1
|
Lu H, Zhao J, Zheng B, Qian C, Cai T, Li E, Chen H. Eye accommodation-inspired neuro-metasurface focusing. Nat Commun 2023; 14:3301. [PMID: 37280218 DOI: 10.1038/s41467-023-39070-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 05/22/2023] [Indexed: 06/08/2023] Open
Abstract
The human eye, which relies on a flexible and controllable lens to focus light onto the retina, has inspired many scientific researchers to understand better and imitate the biological vision system. However, real-time environmental adaptability presents an enormous challenge for artificial eye-like focusing systems. Inspired by the mechanism of eye accommodation, we propose a supervised-evolving learning algorithm and design a neuro-metasurface focusing system. Driven by on-site learning, the system exhibits a rapid response to ever-changing incident waves and surrounding environments without any human intervention. Adaptive focusing is achieved in several scenarios with multiple incident wave sources and scattering obstacles. Our work demonstrates the unprecedented potential for real-time, fast, and complex electromagnetic (EM) wave manipulation for various purposes, such as achromatic, beam shaping, 6 G communication, and intelligent imaging.
Collapse
Affiliation(s)
- Huan Lu
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China
- International Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, 314400, Haining, China
- Key Lab of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, Jinhua Institute of Zhejiang University, Zhejiang University, 321099, Jinhua, China
- Shaoxing Institute of Zhejiang University, Zhejiang University, 312000, Shaoxing, China
| | - Jiwei Zhao
- School of Electronic Science and Engineering, Nanjing University, 210023, Nanjing, Jiangsu Province, China
| | - Bin Zheng
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China.
- International Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, 314400, Haining, China.
- Key Lab of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, Jinhua Institute of Zhejiang University, Zhejiang University, 321099, Jinhua, China.
- Shaoxing Institute of Zhejiang University, Zhejiang University, 312000, Shaoxing, China.
| | - Chao Qian
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China.
- International Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, 314400, Haining, China.
- Key Lab of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, Jinhua Institute of Zhejiang University, Zhejiang University, 321099, Jinhua, China.
- Shaoxing Institute of Zhejiang University, Zhejiang University, 312000, Shaoxing, China.
| | - Tong Cai
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China.
- The Air and Missile Defend College, Air force Engineering University, 710051, Xi'an, China.
| | - Erping Li
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China
- International Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, 314400, Haining, China
- Key Lab of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, Jinhua Institute of Zhejiang University, Zhejiang University, 321099, Jinhua, China
- Shaoxing Institute of Zhejiang University, Zhejiang University, 312000, Shaoxing, China
| | - Hongsheng Chen
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China.
- International Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, 314400, Haining, China.
- Key Lab of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, Jinhua Institute of Zhejiang University, Zhejiang University, 321099, Jinhua, China.
- Shaoxing Institute of Zhejiang University, Zhejiang University, 312000, Shaoxing, China.
| |
Collapse
|
2
|
Zhang C, Qu M, Fu X, Lin J. Review on Microscale Sensors with 3D Engineered Structures: Fabrication and Applications. SMALL METHODS 2022; 6:e2101384. [PMID: 35088578 DOI: 10.1002/smtd.202101384] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/03/2022] [Indexed: 06/14/2023]
Abstract
The intelligence of modern technologies relies on perceptual systems based on microscale sensors. However, because of the traditional top-down fabrication approaches performed on planar silicon wafers, a large proportion of existing microscale sensors have 2D structures, which severely restricts their sensing capabilities. To overcome these restrictions, over the past few decades, increasing efforts have been devoted to developing new fabrication methods for microscale sensors with 3D engineered structures, from bulk chemical etching and 3D printing to molding and stress-induced assembly. Herein, the authors systematically review these fabrication methods based on the applications of the resulting 3D sensors and discuss their advantages compared to their 2D counterparts. This is followed by a perspective on the remaining challenges and possible opportunities.
