1
|
Lee JH, Lee CG, Kim MS, Kim S, Song M, Zhang H, Yang E, Kwon YH, Jung YH, Hyeon DY, Choi YJ, Oh S, Joe DJ, Kim TS, Jeon S, Huang Y, Kwon TH, Lee KJ. Deeply Implantable, Shape-Morphing, 3D MicroLEDs for Pancreatic Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2411494. [PMID: 39679727 DOI: 10.1002/adma.202411494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/07/2024] [Indexed: 12/17/2024]
Abstract
Controlled photooxidation-mediated disruption of collagens in the tumor microenvironment can reduce desmoplasia and enhance immune responsiveness. However, achieving effective light delivery to solid tumors, particularly those with dynamic volumetric changes like pancreatic ductal adenocarcinoma (PDAC), remains challenging and limits the repeated and sustained photoactivation of drugs. Here, 3D, shape-morphing, implantable photonic devices (IPDs) are introduced that enable tumor-specific and continuous light irradiation for effective metronomic photodynamic therapy (mPDT). This IPD adheres seamlessly to the surface of orthotopic PDAC tumors, mitigating issues related to mechanical mismatch, delamination, and internal lesions. In freely moving mouse models, mPDT using the IPD with close adhesion significantly reduces desmoplastic tumor volume without causing cytotoxic effects in healthy tissues. These promising in vivo results underscore the potential of an adaptable and unidirectional IPD design in precisely targeting cancerous organs, suggesting a meaningful advance in light-based therapeutic technologies.
Collapse
Affiliation(s)
- Jae Hee Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
| | - Chae Gyu Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Min Seo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Seungyeob Kim
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Myoung Song
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Haohui Zhang
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Eunbyeol Yang
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Yoon Hee Kwon
- O2MEDi Incorporation, Ulsan, 44919, Republic of Korea
| | - Young Hoon Jung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Dong Yeol Hyeon
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Yoon Ji Choi
- In Vivo Research Center, UNIST Central Research Facilities, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Seyong Oh
- Division of Electrical Engineering, Hanyang University ERICA, Ansan, 15588, Republic of Korea
| | - Daniel J Joe
- Division of Biomedical Metrology, Korea Research Institute of Standards and Science (KRISS), Daejeon, 34113, Republic of Korea
| | - Taek-Soo Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sanghun Jeon
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Yonggang Huang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, 60208, USA
- Departments of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Tae-Hyuk Kwon
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- O2MEDi Incorporation, Ulsan, 44919, Republic of Korea
| | - Keon Jae Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
2
|
Chen S, Pan Q, Wu T, Xie H, Xue T, Su M, Song Y. Printing nanoparticle-based isotropic/anisotropic networks for directional electrical circuits. NANOSCALE 2022; 14:14956-14961. [PMID: 36178246 DOI: 10.1039/d2nr03892g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
With the demand for integrated nanodevices, anisotropic conductive films are one type of interconnection structure for electronic components, which have been widely used for improving the integration of the system in printed circuit boards. This work presents a template-assisted printing strategy for the fabrication of nanoparticle-based networks with multi electrical properties. By manipulating the microfluid behavior under the guidance of the grid-shaped template, the continuity of liquid bridges can be precisely controlled in two directions. The isotropous circuits with crossbar paths, discrete paths as well as unidirectional paths are obtained, which achieve the switching of on/off states in the circuits. This work demonstrates a new type of directional circuits by the template-assisted printing method, which provides an effective fabrication strategy for electrical components and integrated systems.
Collapse
Affiliation(s)
- Sisi Chen
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Qi Pan
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Tingqing Wu
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hongfei Xie
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Tangyue Xue
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, P. R. China.
