1
|
Li M, Li T, Liu Y, Han D, Wu S, Gong J. Dual Cascade-Responsive Multifunctional Nanoparticles to Overcome Bacterium-Induced Drug Inactivation and Enhanced Photodynamic and Chemo-Immunotherapy of Pancreatic Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2412707. [PMID: 40095308 DOI: 10.1002/smll.202412707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/16/2025] [Indexed: 03/19/2025]
Abstract
The harsh biological barriers and bacteria within tumor microenvironment not only hinder drug penetration and induce drug inactivation, but also inhibit antitumor immune responses. Here a tumor microenvironment dual cascade-responsive multifunctional nanoparticle, Gem/Emo@NP@GHA is reported, which is engineered from a hyaluronidase (HAase)-responsive guanidine group functionalized hyaluronic acid (GHA) shell and a glutathione (GSH)-responsive biopolymer core (Gem/Emo@NP), that encapsulates anticancer drug gemcitabine (Gem) and two-photon-excited photosensitizer emodin (Emo). The constructed Gem/Emo@NP@GHA can specifically target the tumor and subsequently be degraded by HAase-abundant in the extracellular matrix. Thus, the resulting Gem/Emo@NP achieved size reduction and charge reversal, strengthening deep tumor penetration. Upon internalization, the positively charged Gem/Emo@NP effectively kills intratumor bacteria by inducing membrane depolarization. Furthermore, the high levels of GSH within tumor cells disrupt the disulfide bonds of Gem/Emo@NP, triggering drug release. Thereby, the undecomposed Gem successfully induces tumor cell apoptosis and necrosis. Under laser irradiation, photosensitizer Emo generates high singlet oxygen (1O2), further eliminating tumors and intracellular bacteria. More importantly, Gem/Emo@NP@GHA can activate T cell-mediated immune response, further enhancing antitumor activity. These findings provide a promising approach to treating bacterially infected tumors through the synergistic application of chem-immunotherapy and two-photon-excited photodynamic therapy.
Collapse
Affiliation(s)
- Maolin Li
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Tong Li
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Yin Liu
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, P. R. China
| | - Dandan Han
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, P. R. China
| | - Songgu Wu
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, P. R. China
| | - Junbo Gong
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, P. R. China
| |
Collapse
|
2
|
Nguyen VK, Tsai SW, Cho IC, Chao TC, Hsiao IT, Huang HC, Liaw JW. Gold Nanoparticle-Enhanced Production of Reactive Oxygen Species for Radiotherapy and Phototherapy. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:317. [PMID: 39997879 PMCID: PMC11858237 DOI: 10.3390/nano15040317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/12/2025] [Accepted: 02/15/2025] [Indexed: 02/26/2025]
Abstract
Gold nanoparticles (GNPs) have gained significant attention as multifunctional agents in biomedical applications, particularly for enhancing radiotherapy. Their advantages, including low toxicity, high biocompatibility, and excellent conductivity, make them promising candidates for improving treatment outcomes across various radiation sources, such as femtosecond lasers, X-rays, Cs-137, and proton beams. However, a deeper understanding of their precise mechanisms in radiotherapy is essential for maximizing their therapeutic potential. This review explores the role of GNPs in enhancing reactive oxygen species (ROS) generation through plasmon-induced hot electrons or radiation-induced secondary electrons, leading to cellular damage in organelles such as mitochondria and the cytoskeleton. This additional pathway enhances radiotherapy efficacy, offering new therapeutic possibilities. Furthermore, we discuss emerging trends and future perspectives, highlighting innovative strategies for integrating GNPs into radiotherapy. This comprehensive review provides insights into the mechanisms, applications, and potential clinical impact of GNPs in cancer treatment.
Collapse
Affiliation(s)
- Viet-Khang Nguyen
- Department of Mechanical Engineering, Chang Gung University, Taoyuan City 33302, Taiwan;
| | - Shiao-Wen Tsai
- Department of Biomedical Engineering, Chang Gung University, Taoyuan City 33302, Taiwan;
| | - I-Chun Cho
- Radiation Research Core Laboratory, Chang Gung Memorial Hospital, Taoyuan City 333034, Taiwan; (I.-C.C.); (T.-C.C.)
- Research Center for Radiation Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Tsi-Chian Chao
- Radiation Research Core Laboratory, Chang Gung Memorial Hospital, Taoyuan City 333034, Taiwan; (I.-C.C.); (T.-C.C.)
- Department of Medical Imaging and Radiological Science, Chang Gung University, Taoyuan City 33302, Taiwan;
| | - Ing-Tsung Hsiao
- Department of Medical Imaging and Radiological Science, Chang Gung University, Taoyuan City 33302, Taiwan;
| | - Hsiao-Chieh Huang
- Proton and Radiation Therapy Center, Chang Gung Memorial Hospital, Taoyuan City 333034, Taiwan;
| | - Jiunn-Woei Liaw
- Department of Mechanical Engineering, Chang Gung University, Taoyuan City 33302, Taiwan;
- Proton and Radiation Therapy Center, Chang Gung Memorial Hospital, Taoyuan City 333034, Taiwan;
- Department of Mechanical Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan
| |
Collapse
|
3
|
Zhang S, Zhu W, Zhang X, Mei L, Liu J, Wang F. Machine learning-driven fluorescent sensor array using aqueous CsPbBr 3 perovskite quantum dots for rapid detection and sterilization of foodborne pathogens. JOURNAL OF HAZARDOUS MATERIALS 2025; 483:136655. [PMID: 39603133 DOI: 10.1016/j.jhazmat.2024.136655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/19/2024] [Accepted: 11/23/2024] [Indexed: 11/29/2024]
Abstract
With the growing global concern over food safety, the rapid detection and disinfection of foodborne pathogens have become critical in public health. This study presents a novel machine learning-driven fluorescent sensor array utilizing aqueous CsPbBr3 perovskite quantum dots (PQDs) for the rapid identification and eradication of foodborne pathogens. The relative signal intensity changes (ΔRGB) generated by the sensor array were analyzed using the machine learning algorithm-Support Vector Machine (SVM). The study achieved the identification and recognition of five pathogens and their mixtures within a concentration range of 1.0 × 103 to 1.0 × 107 CFU/mL with an accuracy rate of 100 %, and the limits of detection (LOD) for the pathogens were found to be low. Additionally, the array also showed excellent performance in the identification of pathogens in tap water, achieving an accuracy rate of 100 %. Furthermore, the fluorescent sensor array was capable of inactivating the pathogens with an efficiency of over 99 % within 30 min post-detection. This development provides an efficient and reliable tool for the field of food safety detection.
Collapse
Affiliation(s)
| | - WeiWei Zhu
- Hefei University of Technology, Hefei 230009, China
| | - Xin Zhang
- Hefei University of Technology, Hefei 230009, China
| | - LiangHui Mei
- Hefei University of Technology, Hefei 230009, China
| | - Jian Liu
- Hefei University of Technology, Hefei 230009, China.
| | - Fangbin Wang
- Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
4
|
Barman D, Rajamalli P, Bidkar AP, Sarmah T, Ghosh SS, Zysman-Colman E, Iyer PK. Modulation of Donor in Purely Organic Triplet Harvesting AIE-TADF Photosensitizer for Image-guided Photodynamic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409533. [PMID: 39780649 DOI: 10.1002/smll.202409533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/30/2024] [Indexed: 01/11/2025]
Abstract
Image-guided photodynamic therapy is acknowledged as one of the most demonstrative therapeutic modalities for cancer treatment because of its high precision, non-invasiveness, and improved imaging ability. A series of purely organic photosensitizers denoted as BTMCz, BTMPTZ, and BTMPXZ, have been designed and synthesized and are found to exhibit both thermally activated delayed fluorescence and aggregation-induced emission simultaneously. Experimental and theoretical studies are combined to reveal that modulation of the donor of the photosensitizer enables distinct thermally activated delayed fluorescence via a second-order spin-orbit perturbation mechanism involving lowest singlet charge-transfer and higher-lying triplet locally excited states, respectively. Further, different donor strengths and unique aggregations (H-, J- and X-type packings) greatly influence their color-tunable up-converted luminescence and endow them with superb dispersibility in water. The confocal microscopy-based cellular uptake study confirms the successful internalization of the nano-probes, while BTMCz enables the generation of reactive oxygen species (singlet oxygen) under white-light irradiation, enabling the efficient killing of cancer cells.