Collapse
Affiliation(s)
- Cheng Zhang
- College of Engineering, Nanjing Agricultural University, Nanjing, 210031, China
| | - Menglong Qu
- College of Engineering, Nanjing Agricultural University, Nanjing, 210031, China
| | - Xiuqing Fu
- College of Engineering, Nanjing Agricultural University, Nanjing, 210031, China
| | - Jian Lin
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO, 65211, USA
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
3
|
Truong TA, Nguyen TK, Zhao H, Nguyen NK, Dinh T, Park Y, Nguyen T, Yamauchi Y, Nguyen NT, Phan HP. Engineering Stress in Thin Films: An Innovative Pathway Toward 3D Micro and Nanosystems. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105748. [PMID: 34874620 DOI: 10.1002/smll.202105748] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/23/2021] [Indexed: 06/13/2023]
Abstract
Transformation of conventional 2D platforms into unusual 3D configurations provides exciting opportunities for sensors, electronics, optical devices, and biological systems. Engineering material properties or controlling and modulating stresses in thin films to pop-up 3D structures out of standard planar surfaces has been a highly active research topic over the last decade. Implementation of 3D micro and nanoarchitectures enables unprecedented functionalities including multiplexed, monolithic mechanical sensors, vertical integration of electronics components, and recording of neuron activities in 3D organoids. This paper provides an overview on stress engineering approaches to developing 3D functional microsystems. The paper systematically presents the origin of stresses generated in thin films and methods to transform a 2D design into an out-of-plane configuration. Different types of 3D micro and nanostructures, along with their applications in several areas are discussed. The paper concludes with current technical challenges and potential approaches and applications of this fast-growing research direction.
Collapse
Affiliation(s)
- Thanh-An Truong
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
| | - Tuan-Khoa Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
| | - Hangbo Zhao
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Nhat-Khuong Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
| | - Toan Dinh
- Centre for Future Materials, University of Southern Queensland, Ipswich, Queensland, 4305, Australia
| | - Yoonseok Park
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
| | - Thanh Nguyen
- Centre for Future Materials, University of Southern Queensland, Ipswich, Queensland, 4305, Australia
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Nam-Trung Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
| | - Hoang-Phuong Phan
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
| |
Collapse
|
4
|
Lei Y, Clevy C, Rauch JY, Lutz P. Large-Workspace Polyarticulated Micro-Structures Based-On Folded Silica for Tethered Nanorobotics. IEEE Robot Autom Lett 2022. [DOI: 10.1109/lra.2021.3118470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
5
|
Benouhiba A, Wurtz L, Rauch JY, Agnus J, Rabenorosoa K, Clévy C. NanoRobotic Structures with Embedded Actuation via Ion Induced Folding. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2103371. [PMID: 34554607 DOI: 10.1002/adma.202103371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/09/2021] [Indexed: 06/13/2023]
Abstract
4D structures are tridimensional structures with time-varying abilities that provide high versatility, sophisticated designs, and a broad spectrum of actuation and sensing possibilities. The downsizing of these structures below 100 μm opens up exceptional opportunities for many disciplines, including photonics, acoustics, medicine, and nanorobotics. However, it requires a paradigm shift in manufacturing methods, especially for dynamic structures. A novel fabrication method based on ion-induced folding of planar multilayer structures embedding their actuation is proposed-the planar structures are fabricated in bulk through batch microfabrication techniques. Programmable and accurate bidirectional foldings (-70° - +90°) of Silica/Chromium/Aluminium (SiO2 /Cr/Al) multilayer structures are modeled, experimentally demonstrated then applied to embedded electrothermal actuation of controllable and dynamic 4D nanorobotic structures. The method is used to produce high-performances case-study grippers for nanorobotic applications in confined environments. Once folded, a gripping task at the nano-scale is demonstrated. The proposed fabrication method is suitable for creating small-scale 4D systems for nanorobotics, medical devices, and tunable metamaterials, where rapid folding and enhanced dynamic control are required.
Collapse
Affiliation(s)
- Amine Benouhiba
- FEMTO-ST Institute, CNRS AS2M department, Univ. Bourgogne Franche-Comté, 24 rue Alain Savary, Besançon, 25000, France
| | - Léo Wurtz
- FEMTO-ST Institute, CNRS AS2M department, Univ. Bourgogne Franche-Comté, 24 rue Alain Savary, Besançon, 25000, France
| | - Jean-Yves Rauch
- FEMTO-ST Institute, CNRS AS2M department, Univ. Bourgogne Franche-Comté, 24 rue Alain Savary, Besançon, 25000, France
| | - Joël Agnus
- FEMTO-ST Institute, CNRS AS2M department, Univ. Bourgogne Franche-Comté, 24 rue Alain Savary, Besançon, 25000, France
| | - Kanty Rabenorosoa
- FEMTO-ST Institute, CNRS AS2M department, Univ. Bourgogne Franche-Comté, 24 rue Alain Savary, Besançon, 25000, France
| | - Cédric Clévy
- FEMTO-ST Institute, CNRS AS2M department, Univ. Bourgogne Franche-Comté, 24 rue Alain Savary, Besançon, 25000, France
| |
Collapse
|
6
|
Dai C, Cho JH. Electron Beam Maneuvering of a Single Polymer Layer for Reversible 3D Self-Assembly. NANO LETTERS 2021; 21:2066-2073. [PMID: 33630613 DOI: 10.1021/acs.nanolett.0c04723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Reversible self-assembly that allows materials to switch between structural configurations has triggered innovation in various applications, especially for reconfigurable devices and robotics. However, reversible motion with nanoscale controllability remains challenging. This paper introduces a reversible self-assembly using stress generated by electron irradiation triggered degradation (shrinkage) of a single polymer layer. The peak position of the absorbed energy along the depth of a polymer layer can be modified by tuning the electron energy; the peak absorption location controls the position of the shrinkage generating stress along the depth of the polymer layer. The stress gradient can shift between the top and bottom surface of the polymer by repeatedly tuning the irradiation location at the nanoscale and the electron beam voltage, resulting in reversible motion. This reversible self-assembly process paves the path for the innovation of small-scale machines and reconfigurable functional devices.