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Meng Su
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yanlin Song
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
3
|
Xiang L, Wang Y, Xia F, Liu F, He D, Long G, Zeng X, Liang X, Jin C, Wang Y, Pan A, Peng LM, Hu Y. An epidermal electronic system for physiological information acquisition, processing, and storage with an integrated flash memory array. SCIENCE ADVANCES 2022; 8:eabp8075. [PMID: 35977018 PMCID: PMC9385141 DOI: 10.1126/sciadv.abp8075] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Epidermal electronic systems that simultaneously provide physiological information acquisition, processing, and storage are in high demand for health care/clinical applications. However, these system-level demonstrations using flexible devices are still challenging because of obstacles in device performance, functional module construction, or integration scale. Here, on the basis of carbon nanotubes, we present an epidermal system that incorporates flexible sensors, sensor interface circuits, and an integrated flash memory array to collect physiological information from the human body surface; amplify weak biosignals by high-performance differential amplifiers (voltage gain of 27 decibels, common-mode rejection ratio of >43 decibels, and gain bandwidth product of >22 kilohertz); and store the processed information in the memory array with performance on par with industrial standards (retention time of 108 seconds, program/erase voltages of ±2 volts, and endurance of 106 cycles). The results shed light on the great application potential of epidermal electronic systems in personalized diagnostic and physiological monitoring.
Collapse
Affiliation(s)
- Li Xiang
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics and Center for Carbon-Based Electronics, Peking University, Beijing 100871, China
- College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Yuru Wang
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics and Center for Carbon-Based Electronics, Peking University, Beijing 100871, China
| | - Fan Xia
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics and Center for Carbon-Based Electronics, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Fang Liu
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics and Center for Carbon-Based Electronics, Peking University, Beijing 100871, China
| | - Daliang He
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Guanhua Long
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics and Center for Carbon-Based Electronics, Peking University, Beijing 100871, China
| | - Xiangwen Zeng
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics and Center for Carbon-Based Electronics, Peking University, Beijing 100871, China
| | - Xuelei Liang
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics and Center for Carbon-Based Electronics, Peking University, Beijing 100871, China
| | - Chuanhong Jin
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Jihua Laboratory, Foshan, Guangdong 528200, China
| | - Yuwei Wang
- College of Electrical and Information Engineering, Hunan University, Changsha 410082, China
| | - Anlian Pan
- College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Lian-Mao Peng
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics and Center for Carbon-Based Electronics, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Jihua Laboratory, Foshan, Guangdong 528200, China
| | - Youfan Hu
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics and Center for Carbon-Based Electronics, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Corresponding author.
| |
Collapse
|
4
|
Shin JH, Park JH, Seo J, Im TH, Kim JC, Lee HE, Kim DH, Woo KY, Jeong HY, Cho YH, Kim TS, Kang IS, Lee KJ. A Flash-Induced Robust Cu Electrode on Glass Substrates and Its Application for Thin-Film μLEDs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007186. [PMID: 33634556 DOI: 10.1002/adma.202007186] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/18/2020] [Indexed: 05/04/2023]
Abstract
A robust Cu conductor on a glass substrate for thin-film μLEDs using the flash-induced chemical/physical interlocking between Cu and glass is reported. During millisecond light irradiation, CuO nanoparticles (NPs) on the display substrate are transformed into a conductive Cu film by reduction and sintering. At the same time, intensive heating at the boundary of CuO NPs and glass chemically induces the formation of an ultrathin Cu2 O interlayer within the Cu/glass interface for strong adhesion. Cu nanointerlocking occurs by transient glass softening and interface fluctuation to increase the contact area. Owing to these flash-induced interfacial interactions, the flash-activated Cu electrode exhibits an adhesion energy of 10 J m-2 , which is five times higher than that of vacuum-deposited Cu. An AlGaInP thin-film vertical μLED (VLED) forms an electrical interconnection with the flash-induced Cu electrode via an ACF bonding process, resulting in a high optical power density of 41 mW mm-2 . The Cu conductor enables reliable VLED operation regardless of harsh thermal stress and moisture infiltration under a high-temperature storage test, temperature humidity test, and thermal shock test. 50 × 50 VLED arrays transferred onto the flash-induced robust Cu electrode show high illumination yield and uniform distribution of forward voltage, peak wavelength, and device temperature.