Collapse
Affiliation(s)
- Debasish Barman
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Pachaiyappan Rajamalli
- Materials Research Centre, Indian Institute of Science, Bangalore, 560012, India
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Anil Parsram Bidkar
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, 94143, USA
- Department of Bioscience and Bioengineering IIT Guwahati, Guwahati, Assam, 781039, India
| | - Tapashi Sarmah
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Siddhartha Sankar Ghosh
- Department of Bioscience and Bioengineering IIT Guwahati, Guwahati, Assam, 781039, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Parameswar Krishnan Iyer
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| |
Collapse
|
5
|
Zhang Z, Tang R, Liu X, Liang G, Sun X. Recent Advances in Self-Assembling Peptide-Based Nanomaterials for Enhanced Photodynamic Therapy. Macromol Biosci 2025; 25:e2400409. [PMID: 39360584 DOI: 10.1002/mabi.202400409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/18/2024] [Indexed: 10/04/2024]
Abstract
Self-assembling peptide-based materials with ordered nanostructures possess advantages such as good biocompatibility and biodegradability, superior controllability, and ease of chemical modification. Through covalent conjugation or non-covalent encapsulation, photosensitizers (PSs) can be carried by self-assembling peptide-based nanomaterials for targeted delivery towards tumor tissues. This improves the stability, solubility, and tumor accumulation of PSs, as well as reduces their dark toxicity. More importantly, these nanomaterials can be tailored with responsiveness to tumor microenvironment, which enables smart release of PSs for precise and enhanced photodynamic therapy (PDT). In this review, the self-assembly of peptide from the perspective of driving forces is first described, and various self-assembling peptide materials with zero to 3D nanostructures are subsequently highlighted for PDT of cancers in recent years. Finally, an outlook in this field is provided to motivate fabrication of advanced PDT nanomaterials.
Collapse
Affiliation(s)
- Ziyi Zhang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 211189, China
| | - Runqun Tang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 211189, China
| | - Xiaoyang Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 211189, China
| | - Gaolin Liang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 211189, China
- Handan Norman Technology Co., Ltd, Guantao, 057750, China
| | - Xianbao Sun
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 211189, China
| |
Collapse
|
6
|
Xu Z, Li X, Yang Z, Zhang Z, Zhang Y, Fan M, Zeng Y, Kang M, Shen Y, Wang D, Xu G, Tang BZ. An NIR-II Two-Photon Excitable AIE Photosensitizer for Precise and Efficient Treatment of Orthotopic Small-Size Glioblastoma. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413164. [PMID: 39726350 DOI: 10.1002/adma.202413164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/06/2024] [Indexed: 12/28/2024]
Abstract
The existence of residual small-size tumors after surgery is a major factor contributing to the high recurrence rate of glioblastoma (GBM). Conventional adjuvant therapeutics involving both chemotherapy and radiotherapy usually exhibit unsatisfactory efficacy and severe side effects. Recently, two-photon photodynamic therapy (TP-PDT), especially excited by the second near-infrared (NIR-II) light, offers an unprecedented opportunity to address this challenge, attributed to its combinational merits of PDT and TP excitation. However, this attempt has not been explored yet. On the other hand, the lack of high-performance photosensitizers (PSs) also hinders the progress of TP-PDT on GBM. Based on those, a robust TP-PS, termed MeTTh, is constructed intendedly through elaborately integrating multiple beneficial design strategies into a single molecule, which simultaneously achieves excellent NIR-II excitation, large absorption cross-section, aggregation-induced NIR-I emission, and prominent Type I/II reactive oxygen species generation. Aided by nanofabrication, an impressive brain structure imaging depth of 940 µm is realized. Moreover, MeTTh nanoparticles smoothly implement precise and efficient treatment of small-size GBM in vivo under a 1040 nm femtosecond laser irradiation. This study represents first-in-class using TP-PDT on GBM, offering new insights for the therapy of small-size tumors in complex and vital tissues.
Collapse
Affiliation(s)
- Zhourui Xu
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, P. R. China
| | - Xue Li
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Zengming Yang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Zhijun Zhang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yibin Zhang
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, P. R. China
| | - Miaozhuang Fan
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, P. R. China
| | - Yuying Zeng
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, P. R. China
| | - Miaomiao Kang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yuanyuan Shen
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, P. R. China
| | - Dong Wang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Gaixia Xu
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, P. R. China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong (CUHK-Shenzhen), Shenzhen, Guangdong, 518172, P. R. China
| |
Collapse
|
7
|
Tang J, Jiang Z, Gao Z, Xie Q, Gu S, Chen A, Yuan J, Li W, Tang R, Yu G. Hydroxyl Radical Mediated Heterogeneous Photocatalytic Baeyer-Villiger Oxidation over Covalent Triazine/Heptazine-Based Frameworks. Angew Chem Int Ed Engl 2025; 64:e202416879. [PMID: 39420686 DOI: 10.1002/anie.202416879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 10/19/2024]
Abstract
The Baeyer-Villiger (B-V) oxidation of ketones to the corresponding lactones/esters is a classic and essential reaction in the chemical industry. However, this oxidation process has not yet been achieved in ambient conditions with the aid of oxygen and heterogeneous photocatalysts. In this study, we developed an organic photocatalytic system using covalent triazine/heptazine-based frameworks (CTF-TB/CHF-TB) to enable the B-V oxidation reaction under mild conditions through a cascade reaction pathway. Experimental data and theoretical calculations showed that heptazine/triazine units can "chelate" and decompose the in situ generated H2O2 into hydroxyl radicals (⋅OH). Compared to conventional methods that primarily involve metal-activated benzaldehyde at elevated temperatures (e.g., 60 °C), the ⋅OH generated in our study can readily cleave the C-H bond of benzaldehyde, forming an active intermediate that drives subsequent sequential processes: O2→H2O2→⋅OH→Ph-CO⋅→Ph-COOO⋅. By employing this photocatalytic process, a yield of 91 % and a selectivity of over 99 % were obtained in the oxidation of cyclohexanone to caprolactone at room temperature. This performance is comparable to the state-of-the-art catalysts, and our CHF-TB catalyst demonstrates impressive reusability, maintaining a high yield after 5 consecutive runs. This work presents a straightforward approach for C-H cleavage by organocatalysts to produce ϵ-caprolactone in a mild manner by B-V oxidation.
Collapse
Affiliation(s)
- Juntao Tang
- College of Chemistry and Chemical Engineering, Central South University, 410083, Changsha, Hunan, P. R. China
| | - Zhiwei Jiang
- College of Chemistry and Chemical Engineering, Central South University, 410083, Changsha, Hunan, P. R. China
| | - Zhu Gao
- College of Chemistry and Chemical Engineering, Central South University, 410083, Changsha, Hunan, P. R. China
| | - Qiujian Xie
- College of Chemistry and Chemical Engineering, Central South University, 410083, Changsha, Hunan, P. R. China
| | - Shuai Gu
- College of Chemistry and Chemical Engineering, Central South University, 410083, Changsha, Hunan, P. R. China
| | - Anqi Chen
- College of Chemistry and Chemical Engineering, Central South University, 410083, Changsha, Hunan, P. R. China
| | - Jiayin Yuan
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, 113 51, Schweden
| | - Wen Li
- College of Chemistry and Chemical Engineering, Central South University, 410083, Changsha, Hunan, P. R. China
| | - Ruiren Tang
- College of Chemistry and Chemical Engineering, Central South University, 410083, Changsha, Hunan, P. R. China
| | - Guipeng Yu
- College of Chemistry and Chemical Engineering, Central South University, 410083, Changsha, Hunan, P. R. China
| |
Collapse
|
8
|
Pragti, Kundu BK, Chen R, Diao J, Sun Y. Near-Infrared Bioimaging Using Two-photon Fluorescent Probes. Adv Healthc Mater 2025; 14:e2403272. [PMID: 39573885 PMCID: PMC11774672 DOI: 10.1002/adhm.202403272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/07/2024] [Indexed: 01/29/2025]
Abstract
Near-infrared (NIR) bioimaging has emerged as a transformative technology in biomedical research. Among many fluorescent probes that are suitable for NIR imaging studies, two-photon absorption (TPA) ones represent a particularly promising category, because TPA fluorescent probes can overcome the inherent limitations of one-photon absorption (OPA) counterparts. By leveraging the unique properties of two-photon absorption, TPA fluorescent probes achieve superior tissue penetration, significantly reduced photodamage, and enhanced spatial resolution. This perspective article delves into the fundamental principles, design strategies, and representative TPA probes for various imaging applications. In particular, a number of molecular fluorescent probes, ranging from organic, inorganic, and COF/MOF-based systems are highlighted to showcase the vast scope of possible TPA probe design and application scenarios. In addition, the employment of stimulated TPA probes that are responsive to different external factors, including pH, redox species, enzymes, and hypoxia, is also discussed. In the end, the future perspectives for the continuous advancement of TPA fluorescent probes in the NIR bioimaging field are presented. For instance, it is essential to transition from cellular to in vivo imaging studies to obtain more physiologically relevant insights. Additionally, the development of "dual-function" TPA probes for both disease diagnosis and therapeutic treatment is particularly promising.
