1
|
Xu S, Yang R, Yang Y, Zhang Y. Shape-morphing bioelectronic devices. MATERIALS HORIZONS 2025. [PMID: 40391509 DOI: 10.1039/d5mh00453e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
Shape-morphing bioelectronic devices, which can actively transform their geometric configurations in response to external stimuli (e.g., light, heat, electricity, and magnetic fields), have enabled many unique applications in different areas, ranging from human-machine interfaces to biomedical applications. These devices can not only realize in vivo deformations to execute specific tasks, form conformal contacts with target organs for real-time monitoring, and dynamically reshape their structures to adjust functional properties, but also assist users in daily activities through physical interactions. In this review, we provide a comprehensive overview of recent advances in shape-morphing bioelectronic devices, covering their fundamental working principles, representative deformation modes, and advanced manufacturing methodologies. Then, a broad range of practical applications of shape-morphing bioelectronics are summarized, including electromagnetic devices, optoelectronic devices, biological devices, biomedical devices, and haptic interfaces. Finally, we discuss key challenges and emerging opportunities in this rapidly evolving field, providing insights into future research directions and potential breakthroughs.
Collapse
Affiliation(s)
- Shiwei Xu
- Mechano-X Institute, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P. R. China.
- State Key Laboratory of Flexible Electronics Technology, Tsinghua University, 100084 Beijing, P. R. China
| | - Ruoxi Yang
- Mechano-X Institute, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P. R. China.
- State Key Laboratory of Flexible Electronics Technology, Tsinghua University, 100084 Beijing, P. R. China
| | - Youzhou Yang
- Mechano-X Institute, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P. R. China.
- State Key Laboratory of Flexible Electronics Technology, Tsinghua University, 100084 Beijing, P. R. China
| | - Yihui Zhang
- Mechano-X Institute, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P. R. China.
- State Key Laboratory of Flexible Electronics Technology, Tsinghua University, 100084 Beijing, P. R. China
| |
Collapse
|
2
|
Yoshida K, Tanakinoue M, Onoe H, Hashimoto M. Microfluidic paper-based analytical soft actuators (μPAC). LAB ON A CHIP 2025; 25:2364-2375. [PMID: 39912337 DOI: 10.1039/d4lc00602j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Soft actuators have developed over the last decade for diverse applications including industrial machines and biomedical devices. Integration of chemical sensors with soft actuators would be beneficial in analyzing chemical and environmental conditions, but there have been limited devices to achieve such sensing capabilities. In this work, we developed a thin-film soft actuator integrated with a paper-based chemical sensor, termed a microfluidic paper-based analytical soft actuator (μPAC). μPAC consists of (1) a silicone thin film with a 3D-printed pneumatic chamber and (2) a cellulose paper. This cellulose paper offers dual functions: the strain-limiting layer of a soft actuator and the substrate for the chemical sensor for a paper-based analytical device (μPAD). We characterized the design parameters of the actuators-namely, (1) thickness of silicone thin film, (2) chamber length, and (3) Young's modulus of silicone thin film-to evaluate the actuation performance. These characterizations suggested that the cellulose paper served as a suitable self-straining layer of the actuator, making μPAC a chemical sensor that can actuate simultaneously. Highlighting the unique capability of μPAC, we demonstrated the local detection of pH on the curved target surface. Overall, this research demonstrated the rapid fabrication of actuating chemical sensors with a unique design by combining soft actuators and μPAD, enabling chemical sensing on various surface topologies by dynamically making conformal contact.
Collapse
Affiliation(s)
- Koki Yoshida
- Research Center for Autonomous Systems Materialogy, Institute of Integrated Research, Institute of Science Tokyo, Japan
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore.
| | - Masahiro Tanakinoue
- Research Center for Autonomous Systems Materialogy, Institute of Integrated Research, Institute of Science Tokyo, Japan
- Department of Computer Science, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8502, Japan
| | - Hiroaki Onoe
- Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Michinao Hashimoto
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore.
| |
Collapse
|
3
|
Fonseca D, Neto P. Electrically-driven phase transition actuators to power soft robot designs. Nat Commun 2025; 16:3920. [PMID: 40280926 PMCID: PMC12032282 DOI: 10.1038/s41467-025-59023-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 04/03/2025] [Indexed: 04/29/2025] Open
Abstract
In the quest for electrically-driven soft actuators, the focus has shifted away from liquid-gas phase transition, commonly associated with reduced strain rates and actuation delays, in favour of electrostatic and other electrothermal actuation methods. This prevented the technology from capitalizing on its unique characteristics, particularly: low voltage operation, controllability, scalability, and ease of integration into robots. Here, we introduce a liquid-gas phase transition electric soft actuator that uses water as the working fluid and is powered by a coil-type flexible heating element. It achieves strain rates of over 16%/s and pressurization rates of 100 kPa/s. Blocked forces exceeding 50 N were achieved while operating at voltages up to 24 V. We propose a method for selecting working fluids which allows for application-specific optimization, together with a nonlinear control approach that reduces both parasitic vibrations and control lag. We demonstrate the integration of this technology in soft robotic systems, including a cable-driven biomimetic hand and a quadruped robot powered by liquid-gas phase transition.
Collapse
Affiliation(s)
- D Fonseca
- University of Coimbra, CEMMPRE, Department of Mechanical Engineering, Coimbra, Portugal
| | - P Neto
- University of Coimbra, CEMMPRE, Department of Mechanical Engineering, Coimbra, Portugal.
| |
Collapse
|
4
|
Yang X, Jin T, Tian S, Wang J, Yi S, Wang Y, Li L, Lin Y. Elastic Fiber Programming for Simplified Pneumatic Control in Soft Robots. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2501477. [PMID: 40270438 DOI: 10.1002/advs.202501477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/10/2025] [Indexed: 04/25/2025]
Abstract
Conventional pneumatic soft robots require complex control systems with multiple valves and circuits due to coupled structural and pneumatic dynamics. A strategy is presented to program the pneumatic response characteristics of soft actuators by embedding elastic fibers with tailored materials and pre-stretch ratios, enabling structurally identical modules to exhibit distinct pressure-driven responses. A 6 mm-diameter actuator prototype demonstrates this paradigm, achieving a 2632% load ratio and 225°/s bending speed at a material cost of 9 cents. Crucially, a single pneumatic input suffices for multi-step actuation-shown in pipeline-climbing robots, omnidirectional crawlers, and grippers adapting to objects from 10 to 450 g. This fusion of material programming and mechanical intelligence simplifies control architectures while enhancing functionality, offering a scalable path toward deployable soft robotics.
Collapse
Affiliation(s)
- Xiaoli Yang
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, China
| | - Tao Jin
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, China
| | - Shiwei Tian
- School of Electrical Engineering and Automation, Anhui University, Anhui, 230601, China
| | - Jieyu Wang
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, China
| | - Sicheng Yi
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, China
| | - Yue Wang
- School of Future Technology, Institute of Artificial Intelligence, Shanghai University, Shanghai, 200444, China
| | - Long Li
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, China
| | - Yangqiao Lin
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
5
|
Wu C, Liu H, Lin S, Lam J, Xi N, Chen Y. Shape morphing of soft robotics by pneumatic torsion strip braiding. Nat Commun 2025; 16:3787. [PMID: 40263355 PMCID: PMC12015459 DOI: 10.1038/s41467-025-59051-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 04/08/2025] [Indexed: 04/24/2025] Open
Abstract
Shape morphing technologies are significant in soft robotic applications. To this end, we introduce a new shape morphing approach using pneumatic torsion strips, inspired by the shape of a Möbius strip. A pneumatic torsion strip is simply formed by bending and twisting a ribbon of bladder. When locating a pneumatic torsion strip on a braided soft body, its intrinsic elastic energy always tends to bend the soft body. Meanwhile, its elastic energy is adjustable and correlated with the geometry and internal-pressure dependent material properties. Compared with common strain-mismatch based morphing methods, pneumatic torsion strips directly exert bending torque to the soft body without generating in-plane strain and affecting rigidity. As such, the local bending of a soft body over a large curvature range at almost any position can be realized through pneumatic torsion strips. A mathematical model describing the geometry and elastic energy of a pneumatic torsion strip is also established to explain its basic shape morphing mechanism. Finally, we provide several case studies to illustrate their performance and advantages in practical shape morphing applications, such as a 2 kg meter-scale transformable carpet that can curl like plant tendrils.
Collapse
Affiliation(s)
- Changchun Wu
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, Hong Kong
| | - Hao Liu
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, Hong Kong
| | - Senyuan Lin
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, Hong Kong
| | - James Lam
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, Hong Kong
| | - Ning Xi
- Department of Data and Systems Engineering, The University of Hong Kong, Hong Kong, Hong Kong
| | - Yonghua Chen
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, Hong Kong.
| |
Collapse
|
6
|
Cui Y, Hu J, Dong Z, Li B, Chang C. Temperature-triggered inflatable hydrogel muscles with snap-through instability for untethered robots. Nat Commun 2025; 16:3384. [PMID: 40204743 PMCID: PMC11982279 DOI: 10.1038/s41467-025-58731-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 03/28/2025] [Indexed: 04/11/2025] Open
Abstract
Pneumatic artificial muscles have been widely used in the field of robotics because of their large output force and fast actuation, however, the accompanying bulky compressors and pumps limit their miniaturized applications. Despite current untethered pneumatic artificial muscles can be driven by adjusting the internal pressure, it is challenging to structurally mimic natural muscles with high water content. Here, we propose untethered pneumatic artificial muscles comprising a hydrogel actuator with snap-through instability and an air storage chamber. These hydrogel actuators can realize the conversion from hydrophobic association of octyl acrylate moieties to host-guest interaction between β-cyclodextrin and octyl acrylate under thermal stimuli, leading to the decrease of their moduli. The inflated hydrogel actuators exhibit rapid actuation with a radial expansion speed of 200% s-1, which are powered by snap-through instability, thermal expansion of the gas inside the hydrogel actuator, and evaporation of water on its internal surface. With the pneumatic artificial muscles miniaturized, we demonstrate diving and rolling robots, exemplifying bionic robots able to adapt to and modify the environment. We expect that the design of hydrogel actuator in miniaturized pneumatic artificial muscles will facilitate rapid locomotion for future bionic robotic platforms.
Collapse
Affiliation(s)
- Yande Cui
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430070, China
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Jianhua Hu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Ziyang Dong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Bing Li
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430070, China.
| | - Chunyu Chang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430070, China.
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
7
|
Su J, He K, Li Y, Tu J, Chen X. Soft Materials and Devices Enabling Sensorimotor Functions in Soft Robots. Chem Rev 2025. [PMID: 40163535 DOI: 10.1021/acs.chemrev.4c00906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Sensorimotor functions, the seamless integration of sensing, decision-making, and actuation, are fundamental for robots to interact with their environments. Inspired by biological systems, the incorporation of soft materials and devices into robotics holds significant promise for enhancing these functions. However, current robotics systems often lack the autonomy and intelligence observed in nature due to limited sensorimotor integration, particularly in flexible sensing and actuation. As the field progresses toward soft, flexible, and stretchable materials, developing such materials and devices becomes increasingly critical for advanced robotics. Despite rapid advancements individually in soft materials and flexible devices, their combined applications to enable sensorimotor capabilities in robots are emerging. This review addresses this emerging field by providing a comprehensive overview of soft materials and devices that enable sensorimotor functions in robots. We delve into the latest development in soft sensing technologies, actuation mechanism, structural designs, and fabrication techniques. Additionally, we explore strategies for sensorimotor control, the integration of artificial intelligence (AI), and practical application across various domains such as healthcare, augmented and virtual reality, and exploration. By drawing parallels with biological systems, this review aims to guide future research and development in soft robots, ultimately enhancing the autonomy and adaptability of robots in unstructured environments.