Collapse
Affiliation(s)
- Jung Ho Shin
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jung Hwan Park
- Department of Mechanical Engineering (Department of Aeronautics, Mechanical and Electronic Convergence Engineering), Kumoh National Institute of Technology, 61 Daehak-ro, Gumi, Gyeongbuk, 39177, Republic of Korea
| | - Jeongmin Seo
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Tae Hong Im
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jong Chan Kim
- UNIST Central Research Facilities (UCRF) and School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Han Eol Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Do Hyun Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Kie Young Woo
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hu Young Jeong
- UNIST Central Research Facilities (UCRF) and School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Yong-Hoon Cho
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Taek-Soo Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Il-Suk Kang
- National Nanofab Center, Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Keon Jae Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
5
|
Ni Y, Wang Y, Xu W. Recent Process of Flexible Transistor-Structured Memory. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e1905332. [PMID: 32243063 DOI: 10.1002/smll.201905332] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/20/2019] [Accepted: 03/04/2020] [Indexed: 06/11/2023]
Abstract
Flexible transistor-structured memory (FTSM) has attracted great attention for its important role in flexible electronics. For nonvolatile information storage, FTSMs with floating-gate, charge-trap, and ferroelectric mechanisms have been developed. By introducing an optical sensory module, FTSM can be operated by optical inputs to function as an optical memory transistor. As a special type of FTSM, transistor-structured artificial synapse emulates important functions of a biological synapse to mimic brain-inspired memory behaviors and nervous signal transmissions. This work reviews the recent development of the above mentioned FTSMs, with a focus on working mechanism and materials, and flexibility.
Collapse
Affiliation(s)
- Yao Ni
- Institute of Optoelectronic Thin Film Devices and Technology, Key Laboratory of Optoelectronic Thin Film Devices and Technology of Tianjin, Nankai University, Tianjin, 300350, China
| | - Yongfei Wang
- School of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan, 114051, China
| | - Wentao Xu
- Institute of Optoelectronic Thin Film Devices and Technology, Key Laboratory of Optoelectronic Thin Film Devices and Technology of Tianjin, Nankai University, Tianjin, 300350, China
| |
Collapse
|
6
|
Hong SK, Kim SO, Lee KJ. Multidisciplinary Materials Research in KAIST Over the Last 50 Years. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2000696. [PMID: 32869920 DOI: 10.1002/adma.202000696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Affiliation(s)
- Seong Kwang Hong
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Sang Ouk Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Keon Jae Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
7
|
Xiang L, Zeng X, Xia F, Jin W, Liu Y, Hu Y. Recent Advances in Flexible and Stretchable Sensing Systems: From the Perspective of System Integration. ACS NANO 2020; 14:6449-6469. [PMID: 32479071 DOI: 10.1021/acsnano.0c01164] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Biological signals generated during various biological processes are critically important for providing insight into the human physiological status. Recently, there have been many great efforts in developing flexible and stretchable sensing systems to provide biological signal monitoring platforms with intimate integration with biological surfaces. Here, this review summarizes the recent advances in flexible and stretchable sensing systems from the perspective of electronic system integration. A comprehensive general sensing system architecture is described, which consists of sensors, sensor interface circuits, memories, and digital processing units. The subsequent content focuses on the integration requirements and highlights some advanced progress for each component. Next, representative examples of flexible and stretchable sensing systems for electrophysiological, physical, and chemical information monitoring are introduced. This review concludes with an outlook on the remaining challenges and opportunities for future fully flexible or stretchable sensing systems.