Collapse
Affiliation(s)
- Chunhui Dai
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jeong-Hyun Cho
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
7
|
Manoccio M, Esposito M, Passaseo A, Cuscunà M, Tasco V. Focused Ion Beam Processing for 3D Chiral Photonics Nanostructures. MICROMACHINES 2020; 12:6. [PMID: 33374782 PMCID: PMC7823276 DOI: 10.3390/mi12010006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022]
Abstract
The focused ion beam (FIB) is a powerful piece of technology which has enabled scientific and technological advances in the realization and study of micro- and nano-systems in many research areas, such as nanotechnology, material science, and the microelectronic industry. Recently, its applications have been extended to the photonics field, owing to the possibility of developing systems with complex shapes, including 3D chiral shapes. Indeed, micro-/nano-structured elements with precise geometrical features at the nanoscale can be realized by FIB processing, with sizes that can be tailored in order to tune optical responses over a broad spectral region. In this review, we give an overview of recent efforts in this field which have involved FIB processing as a nanofabrication tool for photonics applications. In particular, we focus on FIB-induced deposition and FIB milling, employed to build 3D nanostructures and metasurfaces exhibiting intrinsic chirality. We describe the fabrication strategies present in the literature and the chiro-optical behavior of the developed structures. The achieved results pave the way for the creation of novel and advanced nanophotonic devices for many fields of application, ranging from polarization control to integration in photonic circuits to subwavelength imaging.
Collapse
Affiliation(s)
- Mariachiara Manoccio
- Department of Mathematics and Physics Ennio De Giorgi, University of Salento, Via Arnesano, 73100 Lecce, Italy
- CNR NANOTEC Institute of Nanotechnology, Via Monteroni, 73100 Lecce, Italy; (A.P.); (M.C.); (V.T.)
| | - Marco Esposito
- CNR NANOTEC Institute of Nanotechnology, Via Monteroni, 73100 Lecce, Italy; (A.P.); (M.C.); (V.T.)
| | - Adriana Passaseo
- CNR NANOTEC Institute of Nanotechnology, Via Monteroni, 73100 Lecce, Italy; (A.P.); (M.C.); (V.T.)
| | - Massimo Cuscunà
- CNR NANOTEC Institute of Nanotechnology, Via Monteroni, 73100 Lecce, Italy; (A.P.); (M.C.); (V.T.)
| | - Vittorianna Tasco
- CNR NANOTEC Institute of Nanotechnology, Via Monteroni, 73100 Lecce, Italy; (A.P.); (M.C.); (V.T.)
| |
Collapse
|
8
|
Dai C, Li L, Wratkowski D, Cho JH. Electron Irradiation Driven Nanohands for Sequential Origami. NANO LETTERS 2020; 20:4975-4984. [PMID: 32502353 DOI: 10.1021/acs.nanolett.0c01075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Sequence plays an important role in self-assembly of 3D complex structures, particularly for those with overlap, intersection, and asymmetry. However, it remains challenging to program the sequence of self-assembly, resulting in geometric and topological constrains. In this work, a nanoscale, programmable, self-assembly technique is reported, which uses electron irradiation as "hands" to manipulate the motion of nanostructures with the desired order. By assigning each single assembly step in a particular order, localized motion can be selectively triggered with perfect timing, making a component accurately integrate into the complex 3D structure without disturbing other parts of the assembly process. The features of localized motion, real-time monitoring, and surface patterning open the possibility for the further innovation of nanomachines, nanoscale test platforms, and advanced optical devices.