Collapse
Affiliation(s)
- Jiangtao Su
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Ke He
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yanzhen Li
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Jiaqi Tu
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Xiaodong Chen
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
8
|
Ai W, Wu J, Long Y, Song K. A Rolling Light-Driven Pneumatic Soft Actuator Based on Liquid-Gas Phase Change. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2418218. [PMID: 39924788 DOI: 10.1002/adma.202418218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Indexed: 02/11/2025]
Abstract
Light-driven wireless actuators provide obvious advantages for remote control. However, traditional double-layer actuators are restricted to the thin film deformation mode when undertaking complex tasks. Here, an actuator is proposed that employs thermal strain and local photothermal effects induced by low boiling point liquids to generate asymmetry along the fiber axis, thereby causing elastic deformation of the fiber. Under continuous irradiation, the sustained elastic deformation results in dynamic frustration within the fiber, creating torque around its axis. Based on this principle, the fiber actuator fabricated in this study enables rolling translation, while the ring actuator achieves simultaneous rolling and lifting motion for object manipulation. Continuous rolling under light eliminates the need for complex light manipulation. This new movement method offers an insight for various application scenarios.
Collapse
Affiliation(s)
- Wenfei Ai
- CAS Key Laboratory of Bio-inspired Materials and Interfaces Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jiaxin Wu
- CAS Key Laboratory of Bio-inspired Materials and Interfaces Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yue Long
- CAS Key Laboratory of Bio-inspired Materials and Interfaces Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou City, Shandong Province, 256606, China
| | - Kai Song
- CAS Key Laboratory of Bio-inspired Materials and Interfaces Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou City, Shandong Province, 256606, China
| |
Collapse
|
9
|
Yin S, Yao DR, Song Y, Heng W, Ma X, Han H, Gao W. Wearable and Implantable Soft Robots. Chem Rev 2024; 124:11585-11636. [PMID: 39392765 DOI: 10.1021/acs.chemrev.4c00513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Soft robotics presents innovative solutions across different scales. The flexibility and mechanical characteristics of soft robots make them particularly appealing for wearable and implantable applications. The scale and level of invasiveness required for soft robots depend on the extent of human interaction. This review provides a comprehensive overview of wearable and implantable soft robots, including applications in rehabilitation, assistance, organ simulation, surgical tools, and therapy. We discuss challenges such as the complexity of fabrication processes, the integration of responsive materials, and the need for robust control strategies, while focusing on advances in materials, actuation and sensing mechanisms, and fabrication techniques. Finally, we discuss the future outlook, highlighting key challenges and proposing potential solutions.
Collapse
Affiliation(s)
- Shukun Yin
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Dickson R Yao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Yu Song
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Wenzheng Heng
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Xiaotian Ma
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Hong Han
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
10
|
Ou Yang CW, Yu SY, Chan CW, Tseng CY, Cai JF, Huang HP, Juang JY. Enhancing the Versatility and Performance of Soft Robotic Grippers, Hands, and Crawling Robots Through Three-Dimensional-Printed Multifunctional Buckling Joints. Soft Robot 2024; 11:741-754. [PMID: 38387016 DOI: 10.1089/soro.2023.0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024] Open
Abstract
Soft robotic grippers and hands offer adaptability, lightweight construction, and enhanced safety in human-robot interactions. In this study, we introduce vacuum-actuated soft robotic finger joints to overcome their limitations in stiffness, response, and load-carrying capability. Our design-optimized through parametric design and three-dimensional (3D) printing-achieves high stiffness using vacuum pressure and a buckling mechanism for large bending angles (>90°) and rapid response times (0.24 s). We develop a theoretical model and nonlinear finite-element simulations to validate the experimental results and provide valuable insights into the underlying mechanics and visualization of the deformation and stress field. We showcase versatile applications of the buckling joints: a three-finger gripper with a large lifting ratio (∼96), a five-finger robotic hand capable of replicating human gestures and adeptly grasping objects of various characteristics in static and dynamic scenarios, and a planar-crawling robot carrying loads 30 times its weight at 0.89 body length per second (BL/s). In addition, a jellyfish-inspired robot crawls in circular pipes at 0.47 BL/s. By enhancing soft robotic grippers' functionality and performance, our study expands their applications and paves the way for innovation through 3D-printed multifunctional buckling joints.
Collapse
Affiliation(s)
- Chih-Wen Ou Yang
- Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan
| | - Shao-Yi Yu
- Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan
- Department of Mechanical Engineering, University of California at Berkeley, Berkeley, California, USA
| | - Che-Wei Chan
- Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan
| | - Chien-Yao Tseng
- Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan
| | - Jing-Fang Cai
- Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan
| | - Han-Pang Huang
- Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan
| | - Jia-Yang Juang
- Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan
- Program in Nanoengineering and Nanoscience, Graduate School of Advanced Technology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
11
|
Mendez K, Whyte W, Freedman BR, Fan Y, Varela CE, Singh M, Cintron-Cruz JC, Rothenbücher SE, Li J, Mooney DJ, Roche ET. Mechanoresponsive Drug Release from a Flexible, Tissue-Adherent, Hybrid Hydrogel Actuator. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2303301. [PMID: 37310046 DOI: 10.1002/adma.202303301] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/22/2023] [Indexed: 06/14/2023]
Abstract
Soft robotic technologies for therapeutic biomedical applications require conformal and atraumatic tissue coupling that is amenable to dynamic loading for effective drug delivery or tissue stimulation. This intimate and sustained contact offers vast therapeutic opportunities for localized drug release. Herein, a new class of hybrid hydrogel actuator (HHA) that facilitates enhanced drug delivery is introduced. The multi-material soft actuator can elicit a tunable mechanoresponsive release of charged drug from its alginate/acrylamide hydrogel layer with temporal control. Dosing control parameters include actuation magnitude, frequency, and duration. The actuator can safely adhere to tissue via a flexible, drug-permeable adhesive bond that can withstand dynamic device actuation. Conformal adhesion of the hybrid hydrogel actuator to tissue leads to improved mechanoresponsive spatial delivery of the drug. Future integration of this hybrid hydrogel actuator with other soft robotic assistive technologies can enable a synergistic, multi-pronged treatment approach for the treatment of disease.
Collapse
Affiliation(s)
- Keegan Mendez
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 01239, USA
- Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA, 02139, USA
| | - William Whyte
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 01239, USA
| | - Benjamin R Freedman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 01238, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
- Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | - Yiling Fan
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Claudia E Varela
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 01239, USA
| | - Manisha Singh
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 01239, USA
| | - Juan C Cintron-Cruz
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 01238, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Sandra E Rothenbücher
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 01239, USA
| | - Jianyu Li
- Department of Mechanical Engineering, McGill University, Montreal, QC, H3A 0C3, Canada
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 01238, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Ellen T Roche
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 01239, USA
- Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA, 02139, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
12
|
Yang L, Wang H. High-performance electrically responsive artificial muscle materials for soft robot actuation. Acta Biomater 2024; 185:24-40. [PMID: 39025393 DOI: 10.1016/j.actbio.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/24/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
Traditional robotic devices are often bulky and rigid, making it difficult for them to adapt to the soft and complex shapes of the human body. In stark contrast, soft robots, as a burgeoning class of robotic technology, showcase exceptional flexibility and adaptability, positioning them as compelling contenders for a diverse array of applications. High-performance electrically responsive artificial muscle materials (ERAMMs), as key driving components of soft robots, can achieve efficient motion and deformation, as well as more flexible and precise robot control, attracting widespread attention. This paper reviews the latest advancements in high-performance ERAMMs and their applications in the field of soft robot actuation, using ionic polymer-metal composites and dielectric elastomers as typical cases. Firstly, the definition, characteristics, and electro-driven working principles of high-performance ERAMMs are introduced. Then, the material design and synthesis, fabrication processes and optimization, as well as characterization and testing methods of the ERAMMs are summarized. Furthermore, various applications of two typical ERAMMs in the field of soft robot actuation are discussed in detail. Finally, the challenges and future directions in current research are analyzed and anticipated. This review paper aims to provide researchers with a reference for understanding the latest research progress in high-performance ERAMMs and to guide the development and application of soft robots. STATEMENT OF SIGNIFICANCE.
Collapse
Affiliation(s)
- Liang Yang
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China
| | - Hong Wang
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China.
| |
Collapse
|
13
|
Moran AM, Vo VT, McDonald KJ, Sultania P, Langenbrunner E, Chong JHV, Naik A, Kinnicutt L, Li J, Ranzani T. An electropermanent magnet valve for the onboard control of multi-degree of freedom pneumatic soft robots. COMMUNICATIONS ENGINEERING 2024; 3:117. [PMID: 39179768 PMCID: PMC11344064 DOI: 10.1038/s44172-024-00251-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 07/18/2024] [Indexed: 08/26/2024]
Abstract
To achieve coordinated functions, fluidic soft robots typically rely on multiple input lines for the independent inflation and deflation of each actuator. Fluidic actuators are controlled by rigid electronic pneumatic valves, restricting the mobility and compliance of the soft robot. Recent developments in soft valve designs have shown the potential to achieve a more integrated robotic system, but are limited by high energy consumption and slow response time. In this work, we present an electropermanent magnet (EPM) valve for electronic control of pneumatic soft actuators that is activated through microsecond electronic pulses. The valve incorporates a thin channel made from thermoplastic films. The proposed valve (3 × 3 × 0.8 cm, 2.9 g) can block pressure up to 146 kPa and negative pressures up to -100 kPa with a response time of less than 1 s. Using the EPM valves, we demonstrate the ability to switch between multiple operation sequences in real time through the control of a six-DoF robot capable of grasping and hopping with a single pressure input. Our proposed onboard control strategy simplifies the operation of multi-pressure systems, enabling the development of dynamically programmable soft fluid-driven robots that are versatile in responding to different tasks.
Collapse
Affiliation(s)
- Anna Maria Moran
- Department of Mechanical Engineering, Boston University, Boston, MA, USA
| | - Vi T Vo
- Department of Mechanical Engineering, Boston University, Boston, MA, USA
| | - Kevin J McDonald
- Department of Mechanical Engineering, Boston University, Boston, MA, USA
| | - Pranav Sultania
- Department of Mechanical Engineering, Boston University, Boston, MA, USA
| | - Eva Langenbrunner
- Department of Mechanical Engineering, Boston University, Boston, MA, USA
| | | | - Amartya Naik
- Department of Mechanical Engineering, Boston University, Boston, MA, USA
| | - Lorenzo Kinnicutt
- Department of Mechanical Engineering, Boston University, Boston, MA, USA
| | - Jingshuo Li
- Department of Mechanical Engineering, Boston University, Boston, MA, USA
| | - Tommaso Ranzani
- Department of Mechanical Engineering, Boston University, Boston, MA, USA.
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
- Materials Science and Engineering Division, Boston University, Boston, MA, USA.
| |
Collapse
|
14
|
Hou N, Wu M, Zhao Q, Tang Z, Wang K, Xu X, Zheng X, Xie G. Reticular Origami Soft Robotic Gripper for Shape-Adaptive and Bistable Rapid Grasping. Soft Robot 2024; 11:550-560. [PMID: 39178400 DOI: 10.1089/soro.2023.0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2024] Open
Abstract
The top-down approach in designing and fabricating origami robots could achieve far more complicated functions with compliant and elegant designs than traditional robots. This study presents the design, fabrication, and testing of a reticular origami soft robotic gripper that could adapt to the shape of the grasping subject and grasp the subject within 80 ms from the trigger instance. A sensing mechanism consisting of the resistive pressure sensor array and flexible elongation sensor is designed to validate further the shape-adaptive grasping capability and model the rough shape and size of the subject. The grasping test on various objects with different shapes, surface textures, sizes, and living animals further validates the excellent grasping capabilities of the gripper. The gripper could be either actively triggered by actuation or passively triggered by a minimum of 0.0014 J disturbance energy. Such features make it particularly suitable for applications such as capturing underwater creatures and illegal drone control.