Collapse
Affiliation(s)
- Li Xiang
- Key Laboratory for the Physics and Chemistry of Nanodevices, Center for Carbon-Based Electronics, Frontiers Science Center for Nano-optoelectronics, and Department of Electronics, Peking University, Beijing 100871, China
| | - Xiangwen Zeng
- Key Laboratory for the Physics and Chemistry of Nanodevices, Center for Carbon-Based Electronics, Frontiers Science Center for Nano-optoelectronics, and Department of Electronics, Peking University, Beijing 100871, China
| | - Fan Xia
- Key Laboratory for the Physics and Chemistry of Nanodevices, Center for Carbon-Based Electronics, Frontiers Science Center for Nano-optoelectronics, and Department of Electronics, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Wanlin Jin
- Key Laboratory for the Physics and Chemistry of Nanodevices, Center for Carbon-Based Electronics, Frontiers Science Center for Nano-optoelectronics, and Department of Electronics, Peking University, Beijing 100871, China
| | - Youdi Liu
- Key Laboratory for the Physics and Chemistry of Nanodevices, Center for Carbon-Based Electronics, Frontiers Science Center for Nano-optoelectronics, and Department of Electronics, Peking University, Beijing 100871, China
| | - Youfan Hu
- Key Laboratory for the Physics and Chemistry of Nanodevices, Center for Carbon-Based Electronics, Frontiers Science Center for Nano-optoelectronics, and Department of Electronics, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Hunan 411105, China
| |
Collapse
|
8
|
Influence of Flexibility of the Interconnects on the Dynamic Bending Reliability of Flexible Hybrid Electronics. ELECTRONICS 2020. [DOI: 10.3390/electronics9020238] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The growing interest towards thinner and conformable electronic systems has attracted significant attention towards flexible hybrid electronics (FHE). Thin chip-foil packages fabricated by integrating ultra-thin monocrystalline silicon integrated circuits (ICs) on/in flexible foils have the potential to deliver high performance electrical functionalities at very low power requirements while being mechanically flexible. However, only very limited information is available regarding the fatigue or dynamic bending reliability of such chip-foil packages. This paper reports a series of experiments where the influence of the type of metal constituting the interconnects on the foil substrates on their dynamic bending reliability has been analyzed. The test results show that chip-foil packages with interconnects fabricated from a highly flexible metal like gold endure the repeated bending tests better than chip-foil packages with stiffer interconnects fabricated from copper or aluminum. We conclude that further analysis work in this field will lead to new technical concepts and designs for reliable foil based electronics.
Collapse
|
9
|
Gao H, Yang Y, Wang Y, Chen L, Wang J, Yuan G, Liu JM. Transparent, Flexible, Fatigue-Free, Optical-Read, and Nonvolatile Ferroelectric Memories. ACS APPLIED MATERIALS & INTERFACES 2019; 11:35169-35176. [PMID: 31482709 DOI: 10.1021/acsami.9b14095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Perovskite oxide films are widely used in various commercial industries. However, they are usually prepared at high temperature and in oxygen ambience, detrimental to most transparent and flexible substrates and bottom conductive electrodes such as indium tin oxide (ITO). It remains challenging to integrate perovskite oxides into transparent and flexible electronics. Here, the 1.2 wt % Ag-doped ITO (Ag-ITO) grown on a mica substrate is employed as the bottom electrode, which can withstand high temperature and repeated bending, and then we achieve the transparent, flexible, fatigue-free, and optical-read ferroelectric nonvolatile memories based on the mica/Ag-ITO/Bi3.25La0.75Ti3O12/ITO structures. The as-prepared memories show ∼80% transmittance for visible lights and fatigue-free performance after more than 108 writing/erasing cycles. These performances are stable after repeated bending down to 3 mm in a curvature radius. More importantly, the "1/0" state of the memory can be read out by the photovoltaic current rather than destructive polarization switching, an emergent functionality for many applications. This work substantially promotes the applications of perovskite oxide films in transparent and flexible electronics, including wearable devices.
