, nanoparticles and nanostructured materials are synthesized on a large scale and are indispensable for many industries. This fact fosters and supports research in biochemistry, biophysics, and biochemical engineering applications. Recently, nanotechnology has been combined with other sciences to fabricate new forms of nanomaterials that could be used, for instance, for diagnostic tools, drug delivery systems, energy generation/storage, environmental remediation as well as agriculture and food processing. In contrast with traditional materials, specific features can be integrated into nanoparticles, nanostructures, and nanosystems by simply modifying their scale, shape, and composition. This article first summarizes the history of nanomaterials and nanotechnology. Followed by the progress that led to improved synthesis processes to produce different nanoparticles and nanostructures characterized by specific features. The content finally presents various origins and sources of nanomaterials, synthesis strategies, their toxicity, risks, regulations, and self-aggregation.
Collapse
Affiliation(s)
- Ahmed Barhoum
- NanoStruc Research Group, Chemistry Department, Faculty of Science, Helwan University, Helwan 11795, Egypt; (E.A.H.); (M.M.)
- School of Chemical Sciences, Dublin City University, D09 V209 Dublin, Ireland
| | | | - Jaison Jeevanandam
- CQM—Centro de Química da Madeira, MMRG, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal;
| | - Eman A. Hussien
- NanoStruc Research Group, Chemistry Department, Faculty of Science, Helwan University, Helwan 11795, Egypt; (E.A.H.); (M.M.)
| | - Sara A. Mekkawy
- Chemistry Department, Faculty of Science, Helwan University, Helwan 11795, Egypt; (S.A.M.); (M.M.O.); (M.S.A.)
| | - Menna Mostafa
- NanoStruc Research Group, Chemistry Department, Faculty of Science, Helwan University, Helwan 11795, Egypt; (E.A.H.); (M.M.)
| | - Mohamed M. Omran
- Chemistry Department, Faculty of Science, Helwan University, Helwan 11795, Egypt; (S.A.M.); (M.M.O.); (M.S.A.)
| | - Mohga S. Abdalla
- Chemistry Department, Faculty of Science, Helwan University, Helwan 11795, Egypt; (S.A.M.); (M.M.O.); (M.S.A.)
| | - Mikhael Bechelany
- Institut Européen des Membranes, IEM, UMR 5635, Université Montpellier, ENSCM, CNRS, 34000 Montpellier, France
| |
Collapse
|
8
|
Qin N, Qian ZG, Zhou C, Xia XX, Tao TH. 3D electron-beam writing at sub-15 nm resolution using spider silk as a resist. Nat Commun 2021; 12:5133. [PMID: 34446721 PMCID: PMC8390743 DOI: 10.1038/s41467-021-25470-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 08/05/2021] [Indexed: 11/09/2022] Open
Abstract
Electron beam lithography (EBL) is renowned to provide fabrication resolution in the deep nanometer scale. One major limitation of current EBL techniques is their incapability of arbitrary 3d nanofabrication. Resolution, structure integrity and functionalization are among the most important factors. Here we report all-aqueous-based, high-fidelity manufacturing of functional, arbitrary 3d nanostructures at a resolution of sub-15 nm using our developed voltage-regulated 3d EBL. Creating arbitrary 3d structures of high resolution and high strength at nanoscale is enabled by genetically engineering recombinant spider silk proteins as the resist. The ability to quantitatively define structural transitions with energetic electrons at different depths within the 3d protein matrix enables polymorphic spider silk proteins to be shaped approaching the molecular level. Furthermore, genetic or mesoscopic modification of spider silk proteins provides the opportunity to embed and stabilize physiochemical and/or biological functions within as-fabricated 3d nanostructures. Our approach empowers the rapid and flexible fabrication of heterogeneously functionalized and hierarchically structured 3d nanocomponents and nanodevices, offering opportunities in biomimetics, therapeutic devices and nanoscale robotics.
Collapse
Affiliation(s)
- Nan Qin
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
| | - Zhi-Gang Qian
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chengzhe Zhou
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
| | - Xiao-Xia Xia
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Tiger H Tao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China.
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing, China.
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China.
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China.
- Institute of Brain-Intelligence Technology, Zhangjiang Laboratory, Shanghai, China.
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, China.