Collapse
Affiliation(s)
- Ningzhe Hou
- State Key Laboratory for Turbulence and Complex Systems, Intelligent Biomimetic Design Lab, College of Engineering, Peking University, Beijing, China
- Oxford Robotics Institute, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Mingxin Wu
- State Key Laboratory for Turbulence and Complex Systems, Intelligent Biomimetic Design Lab, College of Engineering, Peking University, Beijing, China
| | - Qin Zhao
- State Key Laboratory for Turbulence and Complex Systems, Intelligent Biomimetic Design Lab, College of Engineering, Peking University, Beijing, China
| | - Zhenhua Tang
- College of Aerospace Engineering, Chongqing University, Chongqing, China
| | - Kaiwei Wang
- State Key Laboratory for Turbulence and Complex Systems, Intelligent Biomimetic Design Lab, College of Engineering, Peking University, Beijing, China
| | - Xiaoxian Xu
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Xingwen Zheng
- Department of Mechanical Engineering, The University of Tokyo, Tokyo, Japan
| | - Guangming Xie
- State Key Laboratory for Turbulence and Complex Systems, Intelligent Biomimetic Design Lab, College of Engineering, Peking University, Beijing, China
- Institute of Ocean Research, Peking University, Beijing, China
| |
Collapse
|
15
|
Zhao Y, Huang H, Yuan W, Liu X, Cao CC. Worm-Inspired, Untethered, Soft Crawling Robots for Pipe Inspections. Soft Robot 2024; 11:639-649. [PMID: 39019032 DOI: 10.1089/soro.2023.0076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024] Open
Abstract
The increasing demand for inspection, upkeep, and repair of pipeline and tunnel infrastructures has catalyzed research into the creation of robots with superior flexibility, adaptability, and load-bearing capacities. This study introduces an autonomous soft robot designed for navigating both straight and curved pipelines of 90 mm diameter. The soft robot is enabled by an elongation pneumatic actuator (EPA) as its body and multiple radial expansion pneumatic actuators (REPAs) as its feet to provide adhesion and support on the pipe walls. It achieves a horizontal movement speed of 1.27 mm/s and ascends vertically at 0.39 mm/s. An integrated control mechanism, merging both pneumatic and electrical systems is employed to facilitate unrestrained movement. A novel control tactic has been formulated to ensure synchronized coordination between the robot's body deformation and leg anchoring, ensuring stable movement. This soft robot demonstrates remarkable mobility metrics, boasting an anchoring strength of over 100 N, a propelling force of 43.8 N when moving vertically, and a pulling strength of 31.4 N during navigation in curved pipelines. It can carry a camera to capture the internal view of the pipe and remove obstacles autonomously. The unconstrained and autonomous movement of the untethered soft robot presents new opportunities for various applications at different scales.
Collapse
Affiliation(s)
- Yunwei Zhao
- School of Mechanical Engineering, Beihua University, Jilin, China
| | - Haoran Huang
- School of Mechanical Engineering, Beihua University, Jilin, China
| | - Weizhe Yuan
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Xiaomin Liu
- School of Mechanical Engineering, Beihua University, Jilin, China
| | - C Chase Cao
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Electrical, Computer, and Systems Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Advanced Platform Technology (APT) Center, Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio, USA
| |
Collapse
|
16
|
Su Y, Xie D, Shu J, Wang J, Song R, Tong KY. Using backward adjustment with model predictive control for adaptive control of nonlinear soft artificial muscle. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-4. [PMID: 40031872 DOI: 10.1109/embc53108.2024.10782551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Soft artificial muscles possess inherent compliance and safety features, rendering them highly suitable for applications in wearable robots and unstructured environments. However, accurately modeling the nonlinearity of soft actuators proves to be a challenging task. In this paper, we present an adaptive control method that leverages model learning and model parameter backward adjustment. Our approach focuses on updating the dynamic model of the artificial muscles in two ways: by refining the input-output relation and by addressing prediction and control errors. To achieve this, we utilize tracking performance as a posterior evaluation metric for model parameter adjustment. Through a series of experiments, we demonstrate that our controller is capable of achieving reference tracking with a root mean square error (RMSE) of less than 5% across different stiffness levels. These experimental results validate the effectiveness of our proposed method in capturing the nonlinearity of soft artificial muscles, adapting to varying loads, and achieving precise reference tracking.
Collapse
|
17
|
Smith L, MacCurdy R. Mechanical Characterization and Constitutive Modeling of 3D Printable Soft Materials. 3D PRINTING AND ADDITIVE MANUFACTURING 2024; 11:e1209-e1212. [PMID: 39359602 PMCID: PMC11442377 DOI: 10.1089/3dp.2023.0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Numerical modeling of soft matter has the potential to enable exploration of the soft robotic field's next frontier: human/machine cooperative design. However, access to material models suitable for predicting the behavior of soft matter is limited, and analysts typically conduct their own mechanical characterization on every new material they work with. In this work we present detailed mechanical characterization of 14 3D-printable soft materials suitable for fabricating soft robots. To allow the extension of this work by other researchers, our test procedures, raw data, constitutive model coefficients, and code used for curve fitting is freely available at www.SoRoForge.com.
Collapse
Affiliation(s)
- Lawrence Smith
- MACLab, Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado, USA
| | - Robert MacCurdy
- MACLab, Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado, USA
| |
Collapse
|
18
|
Weng M, Zhou J, Zhou P, Shang R, You M, Shen G, Chen H. Multi-Functional Actuators Made with Biomass-Based Graphene-Polymer Films for Intelligent Gesture Recognition and Multi-Mode Self-Powered Sensing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309846. [PMID: 38531061 PMCID: PMC11165533 DOI: 10.1002/advs.202309846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/11/2024] [Indexed: 03/28/2024]
Abstract
Multi-functional actuation systems involve the mechanical integration of multiple actuation and sensor devices with external energy sources. The intricate combination makes it difficult to meet the requirements of lightweight. Hence, polypyrrole@graphene-bacterial cellulose (PPy@G-BC) films are proposed to construct multi-responsive and bilayer actuators integrated with multi-mode self-powered sensing function. The PPy@G-BC film not only exhibits good photo-thermoelectric (PTE) properties but also possesses good hydrophilicity and high Young's modulus. Thus, the PPy@G-BC films are used as active layers in multi-responsive bilayer actuators integrated with self-powered sensing functions. Here, two types of multi-functional actuators integrated with self-powered sensing functions is designed. One is a light-driven actuator that realizes the self-powered temperature sensing function through the PTE effect. Assisted by a machine learning algorithm, the self-powered bionic hand can realize intelligent gesture recognition with an accuracy rate of 96.8%. The other is humidity-driven actuators integrated a zinc-air battery, which can realize self-powered humidity sensing. Based on the above advantages, these two multi-functional actuators are ingeniously integrated into a single device, which can simultaneously perform self-powered temperature/humidity sensing while grasping objects. The highly integrated design enables the efficient utilization of environmental energy sources and complementary synergistic monitoring of multiple physical properties without increasing system complexity.
Collapse
Affiliation(s)
- Mingcen Weng
- School of Materials Science and EngineeringFujian Provincial Key Laboratory of Advanced Materials Processing and ApplicationKey Laboratory of Polymer Materials and Products of Universities in FujianFujian University of TechnologyFuzhouFujian350118China
| | - Jiahao Zhou
- School of Materials Science and EngineeringFujian Provincial Key Laboratory of Advanced Materials Processing and ApplicationKey Laboratory of Polymer Materials and Products of Universities in FujianFujian University of TechnologyFuzhouFujian350118China
| | - Peidi Zhou
- Institute of Smart Marine and EngineeringFujian University of TechnologyFuzhouFujian350118China
| | - Ruzhi Shang
- Fujian Key Laboratory of Functional Marine Sensing MaterialsCollege of Materials and Chemical EngineeringMinjiang UniversityFuzhou350108China
- College of Mechanical and Electrical EngineeringFujian Agriculture and Forestry UniversityFuzhou350108China
| | - Minghua You
- School of Materials Science and EngineeringFujian Provincial Key Laboratory of Advanced Materials Processing and ApplicationKey Laboratory of Polymer Materials and Products of Universities in FujianFujian University of TechnologyFuzhouFujian350118China
| | - Guozhen Shen
- School of Integrated Circuits and Electronics Beijing Institute of TechnologyBeijing100081China
| | - Huamin Chen
- Fujian Key Laboratory of Functional Marine Sensing MaterialsCollege of Materials and Chemical EngineeringMinjiang UniversityFuzhou350108China
| |
Collapse
|
19
|
Abolhosen AMR, Lee S, Fukuda K, Someya T, González LH, Shintake J. Functional soft robotic composites based on organic photovoltaic and dielectric elastomer actuator. Sci Rep 2024; 14:9953. [PMID: 38688993 PMCID: PMC11061127 DOI: 10.1038/s41598-024-60899-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/29/2024] [Indexed: 05/02/2024] Open
Abstract
Improving the energy efficiency of robots remains a crucial challenge in soft robotics, with energy harvesting emerging as a promising approach to address it. This study presents a functional soft robotic composite called OPV-DEA, which integrates flexible organic photovoltaic (OPV) and dielectric elastomer actuator (DEA). The composite can simultaneously generate electrostatic bending actuation and harvest energy from external lights. Owing to its simplicity and inherent flexibility, the OPV-DEA is poised to function as a fundamental building block for soft robots. This study aimed to validate this concept by initially establishing the fabrication process of OPV-DEA. Subsequently, experimental samples are fabricated and characterized. The results show that the samples exhibit a voltage-controllable bending actuation of up to 15.6° and harvested power output of 1.35 mW under an incident power irradiance of 11.7 mW/cm2. These performances remain consistent even after 1000 actuation cycles. Finally, to demonstrate the feasibility of soft robotic applications, an untethered swimming robot equipped with two OPV-DEAs is fabricated and tested. The robot demonstrates swimming at a speed of 21.7 mm/s. The power consumption of the robot is dominated by a high-voltage DC-DC converter, with a value approximately 1.5 W. As a result, the on-board OPVs cannot supply the necessary energy during locomotion simultaneously. Instead, they contribute to the overall system by charging a battery used for the controller on board. Nevertheless, these findings suggest that the OPV-DEA could pave the way for the development of an unprecedented range of functional soft robots.
Collapse
Affiliation(s)
- Ahmed Miguel Román Abolhosen
- Department of Mechanical and Intelligent Systems Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
- Escuela Superior de Ingeniería Mecánica y Eléctrica, Unidad Culhuacán, Instituto Politécnico Nacional, Col. San Francisco Culhuacán, Av. Santa Ana No. 1000, 04440, Mexico City, Mexico
| | - Shinyoung Lee
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Kenjiro Fukuda
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Takao Someya
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Department of Electrical and Electronic Engineering and Information Systems, The University of Tokyo, 7-3-1 Bunkyo-Ku, Tokyo, 113-8656, Japan
| | - Leobardo Hernández González
- Escuela Superior de Ingeniería Mecánica y Eléctrica, Unidad Culhuacán, Instituto Politécnico Nacional, Col. San Francisco Culhuacán, Av. Santa Ana No. 1000, 04440, Mexico City, Mexico
| | - Jun Shintake
- Department of Mechanical and Intelligent Systems Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan.
| |
Collapse
|
20
|
Martínez-Calvo A, Biviano MD, Christensen AH, Katifori E, Jensen KH, Ruiz-García M. The fluidic memristor as a collective phenomenon in elastohydrodynamic networks. Nat Commun 2024; 15:3121. [PMID: 38600060 PMCID: PMC11006656 DOI: 10.1038/s41467-024-47110-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 03/19/2024] [Indexed: 04/12/2024] Open
Abstract
Fluid flow networks are ubiquitous and can be found in a broad range of contexts, from human-made systems such as water supply networks to living systems like animal and plant vasculature. In many cases, the elements forming these networks exhibit a highly non-linear pressure-flow relationship. Although we understand how these elements work individually, their collective behavior remains poorly understood. In this work, we combine experiments, theory, and numerical simulations to understand the main mechanisms underlying the collective behavior of soft flow networks with elements that exhibit negative differential resistance. Strikingly, our theoretical analysis and experiments reveal that a minimal network of nonlinear resistors, which we have termed a 'fluidic memristor', displays history-dependent resistance. This new class of element can be understood as a collection of hysteresis loops that allows this fluidic system to store information, and it can be directly used as a tunable resistor in fluidic setups. Our results provide insights that can inform other applications of fluid flow networks in soft materials science, biomedical settings, and soft robotics, and may also motivate new understanding of the flow networks involved in animal and plant physiology.