Collapse
Affiliation(s)
- Huan Gao
- School of Materials Science and Engineering , Nanjing University of Science and Technology , Nanjing 210094 , China
| | - Yuxi Yang
- School of Materials Science and Engineering , Nanjing University of Science and Technology , Nanjing 210094 , China
| | - Yaojin Wang
- School of Materials Science and Engineering , Nanjing University of Science and Technology , Nanjing 210094 , China
| | | | - Junling Wang
- School of Materials Science and Engineering , Nanyang Technological University , 639798 Singapore
| | - Guoliang Yuan
- School of Materials Science and Engineering , Nanjing University of Science and Technology , Nanjing 210094 , China
| | - Jun-Ming Liu
- Laboratory of Solid State Microstructure, Innovation Center of Advanced Microstructures , Nanjing University , Nanjing 210093 , China
- Institute for Advanced Materials , South China Normal University , Guangzhou 510006 , China
| |
Collapse
|
10
|
Takei Y, Nomura KI, Horii Y, Zymelka D, Ushijima H, Kobayashi T. Fabrication of Simultaneously Implementing "Wired Face-Up and Face-Down Ultrathin Piezoresistive Si Chips" on a Film Substrate by Screen-Offset Printing. MICROMACHINES 2019; 10:mi10090563. [PMID: 31454906 PMCID: PMC6780128 DOI: 10.3390/mi10090563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/20/2019] [Accepted: 08/24/2019] [Indexed: 12/02/2022]
Abstract
We realized the implementation of an ultrathin piezoresistive Si chip and stretchable printed wires on a flexible film substrate using simple screen-offset printing technology. This process does not require a special MEMS fabrication equipment and is applicable to face-up chips where electrodes are formed on the top surface of the chip, as well as to face-down chips where electrodes are formed on the bottom surface of the chip. This fabrication process is quite useful in the field of flexible hybrid electronics (FHE) as a method for mounting and wiring electronic components on a flexible substrate. In this study, we confirmed that face-up and face-down chips could be mounted on polyimide film tape. Furthermore, it was confirmed that the two types of chips could be simultaneously mounted even if they exist on the same substrate. Five-μm-thick piezoresistive Si chips were transferred and wired on a polyimide film tape using screen-offset printing, and a band-plaster type blood pulse sensor was fabricated. Moreover, we successfully demonstrated that the blood pulse could be measured with neck, inner elbow, wrist, and ankle.
Collapse
Affiliation(s)
- Yusuke Takei
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8564, Japan.
| | - Ken-Ichi Nomura
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8564, Japan
| | - Yoshinori Horii
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8564, Japan
| | - Daniel Zymelka
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8564, Japan
| | - Hirobumi Ushijima
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8564, Japan
| | - Takeshi Kobayashi
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8564, Japan
| |
Collapse
|
11
|
Jhou YW, Yang CK, Sie SY, Chiu HC, Tsay JS. Variations of the elastic modulus perpendicular to the surface of rubrene bilayer films. Phys Chem Chem Phys 2019; 21:4939-4946. [DOI: 10.1039/c8cp07062h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We propose a structural bilayer model successfully explaining the layered nature or characteristics of rubrene films.
Collapse
Affiliation(s)
- Yen-Wei Jhou
- Department of Physics
- National Taiwan Normal University
- Taipei 116
- Taiwan
| | - Chun-Kai Yang
- Department of Physics
- National Taiwan Normal University
- Taipei 116
- Taiwan
| | - Siang-Yu Sie
- Department of Physics
- National Taiwan Normal University
- Taipei 116
- Taiwan
| | - Hsiang-Chih Chiu
- Department of Physics
- National Taiwan Normal University
- Taipei 116
- Taiwan
| | - Jyh-Shen Tsay
- Department of Physics
- National Taiwan Normal University
- Taipei 116
- Taiwan
| |
Collapse
|
12
|
Roll-to-roll fabrication of touch-responsive cellulose photonic laminates. Nat Commun 2018; 9:4632. [PMID: 30401803 PMCID: PMC6219516 DOI: 10.1038/s41467-018-07048-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/09/2018] [Indexed: 11/29/2022] Open
Abstract
Hydroxypropyl-cellulose (HPC), a derivative of naturally abundant cellulose, can self-assemble into helical nanostructures that lead to striking colouration from Bragg reflections. The helical periodicity is very sensitive to pressure, rendering HPC a responsive photonic material. Recent advances in elucidating these HPC mechano-chromic properties have so-far delivered few real-world applications, which require both up-scaling fabrication and digital translation of their colour changes. Here we present roll-to-roll manufactured metre-scale HPC laminates using continuous coating and encapsulation. We quantify the pressure response of the encapsulated HPC using optical analyses of the pressure-induced hue change as perceived by the human eye and digital imaging. Finally, we show the ability to capture real-time pressure distributions and temporal evolution of a human foot-print on our HPC laminates. This is the first demonstration of a large area and cost-effective method for fabricating HPC stimuli-responsive photonic films, which can generate pressure maps that can be read out with standard cameras. Self-assembled structures are typically demonstrated on small scales under well-controlled lab environments. Here, the authors present a roll-to-roll process for the continuous manufacturing of square-meters of self-assembled cellulose-based mechano-chromic films and demonstrate the recording of pressure profiles generated by foot-imprints in real time.