Collapse
Affiliation(s)
- Chunhui Dai
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Lianbi Li
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
- School of Science, Xi'an Polytechnic University, Xi'an 710000, People's Republic of China
| | - Daniel Wratkowski
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jeong-Hyun Cho
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
9
|
Chen S, Chen J, Zhang X, Li ZY, Li J. Kirigami/origami: unfolding the new regime of advanced 3D microfabrication/nanofabrication with "folding". LIGHT, SCIENCE & APPLICATIONS 2020; 9:75. [PMID: 32377337 PMCID: PMC7193558 DOI: 10.1038/s41377-020-0309-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/27/2020] [Accepted: 04/02/2020] [Indexed: 05/19/2023]
Abstract
Advanced kirigami/origami provides an automated technique for modulating the mechanical, electrical, magnetic and optical properties of existing materials, with remarkable flexibility, diversity, functionality, generality, and reconfigurability. In this paper, we review the latest progress in kirigami/origami on the microscale/nanoscale as a new platform for advanced 3D microfabrication/nanofabrication. Various stimuli of kirigami/origami, including capillary forces, residual stress, mechanical stress, responsive forces, and focussed-ion-beam irradiation-induced stress, are introduced in the microscale/nanoscale region. These stimuli enable direct 2D-to-3D transformations through folding, bending, and twisting of microstructures/nanostructures, with which the occupied spatial volume can vary by several orders of magnitude compared to the 2D precursors. As an instant and direct method, ion-beam irradiation-based tree-type and close-loop nano-kirigami is highlighted in particular. The progress in microscale/nanoscale kirigami/origami for reshaping the emerging 2D materials, as well as the potential for biological, optical and reconfigurable applications, is briefly discussed. With the unprecedented physical characteristics and applicable functionalities generated by kirigami/origami, a wide range of applications in the fields of optics, physics, biology, chemistry and engineering can be envisioned.
Collapse
Affiliation(s)
- Shanshan Chen
- 1Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, 100081 Beijing, China
| | - Jianfeng Chen
- 2College of Physics and Optoelectronics, South China University of Technology, 510640 Guangzhou, China
| | - Xiangdong Zhang
- 1Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, 100081 Beijing, China
| | - Zhi-Yuan Li
- 2College of Physics and Optoelectronics, South China University of Technology, 510640 Guangzhou, China
| | - Jiafang Li
- 1Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, 100081 Beijing, China
| |
Collapse
|
10
|
Tang X, Chen M, Ackerman MM, Melnychuk C, Guyot-Sionnest P. Direct Imprinting of Quasi-3D Nanophotonic Structures into Colloidal Quantum-Dot Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906590. [PMID: 31957096 DOI: 10.1002/adma.201906590] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/19/2019] [Indexed: 05/17/2023]
Abstract
Three-dimensional (3D) subwavelength nanostructures have emerged and triggered tremendous excitement because of their advantages over the two-dimensional (2D) counterparts in fields of plasmonics, photonic crystals, and metamaterials. However, the fabrication and integration of 3D nanophotonic structures with colloidal quantum dots (CQDs) faces several technological obstacles, as conventional lithographic and etching techniques may affect the surface chemistry of colloidal nanomaterials. Here, the direct fabrication of functional quasi-3D nanophotonic structures into CQD films is demonstrated by one-step imprinting with well-controlled precision in both vertical and lateral directions. To showcase the potential of this technique, diffraction gratings, bilayer wire-grid polarizers, and resonant metal mesh long-pass filters are imprinted on CQD films without degrading the optical and electrical properties of CQD. Furthermore, a dual-diode CQD detector into an unprecedented mid-wave infrared two-channel polarization detector is functionalized by embedding an imprinted bilayer wire-grid polarizer within the CQDs. The results show that this approach offers a feasible pathway to combine quasi-3D nanostructures with colloidal materials-based optoelectronics and access a new level of light manipulation.