Collapse
Affiliation(s)
- Pragti
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, USA
| | - Bidyut Kumar Kundu
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, USA
| | - Rui Chen
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, USA
| | - Jiajie Diao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Yujie Sun
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, USA
| |
Collapse
|
9
|
Xiong LH, Yang L, Geng J, Tang BZ, He X. All-in-One Alkaline Phosphatase-Response Aggregation-Induced Emission Probe for Cancer Discriminative Imaging and Combinational Chemodynamic-Photodynamic Therapy. ACS NANO 2024; 18:17837-17851. [PMID: 38938113 DOI: 10.1021/acsnano.4c03879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Currently, specific cancer-responsive fluorogenic probes with activatable imaging and therapeutic functionalities are in great demand in the accurate diagnostics and efficient therapy of malignancies. Herein, an all-in-one strategy is presented to realize fluorescence (FL) imaging-guided and synergetic chemodynamic-photodynamic cancer therapy by using a multifunctional alkaline phosphatase (ALP)-response aggregation-induced emission (AIE) probe, TPE-APP. By responding to the abnormal expression levels of an ALP biomarker in cancer cells, the phosphate groups on the AIE probe are selectively hydrolyzed, accompanied by in situ formation of strong emissive AIE aggregates for discriminative cancer cell imaging over normal cells and highly active quinone methide species with robust chemodynamic-photodynamic activities. Consequently, the activated AIE probes can efficiently destroy cancer cell membranes and lead to the death of cancer cells within 30 min. A superior efficacy in cancer cell ablation is demonstrated in vitro and in vivo. The cancer-associated biomarker response-derived discriminative FL imaging and synergistic chemodynamic-photodynamic therapy are expected to provide a promising avenue for precise image-guided cancer therapy.
Collapse
Affiliation(s)
- Ling-Hong Xiong
- School of Public Health, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215123, China
| | - Langyi Yang
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jiangtao Geng
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Xuewen He
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
10
|
Xiong LH, Wang J, Yang F, Tang BZ, He X. Synchronously Sensitive Immunoassay and Efficient Inactivation of Living Zika Virus via DNAzyme Catalytic Amplification and In Situ Aggregation-Induced Emission Photosensitizer Generation. Anal Chem 2024; 96:9244-9253. [PMID: 38773697 DOI: 10.1021/acs.analchem.4c01500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Sensitive identification and effective inactivation of the virus are paramount for the early diagnosis and treatment of viral infections to prevent the risk of secondary transmission of viruses in the environment. Herein, we developed a novel two-step fluorescence immunoassay using antibody/streptavidin dual-labeled polystyrene nanobeads and biotin-labeled G-quadruplex/hemin DNAzymes with peroxidase-mimicking activity for sensitive quantitation and efficient inactivation of living Zika virus (ZIKV). The dual-labeled nanobeads can specifically bind ZIKV through E protein targeting and simultaneously accumulate DNAzymes, leading to the catalytic oxidation of Amplex Red indicators and generation of intensified aggregation-induced emission fluorescence signals, with a detection limit down to 66.3 PFU/mL and 100% accuracy. Furthermore, robust reactive oxygen species generated in situ by oxidized Amplex Red upon irradiation can completely kill the virus. This sensitive and efficient detection-inactivation integrated system will expand the viral diagnostic tools and reduce the risk of virus transmission in the environment.
Collapse
Affiliation(s)
- Ling-Hong Xiong
- School of Public Health, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215123, China
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Jiao Wang
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Fan Yang
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Xuewen He
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
11
|
Wang C, Gu B, Qi S, Hu S, Wang Y. Boosted photo-immunotherapy via near-infrared light excited phototherapy in tumor sites and photo-activation in sentinel lymph nodes. NANOSCALE ADVANCES 2024; 6:2075-2087. [PMID: 38633053 PMCID: PMC11019502 DOI: 10.1039/d4na00032c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/28/2024] [Indexed: 04/19/2024]
Abstract
Phototherapy is a promising modality that could eradicate tumor and trigger immune responses via immunogenic cell death (ICD) to enhance anti-tumor immunity. However, due to the lack of deep-tissue-excitable phototherapeutic agents and appropriate excitation strategies, the utility of phototherapy for efficient activation of the immune system is challenging. Herein, we report functionalized ICG nanoparticles (NPs) with the capture capability of tumor-associated antigens (TAAs). Under near-infrared (NIR) light excitation, the ICG NPs exhibited high-performance phototherapy, i.e., synergistic photothermal therapy and photodynamic therapy, thereby efficiently eradicating primary solid tumor and inducing ICD and subsequently releasing TAAs. The ICG NPs also captured TAAs and delivered them to sentinel lymph nodes, and then the sentinel lymph nodes were activated with NIR light to trigger efficient T-cell immune responses through activation of dendritic cells with the assistance of ICG NP generated reactive oxygen species, inhibiting residual primary tumor recurrence and controlling distant tumor growth. The strategy of NIR light excited phototherapy in tumor sites and photo-activation in sentinel lymph nodes provides a powerful platform for active immune systems for anti-tumor photo-immunotherapy.
Collapse
Affiliation(s)
- Chen Wang
- Med-X Research Institute & School of Biomedical Engineering, Shanghai Jiao Tong University 1954 Huashan Road Shanghai 200030 China
| | - Bobo Gu
- Med-X Research Institute & School of Biomedical Engineering, Shanghai Jiao Tong University 1954 Huashan Road Shanghai 200030 China
| | - Shuhong Qi
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology Wuhan Hubei 430074 China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology Wuhan Hubei 430074 China
| | - Siyi Hu
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences Suzhou 215163 China
| | - Yu Wang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University Shanghai 200092 China
| |
Collapse
|
12
|
Yang X, Cheng L, Zhao Y, Ma H, Song H, Yang X, Wang KN, Zhang Y. Aggregation-induced emission-active iridium (III)-based mitochondria-targeting nanoparticle for two-photon imaging-guided photodynamic therapy. J Colloid Interface Sci 2024; 659:320-329. [PMID: 38176241 DOI: 10.1016/j.jcis.2023.12.172] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
The efficacy of imaging-guided photodynamic therapy (PDT) is compromised by the attenuation of fluorescence and decline in reactive oxygen species (ROS) generation efficiency in the physiological environment of conventional photosensitizers, limited near-infrared (NIR) absorption, and high systemic cytotoxicity. This paper presents the synthesis of two cyclometalated Ir (III) complexes (Ir-thpy and Ir-ppy) by using a triphenylamine derivative (DPTPA) as the primary ligand and their encapsulation into an amphiphilic phospholipid to form nanoparticles (NPs). These complexes exhibit aggregation-induced emission features and remarkably enhanced ROS generation compared to Chlorin e6 (Ce6). Moreover, Ir-thpy NPs possess the unique ability to selectively target mitochondria, leading to depolarization of the mitochondrial membrane potential and ultimately triggering apoptosis. Notably, Ir-thpy NPs exhibit exceptional photocytotoxicity even towards cisplatin-resistant A549/DDP tumor cells. In vivo two-photon imaging verified the robust tumor-targeting efficacy of Ir-thpy NPs. The in vivo results unequivocally demonstrate that Ir-thpy NPs exhibit excellent tumor ablation along with remarkable biocompatibility. This study presents a promising approach for the development of multifunctional Ir-NPs for two-photon imaging-guided PDT and provides novel insights for potential clinical applications in oncology.