Collapse
Affiliation(s)
- Alejandro Martínez-Calvo
- Princeton Center for Theoretical Science, Princeton University, Princeton, NJ, 08544, USA
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Matthew D Biviano
- Department of Physics, Technical University of Denmark, DK 2800, Kgs. Lyngby, Denmark
| | | | - Eleni Katifori
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Computational Biology, Flatiron Institute, New York, NY, 10010, USA
| | - Kaare H Jensen
- Department of Physics, Technical University of Denmark, DK 2800, Kgs. Lyngby, Denmark
| | - Miguel Ruiz-García
- Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense Madrid, 28040, Madrid, Spain.
- GISC - Grupo Interdisciplinar de Sistemas Complejos, Universidad Complutense Madrid, 28040, Madrid, Spain.
- Department of Mathematics, Universidad Carlos III de Madrid, 28911, Leganés, Spain.
| |
Collapse
|
21
|
Zhang Z, Fan W, Long Y, Dai J, Luo J, Tang S, Lu Q, Wang X, Wang H, Chen G. Hybrid-Driven Origami Gripper with Variable Stiffness and Finger Length. CYBORG AND BIONIC SYSTEMS 2024; 5:0103. [PMID: 38617112 PMCID: PMC11014077 DOI: 10.34133/cbsystems.0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/07/2024] [Indexed: 04/16/2024] Open
Abstract
Soft grippers due to their highly compliant material and self-adaptive structures attract more attention to safe and versatile grasping tasks compared to traditional rigid grippers. However, those flexible characteristics limit the strength and the manipulation capacity of soft grippers. In this paper, we introduce a hybrid-driven gripper design utilizing origami finger structures, to offer adjustable finger stiffness and variable grasping range. This gripper is actuated via pneumatic and cables, which allows the origami structure to be controlled precisely for contraction and extension, thus achieving different finger lengths and stiffness by adjusting the cable lengths and the input pressure. A kinematic model of the origami finger is further developed, enabling precise control of its bending angle for effective grasping of diverse objects and facilitating in-hand manipulation. Our proposed design method enriches the field of soft grippers, offering a simple yet effective approach to achieve safe, powerful, and highly adaptive grasping and in-hand manipulation capabilities.
Collapse
Affiliation(s)
- Zhuang Zhang
- State Key Laboratory of Mechanical System and Vibration, and Shanghai Key Laboratory of Digital Manufacture for Thin-Walled Structures,
Shanghai Jiao Tong University, Shanghai, 200240, China
- School of Engineering,
Westlake University, Hangzhou, Zhejiang, 310030, China
| | - Weicheng Fan
- State Key Laboratory of Mechanical System and Vibration, and Shanghai Key Laboratory of Digital Manufacture for Thin-Walled Structures,
Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yongzhou Long
- State Key Laboratory of Mechanical System and Vibration, and Shanghai Key Laboratory of Digital Manufacture for Thin-Walled Structures,
Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiabei Dai
- State Key Laboratory of Mechanical System and Vibration, and Shanghai Key Laboratory of Digital Manufacture for Thin-Walled Structures,
Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Junjie Luo
- State Key Laboratory of Mechanical System and Vibration, and Shanghai Key Laboratory of Digital Manufacture for Thin-Walled Structures,
Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shujie Tang
- State Key Laboratory of Mechanical System and Vibration, and Shanghai Key Laboratory of Digital Manufacture for Thin-Walled Structures,
Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qiujie Lu
- Academy for Engineering and Technology,
Fudan University, 200433, Shanghai, China
- Reds Lab, Dyson School of Design Engineering,
Imperial College London, London, SW7 2DB, U.K.
| | - Xinran Wang
- Reds Lab, Dyson School of Design Engineering,
Imperial College London, London, SW7 2DB, U.K.
| | - Hao Wang
- State Key Laboratory of Mechanical System and Vibration, and Shanghai Key Laboratory of Digital Manufacture for Thin-Walled Structures,
Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Genliang Chen
- State Key Laboratory of Mechanical System and Vibration, and Shanghai Key Laboratory of Digital Manufacture for Thin-Walled Structures,
Shanghai Jiao Tong University, Shanghai, 200240, China
- META Robotics Institute,
Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
22
|
Bono S, Nakai R, Konishi S. Simultaneous detection of the shuttling motion of liquid metal droplets in channels under alternating pressure and capacitive sensor signals. MICROSYSTEMS & NANOENGINEERING 2024; 10:46. [PMID: 38560727 PMCID: PMC10978907 DOI: 10.1038/s41378-024-00652-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/25/2023] [Accepted: 11/20/2023] [Indexed: 04/04/2024]
Abstract
Implementing a signal-switching mechanism for the selective use of integrated sensors and actuators plays a crucial role in streamlining the functionality of miniaturized devices. Here, a liquid metal droplet (LMD)-based signal-switching mechanism is introduced to achieve such functionality. Pressure modulation with a 100-μm spatial resolution enabled precise control of the position of the LMDs within a channel. After integrating the channel with asymmetrically structured electrodes, the effect of the shuttle-like movement of LMD on the temporal changes in the overall capacitance was investigated. Consequently, analysis of the capacitive peaks revealed the directional movement of the LMDs, enabling estimation of the position of the LMDs without direct observation. In addition, we achieved successful signal extraction from the capacitive sensor that was linked to the activated electrodes, thereby enabling selective data retrieval. The proposed signal-switching mechanism method achieved a detection accuracy of ~0.1 pF. The sensor's ability to simultaneously detect the LMD position and generate a signal underscores its significant potential for multiplexing in multisensing systems, particularly in concealed environments, such as in vivo settings.
Collapse
Affiliation(s)
- Shinji Bono
- Research Organization of Science and Technology, Ritsumeikan University, Shiga, Japan
- Ritsumeikan Advanced Research Academy, Kyoto, Japan
- Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, Shiga, Japan
| | - Ryotaro Nakai
- Graduate School of Science and Engineering, Ritsumeikan University, Shiga, Japan
| | - Satoshi Konishi
- Research Organization of Science and Technology, Ritsumeikan University, Shiga, Japan
- Ritsumeikan Advanced Research Academy, Kyoto, Japan
- Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, Shiga, Japan
- Graduate School of Science and Engineering, Ritsumeikan University, Shiga, Japan
| |
Collapse
|
23
|
Jin L, Yang S. Engineering Kirigami Frameworks Toward Real-World Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308560. [PMID: 37983878 DOI: 10.1002/adma.202308560] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/05/2023] [Indexed: 11/22/2023]
Abstract
The surge in advanced manufacturing techniques has led to a paradigm shift in the realm of material design from developing completely new chemistry to tailoring geometry within existing materials. Kirigami, evolved from a traditional cultural and artistic craft of cutting and folding, has emerged as a powerful framework that endows simple 2D sheets with unique mechanical, thermal, optical, and acoustic properties, as well as shape-shifting capabilities. Given its flexibility, versatility, and ease of fabrication, there are significant efforts in developing kirigami algorithms to create various architectured materials for a wide range of applications. This review summarizes the fundamental mechanisms that govern the transformation of kirigami structures and elucidates how these mechanisms contribute to their distinctive properties, including high stretchability and adaptability, tunable surface topography, programmable shape morphing, and characteristics of bistability and multistability. It then highlights several promising applications enabled by the unique kirigami designs and concludes with an outlook on the future challenges and perspectives of kirigami-inspired metamaterials toward real-world applications.
Collapse
Affiliation(s)
- Lishuai Jin
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA, 19104, USA
| | - Shu Yang
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA, 19104, USA
| |
Collapse
|
24
|
Ai W, Hou K, Wu J, Long Y, Song K. Miniaturized and untethered McKibben muscles based on photothermal-induced gas-liquid transformation. Nat Commun 2024; 15:1329. [PMID: 38351311 PMCID: PMC10864313 DOI: 10.1038/s41467-024-45540-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 01/24/2024] [Indexed: 02/16/2024] Open
Abstract
Pneumatic artificial muscles can move continuously under the power support of air pumps, and their flexibility also provides the possibility for applications in complex environments. However, in order to achieve operation in confined spaces, the miniaturization of artificial muscles becomes crucial. Since external attachment devices greatly hinder the miniaturization and use of artificial muscles, we propose a light-driven approach to get rid of these limitations. In this study, we report a miniaturized fiber-reinforced artificial muscle based on mold editing, capable of bending and axial elongation using gas-liquid conversion in visible light. The minimum volume of the artificial muscle prepared using this method was 15.7 mm3 (d = 2 mm, l = 5 mm), which was smaller than those of other fiber-reinforced pneumatic actuators. This research can promote the development of non-tethered pneumatic actuators for rescue and exploration, and create the possibility of miniaturization of actuators.
Collapse
Affiliation(s)
- Wenfei Ai
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, CAS, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Kai Hou
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, CAS, Beijing, 100190, P. R. China
| | - Jiaxin Wu
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, CAS, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yue Long
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, CAS, Beijing, 100190, P. R. China.
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou City, Shandong Province, 256606, China.
| | - Kai Song
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, CAS, Beijing, 100190, P. R. China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou City, Shandong Province, 256606, China.
| |
Collapse
|
25
|
Zhu M, Xie M, Mori Y, Dai J, Kawamura S, Yue X. A Variable Stiffness Soft Gripper Based on Rotational Layer Jamming. Soft Robot 2024; 11:85-94. [PMID: 37624671 DOI: 10.1089/soro.2022.0232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023] Open
Abstract
This article presents the design and fabrication of a variable stiffness soft gripper based on layer jamming. Traditional layer jamming units have some limitations, such as complicated multistep fabrication, difficulties in system integration, and diminishing in stiffen effect. In this article, a variable stiffness soft gripper is proposed based on the rotational jamming layers to reduce the slippery phenomenon between layers. To fabricate the proposed complex design, a two-step fabrication method is presented. First, multimaterial 3D printing is applied to directly print out the soft finger body with jamming layers. Second, mold casting is used to fabricate the outer vacuum chamber. The proposed gripper contains a main framework and three identical variable stiffness soft fingers. To demonstrate the effectiveness of the design, the soft gripper is mounted on a robotic arm to test its ability of grasping heavy objects while following complex grasping trajectory. The gripper can successfully grasp an object up to 360 g. Grasping robustness of the proposed gripper can be guaranteed when the robotic arm is moving at acceleration up to 7 m/s2. The results prove that the proposed design of the soft gripper can improve the grippers grasping robustness during high-speed movement.
Collapse
Affiliation(s)
- Mingzhu Zhu
- School of Astronautics, Northwestern Polytechnical University, Xi'an, China
| | - Mengying Xie
- College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, China
| | - Yoshiki Mori
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Junyue Dai
- Information Engineering College, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Sadao Kawamura
- Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Xiaokui Yue
- School of Astronautics, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
26
|
Guo X, Li W, Fang F, Chen H, Zhao L, Fang X, Yi Z, Shao L, Meng G, Zhang W. Encoded sewing soft textile robots. SCIENCE ADVANCES 2024; 10:eadk3855. [PMID: 38181076 PMCID: PMC10776007 DOI: 10.1126/sciadv.adk3855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/01/2023] [Indexed: 01/07/2024]
Abstract
Incorporating soft actuation with soft yet durable textiles could effectively endow the latter with active and flexible shape morphing and motion like mollusks and plants. However, creating highly programmable and customizable soft robots based on textiles faces a longstanding design and manufacturing challenge. Here, we report a methodology of encoded sewing constraints for efficiently constructing three-dimensional (3D) soft textile robots through a simple 2D sewing process. By encoding heterogeneous stretching properties into three spatial seams of the sewed 3D textile shells, nonlinear inflation of the inner bladder can be guided to follow the predefined spatial shape and actuation sequence, for example, tendril-like shape morphing, tentacle-like sequential manipulation, and bioinspired locomotion only controlled by single pressure source. Such flexible, efficient, scalable, and low-cost design and formation methodology will accelerate the development and iteration of soft robots and also open up more opportunities for safe human-robot interactions, tailored wearable devices, and health care.