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
9
|
Qin X, Wei X, Li L, Wang H, Jiang Z, Sun D. Acoustic valves in microfluidic channels for droplet manipulation. LAB ON A CHIP 2021; 21:3165-3173. [PMID: 34190278 DOI: 10.1039/d1lc00261a] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A novel concept of using acoustic valves in microfluidic channels is reported in this work for the first time. An acoustic valve is a controllable virtual barrier constructed with focused acoustic fields, which can control droplets into different branch channels or block and then release them to specific target channels. Compared with other droplet sorting devices using a surface acoustic wave, acoustic valves do not use an acoustic field to drive droplets but only block branch channels. Compared with other sorting methods, such as using dielectric and magnetic forces, acoustic valves do not need a high voltage or target sample modification. As a non-contact and low-damage manipulation method with minimal requirements for target samples, the use of acoustic valve is suitable for microfluidic applications like sorting and manipulation in biochemical experiments, especially those involving optical observation, fluorescence testing, and chemical reactions.
Collapse
Affiliation(s)
- Xianming Qin
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Xueyong Wei
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Lei Li
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Hairong Wang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Zhuangde Jiang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Dong Sun
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China. and Department of Biomedical Engineering, Centre for Robotics and Automation, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
10
|
Wang J, Cao X. Evolution Mechanism of Advanced Equipment Manufacturing Innovation Network Structure from the Perspective of Complex System. COMPLEXITY 2021; 2021:1-12. [DOI: 10.1155/2021/6610767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Our country’s equipment manufacturing industry ranks among the best in all developing countries, but compared with developed countries, there is still a long way to go. It is not only the backwardness of various technologies, but also the interference of other countries. Although our country's equipment manufacturing industry is not as advanced as the advanced technology of developed countries, we still have to stick to our original aspirations, do not underestimate ourselves, and be good at absorbing and learning from the strengths of others to make up for our own weaknesses. While not working behind closed doors and while absorbing technology from other countries, we can make use of our strengths to make up for our weaknesses and develop our own industrial technology. This paper studies the evolution trend of innovation network structure and at the same time studies the evolution mechanism of advanced equipment manufacturing innovation network structure from the perspective of complex systems. The explained variable in this article is green total factor productivity. The variable adopts the Malmquist–Luenberger global super-efficiency index model. There are two main explanatory variables. One is the heterogeneity that affects the efficiency of industrial evolution, including factor heterogeneity, structural heterogeneity, and environmental heterogeneity, and the other is the interaction term of equipment manufacturing specialization agglomeration degree dummy variable multiplied by factor heterogeneity. The regional economic development level is added to the model as a control variable. In the selection of measurement indicators, the per capita GDP is used as the control variable. The experimental results show that each sample is tested in pairs, and the standard error level of the mean is 0.018, which is less than 0.05, indicating that the efficiency of the equipment manufacturing industry’s economic correlation spatial network has a significant impact on the overall economic development level of the industry. The reduction in spur helps to increase economic output.
Collapse
Affiliation(s)
- Jianbo Wang
- Business School, Central South University, Changsha 410083, China
- Hunan University of Humanities, Science and Technology, Loudi 417000, China
| | - Xing Cao
- Business School, Central South University, Changsha 410083, China
- Hunan First Normal University, Changsha 410205, China
| |
Collapse
|
11
|
Abstract
Natural wood textures are appreciated in most forest products industries for their appealing visual characteristics including grain and color, but also their fine surface tactile sensation. The following presents an ultraviolet (UV)-curable inkjet technology printing 3D wood texture on wood-based substrate by image processing and surface treatment. The UV printing was created from scanned digital images of a real wood surface and processed in graphics software. The images were converted to grayscale graphics by selecting color range and setting the parameter of fuzziness. The grayscale images were printed as 3D texture height simulation on the substrates and coated by printing the color images as texture mapping. Based on these wood texture digital images, the marquetry art is also considered in the images processing design to increase the artistry of the printed materials. The medium-density fiberboard (MDF) coated printing marquetry surface replicate realistic natural 3D wood texture surface layers on wood-based panels and imitated the effect of handcrafted wood art works. This study proves that printing 3D texture surface material is creative and valuable with ecologically friendly, low-consumption UV-curable inkjet technology and provides a feasible and scalable approach in flooring/furniture/decorative architectural panels.
Collapse
|
12
|
Clark SE, Magrane E, Baumgartner T, Bennett SEK, Bogan M, Edwards T, Dimmitt MA, Green H, Hedgcock C, Johnson BM, Johnson MR, Velo K, Wilder BT. 6&6: A Transdisciplinary Approach to Art–Science Collaboration. Bioscience 2020. [DOI: 10.1093/biosci/biaa076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
Despite an historical connection between the arts and sciences, in the past century, the two disciplines have been greatly siloed. However, there is a renewed interest in collaboration across the arts and sciences to support conservation practice by understanding and communicating complex environmental, social, and cultural challenges in novel ways. 6&6 was created as a transdisciplinary art–science initiative to promote a deeper appreciation of the Sonoran Desert. Six artists and six scientists were paired to create work that explored conservation issues in the Sonoran Desert and the Gulf of California. In-depth interviews were conducted with the artists and scientists throughout the 4-year initiative to understand the impact of 6&6 on their personal and professional behaviors and outlook. The findings from this case study reveal the role that intensive, place-based, and transdisciplinary art–science programs can play in shaping narratives to better communicate the patterns and processes of nature and human–environment interactions.