Collapse
Affiliation(s)
- Xucan Yang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lulu Cheng
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yile Zhao
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Haoran Ma
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Haitao Song
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xuanmin Yang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kang-Nan Wang
- State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, China.
| | - Yanrong Zhang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
13
|
Su M, Wang J, Zhao N, Yu B, Wang Y, Xu FJ. Genetically light-enhanced immunotherapy mediated by a fluorinated reduction-sensitive delivery system. Biomaterials 2024; 305:122433. [PMID: 38160625 DOI: 10.1016/j.biomaterials.2023.122433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024]
Abstract
The lack of safe and efficient therapeutic agent delivery platforms restricts combined therapy's effect, and combined cancer therapy's multi-component delivery effect needs improvement. The novel gene delivery system SS-HPT-F/pMIP-3β-KR was proposed to construct fluorine-containing degradable cationic polymers SS-HPT-F by a mild and simple amino-epoxy ring-opening reaction. By modifying the fluorinated alkyl chain, the delivery efficiency of the plasmid was greatly improved, and the cytoplasmic transport of biomolecules was completed. At the same time, a combination plasmid (MIP-3β-KillerRed) was innovatively designed for the independent expression of immune and photodynamic proteins. Which was efficiently transported to the tumor site by SS-HPT-F. The MIP-3β is expressed as an immune chemokine realize the immune mobilization behavior. The photosensitive protein KillerRed expressed in the tumor killed cancer cells under irradiation and released the exocrine immune factor MIP-3β. The immunogenic cell death (ICD) produced by photodynamic therapy (PDT) also induced the immune response of the organism. The synergistic effect of PDT and MIP-3β mobilized the immune properties of the organism, providing light-enhanced immune combination therapy against malignant tumors. Therefore, in subcutaneous tumor-bearing and metastatic animal models, the carrier tumor growth and mobilize organism produce an immune response without systemic toxicity. This work reports the first efficient gene delivery system that achieves light-enhanced immunotherapy.
Collapse
Affiliation(s)
- Mengrui Su
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Junkai Wang
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Nana Zhao
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Bingran Yu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Yuguang Wang
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Center of Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
14
|
Rzepiela J, Liberka M, Zychowicz M, Wang J, Tokoro H, Piotrowska K, Baś S, Ohkoshi SI, Chorazy S. SHG-active luminescent thermometers based on chiral cyclometalated dicyanidoiridate(iii) complexes. Inorg Chem Front 2024; 11:1366-1380. [PMID: 38420599 PMCID: PMC10897766 DOI: 10.1039/d3qi02482b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/12/2024] [Indexed: 03/02/2024]
Abstract
Multifunctional optical materials can be realized by combining stimuli-responsive photoluminescence (PL), e.g., optical thermometry, with non-linear optical (NLO) effects, such as second-harmonic generation (SHG). We report a novel approach towards SHG-active luminescent thermometers achieved by constructing unique iridium(iii) complexes, cis-[IrIII(CN)2(R,R-pinppy)2]- (R,R-pinppy = (R,R)-2-phenyl-4,5-pinenopyridine), bearing both a chiral 2-phenylpyridine derivative and cyanido ligands, the latter enabling the formation of a series of molecular materials: (TBA)[IrIII(CN)2(R,R-pinppy)2]·2MeCN (1) (TBA+ = tetrabutylammonium) and (nBu-DABCO)2[IrIII(CN)2(R,R-pinppy)2](i)·MeCN (2) (nBu-DABCO+ = 1-(n-butyl)-1,4-diazabicyclo-[2.2.2]octan-1-ium) hybrid salts, (TBA)2{[LaIII(NO3)3(H2O)0.5]2[IrIII(CN)2(R,R-pinppy)2]2} (3) square molecules, and {[LaIII(NO3)2(dmf)3][IrIII(CN)2(R,R-pinppy)2]}·MeCN (4) coordination chains. Thanks to the chiral pinene group, 1-4 crystallize in non-centrosymmetric space groups leading to SHG activity, while the N,C-coordination of ppy-type ligands to Ir(iii) centers generates visible charge-transfer (CT) photoluminescence. The PL characteristics are distinctly temperature-dependent which was utilized in achieving ratiometric optical thermometry below 220 K. The PL phenomena were rationalized by DFT/TD-DFT calculations indicating an MLCT-type of the emission in obtained Ir(iii) complexes with the rich vibronic structure providing a few emission bands that variously depend on temperature due to the role of thermally activated vibrations. As these crucial vibrational modes depend on the crystal lattice, the thermometry performance differs within 1-4 being the most efficient in 4 while the SHG is by far the best also for 4. This proves that pinene-functionalized cyclometalated dicyanidoiridates(iii) are great prerequisites for tunable PL-NLO conjunction with the most effective multifunctionality ensured by the insertion of these anions into bimetallic frameworks.
Collapse
Affiliation(s)
- Jan Rzepiela
- Faculty of Chemistry, Jagiellonian University Gronostajowa 2 30-387 Kraków Poland
- Jagiellonian University, Doctoral School of Exact and Natural Sciences Łojasiewicza 11 30-348 Kraków Poland
| | - Michal Liberka
- Faculty of Chemistry, Jagiellonian University Gronostajowa 2 30-387 Kraków Poland
- Jagiellonian University, Doctoral School of Exact and Natural Sciences Łojasiewicza 11 30-348 Kraków Poland
| | - Mikolaj Zychowicz
- Faculty of Chemistry, Jagiellonian University Gronostajowa 2 30-387 Kraków Poland
- Jagiellonian University, Doctoral School of Exact and Natural Sciences Łojasiewicza 11 30-348 Kraków Poland
| | - Junhao Wang
- Department of Materials Science, Faculty of Pure and Applied Science, University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8573 Japan
- Department of Chemistry, School of Science, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Hiroko Tokoro
- Department of Materials Science, Faculty of Pure and Applied Science, University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8573 Japan
| | - Kinga Piotrowska
- Faculty of Chemistry, Jagiellonian University Gronostajowa 2 30-387 Kraków Poland
- Jagiellonian University, Doctoral School of Exact and Natural Sciences Łojasiewicza 11 30-348 Kraków Poland
| | - Sebastian Baś
- Faculty of Chemistry, Jagiellonian University Gronostajowa 2 30-387 Kraków Poland
| | - Shin-Ichi Ohkoshi
- Department of Chemistry, School of Science, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Szymon Chorazy
- Faculty of Chemistry, Jagiellonian University Gronostajowa 2 30-387 Kraków Poland
| |
Collapse
|
15
|
Govindaraju R, Govindaraju S, Yun K, Kim J. Fluorescent-Based Neurotransmitter Sensors: Present and Future Perspectives. BIOSENSORS 2023; 13:1008. [PMID: 38131768 PMCID: PMC10742055 DOI: 10.3390/bios13121008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
Neurotransmitters (NTs) are endogenous low-molecular-weight chemical compounds that transmit synaptic signals in the central nervous system. These NTs play a crucial role in facilitating signal communication, motor control, and processes related to memory and learning. Abnormalities in the levels of NTs lead to chronic mental health disorders and heart diseases. Therefore, detecting imbalances in the levels of NTs is important for diagnosing early stages of diseases associated with NTs. Sensing technologies detect NTs rapidly, specifically, and selectively, overcoming the limitations of conventional diagnostic methods. In this review, we focus on the fluorescence-based biosensors that use nanomaterials such as metal clusters, carbon dots, and quantum dots. Additionally, we review biomaterial-based, including aptamer- and enzyme-based, and genetically encoded biosensors. Furthermore, we elaborate on the fluorescence mechanisms, including fluorescence resonance energy transfer, photon-induced electron transfer, intramolecular charge transfer, and excited-state intramolecular proton transfer, in the context of their applications for the detection of NTs. We also discuss the significance of NTs in human physiological functions, address the current challenges in designing fluorescence-based biosensors for the detection of NTs, and explore their future development.