Collapse
Affiliation(s)
- Xinyu Guo
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenbo Li
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China
| | - Fuyi Fang
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huyue Chen
- University of Michigan–Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Linchuan Zhao
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyong Fang
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhiran Yi
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Shao
- University of Michigan–Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guang Meng
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenming Zhang
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- SJTU Paris Elite Institute of Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
27
|
Guan Q, Liu L, Sun J, Wang J, Guo J, Liu Y, Leng J. Multifunctional Soft Stackable Robots by Netting-Rolling-Splicing Pneumatic Artificial Muscles. Soft Robot 2023; 10:1001-1014. [PMID: 37074447 DOI: 10.1089/soro.2022.0104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023] Open
Abstract
Soft robots equipped with multifunctionalities have been increasingly needed for secure, adaptive, and autonomous functioning in unknown and unpredictable environments. Robotic stacking is a promising solution to increase the functional diversity of soft robots, which are required for safe human-machine interactions and adapting in unstructured environments. However, most existing multifunctional soft robots have a limited number of functions or have not fully shown the superiority of the robotic stacking method. In this study, we present a novel robotic stacking strategy, Netting-Rolling-Splicing (NRS) stacking, based on a dimensional raising method via 2D-to-3D rolling-and-splicing of netted stackable pneumatic artificial muscles to quickly and efficiently fabricate multifunctional soft robots based on the same, simple, and cost-effective elements. To demonstrate it, we developed a TriUnit robot that can crawl 0.46 ± 0.022 body length per second (BL/s) and climb 0.11 BL/s, and can carry a 3 kg payload while climbing. Also, the TriUnit can be used to achieve novel omnidirectional pipe climbing including rotating climbing, and conduct bionic swallowing-and-regurgitating, multi-degree-of-freedom manipulation based on their multimodal combinations. Apart from these, steady rolling, with a speed of 0.19 BL/s, can be achieved by using a pentagon unit. Furthermore, we applied the TriUnit pipe climbing robot in panoramic shooting and cargo transferring to demonstrate the robot's adaptability for different tasks. The NRS stacking-driven soft robot here has demonstrated the best overall performance among existing stackable soft robots, representing a new and effective way for building multifunctional and multimodal soft robots in a cost-effective and efficient way.
Collapse
Affiliation(s)
- Qinghua Guan
- Centre for Composite Materials and Structures, Harbin Institute of Technology (HIT), Harbin, People's Republic of China
| | - Liwu Liu
- Department of Astronautical Science and Mechanics, Harbin Institute of Technology (HIT), Harbin, People's Republic of China
| | - Jian Sun
- Centre for Composite Materials and Structures, Harbin Institute of Technology (HIT), Harbin, People's Republic of China
| | - Jiale Wang
- Department of Astronautical Science and Mechanics, Harbin Institute of Technology (HIT), Harbin, People's Republic of China
| | - Jianglong Guo
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, People's Republic of China
| | - Yanju Liu
- Department of Astronautical Science and Mechanics, Harbin Institute of Technology (HIT), Harbin, People's Republic of China
| | - Jinsong Leng
- Centre for Composite Materials and Structures, Harbin Institute of Technology (HIT), Harbin, People's Republic of China
| |
Collapse
|
28
|
O'Neill CT, Young HT, Hohimer CJ, Proietti T, Rastgaar M, Artemiadis P, Walsh CJ. Tunable, Textile-Based Joint Impedance Module for Soft Robotic Applications. Soft Robot 2023; 10:937-947. [PMID: 37042697 DOI: 10.1089/soro.2021.0173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023] Open
Abstract
The design of soft actuators is often focused on achieving target trajectories or delivering specific forces and torques, rather than controlling the impedance of the actuator. This article outlines a new soft, tunable pneumatic impedance module based on an antagonistic actuator setup of textile-based pneumatic actuators intended to deliver bidirectional torques about a joint. Through mechanical programming of the actuators (select tuning of geometric parameters), the baseline torque to angle relationship of the module can be tuned. A high bandwidth fluidic controller that can rapidly modulate the pressure at up to 8 Hz in each antagonistic actuator was also developed to enable tunable impedance modulation. This high bandwidth was achieved through the characterization and modeling of the proportional valves used, derivation of a fluidic model, and derivation of control equations. The resulting impedance module was capable of modulating its stiffness from 0 to 100 Nm/rad, at velocities up to 120°/s and emulating asymmetric and nonlinear stiffness profiles, typical in wearable robotic applications.
Collapse
Affiliation(s)
- Ciarán T O'Neill
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
| | - Harrison T Young
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
| | - Cameron J Hohimer
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
| | - Tommaso Proietti
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
| | - Mo Rastgaar
- Polytechnic Institute, Purdue University, West Lafayette, Indiana, USA
| | - Panagiotis Artemiadis
- Department of Mechanical Engineering, College of Engineering, University of Delaware, Newark, Delaware, USA
| | - Conor J Walsh
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
29
|
Yang M, Sun F, Hu X, Sun F. Knitting from Nature: Self-Sensing Soft Robotics Enabled by All-in-One Knit Architectures. ACS APPLIED MATERIALS & INTERFACES 2023; 15:44294-44304. [PMID: 37695689 DOI: 10.1021/acsami.3c09029] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Self-sensing soft robotics that mimic the proprioception and exteroception abilities of natural biological systems have shown great potential in challenging applications. However, current add-on strategies that simply combine sensors with actuators by post processing generally suffer from poor compatibility in mechanical properties, interfacing problems, complex manufacturing, and high cost. Herein, we present knitted soft robotics with build-in textile-integrated multimodal sensors, where the knit structure is used not only as a physical actuating layer but also as a sensing functional component. Based on different knit-stitch arrangements, an all-in-one knitted electronic skin with functions of neurons, sensing, and actuation in a single knit-structured fabric layer is constructed. The knitted electronic skin is then integrated into knitted soft robotics, enabling a proprioceptive sense of actuation deformation and an exteroceptive perception of ambient stimuli with minimized interferences for actuation. In addition, the tuck stitches serve as an anisotropic strain-limiting layer to increase the actuating energy efficiency, which resolves the key conflict of softness and volumetric power density in soft actuators. This design strategy provides a convenient, low-cost, and customized method to bring about structural and functional integrability into soft actuators, greatly extending the adaptability of current soft robotics for real-world applications.
Collapse
Affiliation(s)
- Mengxin Yang
- Key Laboratory of Eco-textiles of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Fei Sun
- College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiaorui Hu
- College of Design, Jiangnan University, Wuxi 214122, China
| | - Fengxin Sun
- Key Laboratory of Eco-textiles of Ministry of Education, Jiangnan University, Wuxi 214122, China
- Laboratory of Soft Fibrous Materials, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
30
|
Xu Z, Shi W, Zhao D, Li K, Li J, Dong J, Han Y, Zhao J, Bai Y. Research Progress on Low Damage Grasping of Fruit, Vegetable and Meat Raw Materials. Foods 2023; 12:3451. [PMID: 37761160 PMCID: PMC10528682 DOI: 10.3390/foods12183451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
The sorting and processing of food raw materials is an important step in the food production process, and the quality of the sorting operation can directly or indirectly affect the quality of the product. In order to improve production efficiency and reduce damage to food raw materials, some food production enterprises currently use robots for sorting operations of food raw materials. In the process of robot grasping, some food raw materials such as fruits, vegetables and meat have a soft appearance, complex and changeable shape, and are easily damaged by the robot gripper. Therefore, higher requirements have been put forward for robot grippers, and the research and development of robot grippers that can reduce damage to food raw materials and ensure stable grasping has been a major focus. In addition, in order to grasp food raw materials with various shapes and sizes with low damage, a variety of sensors and control strategies are required. Based on this, this paper summarizes the low damage grasp principle and characteristics of electric grippers, pneumatic grippers, vacuum grippers and magnetic grippers used in automated sorting production lines of fruit, vegetable and meat products, as well as gripper design methods to reduce grasp damage. Then, a grasping control strategy based on visual sensors and tactile sensors was introduced. Finally, the challenges and potential future trends faced by food robot grippers were summarized.
Collapse
Affiliation(s)
- Zeyu Xu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450000, China; (Z.X.); (W.S.); (D.Z.); (K.L.); (J.L.); (J.D.); (Y.H.)
- Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou 450000, China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450000, China
| | - Wenbo Shi
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450000, China; (Z.X.); (W.S.); (D.Z.); (K.L.); (J.L.); (J.D.); (Y.H.)
- Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou 450000, China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450000, China
| | - Dianbo Zhao
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450000, China; (Z.X.); (W.S.); (D.Z.); (K.L.); (J.L.); (J.D.); (Y.H.)
- Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou 450000, China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450000, China
| | - Ke Li
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450000, China; (Z.X.); (W.S.); (D.Z.); (K.L.); (J.L.); (J.D.); (Y.H.)
- Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou 450000, China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450000, China
| | - Junguang Li
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450000, China; (Z.X.); (W.S.); (D.Z.); (K.L.); (J.L.); (J.D.); (Y.H.)
- Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou 450000, China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450000, China
| | - Junyi Dong
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450000, China; (Z.X.); (W.S.); (D.Z.); (K.L.); (J.L.); (J.D.); (Y.H.)
- Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou 450000, China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450000, China
| | - Yu Han
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450000, China; (Z.X.); (W.S.); (D.Z.); (K.L.); (J.L.); (J.D.); (Y.H.)
- Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou 450000, China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450000, China
| | - Jiansheng Zhao
- Henan Shuanghui Investment & Development Co., Ltd., Luohe 462000, China;
| | - Yanhong Bai
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450000, China; (Z.X.); (W.S.); (D.Z.); (K.L.); (J.L.); (J.D.); (Y.H.)
- Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou 450000, China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450000, China
| |
Collapse
|
31
|
Gao T, Bico J, Roman B. Pneumatic cells toward absolute Gaussian morphing. Science 2023; 381:862-867. [PMID: 37616347 DOI: 10.1126/science.adi2997] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/20/2023] [Indexed: 08/26/2023]
Abstract
On a flat map of the Earth, continents are inevitably distorted. Reciprocally, curving a plate simultaneously in two directions requires a modification of in-plane distances, as Gauss stated in his seminal theorem. Although emerging architectured materials with programmed in-plane distortions are capable of such shape morphing, an additional control of local bending is required to precisely set the final shape of the resulting three-dimensional surface. Inspired by bulliform cells in leaves of monocotyledon plants, we show how the internal structure of flat panels can be designed to program bending and in-plane distortions simultaneously when pressurized, leading to a targeted shell shape. These surfaces with controlled stiffness and fast actuation are manufactured using consumer-grade materials and open a route to large-scale shape-morphing robotics applications.