Collapse
|
13
|
Su L, Lu X, Chen L, Wang Y, Yuan G, Liu JM. Flexible, Fatigue-Free, and Large-Scale Bi 3.25La 0.75Ti 3O 12 Ferroelectric Memories. ACS APPLIED MATERIALS & INTERFACES 2018; 10:21428-21433. [PMID: 29863844 DOI: 10.1021/acsami.8b04781] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Flexible, fatigue-free, large-scale, and nonvolatile memory is an emerging technological goal in a variety of fields, including electronic skins, wearable devices, and other flexible electronics. Perovskite oxide films deposited on rigid substrates (e.g., Si and SrTiO3) at 500-700 °C and >1.0 Pa oxygen ambience have been widely used in electronic industries. However, their applications in flexible electronics are challenging, if not impossible. Here, the Bi3.25La0.75Ti3O12 ferroelectric films with SrRuO3 or Pt electrodes were prepared on the two-dimensional mica substrates, and then the flexible Pt/SrRuO3/Bi3.25La0.75Ti3O12/Pt memories have been achieved through reducing the mica to ∼10 μm thickness. These memories show the saturated polarization of Ps ∼ 20 μC/cm2, and either the <1% bending strain or a normal light illumination hardly overcomes the potential barrier among different polarizations which originate from the noncentral symmetry of the atomic structure. As a result, they can undergo 109 write/erase cycles and/or 10000 times bending with 1.4 mm in radius without any fatigue or damage. Furthermore, they can withstand the operation at 20-200 °C or under light illumination. In short, these flexible oxide memories provide comprehensive performance for industrial applications.
Collapse
Affiliation(s)
- Liushuai Su
- School of Materials Science and Engineering , Nanjing University of Science and Technology , Nanjing 210094 , China
| | - Xubing Lu
- Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, and Key Laboratory of Quantum Engineering and Quantum Materials , South China Normal University , Guangzhou 510006 , China
| | - Lang Chen
- Department of Physics , Southern University of Science and Technology , Shenzhen 518055 , China
| | - Yaojin Wang
- School of Materials Science and Engineering , Nanjing University of Science and Technology , Nanjing 210094 , China
| | - Guoliang Yuan
- School of Materials Science and Engineering , Nanjing University of Science and Technology , Nanjing 210094 , China
| | - J-M Liu
- Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, and Key Laboratory of Quantum Engineering and Quantum Materials , South China Normal University , Guangzhou 510006 , China
- National Laboratory of Solid State Microstructures and Innovative Center for Advanced Microstructures , Nanjing University , Nanjing 210093 , China
| |
Collapse
|
14
|
Park M, Bok BG, Ahn JH, Kim MS. Recent Advances in Tactile Sensing Technology. MICROMACHINES 2018; 9:E321. [PMID: 30424254 PMCID: PMC6082265 DOI: 10.3390/mi9070321] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/21/2018] [Accepted: 06/21/2018] [Indexed: 01/19/2023]
Abstract
Research on tactile sensing technology has been actively conducted in recent years to pave the way for the next generation of highly intelligent devices. Sophisticated tactile sensing technology has a broad range of potential applications in various fields including: (1) robotic systems with tactile sensors that are capable of situation recognition for high-risk tasks in hazardous environments; (2) tactile quality evaluation of consumer products in the cosmetic, automobile, and fabric industries that are used in everyday life; (3) robot-assisted surgery (RAS) to facilitate tactile interaction with the surgeon; and (4) artificial skin that features a sense of touch to help people with disabilities who suffer from loss of tactile sense. This review provides an overview of recent advances in tactile sensing technology, which is divided into three aspects: basic physiology associated with human tactile sensing, the requirements for the realization of viable tactile sensors, and new materials for tactile devices. In addition, the potential, hurdles, and major challenges of tactile sensing technology applications including artificial skin, medical devices, and analysis tools for human tactile perception are presented in detail. Finally, the review highlights possible routes, rapid trends, and new opportunities related to tactile devices in the foreseeable future.