Collapse
Affiliation(s)
- Rajapriya Govindaraju
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam Daero, Seongnam-si 13120, Gyeonggi-do, Republic of Korea;
| | - Saravanan Govindaraju
- Department of Bio Nanotechnology, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea; (S.G.); (K.Y.)
| | - Kyusik Yun
- Department of Bio Nanotechnology, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea; (S.G.); (K.Y.)
| | - Jongsung Kim
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam Daero, Seongnam-si 13120, Gyeonggi-do, Republic of Korea;
| |
Collapse
|
16
|
Zhang Q, An B, Lei Y, Gao Z, Zhang H, Xue S, Jin X, Xu W, Wu Z, Wu M, Yang X, Wu W. Cl 2 ⋅ - Mediates Direct and Selective Conversion of Inert C(sp 3 )-H Bonds into Aldehydes/Ketones. Angew Chem Int Ed Engl 2023; 62:e202304699. [PMID: 37409373 DOI: 10.1002/anie.202304699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/29/2023] [Accepted: 07/05/2023] [Indexed: 07/07/2023]
Abstract
Developing new reactive pathway to activate inert C(sp3 )-H bonds for valuable oxygenated products remains a challenge. We prepared a series of triazine conjugated organic polymers to photoactivate C-H into aldehyde/ketone via O2 →H2 O2 →⋅OH→Cl⋅→Cl2 ⋅- . Experiment results showed Cl2 ⋅- could successively activate C(sp3 )-H more effectively than Cl⋅ to generate unstable dichlorinated intermediates, increasing the kinetic rate ratio of dichlorination to monochlorination by a factor of 2,000 and thus breaking traditional dichlorination kinetic constraints. These active intermediates were hydrolyzed into aldehydes or ketones easily, when compared with typical stable dichlorinated complexes, avoiding chlorinated by-product generation. Moreover, an integrated two-phase system in an acid solution strengthened the Cl2 ⋅- mediated process and inhibited product overoxidation, where the conversion rate of toluene reached 16.94 mmol/g/h and the selectivity of benzaldehyde was 99.5 %. This work presents a facile and efficient approach for selective conversion of inert C(sp3 )-H bonds using Cl2 ⋅- .
Collapse
Affiliation(s)
- Qinhua Zhang
- State Key Laboratory of Heavy Oil Processing, Institute of New Energy, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Bo An
- State Key Laboratory of Heavy Oil Processing, Institute of New Energy, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Yu Lei
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhixiao Gao
- State Key Laboratory of Heavy Oil Processing, Institute of New Energy, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Haonan Zhang
- State Key Laboratory of Heavy Oil Processing, Institute of New Energy, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Sheng Xue
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, P. R. China
| | - Xin Jin
- State Key Laboratory of Heavy Oil Processing, Institute of New Energy, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Wengang Xu
- State Key Laboratory of Heavy Oil Processing, Institute of New Energy, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Zihan Wu
- State Key Laboratory of Heavy Oil Processing, Institute of New Energy, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Mingbo Wu
- State Key Laboratory of Heavy Oil Processing, Institute of New Energy, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Xin Yang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Wenting Wu
- State Key Laboratory of Heavy Oil Processing, Institute of New Energy, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| |
Collapse
|
17
|
Li M, Xuan Y, Zhang W, Zhang S, An J. Polydopamine-containing nano-systems for cancer multi-mode diagnoses and therapies: A review. Int J Biol Macromol 2023; 247:125826. [PMID: 37455006 DOI: 10.1016/j.ijbiomac.2023.125826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Polydopamine (PDA) has fascinating properties such as inherent biocompatibility, simple preparation, strong near-infrared absorption, high photothermal conversion efficiency, and strong metal ion chelation, which have catalyzed extensive research in PDA-containing multifunctional nano-systems particularly for biomedical applications. Thus, it is imperative to overview synthetic strategies of various PDA-containing nanoparticles (NPs) for state-of-the-art cancer multi-mode diagnoses and therapies applications, and offer a timely and comprehensive summary. In this review, we will focus on the synthetic approaches of PDA NPs, and summarize the construction strategies of PDA-containing NPs with different structure forms. Additionally, the application of PDA-containing NPs in bioimaging such as photoacoustic imaging, fluorescence imaging, magnetic resonance imaging and other imaging modalities will be reviewed. We will especially offer an overview of their therapeutic applications in tumor chemotherapy, photothermal therapy, photodynamic therapy, photocatalytic therapy, sonodynamic therapy, radionuclide therapy, gene therapy, immunotherapy and combination therapy. At the end, the current trends, limitations and future prospects of PDA-containing nano-systems will be discussed. This review aims to provide guidelines for new scientists in the field of how to design PDA-containing NPs and what has been achieved in this area, while offering comprehensive insights into the potential of PDA-containing nano-systems used in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Min Li
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan 030001, Shanxi Province, PR China; Molecular Imaging Precision Medical Collaborative Innovation Center, Medical Imaging Department, Shanxi Medical University, Taiyuan 030001, Shanxi Province, PR China
| | - Yang Xuan
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, Liaoning Province, PR China
| | - Wenjun Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, PR China; School of Chemical Engineering, Dalian University of Technology, Panjin 124221, PR China
| | - Shubiao Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, Liaoning Province, PR China.
| | - Jie An
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan 030001, Shanxi Province, PR China; Molecular Imaging Precision Medical Collaborative Innovation Center, Medical Imaging Department, Shanxi Medical University, Taiyuan 030001, Shanxi Province, PR China.
| |
Collapse
|
18
|
Liu Y, Zhao J, Xu X, Xu Y, Cui W, Yang Y, Li J. Emodin-Based Nanoarchitectonics with Giant Two-Photon Absorption for Enhanced Photodynamic Therapy. Angew Chem Int Ed Engl 2023; 62:e202308019. [PMID: 37358191 DOI: 10.1002/anie.202308019] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 06/27/2023]
Abstract
Two-photon-excited photodynamic therapy (TPE-PDT) has significant advantages over conventional photodynamic therapy (PDT). However, obtaining easily accessible TPE photosensitizers (PSs) with high efficiency remains a challenge. Herein, we demonstrate that emodin (Emo), a natural anthraquinone (NA) derivative, is a promising TPE PS with a large two-photon absorption cross-section (TPAC: 380.9 GM) and high singlet oxygen (1 O2 ) quantum yield (31.9 %). When co-assembled with human serum albumin (HSA), the formed Emo/HSA nanoparticles (E/H NPs) possess a giant TPAC (4.02×107 GM) and desirable 1 O2 generation capability, thus showing outstanding TPE-PDT properties against cancer cells. In vivo experiments reveal that E/H NPs exhibit improved retention time in tumors and can ablate tumors at an ultra-low dosage (0.2 mg/kg) under an 800 nm femtosecond pulsed laser irradiation. This work is beneficial for the use of natural extracts NAs for high-efficiency TPE-PDT.
Collapse
Affiliation(s)
- Yilin Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS, Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jie Zhao
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS, Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Xia Xu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS, Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yang Xu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS, Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Wei Cui
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS, Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Yang Yang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS, Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| |
Collapse
|
19
|
Wang H, Li Q, Alam P, Bai H, Bhalla V, Bryce MR, Cao M, Chen C, Chen S, Chen X, Chen Y, Chen Z, Dang D, Ding D, Ding S, Duo Y, Gao M, He W, He X, Hong X, Hong Y, Hu JJ, Hu R, Huang X, James TD, Jiang X, Konishi GI, Kwok RTK, Lam JWY, Li C, Li H, Li K, Li N, Li WJ, Li Y, Liang XJ, Liang Y, Liu B, Liu G, Liu X, Lou X, Lou XY, Luo L, McGonigal PR, Mao ZW, Niu G, Owyong TC, Pucci A, Qian J, Qin A, Qiu Z, Rogach AL, Situ B, Tanaka K, Tang Y, Wang B, Wang D, Wang J, Wang W, Wang WX, Wang WJ, Wang X, Wang YF, Wu S, Wu Y, Xiong Y, Xu R, Yan C, Yan S, Yang HB, Yang LL, Yang M, Yang YW, Yoon J, Zang SQ, Zhang J, Zhang P, Zhang T, Zhang X, Zhang X, Zhao N, Zhao Z, Zheng J, Zheng L, Zheng Z, Zhu MQ, Zhu WH, Zou H, Tang BZ. Aggregation-Induced Emission (AIE), Life and Health. ACS NANO 2023; 17:14347-14405. [PMID: 37486125 PMCID: PMC10416578 DOI: 10.1021/acsnano.3c03925] [Citation(s) in RCA: 105] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023]
Abstract
Light has profoundly impacted modern medicine and healthcare, with numerous luminescent agents and imaging techniques currently being used to assess health and treat diseases. As an emerging concept in luminescence, aggregation-induced emission (AIE) has shown great potential in biological applications due to its advantages in terms of brightness, biocompatibility, photostability, and positive correlation with concentration. This review provides a comprehensive summary of AIE luminogens applied in imaging of biological structure and dynamic physiological processes, disease diagnosis and treatment, and detection and monitoring of specific analytes, followed by representative works. Discussions on critical issues and perspectives on future directions are also included. This review aims to stimulate the interest of researchers from different fields, including chemistry, biology, materials science, medicine, etc., thus promoting the development of AIE in the fields of life and health.