Collapse
Affiliation(s)
- Tian Gao
- Laboratoire de Physique et Mécanique des Milieux Hétérogènes (PMMH), CNRS, ESPCI Paris, Université PSL, Sorbonne Université, Université Paris Cité, 75005 Paris, France
| | - José Bico
- Laboratoire de Physique et Mécanique des Milieux Hétérogènes (PMMH), CNRS, ESPCI Paris, Université PSL, Sorbonne Université, Université Paris Cité, 75005 Paris, France
| | - Benoît Roman
- Laboratoire de Physique et Mécanique des Milieux Hétérogènes (PMMH), CNRS, ESPCI Paris, Université PSL, Sorbonne Université, Université Paris Cité, 75005 Paris, France
| |
Collapse
|
32
|
Hegde C, Su J, Tan JMR, He K, Chen X, Magdassi S. Sensing in Soft Robotics. ACS NANO 2023; 17:15277-15307. [PMID: 37530475 PMCID: PMC10448757 DOI: 10.1021/acsnano.3c04089] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/26/2023] [Indexed: 08/03/2023]
Abstract
Soft robotics is an exciting field of science and technology that enables robots to manipulate objects with human-like dexterity. Soft robots can handle delicate objects with care, access remote areas, and offer realistic feedback on their handling performance. However, increased dexterity and mechanical compliance of soft robots come with the need for accurate control of the position and shape of these robots. Therefore, soft robots must be equipped with sensors for better perception of their surroundings, location, force, temperature, shape, and other stimuli for effective usage. This review highlights recent progress in sensing feedback technologies for soft robotic applications. It begins with an introduction to actuation technologies and material selection in soft robotics, followed by an in-depth exploration of various types of sensors, their integration methods, and the benefits of multimodal sensing, signal processing, and control strategies. A short description of current market leaders in soft robotics is also included in the review to illustrate the growing demands of this technology. By examining the latest advancements in sensing feedback technologies for soft robots, this review aims to highlight the potential of soft robotics and inspire innovation in the field.
Collapse
Affiliation(s)
- Chidanand Hegde
- School
of Materials Science and Engineering, Nanyang
Technological University, Singapore 639798, Singapore
- Singapore-HUJ
alliance for Research and Enterprise (SHARE), Campus for Research Excellence and Technological Enterprise (CREATE) Singapore 138602, Singapore
| | - Jiangtao Su
- School
of Materials Science and Engineering, Nanyang
Technological University, Singapore 639798, Singapore
- Singapore-HUJ
alliance for Research and Enterprise (SHARE), Campus for Research Excellence and Technological Enterprise (CREATE) Singapore 138602, Singapore
| | - Joel Ming Rui Tan
- School
of Materials Science and Engineering, Nanyang
Technological University, Singapore 639798, Singapore
- Singapore-HUJ
alliance for Research and Enterprise (SHARE), Campus for Research Excellence and Technological Enterprise (CREATE) Singapore 138602, Singapore
| | - Ke He
- School
of Materials Science and Engineering, Nanyang
Technological University, Singapore 639798, Singapore
- Singapore-HUJ
alliance for Research and Enterprise (SHARE), Campus for Research Excellence and Technological Enterprise (CREATE) Singapore 138602, Singapore
| | - Xiaodong Chen
- School
of Materials Science and Engineering, Nanyang
Technological University, Singapore 639798, Singapore
- Singapore-HUJ
alliance for Research and Enterprise (SHARE), Campus for Research Excellence and Technological Enterprise (CREATE) Singapore 138602, Singapore
| | - Shlomo Magdassi
- Singapore-HUJ
alliance for Research and Enterprise (SHARE), Campus for Research Excellence and Technological Enterprise (CREATE) Singapore 138602, Singapore
- Casali
Center for Applied Chemistry, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
33
|
Dämmer G, Bauer H, Lackner M, Neumann R, Hildebrandt A, Major Z. Design and Additive Manufacturing of a Continuous Servo Pneumatic Actuator. MICROMACHINES 2023; 14:1622. [PMID: 37630158 PMCID: PMC10456512 DOI: 10.3390/mi14081622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023]
Abstract
Despite an emerging interest in soft and rigid pneumatic lightweight robots, the pneumatic rotary actuators available to date either are unsuitable for servo pneumatic applications or provide a limited angular range. This study describes the functional principle, design, and manufacturing of a servo pneumatic rotary actuator that is suitable for continuous rotary motion and positioning. It contains nine radially arranged linear bellows actuators with rollers that push forward a cam profile. Proportional valves and a rotary encoder are used to control the bellows pressures in relation to the rotation angle. Introducing freely programmable servo pneumatic commutation increases versatility and allows the number of mechanical components to be reduced in comparison to state-of-the-art designs. The actuator presented is designed to be manufacturable using a combination of standard components, selective laser sintering, elastomer molding with novel multi-part cores and basic tools. Having a diameter of 110 mm and a width of 41 mm, our prototype weighs less than 500 g, produces a torque of 0.53 Nm at 1 bar pressure and a static positioning accuracy of 0.31° with no limit of angular motion. By providing a description of design, basic kinematic equations, manufacturing techniques, and a proof of concept, we enable the reader to envision and explore future applications.
Collapse
Affiliation(s)
- Gabriel Dämmer
- Institute of Polymer Product Engineering, Johannes Kepler University Linz, 4040 Linz, Austria (Z.M.)
- Advanced Development Control and Robotics, Festo SE & Co. KG, 73734 Esslingen, Germany
| | - Hartmut Bauer
- Advanced Development Control and Robotics, Festo SE & Co. KG, 73734 Esslingen, Germany
| | - Michael Lackner
- Institute of Polymer Product Engineering, Johannes Kepler University Linz, 4040 Linz, Austria (Z.M.)
| | - Rüdiger Neumann
- Advanced Development Control and Robotics, Festo SE & Co. KG, 73734 Esslingen, Germany
| | - Alexander Hildebrandt
- Advanced Development Control and Robotics, Festo SE & Co. KG, 73734 Esslingen, Germany
| | - Zoltán Major
- Institute of Polymer Product Engineering, Johannes Kepler University Linz, 4040 Linz, Austria (Z.M.)
| |
Collapse
|
34
|
van der Geest N, Garcia L, Borret F, Nates R, Gonzalez A. Soft-robotic green sea turtle (Chelonia mydas) developed to replace animal experimentation provides new insight into their propulsive strategies. Sci Rep 2023; 13:11983. [PMID: 37491547 PMCID: PMC10368674 DOI: 10.1038/s41598-023-37904-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 06/29/2023] [Indexed: 07/27/2023] Open
Abstract
Green sea turtles (Chelonia mydas) can swim up to 50 km per day while only consuming seagrass or microalgae. How the animal accomplishes this vast journey on such low energy intake points to the effectiveness of their swimming technique and is a testament to the power of evolution. Understanding the green sea turtle's ability to accomplish these journeys requires insight into their propulsive strategies. Conducting animal testing to uncover their propulsive strategies brings significant challenges: firstly, the ethical issues of conducting experiments on an endangered animal, and secondly, the animal may not even swim with its regular routine during the experiments. In this work, we develop a new soft-robotic sea turtle that reproduces the real animal's form and function to provide biomechanical insights without the need for invasive experimentation. We found that the green sea turtle may only produce propulsion for approximately 30% of the limb beat cycle, with the remaining 70% exploiting a power-preserving low-drag glide. Due to the animal's large mass and relatively low drag coefficient, losses in swim speed are minimal during the gliding stage. These findings may lead to the creation of a new generation of robotic systems for ocean exploration that use an optimised derivative of the sea turtle propulsive strategy.
Collapse
Affiliation(s)
- Nick van der Geest
- BioDesign Lab, Auckland University of Technology, Auckland, 1010, New Zealand
| | - Lorenzo Garcia
- BioDesign Lab, Auckland University of Technology, Auckland, 1010, New Zealand.
| | - Fraser Borret
- BioDesign Lab, Auckland University of Technology, Auckland, 1010, New Zealand
| | - Roy Nates
- BioDesign Lab, Auckland University of Technology, Auckland, 1010, New Zealand
| | - Alberto Gonzalez
- BioDesign Lab, Auckland University of Technology, Auckland, 1010, New Zealand
| |
Collapse
|
35
|
Jiang X, Yang J, Zeng L, Huang C. A Spider-Joint-like Bionic Actuator with an Approximately Triangular Prism Shape. Biomimetics (Basel) 2023; 8:299. [PMID: 37504187 PMCID: PMC10807400 DOI: 10.3390/biomimetics8030299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/01/2023] [Accepted: 07/06/2023] [Indexed: 07/29/2023] Open
Abstract
The unique drive principle and strong manipulation ability of spider legs have led to several bionic robot designs. However, some parameters of bionic actuators still need to be improved, such as torque. Inspired by the hydraulic drive principle of spider legs, this paper describes the design of a bionic actuator characterized by the use of air pressure on each surface and its transmittance in the direction of movement, achieving a torque amplification effect. The produced torque is as high as 4.78 N m. In addition, its torque characteristics during folding motions are similar to those during unfolding motions, showing that the bionic actuator has stable bidirectional drive capability.
Collapse
Affiliation(s)
- Xiaomao Jiang
- College of Engineering and Design, Hunan Normal University, Changsha 410081, China; (X.J.); (C.H.)
| | - Jun Yang
- College of Engineering and Design, Hunan Normal University, Changsha 410081, China; (X.J.); (C.H.)
| | - Le Zeng
- Department of Aviation Machinery Manufacturing, Changsha Aeronautical Vocational and Technical College, Changsha 410124, China;
| | - Changyang Huang
- College of Engineering and Design, Hunan Normal University, Changsha 410081, China; (X.J.); (C.H.)
| |
Collapse
|
36
|
Sithiwichankit C, Chanchareon R. Advanced Stiffness Sensing through the Pincer Grasping of Soft Pneumatic Grippers. SENSORS (BASEL, SWITZERLAND) 2023; 23:6094. [PMID: 37447943 PMCID: PMC10346675 DOI: 10.3390/s23136094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/19/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023]
Abstract
In this study, a comprehensive approach for sensing object stiffness through the pincer grasping of soft pneumatic grippers (SPGs) is presented. This study was inspired by the haptic sensing of human hands that allows us to perceive object properties through grasping. Many researchers have tried to imitate this capability in robotic grippers. The association between gripper performance and object reaction must be determined for this purpose. However, soft pneumatic actuators (SPA), the main components of SPGs, are extremely compliant. SPA compliance makes the determination of the association challenging. Methodologically, the connection between the behaviors of grasped objects and those of SPAs was clarified. A new concept of SPA modeling was then introduced. A method for stiffness sensing through SPG pincer grasping was developed based on this connection, and demonstrated on four samples. This method was validated through compression testing on the same samples. The results indicate that the proposed method yielded similar stiffness trends with slight deviations in compression testing. A main limitation in this study was the occlusion effect, which leads to dramatic deviations when grasped objects greatly deform. This is the first study to enable stiffness sensing and SPG grasping to be carried out in the same attempt. This study makes a major contribution to research on soft robotics by progressing the role of sensing for SPG grasping and object classification by offering an efficient method for acquiring another effective class of classification input. Ultimately, the proposed framework shows promise for future applications in inspecting and classifying visually indistinguishable objects.
Collapse
Affiliation(s)
| | - Ratchatin Chanchareon
- Department of Mechanical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand;
| |
Collapse
|
37
|
Hori Y, Konishi S. Design improvement of the conversion mechanism from balloon inflation to bending motion for inflatable film actuators. MICROSYSTEMS & NANOENGINEERING 2023; 9:55. [PMID: 37180456 PMCID: PMC10170138 DOI: 10.1038/s41378-023-00526-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/22/2023] [Indexed: 05/16/2023]
Abstract
Various soft actuators have been investigated to overcome the drawbacks of conventional solid machines and explore the applications of soft robotics. In particular, and because they are expected to be applicable in minimally invasive medicine because of their safety, soft inflatable microactuators using an actuation conversion mechanism from balloon inflation to bending motion have been proposed for high-output bending motion. These microactuators could be applied to create an operation space by safely moving organs and tissues; however, the conversion efficiency could be further improved. This study aimed to improve conversion efficiency by investigating the design of the conversion mechanism. The contact conditions between the inflated balloon and conversion film were examined to improve the contact area for force transmission, with the contact area dependent on the length of the contact arc between the balloon and force conversion mechanism and on the amount of balloon deformation. In addition, surface contact friction between the balloon and film, which affects actuator performance, was also investigated. The generated force of the improved device is 1.21 N at 80 kPa when it bends 10 mm, which is 2.2 times the generated force of the previous design. This improved soft inflatable microactuator is expected to assist in performing operations in a limited space, such as in endoscopic or laparoscopic operations.