Collapse
Affiliation(s)
- Minhoon Park
- Center for Mechanical Metrology, Korea Research Institute of Standards and Science, 267 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea.
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
| | - Bo-Gyu Bok
- Center for Mechanical Metrology, Korea Research Institute of Standards and Science, 267 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea.
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
| | - Jong-Hyun Ahn
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
| | - Min-Seok Kim
- Center for Mechanical Metrology, Korea Research Institute of Standards and Science, 267 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea.
| |
Collapse
|
15
|
Zhao Q, Wang H, Ni Z, Liu J, Zhen Y, Zhang X, Jiang L, Li R, Dong H, Hu W. Organic Ferroelectric-Based 1T1T Random Access Memory Cell Employing a Common Dielectric Layer Overcoming the Half-Selection Problem. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29. [PMID: 28692748 DOI: 10.1002/adma.201701907] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/03/2017] [Indexed: 06/07/2023]
Abstract
Organic electronics based on poly(vinylidenefluoride/trifluoroethylene) (P(VDF-TrFE)) dielectric is facing great challenges in flexible circuits. As one indispensable part of integrated circuits, there is an urgent demand for low-cost and easy-fabrication nonvolatile memory devices. A breakthrough is made on a novel ferroelectric random access memory cell (1T1T FeRAM cell) consisting of one selection transistor and one ferroelectric memory transistor in order to overcome the half-selection problem. Unlike complicated manufacturing using multiple dielectrics, this system simplifies 1T1T FeRAM cell fabrication using one common dielectric. To achieve this goal, a strategy for semiconductor/insulator (S/I) interface modulation is put forward and applied to nonhysteretic selection transistors with high performances for driving or addressing purposes. As a result, high hole mobility of 3.81 cm2 V-1 s-1 (average) for 2,6-diphenylanthracene (DPA) and electron mobility of 0.124 cm2 V-1 s-1 (average) for N,N'-1H,1H-perfluorobutyl dicyanoperylenecarboxydiimide (PDI-FCN2 ) are obtained in selection transistors. In this work, we demonstrate this technology's potential for organic ferroelectric-based pixelated memory module fabrication.
Collapse
Affiliation(s)
- Qiang Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hanlin Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhenjie Ni
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jie Liu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| | - Yonggang Zhen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiaotao Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| | - Lang Jiang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Rongjin Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| | - Huanli Dong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wenping Hu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| |
Collapse
|
16
|
Joe DJ, Kim S, Park JH, Park DY, Lee HE, Im TH, Choi I, Ruoff RS, Lee KJ. Laser-Material Interactions for Flexible Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29. [PMID: 28370626 DOI: 10.1002/adma.201606586] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/23/2017] [Indexed: 05/04/2023]
Abstract
The use of lasers for industrial, scientific, and medical applications has received an enormous amount of attention due to the advantageous ability of precise parameter control for heat transfer. Laser-beam-induced photothermal heating and reactions can modify nanomaterials such as nanoparticles, nanowires, and two-dimensional materials including graphene, in a controlled manner. There have been numerous efforts to incorporate lasers into advanced electronic processing, especially for inorganic-based flexible electronics. In order to resolve temperature issues with plastic substrates, laser-material processing has been adopted for various applications in flexible electronics including energy devices, processors, displays, and other peripheral electronic components. Here, recent advances in laser-material interactions for inorganic-based flexible applications with regard to both materials and processes are presented.
Collapse
Affiliation(s)
- Daniel J Joe
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Seungjun Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jung Hwan Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Dae Yong Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Han Eol Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Tae Hong Im
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Insung Choi
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Rodney S Ruoff
- Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Keon Jae Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| |
Collapse
|