Collapse
Affiliation(s)
- Haoran Wang
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Qiyao Li
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
- State
Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial
Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Parvej Alam
- Clinical
Translational Research Center of Aggregation-Induced Emission, School
of Medicine, The Second Affiliated Hospital, School of Science and
Engineering, The Chinese University of Hong
Kong, Shenzhen (CUHK- Shenzhen), Guangdong 518172, China
| | - Haotian Bai
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Organic
Solids, Institute of Chemistry, Chinese
Academy of Sciences, Beijing 100190, China
| | - Vandana Bhalla
- Department
of Chemistry, Guru Nanak Dev University, Amritsar 143005, India
| | - Martin R. Bryce
- Department
of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Mingyue Cao
- State
Key Laboratory of Crystal Materials, Shandong
University, Jinan 250100, China
| | - Chao Chen
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Sijie Chen
- Ming
Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Sha Tin, Hong Kong SAR 999077, China
| | - Xirui Chen
- State Key
Laboratory of Food Science and Resources, School of Food Science and
Technology, Nanchang University, Nanchang 330047, China
| | - Yuncong Chen
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Chemistry and Biomedicine Innovation Center
(ChemBIC), Department of Cardiothoracic Surgery, Nanjing Drum Tower
Hospital, Medical School, Nanjing University, Nanjing 210023, China
| | - Zhijun Chen
- Engineering
Research Center of Advanced Wooden Materials and Key Laboratory of
Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Dongfeng Dang
- School
of Chemistry, Xi’an Jiaotong University, Xi’an 710049 China
| | - Dan Ding
- State
Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive
Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Siyang Ding
- Department
of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Yanhong Duo
- Department
of Radiation Oncology, Shenzhen People’s Hospital (The Second
Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China
| | - Meng Gao
- National
Engineering Research Center for Tissue Restoration and Reconstruction,
Key Laboratory of Biomedical Engineering of Guangdong Province, Key
Laboratory of Biomedical Materials and Engineering of the Ministry
of Education, Innovation Center for Tissue Restoration and Reconstruction,
School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
| | - Wei He
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Xuewen He
- The
Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College
of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren’ai Road, Suzhou 215123, China
| | - Xuechuan Hong
- State
Key Laboratory of Virology, Department of Cardiology, Zhongnan Hospital
of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yuning Hong
- Department
of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Jing-Jing Hu
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| | - Rong Hu
- School
of Chemistry and Chemical Engineering, University
of South China, Hengyang 421001, China
| | - Xiaolin Huang
- State Key
Laboratory of Food Science and Resources, School of Food Science and
Technology, Nanchang University, Nanchang 330047, China
| | - Tony D. James
- Department
of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | - Xingyu Jiang
- Guangdong
Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory
of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, China
| | - Gen-ichi Konishi
- Department
of Chemical Science and Engineering, Tokyo
Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Ryan T. K. Kwok
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Jacky W. Y. Lam
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Chunbin Li
- College
of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory
of Fine Organic Synthesis, Inner Mongolia
University, Hohhot 010021, China
| | - Haidong Li
- State
Key Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Kai Li
- College
of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
| | - Nan Li
- Key
Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory
of Applied Surface and Colloid Chemistry of Ministry of Education,
School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Wei-Jian Li
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung
Chuang Institute, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China
| | - Ying Li
- Innovation
Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal
and Guangdong Provincial Key Laboratory of Molecular Target &
Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory
Disease, School of Pharmaceutical Sciences and the Fifth Affiliated
Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Xing-Jie Liang
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety,
CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- School
of Biomedical Engineering, Guangzhou Medical
University, Guangzhou 511436, China
| | - Yongye Liang
- Department
of Materials Science and Engineering, Shenzhen Key Laboratory of Printed
Organic Electronics, Southern University
of Science and Technology, Shenzhen 518055, China
| | - Bin Liu
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Guozhen Liu
- Ciechanover
Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK- Shenzhen), Guangdong 518172, China
| | - Xingang Liu
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Xiaoding Lou
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| | - Xin-Yue Lou
- International
Joint Research Laboratory of Nano-Micro Architecture Chemistry, College
of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Liang Luo
- National
Engineering Research Center for Nanomedicine, College of Life Science
and Technology, Huazhong University of Science
and Technology, Wuhan 430074, China
| | - Paul R. McGonigal
- Department
of Chemistry, University of York, Heslington, York YO10 5DD, United
Kingdom
| | - Zong-Wan Mao
- MOE
Key Laboratory of Bioinorganic and Synthetic Chemistry, School of
Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Guangle Niu
- State
Key Laboratory of Crystal Materials, Shandong
University, Jinan 250100, China
| | - Tze Cin Owyong
- Department
of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Andrea Pucci
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, Via Moruzzi 13, Pisa 56124, Italy
| | - Jun Qian
- State
Key Laboratory of Modern Optical Instrumentations, Centre for Optical
and Electromagnetic Research, College of Optical Science and Engineering,
International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310058, China
| | - Anjun Qin
- State
Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial
Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Zijie Qiu
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Andrey L. Rogach
- Department
of Materials Science and Engineering, City
University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Bo Situ
- Department
of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Kazuo Tanaka
- Department
of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura,
Nishikyo-ku, Kyoto 615-8510, Japan
| | - Youhong Tang
- Institute
for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Bingnan Wang
- State
Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial
Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Dong Wang
- Center
for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jianguo Wang
- College
of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory
of Fine Organic Synthesis, Inner Mongolia
University, Hohhot 010021, China
| | - Wei Wang
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung
Chuang Institute, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China
| | - Wen-Xiong Wang
- School
of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Wen-Jin Wang
- MOE
Key Laboratory of Bioinorganic and Synthetic Chemistry, School of
Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
- Central
Laboratory of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK-
Shenzhen), & Longgang District People’s Hospital of Shenzhen, Guangdong 518172, China
| | - Xinyuan Wang
- Department
of Materials Science and Engineering, Shenzhen Key Laboratory of Printed
Organic Electronics, Southern University
of Science and Technology, Shenzhen 518055, China
| | - Yi-Feng Wang
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety,
CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- School
of Biomedical Engineering, Guangzhou Medical
University, Guangzhou 511436, China
| | - Shuizhu Wu
- State
Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial
Key Laboratory of Luminescence from Molecular Aggregates, College
of Materials Science and Engineering, South
China University of Technology, Wushan Road 381, Guangzhou 510640, China
| | - Yifan Wu
- Innovation
Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal
and Guangdong Provincial Key Laboratory of Molecular Target &
Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory
Disease, School of Pharmaceutical Sciences and the Fifth Affiliated
Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Yonghua Xiong
- State Key
Laboratory of Food Science and Resources, School of Food Science and
Technology, Nanchang University, Nanchang 330047, China
| | - Ruohan Xu
- School
of Chemistry, Xi’an Jiaotong University, Xi’an 710049 China
| | - Chenxu Yan
- Key
Laboratory for Advanced Materials and Joint International Research,
Laboratory of Precision Chemistry and Molecular Engineering, Feringa
Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals,
Frontiers Science Center for Materiobiology and Dynamic Chemistry,
School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Saisai Yan
- Center
for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Hai-Bo Yang
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung
Chuang Institute, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China
| | - Lin-Lin Yang
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Mingwang Yang
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Ying-Wei Yang
- International
Joint Research Laboratory of Nano-Micro Architecture Chemistry, College
of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Juyoung Yoon
- Department