Collapse
Affiliation(s)
- Xin Tang
- James Franck Institute, University of Chicago, Chicago, IL, 60637, USA
| | - Menglu Chen
- James Franck Institute, University of Chicago, Chicago, IL, 60637, USA
- Department of Physics, University of Chicago, Chicago, IL, 60637, USA
| | - Matthew M Ackerman
- James Franck Institute, University of Chicago, Chicago, IL, 60637, USA
- Department of Chemistry, University of Chicago, Chicago, IL, 60637, USA
| | - Christopher Melnychuk
- James Franck Institute, University of Chicago, Chicago, IL, 60637, USA
- Department of Chemistry, University of Chicago, Chicago, IL, 60637, USA
| | - Philippe Guyot-Sionnest
- James Franck Institute, University of Chicago, Chicago, IL, 60637, USA
- Department of Chemistry, University of Chicago, Chicago, IL, 60637, USA
- Department of Physics, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
11
|
Zhu J, Lin G, Huang Y, Zhang K, Wu M, Wu W, Lu P. Three-dimensional cavity-coupled metamaterials for plasmonic color and real-time colorimetric biosensors. NANOSCALE 2020; 12:4418-4425. [PMID: 32026916 DOI: 10.1039/c9nr10343k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Plasmonic structure color has significant potential for visual biochemical sensing by simple instrumentation or even naked eye detection. Herein, we present a visual and real-time sensing strategy for refraction index sensing and detection of the biotin-avidin system based on three-dimensional cavity-coupled metamaterials. These metamaterials composed of a top array of gold disks, aluminium pillars and a bottom reflection film of aluminium have structures similar to the metal-insulator-metal structure. The insulating layer comprises air-gap cavities that are easily filled with gaseous or liquid dielectrics. Therefore, analytes can permeate into the nano-scale cavities and produce strong light-matter interactions. The sensor shows that any tiny change in the refraction index will induce a significant color variation and the sensitivity reaches 683.5 nm per refraction index unit with a figure of merit of 3.5. The color of the metamaterials changes from rose-red to violet and then loden after a monomolecular layer of thiolated biotin and streptavidin bind to the surface of the nanostructure successively. This sensing strategy offers new opportunities for the convenient detection of proteins, nucleic acids, and lipids.
Collapse
Affiliation(s)
- Jia Zhu
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Institute of Microelectronics, Peking University, Beijing 100871, P.R. China.
| | - Guanzhou Lin
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Institute of Microelectronics, Peking University, Beijing 100871, P.R. China.
| | - Yun Huang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Institute of Microelectronics, Peking University, Beijing 100871, P.R. China.
| | - Kenan Zhang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Institute of Microelectronics, Peking University, Beijing 100871, P.R. China. and College of Physics and Information Engineering, Fuzhou University, Fuzhou, 350108, P.R. China
| | - Meizhang Wu
- School of Automation, University of Science and Technology Beijing, Beijing 100083, P.R. China
| | - Wengang Wu
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Institute of Microelectronics, Peking University, Beijing 100871, P.R. China.
| | - Peimin Lu
- College of Physics and Information Engineering, Fuzhou University, Fuzhou, 350108, P.R. China
| |
Collapse
|
12
|
A Programmable Nanofabrication Method for Complex 3D Meta-Atom Array Based on Focused-Ion-Beam Stress-Induced Deformation Effect. MICROMACHINES 2020; 11:mi11010095. [PMID: 31963142 PMCID: PMC7019797 DOI: 10.3390/mi11010095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 11/17/2022]
Abstract
Due to their unique electromagnetic properties, meta-atom arrays have always been a hotspot to realize all kinds of particular functions, and the research on meta-atom structure has extended from two-dimensions (2D) to three-dimensions (3D) in recent years. With the continuous pursuit of complex 3D meta-atom arrays, the increasing demand for more efficient and more precise nanofabrication methods has encountered challenges. To explore better fabrication methods, we presented a programmable nanofabrication method for a complex 3D meta-atom array based on focused-ion-beam stress-induced deformation (FIB-SID) effect and designed a distinctive nanostructure array composed of periodic 3D meta-atoms to demonstrate the presented method. After successful fabrication of the designed 3D meta-atom arrays, measurements were conducted to investigate the electric/magnetic field properties and infrared spectral characteristics using scanning cathodoluminescence (CL) microscopic imaging and Fourier transform infrared (FTIR) spectroscopy, which revealed a certain excitation mode induced by polarized incident IR light near 8 μm. Besides the programmability for complex 3D meta-atoms and wide applicability of materials, a more significant advantage of the method is that a large-scale array composed of complex 3D meta-atoms can be processed in a quasi-parallel way, which improves the processing efficiency and the consistency of unit cells dramatically.