Collapse
Affiliation(s)
- Y. Hori
- Graduate School of Science and Engineering, Ritsumeikan University, Shiga, Japan
| | - S. Konishi
- Graduate School of Science and Engineering, Ritsumeikan University, Shiga, Japan
- Department of Mechanical Engineering, Ritsumeikan University, Shiga, Japan
- Ritsumeikan Advanced Research Academy, Kyoto, Japan
- Ritsumeikan Global Innovation Research Organization, Kyoto, Japan
| |
Collapse
|
38
|
Yang J, Wang F, Lu Y. Design of a Bistable Artificial Venus Flytrap Actuated by Low Pressure with Larger Capture Range and Faster Responsiveness. Biomimetics (Basel) 2023; 8:biomimetics8020181. [PMID: 37218767 DOI: 10.3390/biomimetics8020181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
The rapid closure of the Venus flytrap (Dionaea muscipula) can be completed within 0.1-0.5 s due to the bistability of hyperbolic leaves and the curvature change of midrib. Inspired by its bistable behavior, this paper presents a novel bioinspired pneumatic artificial Venus flytrap (AVFT), which can achieve a larger capture range and faster closure action at low working pressure and low energy consumption. Soft fiber-reinforced bending actuators are inflated to move artificial leaves and artificial midrib fabricated from bistable antisymmetric laminated carbon fiber-reinforced prepreg (CFRP) structures, and then the AVFT is rapidly closed. A two-parameter theoretical model is used to prove the bistability of the selected antisymmetric laminated CFRP structure, and analyze the factors affecting the curvature in the second stable state. Two physical quantities, critical trigger force and tip force, are introduced to associate the artificial leaf/midrib with the soft actuator. A dimension optimization framework for soft actuators is developed to reduce their working pressures. The results show that the closure range of the AVFT is extended to 180°, and the snap time is shortened to 52 ms by introducing the artificial midrib. The potential application of the AVFT for grasping objects is also shown. This research can provide a new paradigm for the study of biomimetic structures.
Collapse
Affiliation(s)
- Junchang Yang
- Bio-Inspired and Advanced Energy Research Center, School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi'an 710129, China
| | - Fenghui Wang
- Bio-Inspired and Advanced Energy Research Center, School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi'an 710129, China
| | - Yongjun Lu
- Bio-Inspired and Advanced Energy Research Center, School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi'an 710129, China
| |
Collapse
|
39
|
Zhang Z, Long Y, Chen G, Wu Q, Wang H, Jiang H. Soft and lightweight fabric enables powerful and high-range pneumatic actuation. SCIENCE ADVANCES 2023; 9:eadg1203. [PMID: 37043577 PMCID: PMC10096572 DOI: 10.1126/sciadv.adg1203] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
Soft structures and actuation allow robots, conventionally consisting of rigid components, to perform more compliant, adaptive interactions similar to living creatures. Although numerous functions of these types of actuators have been demonstrated in the literature, their hyperelastic designs generally suffer from limited workspaces and load-carrying capabilities primarily due to their structural stretchability factor. Here, we describe a series of pneumatic actuators based on soft but less stretchable fabric that can simultaneously perform tunable workspace and bear a high payload. The motion mode of the actuator is programmable, combinable, and predictable and is informed by rapid response to low input pressure. A robotic gripper using three fabric actuators is also presented. The gripper demonstrates a grasping force of over 150 N and a grasping range from 70 to 350 millimeters. The design concept and comprehensive guidelines presented would provide design and analysis foundations for applying less stretchable yet soft materials in soft robots to further enhance their practicality.
Collapse
Affiliation(s)
- Zhuang Zhang
- State Key Laboratory of Mechanical Systems and Vibration, and Shanghai Key Laboratory of Digital Manufacturing for Thin-Walled Structures, Shanghai Jiao Tong University, Shanghai, 200240, China
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Yongzhou Long
- State Key Laboratory of Mechanical Systems and Vibration, and Shanghai Key Laboratory of Digital Manufacturing for Thin-Walled Structures, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Genliang Chen
- State Key Laboratory of Mechanical Systems and Vibration, and Shanghai Key Laboratory of Digital Manufacturing for Thin-Walled Structures, Shanghai Jiao Tong University, Shanghai, 200240, China
- Meta Robotics Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qichen Wu
- State Key Laboratory of Mechanical Systems and Vibration, and Shanghai Key Laboratory of Digital Manufacturing for Thin-Walled Structures, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hao Wang
- State Key Laboratory of Mechanical Systems and Vibration, and Shanghai Key Laboratory of Digital Manufacturing for Thin-Walled Structures, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hanqing Jiang
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310030, China
| |
Collapse
|
40
|
Shimizu K, Murakami K, Ogawa N, Akai H, Shintake J. Polyvinyl chloride-added dibutyl adipate for high-performance electrohydrodynamic pumps. Front Robot AI 2023; 10:1109563. [PMID: 37064572 PMCID: PMC10090564 DOI: 10.3389/frobt.2023.1109563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
Electrohydrodynamic (EHD) pumps are a promising driving source for various fluid-driven systems owing to features such as simple structure and silent operation. The performance of EHD pumps depends on the properties of the working fluid, such as conductivity, viscosity, and permittivity. This implies that the tuning of these parameters in a working fluid can enhance the EHD performance. This study reports a method to modify the properties of a liquid for EHD pumps by mixing an additive. Specifically, dibutyl adipate (DBA) and polyvinyl chloride (PVC) are employed as the working fluid and the additive, respectively. The results show that when the concentration of PVC is 0.2%, the flow rate and pressure at applied voltage of 8 kV take highest value of 7.85 μL/s and 1.63 kPa, respectively. These values correspond to an improvement of 109% and 40% for the flow rate and pressure, respectively, compared to the pure DBA (PVC 0%). When the voltage is 10 kV, the flow rate of 10.95 μL/s and the pressure of 2.07 kPa are observed for DBA with PVC concentration of 0.2%. These values are more than five times higher than those observed for FC40 at the same voltage (2.02 μL/s and 0.32 kPa). The results also suggest that optimal conductivity and viscosity values exist for maximizing the EHD performance of a liquid. This demonstrates the validity of the proposed method for realizing high-performance EHD pumps by using additives in the working fluid.
Collapse
Affiliation(s)
- Keita Shimizu
- Department of Mechanical and Intelligent Systems Engineering, School of Informatics and Engineering, The University of Electro-Communications, Chofu, Tokyo, Japan
| | - Kazuya Murakami
- Department of Mechanical and Intelligent Systems Engineering, School of Informatics and Engineering, The University of Electro-Communications, Chofu, Tokyo, Japan
| | - Naoki Ogawa
- Polymer Laboratory, Science and Innovation Center, Mitsubishi Chemical Co, Ltd., Yokohama-Shi, Kanagawa, Japan
| | - Hideko Akai
- Polymer Laboratory, Science and Innovation Center, Mitsubishi Chemical Co, Ltd., Yokohama-Shi, Kanagawa, Japan
| | - Jun Shintake
- Department of Mechanical and Intelligent Systems Engineering, School of Informatics and Engineering, The University of Electro-Communications, Chofu, Tokyo, Japan
- *Correspondence: Jun Shintake,
| |
Collapse
|
41
|
Yue L, Macrae Montgomery S, Sun X, Yu L, Song Y, Nomura T, Tanaka M, Jerry Qi H. Single-vat single-cure grayscale digital light processing 3D printing of materials with large property difference and high stretchability. Nat Commun 2023; 14:1251. [PMID: 36878943 PMCID: PMC9988868 DOI: 10.1038/s41467-023-36909-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/23/2023] [Indexed: 03/08/2023] Open
Abstract
Multimaterial additive manufacturing has important applications in various emerging fields. However, it is very challenging due to material and printing technology limitations. Here, we present a resin design strategy that can be used for single-vat single-cure grayscale digital light processing (g-DLP) 3D printing where light intensity can locally control the conversion of monomers to form from a highly stretchable soft organogel to a stiff thermoset within in a single layer of printing. The high modulus contrast and high stretchability can be realized simultaneously in a monolithic structure at a high printing speed (z-direction height 1 mm/min). We further demonstrate that the capability can enable previously unachievable or hard-to-achieve 3D printed structures for biomimetic designs, inflatable soft robots and actuators, and soft stretchable electronics. This resin design strategy thus provides a material solution in multimaterial additive manufacture for a variety of emerging applications.
Collapse
Affiliation(s)
- Liang Yue
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - S Macrae Montgomery
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Xiaohao Sun
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Luxia Yu
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Yuyang Song
- Toyota Research Institute of North America, Toyota Motor North America, Ann Arbor, MI, 48105, USA
| | - Tsuyoshi Nomura
- Toyota Central R&D Laboratories, Inc., Bunkyo-ku, Tokyo, 112-0004, Japan
| | - Masato Tanaka
- Toyota Research Institute of North America, Toyota Motor North America, Ann Arbor, MI, 48105, USA
| | - H Jerry Qi
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
42
|
Bakeri H, Hasikin K, Abd Razak NA, Mohd Razman R, Khamis AA, Annuha M‘A, Tajuddin A, Reza D. Silicone Elastomeric-Based Materials of Soft Pneumatic Actuator for Lower-Limb Rehabilitation: Finite Element Modelling and Prototype Experimental Validation. APPLIED SCIENCES 2023; 13:2977. [DOI: 10.3390/app13052977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
This study describes the basic design, material selection, fabrication, and evaluation of soft pneumatic actuators (SPA) for lower-limb rehabilitation compression therapy. SPAs can be a promising technology in proactive pressure delivery, with a wide range of dosages for treating venous-related diseases. However, the most effective design and material selection of SPAs for dynamic pressure delivery have not been fully explored. Therefore, a SPA chamber with two elastomeric layers was developed for this study, with single-side inflation. The 3D deformation profiles of the SPA chamber using three different elastomeric rubbers were analyzed using the finite element method (FEM). The best SPA-compliant behavior was displayed by food-grade silicone A10 Shore with a maximum deformation value of 25.34 mm. Next, the SPA chamber was fabricated using A10 Shore silicone and experimentally validated. During the simulation in FEM, the air pressure was applied on the inner wall of the chamber (i.e., the affected area). This is to ensure the applied pressure was evenly distributed in the inner wall while the outer wall of the chamber remained undeformed for all compression levels. During the inflation process, pressure will be applied to the SPA chamber, causing exerted pressure on the skin which is then measured for comparison. The simulation and experimental results show an excellent agreement of pressure transmission on the skin for the pressure range of 0–120 mmHg, as depicted in the Bland–Altman plots. The findings exhibited promising results in the development of the SPA chamber using low-cost and biocompatible food-grade silicone.
Collapse
Affiliation(s)
- Hanisah Bakeri
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Medical Revolution Sdn. Bhd, 10 Boulevard, Petaling Jaya 47400, Malaysia
| | - Khairunnisa Hasikin
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Center of Intelligent Systems for Emerging Technology (CISET), Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Nasrul Anuar Abd Razak
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Rizal Mohd Razman
- Faculty of Sports and Exercise Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Abd Alghani Khamis
- Department of Mechanical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Muhammad ‘Ammar Annuha
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Abbad Tajuddin
- Medical Revolution Sdn. Bhd, 10 Boulevard, Petaling Jaya 47400, Malaysia
| | - Darween Reza
- My Conceptual Robotics Sdn. Bhd (MyCRO), Kompleks Diamond, Bandar Baru Bangi 43650, Malaysia
| |
Collapse
|
43
|
Liao W, Yang Z. 3D printing programmable liquid crystal elastomer soft pneumatic actuators. MATERIALS HORIZONS 2023; 10:576-584. [PMID: 36468657 DOI: 10.1039/d2mh01001a] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Soft pneumatic actuators (SPAs) rely on anisotropic mechanical properties to generate specific motions after inflation. To achieve mechanical anisotropy, additional stiff materials or heterogeneous structures are typically introduced in isotropic base materials. However, the inherent limitations of these strategies may lead to potential interfacial problems or inefficient material usage. Herein, we develop a new strategy for fabricating SPAs based on an aligned liquid crystal elastomer (LCE) by a modified 3D printing technology. A rotating substrate enables the one-step fabrication of tubular LCE-SPAs with designed alignments in three dimensions. The alignment can be precisely programmed through printing, resulting in intrinsic mechanical anisotropy of the LCE. With a specially designed alignment, LCE-SPAs can achieve basic motions-contraction, elongation, bending, and twisting-and accomplish diverse tasks, e.g., grabbing objects and mixing water. This study provides a new perspective for the design and fabrication of SPAs.