of Chemistry and Nanoscience, Ewha Womans
University, Seoul 03760, Korea
| | - Shuang-Quan Zang
- College
of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
| | - Jiangjiang Zhang
- Guangdong
Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory
of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, China
- Key
Laboratory of Molecular Medicine and Biotherapy, the Ministry of Industry
and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Pengfei Zhang
- Guangdong
Key Laboratory of Nanomedicine, Shenzhen, Engineering Laboratory of
Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics,
Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, University Town of Shenzhen, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Tianfu Zhang
- School
of Biomedical Engineering, Guangzhou Medical
University, Guangzhou 511436, China
| | - Xin Zhang
- Department
of Chemistry, Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang Province 310030, China
- Westlake
Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou, Zhejiang Province 310024, China
| | - Xin Zhang
- Ciechanover
Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK- Shenzhen), Guangdong 518172, China
| | - Na Zhao
- Key
Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory
of Applied Surface and Colloid Chemistry of Ministry of Education,
School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Zheng Zhao
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Jie Zheng
- Department
of Chemical, Biomolecular, and Corrosion Engineering The University of Akron, Akron, Ohio 44325, United States
| | - Lei Zheng
- Department
of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zheng Zheng
- School of
Chemistry and Chemical Engineering, Hefei
University of Technology, Hefei 230009, China
| | - Ming-Qiang Zhu
- Wuhan
National
Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wei-Hong Zhu
- Key
Laboratory for Advanced Materials and Joint International Research,
Laboratory of Precision Chemistry and Molecular Engineering, Feringa
Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals,
Frontiers Science Center for Materiobiology and Dynamic Chemistry,
School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hang Zou
- Department
of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ben Zhong Tang
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| |
Collapse
|
20
|
Wang S, Liao Y, Wu Z, Peng Y, Liu Y, Chen Y, Shao L, Zeng Z, Liu Y. A lysosomes and mitochondria dual-targeting AIE-active NIR photosensitizer: Constructing amphiphilic structure for enhanced antitumor activity and two-photon imaging. Mater Today Bio 2023; 21:100721. [PMID: 37502829 PMCID: PMC10368935 DOI: 10.1016/j.mtbio.2023.100721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/16/2023] [Accepted: 07/01/2023] [Indexed: 07/29/2023] Open
Abstract
Development of lysosomes and mitochondria dual-targeting photosensitizer with the virtues of near-infrared (NIR) emission, highly efficient reactive oxygen generation, good phototoxicity and biocompatibility is highly desirable in the field of imaging-guided photodynamic therapy (PDT) for cancer. Herein, a new positively charged amphiphilic organic compound (2-(2-(5-(7-(4-(diphenylamino)phenyl)benzo[c][1,2,5]thiadiazol-4-yl)thiophen-2-yl)vinyl)-3-methylbenzo[d]thiazol-3-ium iodide) (ADB) based on a D-A-π-A structure is designed and comprehensively investigated. ADB demonstrates special lysosomes and mitochondria dual-organelles targeting, bright NIR aggregation-induced emission (AIE) at 736 nm, high singlet oxygen (1O2) quantum yield (0.442), as well as good biocompatibility and photostability. In addition, ADB can act as a two-photon imaging agent for the elaborate observation of living cells and blood vessel networks of tissues. Upon light irradiation, obvious decrease of mitochondrial membrane potential (MMP), abnormal mitochondria morphology, as well as phagocytotic vesicles and lysosomal disruption in cells are observed, which further induce cell apoptosis and resulting in enhanced antitumor activity for cancer treatment. In vivo experiments reveal that ADB can inhibit tumor growth efficiently upon light exposure. These findings demonstrate that this dual-organelles targeted ADB has great potential for clinical imaging-guided photodynamic therapy, and this work provides a new avenue for the development of multi-organelles targeted photosensitizers for highly efficient cancer treatment.
Collapse
Affiliation(s)
- Shaozhen Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yunhui Liao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhaoji Wu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yihong Peng
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yuchen Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yinghua Chen
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Longquan Shao
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Zhijie Zeng
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yanshan Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
21
|
Pang W, Xiao Z, Wei X, Gu B. Biocompatible polymer optical fiber with a strongly scattering spherical end for interstitial photodynamic therapy. OPTICS LETTERS 2023; 48:3849-3852. [PMID: 37527065 DOI: 10.1364/ol.497596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 06/30/2023] [Indexed: 08/03/2023]
Abstract
Interstitial photodynamic therapy (I-PDT), which utilizes optical fibers to deliver light for photosensitizer excitation and the elimination of penetration depth limitation, is a promising modality in the treatment of deeply seated tumors or thick tumors. Currently, the excitation domain of the optical fiber is extremely limited, restricting PDT performance. Here, we designed and fabricated a biocompatible polymer optical fiber (POF) with a strongly scattering spherical end (SSSE) for I-PDT applications, achieving an increased excitation domain and consequently excellent in vitro and in vivo therapeutical outcomes. The POF, which was drawn using a simple thermal drawing method, was made of polylactic acid, ensuring its superior biocompatibility. The excitation domains of POFs with different ends, including flat, spherical, conical, and strongly scattering spherical ends, were analyzed and compared. The SSSE was achieved by introducing nanopores into a spherical end, and was further optimized to achieve a large excitation domain with an even intensity distribution. The optimized POF enabled outstanding therapeutic performance of I-PDT in in vitro cancer cell ablation and in vivo anticancer therapy. All of its notable optical features, including low transmission/bending loss, superior biocompatibility, and a large excitation domain with an even intensity distribution, endow the POF with great potential for clinical I-PDT applications.
Collapse
|
22
|
Wang J, Luo Y, Wu H, Cao S, Abdelmohsen LKEA, Shao J, van Hest JCM. Inherently Fluorescent Peanut-Shaped Polymersomes for Active Cargo Transportation. Pharmaceutics 2023; 15:1986. [PMID: 37514172 PMCID: PMC10385398 DOI: 10.3390/pharmaceutics15071986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/10/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Nanomotors have been extensively explored for various applications in nanomedicine, especially in cargo transportation. Motile properties enable them to deliver pharmaceutical ingredients more efficiently to the targeted site. However, it still remains a challenge to design motor systems that are therapeutically active and can also be effectively traced when taken up by cells. Here, we designed a nanomotor with integrated fluorescence and therapeutic potential based on biodegradable polymersomes equipped with aggregation-induced emission (AIE) agents. The AIE segments provided the polymersomes with autofluorescence, facilitating the visualization of cell uptake. Furthermore, the membrane structure enabled the reshaping of the AIE polymersomes into asymmetric, peanut-shaped polymersomes. Upon laser irradiation, these peanut polymersomes not only displayed fluorescence, but also produced reactive oxygen species (ROS). Because of their specific shape, the ROS gradient induced motility in these particles. As ROS is also used for cancer cell treatment, the peanut polymersomes not only acted as delivery vehicles but also as therapeutic agents. As an integrated platform, these peanut polymersomes therefore represent an interesting delivery system with biomedical potential.
Collapse
Affiliation(s)
- Jianhong Wang
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Yingtong Luo
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Hanglong Wu
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Shoupeng Cao
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Loai K E A Abdelmohsen
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Jingxin Shao
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Jan C M van Hest
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
23
|
Liu W, Li X, Wang T, Xiong F, Sun C, Yao X, Huang W. Platinum Drug-Incorporating Polymeric Nanosystems for Precise Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2208241. [PMID: 36843317 DOI: 10.1002/smll.202208241] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/01/2023] [Indexed: 05/25/2023]
Abstract
Platinum (Pt) drugs are widely used in clinic for cancer therapy, but their therapeutic outcomes are significantly compromised by severe side effects and acquired drug resistance. With the emerging immunotherapy and imaging-guided cancer therapy, precise delivery and release of Pt drugs have drawn great attention these days. The targeting delivery of Pt drugs can greatly increase the accumulation at tumor sites, which ultimately enhances antitumor efficacy. Further, with the combination of Pt drugs and other theranostic agents into one nanosystem, it not only possesses excellent synergistic efficacy but also achieves real-time monitoring. In this review, after the introduction of Pt drugs and their characteristics, the recent progress of polymeric nanosystems for efficient delivery of Pt drugs is summarized with an emphasis on multi-modal synergistic therapy and imaging-guided Pt-based cancer treatment. In the end, the conclusions and future perspectives of Pt-encapsulated nanosystems are given.