Collapse
|
13
|
Xu B, Zhang X, Tian Z, Han D, Fan X, Chen Y, Di Z, Qiu T, Mei Y. Microdroplet-guided intercalation and deterministic delamination towards intelligent rolling origami. Nat Commun 2019; 10:5019. [PMID: 31685828 PMCID: PMC6828951 DOI: 10.1038/s41467-019-13011-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 10/15/2019] [Indexed: 11/25/2022] Open
Abstract
Three-dimensional microstructures fabricated by origami, including folding, rolling and buckling, gain great interests in mechanics, optics and electronics. We propose a general strategy on on-demand and spontaneous rolling origami for artificial microstructures aiming at massive and intelligent production. Deposited nanomembranes are rolled-up in great amount triggered by the intercalation of tiny droplet, taking advantage of a creative design of van der Waals interaction with substrate. The rolling of nanomembranes delaminated by liquid permits a wide choice in materials as well as precise manipulation in rolling direction by controlling the motion of microdroplet, resulting in intelligent construction of rolling microstructures with designable geometries. Moreover, this liquid-triggered delamination phenomenon and constructed microstructures are demonstrated in the applications among vapor sensing, microresonators, micromotors, and microactuators. This investigation offers a simple, massive, low-cost, versatile and designable construction of rolling microstructures for fundamental research and practical applications. Rolling microstructures have great potential among optics and micromechanics but on-demand construction with versatile materials remains challenging. Here Xu et al. precisely construct 3D rolling microstructures by liquid-triggered delamination in predictable manner and demonstrate their applications.
Collapse
Affiliation(s)
- Borui Xu
- Department of Materials Science, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai, China
| | - Xinyuan Zhang
- Department of Materials Science, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai, China
| | - Ziao Tian
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, China Academy of Science, Shanghai, China
| | - Di Han
- School of Physics, Southeast University, Nanjing, China
| | - Xingce Fan
- School of Physics, Southeast University, Nanjing, China
| | - Yimeng Chen
- Department of Materials Science, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai, China
| | - Zengfeng Di
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, China Academy of Science, Shanghai, China
| | - Teng Qiu
- School of Physics, Southeast University, Nanjing, China
| | - Yongfeng Mei
- Department of Materials Science, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai, China.
| |
Collapse
|
14
|
Zhang DB, Zhao XJ, Seifert G, Tse K, Zhu J. Twist-driven separation of p-type and n-type dopants in single-crystalline nanowires. Natl Sci Rev 2019; 6:532-539. [PMID: 34691902 PMCID: PMC8291436 DOI: 10.1093/nsr/nwz014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/10/2019] [Accepted: 01/19/2019] [Indexed: 11/29/2022] Open
Abstract
The distribution of dopants significantly influences the properties of semiconductors, yet effective modulation and separation of p-type and n-type dopants in homogeneous materials remain challenging, especially for nanostructures. Employing a bond orbital model with supportive atomistic simulations, we show that axial twisting can substantially modulate the radial distribution of dopants in Si nanowires (NWs) such that dopants of smaller sizes than the host atom prefer atomic sites near the NW core, while dopants of larger sizes are prone to staying adjacent to the NW surface. We attribute such distinct behaviors to the twist-induced inhomogeneous shear strain in NW. With this, our investigation on codoping pairs further reveals that with proper choices of codoping pairs, e.g. B and Sb, n-type and p-type dopants can be well separated along the NW radial dimension. Our findings suggest that twisting may lead to realizations of p-n junction configuration and modulation doping in single-crystalline NWs.
Collapse
Affiliation(s)
- Dong-Bo Zhang
- College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Xing-Ju Zhao
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Gotthard Seifert
- Theoretische Chemie, Technische Universität Dresden, Dresden D-01062, Germany
| | - Kinfai Tse
- Department of Physics, the Chinese University of Hong Kong, Hong Kong, China
| | - Junyi Zhu
- Department of Physics, the Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
15
|
Huang Y, Zhu J, Fan J, Chen Z, Chen X, Jin S, Wu W. Plasmonic color generation and refractive index sensing with three-dimensional air-gap nanocavities. OPTICS EXPRESS 2019; 27:6283-6299. [PMID: 30876216 DOI: 10.1364/oe.27.006283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 02/07/2019] [Indexed: 05/19/2023]
Abstract
Three-dimensional (3D) air-gap metal-coated nanocavities with tunable geometries, changeable heights, and improved smoothness are fabricated by combining electron beam lithography (EBL), ultra dilute hydrofluoric acid solution wet etching (UDHFE), and metal magnetron sputtering technologies. With different shapes, heights, and separations of the nanocavities, the strong electromagnetic resonances inside the nanocavities are changed in different extent, resulting in broad gamut and sophisticated plasmonic color generation. The nanocavities-based metasurface is also used to construct a real-time and label-free refractive index sensor with 372 nm/RIU sensitivity, which shows distinct colorimetric change between different mediums. This nanocavities may find extensive potential applications in high-fidelity color printing, high-density information storage, and on-chip colorimetric label-free biomedical sensing.