Collapse
Affiliation(s)
- Sarah E Clark
- Director of Image and Sound Group, Redlands, California
| | - Eric Magrane
- Department of Geography, New Mexico State University, Las Cruces
| | | | - Scott E K Bennett
- US Geological Survey's Geology, Minerals, Energy, and Geophysics Science Center, Moffett Field, California
| | - Michael Bogan
- School of Natural Resources and the Environment, University of Arizona, Tucson
| | - Taylor Edwards
- Herpetologist, evolutionary biologist, and conservation geneticist, University of Arizona Genetics Core, Tucson
| | | | | | | | | | - Maria R Johnson
- Visual artist and a master of science candidate, marine resource management at Oregon State University, Corvallis
| | - Kathleen Velo
- Photographic artist and fine art studio artist, Tucson, Arizona
| | - Benjamin T Wilder
- University of Arizona and director and cofounder of the Next Generation Sonoran Desert Researchers, Tucson, Arizona
| |
Collapse
|
13
|
Lee M, Rizzo R, Surman F, Zenobi-Wong M. Guiding Lights: Tissue Bioprinting Using Photoactivated Materials. Chem Rev 2020; 120:10950-11027. [DOI: 10.1021/acs.chemrev.0c00077] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mihyun Lee
- Tissue Engineering + Biofabrication HPL J22, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Riccardo Rizzo
- Tissue Engineering + Biofabrication HPL J22, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - František Surman
- Tissue Engineering + Biofabrication HPL J22, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Marcy Zenobi-Wong
- Tissue Engineering + Biofabrication HPL J22, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| |
Collapse
|
14
|
Chu A, Nguyen D, Talathi SS, Wilson AC, Ye C, Smith WL, Kaplan AD, Duoss EB, Stolaroff JK, Giera B. Automated detection and sorting of microencapsulation via machine learning. LAB ON A CHIP 2019; 19:1808-1817. [PMID: 30982831 DOI: 10.1039/c8lc01394b] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Microfluidic-based microencapsulation requires significant oversight to prevent material and quality loss due to sporadic disruptions in fluid flow that routinely arise. State-of-the-art microcapsule production is laborious and relies on experts to monitor the process, e.g. through a microscope. Unnoticed defects diminish the quality of collected material and/or may cause irreversible clogging. To address these issues, we developed an automated monitoring and sorting system that operates on consumer-grade hardware in real-time. Using human-labeled microscope images acquired during typical operation, we train a convolutional neural network that assesses microencapsulation. Based on output from the machine learning algorithm, an integrated valving system collects desirable microcapsules or diverts waste material accordingly. Although the system notifies operators to make necessary adjustments to restore microencapsulation, we can extend the system to automate corrections. Since microfluidic-based production platforms customarily collect image and sensor data, machine learning can help to scale up and improve microfluidic techniques beyond microencapsulation.
Collapse
Affiliation(s)
- Albert Chu
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Goerlitzer ESA, Klupp Taylor RN, Vogel N. Bioinspired Photonic Pigments from Colloidal Self-Assembly. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1706654. [PMID: 29733481 DOI: 10.1002/adma.201706654] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/17/2018] [Indexed: 05/23/2023]
Abstract
The natural world is a colorful environment. Stunning displays of coloration have evolved throughout nature to optimize camouflage, warning, and communication. The resulting flamboyant visual effects and remarkable dynamic properties, often caused by an intricate structural design at the nano- and microscale, continue to inspire scientists to unravel the underlying physics and to recreate the observed effects. Here, the methodologies to create bioinspired photonic pigments using colloidal self-assembly approaches are considered. The physics governing the interaction of light with structural features and natural examples of structural coloration are briefly introduced. It is then outlined how the self-assembly of colloidal particles, acting as wavelength-scale building blocks, can be particularly useful to replicate coloration from nature. Different coloration effects that result from the defined structure of the self-assembled colloids are introduced and it is highlighted how these optical properties can be translated into photonic pigments by modifications of the assembly processes. The importance of absorbing elements, as well as the role of surface chemistry and wettability to control structural coloration is discussed. Finally, approaches to integrate dynamic control of coloration into such self-assembled photonic pigments are outlined.