Collapse
Affiliation(s)
- Wei Liao
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, China.
| | - Zhongqiang Yang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, China.
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, China
| |
Collapse
|
44
|
Yue Y, Wang Q, Ma Z, Wu Z, Zhang X, Li D, Shi Y, Su B. Neuron-Inspired Soft Robot Teams and Their Non-Contact Electric Signal Transmission Based on Electromagnetic Induction. Soft Robot 2023; 10:66-76. [PMID: 35483053 DOI: 10.1089/soro.2021.0034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Transmission of electric signal among robots enables them to construct a team to behave beyond capabilities of the individuals. However, such a signal transmission is elusive so far for soft robots due to the employment of soft materials, rather than traditionally rigid electronic units. In this study, we demonstrate neuron-inspired soft robots (NISRs) with an electromagnetic induced signal transmission system. The prototype 15-cm-long NISRs can not only be moved driven by a manually moving magnet but also transmit signals to others in a noncontact type based on the electromagnetic induction through their tentacle units. Owing to the motion and special signal transmission mode, three NISRs can form diverse signal transport pathways to light up light emitting diodes in different positions. Furthermore, an alternative current (AC) signal can be generated when applying an interval loading/unloading compressive force with the velocity of 800 mm·min-1 on the head of NISR integrated a magnet and a coil (named it NISR-plus). Such an AC signal can be immediately sensed by neighboring NISRs, indicating the construction of a signal transmission network among the NISR team. Our results open perspectives to realize signal transmission of soft robots via wireless electromagnetic induction and favor the development of soft robot teams.
Collapse
Affiliation(s)
- Yamei Yue
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qi Wang
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zheng Ma
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhenhua Wu
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xuan Zhang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China.,ARC Hub for Computational Particle Technology, Department of Chemical Engineering, Monash University, Clayton, Victoria, Australia
| | - Dong Li
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yusheng Shi
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bin Su
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
45
|
Milana E, Gorissen B, De Borre E, Ceyssens F, Reynaerts D, De Volder M. Out-of-Plane Soft Lithography for Soft Pneumatic Microactuator Arrays. Soft Robot 2023; 10:197-204. [PMID: 35704896 DOI: 10.1089/soro.2021.0106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Elastic pneumatic actuators are fueling new devices and applications in soft robotics. Actuator miniaturization is critical to enable soft microsystems for applications in microfluidics and micromanipulation. This work proposes a fabrication technique to make out-of-plane bending microactuators entirely by soft lithography. The only bonding step required is to seal the embedded fluidic channels, assuring the structural integrity of the microactuators. The process consists of fabricating two SU8 mold halves using different lithographic layers. Polydimethilsiloxane is poured on the bottom mold, which is subsequently aligned and assembled with the top mold. The process allows for out-of-plane actuators with a diameter of 300 μm and for fabricating arrays of up to 36 actuators that are row addressable. These active micropillars have an aspect ratio of 1:1.5 and, when pressurized at 1 bar, show a bending angle of ∼30°.
Collapse
Affiliation(s)
- Edoardo Milana
- Department of Mechanical Engineering, KU Leuven and Flanders Make, Leuven, Belgium
| | - Benjamin Gorissen
- Department of Mechanical Engineering, KU Leuven and Flanders Make, Leuven, Belgium
| | - Eline De Borre
- Department of Mechanical Engineering, KU Leuven and Flanders Make, Leuven, Belgium
| | - Frederik Ceyssens
- Department of Electrical Engineering (ESAT), KU Leuven, Leuven, Belgium
| | - Dominiek Reynaerts
- Department of Mechanical Engineering, KU Leuven and Flanders Make, Leuven, Belgium
| | - Michael De Volder
- Department of Mechanical Engineering, KU Leuven and Flanders Make, Leuven, Belgium.,Department of Engineering, Institute for Manufacturing, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
46
|
Das R, Babu SPM, Visentin F, Palagi S, Mazzolai B. An earthworm-like modular soft robot for locomotion in multi-terrain environments. Sci Rep 2023; 13:1571. [PMID: 36709355 PMCID: PMC9884293 DOI: 10.1038/s41598-023-28873-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 01/24/2023] [Indexed: 01/30/2023] Open
Abstract
Robotic locomotion in subterranean environments is still unsolved, and it requires innovative designs and strategies to overcome the challenges of burrowing and moving in unstructured conditions with high pressure and friction at depths of a few centimeters. Inspired by antagonistic muscle contractions and constant volume coelomic chambers observed in earthworms, we designed and developed a modular soft robot based on a peristaltic soft actuator (PSA). The PSA demonstrates two active configurations from a neutral state by switching the input source between positive and negative pressure. PSA generates a longitudinal force for axial penetration and a radial force for anchorage, through bidirectional deformation of the central bellows-like structure, which demonstrates its versatility and ease of control. The performance of PSA depends on the amount and type of fluid confined in an elastomer chamber, generating different forces and displacements. The assembled robot with five PSA modules enabled to perform peristaltic locomotion in different media. The role of friction was also investigated during experimental locomotion tests by attaching passive scales like earthworm setae to the ventral side of the robot. This study proposes a new method for developing a peristaltic earthworm-like soft robot and provides a better understanding of locomotion in different environments.
Collapse
Affiliation(s)
- Riddhi Das
- Bioinspired Soft Robotics Lab, Istituto Italiano di Tecnologia, Genoa, Italy.
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Italy.
| | - Saravana Prashanth Murali Babu
- Bioinspired Soft Robotics Lab, Istituto Italiano di Tecnologia, Genoa, Italy.
- Center for Soft Robotics, SDU Biorobotics, The Maersk Mc-Kinney Moller Institute, University of Southern Denmark, Odense, Denmark.
| | - Francesco Visentin
- Bioinspired Soft Robotics Lab, Istituto Italiano di Tecnologia, Genoa, Italy
- Department of Computer Science, Università degli Studi di Verona, Verona, Italy
| | - Stefano Palagi
- Bioinspired Soft Robotics Lab, Istituto Italiano di Tecnologia, Genoa, Italy
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Italy
| | - Barbara Mazzolai
- Bioinspired Soft Robotics Lab, Istituto Italiano di Tecnologia, Genoa, Italy.
| |
Collapse
|
47
|
Self-vectoring electromagnetic soft robots with high operational dimensionality. Nat Commun 2023; 14:182. [PMID: 36635282 PMCID: PMC9837125 DOI: 10.1038/s41467-023-35848-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 01/04/2023] [Indexed: 01/14/2023] Open
Abstract
Soft robots capable of flexible deformations and agile locomotion similar to biological systems are highly desirable for promising applications, including safe human-robot interactions and biomedical engineering. Their achievable degree of freedom and motional deftness are limited by the actuation modes and controllable dimensions of constituent soft actuators. Here, we report self-vectoring electromagnetic soft robots (SESRs) to offer new operational dimensionality via actively and instantly adjusting and synthesizing the interior electromagnetic vectors (EVs) in every flux actuator sub-domain of the robots. As a result, we can achieve high-dimensional operation with fewer actuators and control signals than other actuation methods. We also demonstrate complex and rapid 3D shape morphing, bioinspired multimodal locomotion, as well as fast switches among different locomotion modes all in passive magnetic fields. The intrinsic fast (re)programmability of SESRs, along with the active and selective actuation through self-vectoring control, significantly increases the operational dimensionality and possibilities for soft robots.
Collapse
|
48
|
A Proposal of Bioinspired Soft Active Hand Prosthesis. Biomimetics (Basel) 2023; 8:biomimetics8010029. [PMID: 36648815 PMCID: PMC9844288 DOI: 10.3390/biomimetics8010029] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/19/2022] [Accepted: 01/03/2023] [Indexed: 01/13/2023] Open
Abstract
Soft robotics have broken the rigid wall of interaction between humans and robots due to their own definition and manufacturing principles, allowing robotic systems to adapt to humans and enhance or restore their capabilities. In this research we propose a dexterous bioinspired soft active hand prosthesis based in the skeletal architecture of the human hand. The design includes the imitation of the musculoskeletal components and morphology of the human hand, allowing the prosthesis to emulate the biomechanical properties of the hand, which results in better grips and a natural design. CAD models for each of the bones were developed and 3D printing was used to manufacture the skeletal structure of the prosthesis, also soft materials were used for the musculoskeletal components. A myoelectric control system was developed using a recurrent neural network (RNN) to classify the hand gestures using electromyography signals; the RNN model achieved an accuracy of 87% during real time testing. Objects with different size, texture and shape were tested to validate the grasping performance of the prosthesis, showing good adaptability, soft grasping and mechanical compliance to object of the daily life.
Collapse
|
49
|
Abstract
We have developed a microscale hydraulic soft gripper and demonstrated the handling of an insect without damage. This gripper is built on Polydimethylsiloxane (PDMS) with the soft material casting technique to form three finger-like columns, which are placed on a circular membrane. The fingers have a length of 1.5 mm and a diameter of 300 µm each; the distance between the two fingers is 600 µm of center-to-center distance. A membrane as a 150 µm soft film is built on top of a cylindrical hollow space. Applying pressure to the interior space can bend the membrane. Bending the membrane causes the motion of opening/closing of the gripper, and as a result, the three fingers can grip an object or release it. The PDMS was characterized, and the experimental results were used later in Abaqus software to simulate the gripping motion. The range of deformation of the gripper was investigated by simulation and experiment. The result of the simulation agrees with the experiments. The maximum 543 µN force was measured for this microfluidic-compatible microgripper and it could lift a ball that weighs 168.4 mg and has a 0.5 mm diameter. Using this microgripper, an ant was manipulated successfully without any damage. Results showed fabricated device has great a potential as micro/bio manipulator.
Collapse
|
50
|
Abstract
Thermal actuation is a common actuation method for soft robots. However, a major limitation is the relatively slow actuation speed. Here we report significant increase in the actuation speed of a bimorph thermal actuator by harnessing the snap-through instability. The actuator is made of silver nanowire/polydimethylsiloxane composite. The snap-through instability is enabled by simply applying an offset displacement to part of the actuator structure. The effects of thermal conductivity of the composite, offset displacement, and actuation frequency on the actuator speed are investigated using both experiments and finite element analysis. The actuator yields a bending speed as high as 28.7 cm-1/s, 10 times that without the snap-through instability. A fast crawling robot with locomotion speed of 1.04 body length per second and a biomimetic Venus flytrap were demonstrated to illustrate the promising potential of the fast bimorph thermal actuators for soft robotic applications.
Collapse
Affiliation(s)
- Shuang Wu
- Department of Mechanical and Aerospace Engineering and North Carolina State University, Raleigh, North Carolina, USA
| | - Gregory Langston Baker
- Department of Mechanical and Aerospace Engineering and North Carolina State University, Raleigh, North Carolina, USA
| | - Jie Yin
- Department of Mechanical and Aerospace Engineering and North Carolina State University, Raleigh, North Carolina, USA
| | - Yong Zhu
- Department of Mechanical and Aerospace Engineering and North Carolina State University, Raleigh, North Carolina, USA.,Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina, USA.,Joint Department of Biomedical Engineering, University of North Carolina-Chapel Hill and NC State University, Chapel Hill, North Carolina, USA
| |
Collapse
|