Collapse
|
16
|
Wang X, Guo X, Ye J, Zheng N, Kohli P, Choi D, Zhang Y, Xie Z, Zhang Q, Luan H, Nan K, Kim BH, Xu Y, Shan X, Bai W, Sun R, Wang Z, Jang H, Zhang F, Ma Y, Xu Z, Feng X, Xie T, Huang Y, Zhang Y, Rogers JA. Freestanding 3D Mesostructures, Functional Devices, and Shape-Programmable Systems Based on Mechanically Induced Assembly with Shape Memory Polymers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1805615. [PMID: 30370605 DOI: 10.1002/adma.201805615] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/02/2018] [Indexed: 05/23/2023]
Abstract
Capabilities for controlled formation of sophisticated 3D micro/nanostructures in advanced materials have foundational implications across a broad range of fields. Recently developed methods use stress release in prestrained elastomeric substrates as a driving force for assembling 3D structures and functional microdevices from 2D precursors. A limitation of this approach is that releasing these structures from their substrate returns them to their original 2D layouts due to the elastic recovery of the constituent materials. Here, a concept in which shape memory polymers serve as a means to achieve freestanding 3D architectures from the same basic approach is introduced, with demonstrated ability to realize lateral dimensions, characteristic feature sizes, and thicknesses as small as ≈500, 10, and 5 µm simultaneously, and the potential to scale to much larger or smaller dimensions. Wireless electronic devices illustrate the capacity to integrate other materials and functional components into these 3D frameworks. Quantitative mechanics modeling and experimental measurements illustrate not only shape fixation but also capabilities that allow for structure recovery and shape programmability, as a form of 4D structural control. These ideas provide opportunities in fields ranging from micro-electromechanical systems and microrobotics, to smart intravascular stents, tissue scaffolds, and many others.
Collapse
Affiliation(s)
- Xueju Wang
- Simpson Querrey Institute and Feinberg Medical School, Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, 60208, USA
- Department of Mechanical and Aerospace Engineering, University of Missouri-Columbia, Columbia, MO, 65211, USA
| | - Xiaogang Guo
- Center for Mechanics and Materials, Center for Flexible Electronics Technology, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, P. R. China
| | - Jilong Ye
- Center for Nano and Micro Mechanics, Tsinghua University, Beijing, 100084, P. R. China
| | - Ning Zheng
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Punit Kohli
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Dongwhi Choi
- Department of Mechanical Engineering, Kyung Hee University, Yongin, 17104, South Korea
| | - Yi Zhang
- Simpson Querrey Institute and Feinberg Medical School, Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, 60208, USA
- Department of Biomedical, Biological and Chemical Engineering, University of Missouri-Columbia, Columbia, MO, 65211, USA
| | - Zhaoqian Xie
- Departments of Civil and Environmental Engineering Mechanical Engineering, and Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Qihui Zhang
- Simpson Querrey Institute and Feinberg Medical School, Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, 60208, USA
| | - Haiwen Luan
- Departments of Civil and Environmental Engineering Mechanical Engineering, and Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Kewang Nan
- Department of Materials Science and Engineering, Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Bong Hoon Kim
- Simpson Querrey Institute and Feinberg Medical School, Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, 60208, USA
| | - Yameng Xu
- Simpson Querrey Institute and Feinberg Medical School, Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, 60208, USA
| | - Xiwei Shan
- Department of Materials Science and Engineering, Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Wubin Bai
- Simpson Querrey Institute and Feinberg Medical School, Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, 60208, USA
| | - Rujie Sun
- Bristol Composites Institute (ACCIS), University of Bristol, Bristol, BS8 1TR, UK
| | - Zizheng Wang
- Department of Materials Science and Engineering, Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Hokyung Jang
- Simpson Querrey Institute and Feinberg Medical School, Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, 60208, USA
| | - Fan Zhang
- Center for Mechanics and Materials, Center for Flexible Electronics Technology, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, P. R. China
| | - Yinji Ma
- Center for Mechanics and Materials, Center for Flexible Electronics Technology, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, P. R. China
| | - Zheng Xu
- Center for Mechanics and Materials, Center for Flexible Electronics Technology, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, P. R. China
- The State Key Laboratory for Manufacturing and Systems Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xue Feng
- Center for Mechanics and Materials, Center for Flexible Electronics Technology, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, P. R. China
| | - Tao Xie
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yonggang Huang