Collapse
Affiliation(s)
- Eric S A Goerlitzer
- Institute of Particle Technology and Advanced Materials and Processes Master Programme, Friedrich-Alexander University Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Robin N Klupp Taylor
- Institute of Particle Technology and Interdisciplinary Center for Functional Particle Systems (FPS), Friedrich-Alexander University Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Nicolas Vogel
- Institute of Particle Technology and Interdisciplinary Center for Functional Particle Systems (FPS), Friedrich-Alexander University Erlangen-Nürnberg, 91058, Erlangen, Germany
| |
Collapse
|
16
|
England GT, Aizenberg J. Emerging optical properties from the combination of simple optical effects. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2018; 81:016402. [PMID: 29185438 DOI: 10.1088/1361-6633/aa8372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Structural color arises from the patterning of geometric features or refractive indices of the constituent materials on the length-scale of visible light. Many different organisms have developed structurally colored materials as a means of creating multifunctional structures or displaying colors for which pigments are unavailable. By studying such organisms, scientists have developed artificial structurally colored materials that take advantage of the hierarchical geometries, frequently employed for structural coloration in nature. These geometries can be combined with absorbers-a strategy also found in many natural organisms-to reduce the effects of fabrication imperfections. Furthermore, artificial structures can incorporate materials that are not available to nature-in the form of plasmonic nanoparticles or metal layers-leading to a host of novel color effects. Here, we explore recent research involving the combination of different geometries and materials to enhance the structural color effect or to create entirely new effects, which cannot be observed otherwise.
Collapse
Affiliation(s)
- Grant T England
- John A Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States of America
| | | |
Collapse
|
17
|
Sun C, Xue D. Crystal growth: an anisotropic mass transfer process at the interface. Phys Chem Chem Phys 2017; 19:12407-12413. [DOI: 10.1039/c7cp01112a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mass transfer of growth units towards the interface promotes crystal growth, and the driving force essentially depends on anisotropic chemical bonding architectures.
Collapse
Affiliation(s)
- Congting Sun
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Dongfeng Xue
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| |
Collapse
|
18
|
Yetisen AK, Qu H, Manbachi A, Butt H, Dokmeci MR, Hinestroza JP, Skorobogatiy M, Khademhosseini A, Yun SH. Nanotechnology in Textiles. ACS NANO 2016; 10:3042-68. [PMID: 26918485 DOI: 10.1021/acsnano.5b08176] [Citation(s) in RCA: 234] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Increasing customer demand for durable and functional apparel manufactured in a sustainable manner has created an opportunity for nanomaterials to be integrated into textile substrates. Nanomoieties can induce stain repellence, wrinkle-freeness, static elimination, and electrical conductivity to fibers without compromising their comfort and flexibility. Nanomaterials also offer a wider application potential to create connected garments that can sense and respond to external stimuli via electrical, color, or physiological signals. This review discusses electronic and photonic nanotechnologies that are integrated with textiles and shows their applications in displays, sensing, and drug release within the context of performance, durability, and connectivity. Risk factors including nanotoxicity, nanomaterial release during washing, and environmental impact of nanotextiles based on life cycle assessments have been evaluated. This review also provides an analysis of nanotechnology consolidation in the textiles market to evaluate global trends and patent coverage, supplemented by case studies of commercial products. Perceived limitations of nanotechnology in the textile industry and future directions are identified.
Collapse
Affiliation(s)
- Ali K Yetisen
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital , 65 Landsdowne Street, Cambridge, Massachusetts 02139, United States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Hang Qu
- Department of Engineering Physics, École Polytechnique de Montréal , Montréal, Québec H3T 1J4, Canada
| | - Amir Manbachi
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School , Cambridge, Massachusetts 02139, United States
| | - Haider Butt
- Nanotechnology Laboratory, School of Engineering Sciences, University of Birmingham , Birmingham B15 2TT, United Kingdom
| | - Mehmet R Dokmeci
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School , Cambridge, Massachusetts 02139, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University , Boston, Massachusetts 02115, United States
| | - Juan P Hinestroza
- Department of Fiber Science, College of Human Ecology, Cornell University , Ithaca, New York 14850, United States
| | - Maksim Skorobogatiy
- Department of Engineering Physics, École Polytechnique de Montréal , Montréal, Québec H3T 1J4, Canada
| | - Ali Khademhosseini
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School , Cambridge, Massachusetts 02139, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University , Boston, Massachusetts 02115, United States
- Department of Physics, King Abdulaziz University , Jeddah, Saudi Arabia
- Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University , Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Seok Hyun Yun
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital , 65 Landsdowne Street, Cambridge, Massachusetts 02139, United States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| |
Collapse
|