- Departments of Civil and Environmental Engineering Mechanical Engineering, and Materials Science and Engineering, Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, 60208, USA
| | - Yihui Zhang
- Center for Mechanics and Materials, Center for Flexible Electronics Technology, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, P. R. China
| | - John A Rogers
- Simpson Querrey Institute and Feinberg Medical School, Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, 60208, USA
- Department of Materials Science and Engineering Biomedical Engineering, Neurological Surgery, Chemistry, Mechanical Engineering, Electrical Engineering and Computer Science, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
17
|
Dai C, Agarwal K, Cho JH. Ion-Induced Localized Nanoscale Polymer Reflow for Three-Dimensional Self-Assembly. ACS NANO 2018; 12:10251-10261. [PMID: 30207695 DOI: 10.1021/acsnano.8b05283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Thermal reflow of polymers is a well-established phenomenon that has been used in various microfabrication processes. However, present techniques have critical limitations in controlling the various attributes of polymer reflow, such as the position and extent of reflow, especially at the nanoscale. These challenges primarily result from the reflow heat source supplying heat energy to the entire substrate rather than a specific area. In this work, a focused ion beam (FIB) microscope is used to achieve controllable localized heat generation, leading to precise control over the nanoscale polymer reflow. Through the use of the patterning capability of FIB microscopy, dramatically different reflow performances within nanoscale distances of each other are demonstrated in both discrete periodic and continuous polymer structures. Further, we utilize a self-assembly process induced by nanoscale polymer reflow to realize 3D optical devices, specifically, vertically aligned nanoresonators and graphene-based nanocubes. HFSS and Comsol simulations have been carried out to analyze the advantages of the polymer-based 3D metamaterials as opposed to those fabricated with a metallic hinge. The simulation results clearly demonstrate that the polymer hinges have a dual advantage; first, the removal of any interference from the transmission spectrum leading to strong and distinct resonance peaks and, second, the elimination of parasitic leeching of the enhanced field by the metallic hinge resulting in stronger volumetric enhancement. Thus, the 2-fold advantages existing in 3D polymer-hinge optical metamaterials can open pathways for applications in 3D optoelectronic devices and sensors, vibrational molecular spectroscopy, and other nanoscale 3D plasmonic devices.
Collapse
Affiliation(s)
- Chunhui Dai
- Department of Electrical and Computer Engineering , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Kriti Agarwal
- Department of Electrical and Computer Engineering , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Jeong-Hyun Cho
- Department of Electrical and Computer Engineering , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| |
Collapse
|
18
|
Zhang M, Guo J, Yu Y, Wu Y, Yun H, Jishkariani D, Chen W, Greybush NJ, Kübel C, Stein A, Murray CB, Kagan CR. 3D Nanofabrication via Chemo-Mechanical Transformation of Nanocrystal/Bulk Heterostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1800233. [PMID: 29658166 DOI: 10.1002/adma.201800233] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/08/2018] [Indexed: 06/08/2023]
Abstract
Planar nanocrystal/bulk heterostructures are transformed into 3D architectures by taking advantage of the different chemical and mechanical properties of nanocrystal and bulk thin films. Nanocrystal/bulk heterostructures are fabricated via bottom-up assembly and top-down fabrication. The nanocrystals are capped by long ligands introduced in their synthesis, and therefore their surfaces are chemically addressable, and their assemblies are mechanically "soft," in contrast to the bulk films. Chemical modification of the nanocrystal surface, exchanging the long ligands for more compact chemistries, triggers large volume shrinkage of the nanocrystal layer and drives bending of the nanocrystal/bulk heterostructures. Exploiting the differential chemo-mechanical properties of nanocrystal and bulk materials, the scalable fabrication of designed 3D, cell-sized nanocrystal/bulk superstructures is demonstrated, which possess unique functions derived from nanocrystal building blocks.
Collapse
Affiliation(s)
- Mingliang Zhang
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jiacen Guo
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yao Yu
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yaoting Wu
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hongseok Yun
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Davit Jishkariani
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Wenxiang Chen
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Nicholas J Greybush
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Christian Kübel
- Karlsruhe Nano Micro Facility and Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Germany
| | - Aaron Stein
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Christopher B Murray
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Cherie R Kagan
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|