Collapse
Affiliation(s)
- Wei Liu
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Xin Li
- School of Pharmaceutical Science, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Ting Wang
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Fei Xiong
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Changrui Sun
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Xikuang Yao
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Wei Huang
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, 210023, P. R. China
| |
Collapse
|
24
|
Duo Y, Yang Y, Xu T, Zhou R, Wang R, Luo G, Zhong Tang B. Aggregation-induced emission: An illuminator in the brain. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
25
|
Li H, Jin B, Wang Y, Deng B, Wang D, Tang BZ. As Fiber Meets with AIE: Opening a Wonderland for Smart Flexible Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210085. [PMID: 36479736 DOI: 10.1002/adma.202210085] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Aggregation-induced emission luminogens (AIEgens) have recently been developed at a tremendous pace in the area of organic luminescent materials by virtue of their superior properties. However, the practical applications of AIEgens still face the challenge of transforming AIEgens from molecules into materials. Till now, many AIEgens have been integrated into fiber, endowing the fiber with prominent fluorescence and/or photosensitizing capacities. AIEgens and fiber complement each other for making progress in flexible smart materials, in which the utilization of AIEgens creates new application possibilities for fiber, and the fiber provides an excellent carrier for AIEgens towards realizing the conversion from molecule to materials and an ideal platform to research the aggregate state of AIEgens in mesoscale and macroscale. This review begins with a brief summary of the recent advances related to some typical AIEgens with various functions and the technology for the fabrication of AIEgen-functionalized fiber. The most representative applications are then highlighted by focusing on energy conversion, personal protective equipment, biomedical, sensor, and fluorescence-related fields. Finally, the challenges, opportunities, and tendencies in future development are discussed in detail. This review hopes to inspire innovation in AIEgens and fiber from the view of mesoscale and macroscale.
Collapse
Affiliation(s)
- Haoxuan Li
- Key Laboratory of Eco-Textiles (Ministry of Education), Nonwoven Technology Laboratory, College of Textile Science and Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Bingqi Jin
- Key Laboratory of Eco-Textiles (Ministry of Education), Nonwoven Technology Laboratory, College of Textile Science and Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Yuanwei Wang
- Centre for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen, 518061, P. R. China
| | - Bingyao Deng
- Key Laboratory of Eco-Textiles (Ministry of Education), Nonwoven Technology Laboratory, College of Textile Science and Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Dong Wang
- Centre for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen, 518061, P. R. China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, P. R. China
| |
Collapse
|
26
|
Wu T, Lu X, Yu Z, Zhu X, Zhang J, Wang L, Zhou H. Near-infrared light activated photosensitizer with specific imaging of lipid droplets enables two-photon excited photodynamic therapy. J Mater Chem B 2023; 11:1213-1221. [PMID: 36632783 DOI: 10.1039/d2tb02466g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Two-photon excited phototherapy has attracted considerable attention due to its advantages such as deeper penetration depth and higher spatial resolution. The lack of a high-performance photosensitizer with large two-photon absorption cross-sections and specific targeting ability makes the efficacy of phototherapy in the treatment of cancer unsatisfactory. Here, a new BODIPY-derived photosensitizer 6DBF2 is designed with two-photon photosensitization for two-photon excited photodynamic therapy in vivo. 6DBF2 possesses good two-photon absorption and efficient 1O2 generation upon near-infrared laser excitation. Excellent targeting specificities to lipid droplets of 6DBF2 without any encapsulation or modification at a low working concentration of 0.1 μM is in favor of efficient photodynamic therapy. In vitro cancer cell ablation and in vivo tumor ablation inside mice models upon two-photon irradiation in NIR demonstrate the outstanding therapeutic performance of 6DBF2 in two-photon excited photodynamic therapy. This work thus discusses a rare example of lipid droplets targeting two-photon excited photodynamic therapy for deep cancer tissue imaging and treatment under near-infrared light irradiation.
Collapse
Affiliation(s)
- Tengdie Wu
- Institutes of Physical Science and Information Technology, College of Chemistry and Chemical Engineering, Anhui University, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, 230601, People's Republic of China.
| | - Xin Lu
- Institutes of Physical Science and Information Technology, College of Chemistry and Chemical Engineering, Anhui University, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, 230601, People's Republic of China.
| | - Zhipeng Yu
- Institutes of Physical Science and Information Technology, College of Chemistry and Chemical Engineering, Anhui University, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, 230601, People's Republic of China.
| | - Xiaojiao Zhu
- Institutes of Physical Science and Information Technology, College of Chemistry and Chemical Engineering, Anhui University, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, 230601, People's Republic of China.
| | - Jie Zhang
- Institutes of Physical Science and Information Technology, College of Chemistry and Chemical Engineering, Anhui University, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, 230601, People's Republic of China.
| | - Lianke Wang
- Institutes of Physical Science and Information Technology, College of Chemistry and Chemical Engineering, Anhui University, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, 230601, People's Republic of China.
| | - Hongping Zhou
- Institutes of Physical Science and Information Technology, College of Chemistry and Chemical Engineering, Anhui University, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, 230601, People's Republic of China.
| |
Collapse
|
27
|
Wang L, Karges J, Wei F, Xie L, Chen Z, Gasser G, Ji L, Chao H. A mitochondria-localized iridium(iii) photosensitizer for two-photon photodynamic immunotherapy against melanoma. Chem Sci 2023; 14:1461-1471. [PMID: 36794192 PMCID: PMC9906708 DOI: 10.1039/d2sc06675k] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 01/12/2023] [Indexed: 01/13/2023] Open
Abstract
Conventional photodynamic therapy mainly causes a therapeutic effect on the primary tumor through the localized generation of reactive oxygen species, while metastatic tumors remain poorly affected. Complementary immunotherapy is effective in eliminating small, non-localized tumors distributed across multiple organs. Here, we report the Ir(iii) complex Ir-pbt-Bpa as a highly potent immunogenic cell death inducing photosensitizer for two-photon photodynamic immunotherapy against melanoma. Ir-pbt-Bpa can produce singlet oxygen and superoxide anion radicals upon light irradiation, causing cell death by a combination of ferroptosis and immunogenic cell death. In a mouse model with two physically separated melanoma tumors, although only one of the primary tumors was irradiated, a strong tumor reduction of both tumors was observed. Upon irradiation, Ir-pbt-Bpa not only induced the immune response of CD8+ T cells and the depletion of regulatory T cells, but also caused an increase in the number of the effector memory T cells to achieve long-term anti-tumor immunity.
Collapse
Affiliation(s)
- Lili Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University Guangzhou 510006 P. R. China
- Public Research Center, Hainan Medical University Haikou 571199 P. R. China
| | - Johannes Karges
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150 44780 Bochum Germany
| | - Fangmian Wei
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Lina Xie
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Zhuoli Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology Paris 75005 France
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University Guangzhou 510006 P. R. China
- MOE Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology Xiangtan 400201 P. R. China
| |
Collapse
|
28
|
Wang J, Li H, Zhu Y, Yang M, Huang J, Zhu X, Yu ZP, Lu Z, Zhou H. Unveiling upsurge of photogenerated ROS: control of intersystem crossing through tuning aggregation patterns. Chem Sci 2023; 14:323-330. [PMID: 36687347 PMCID: PMC9811492 DOI: 10.1039/d2sc06445f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Photo-induced reactive oxygen species (ROS) generation by organic photosensitizers (PSs), which show potential in significant fields such as photodynamic therapy (PDT), are highly dependent on the formation of the excited triplet state through intersystem crossing (ISC). The current research on ISC of organic PSs generally focuses on molecular structure optimization. In this manuscript, the influence of aggregation patterns on ISC was investigated by constructing homologous monomers (S-TPA-PI and L-TPA-PI) and their homologous dimers (S-2TPA-2PI and L-2TPA-2PI). In contrast to J-aggregated S-TPA-PI, S-2TPA-2PI-aggregate forming "end-to-end" stacking through π-π interaction could generate ROS more efficiently, due to a prolonged exciton lifetime and enhanced ISC rate constant (k ISC), which were revealed by femtosecond transient absorption spectroscopy and theoretical calculations. This finding was further validated by the regulation of aggregation patterns induced by host-guest interaction. Moreover, S-2TPA-2PI could target mitochondria and achieve rapid mitophagy to cause more significant cancer cell suppression. Overall, the delicate supramolecular dimerization tactics not only revealed the structure-property relationship of organic PSs but also shed light on the development of a universal strategy in future PDT and photocatalysis fields.
Collapse
Affiliation(s)
- Junjun Wang
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of EducationHefei230601P.R. China
| | - Hao Li
- Anhui Province Key Laboratory of Optoelectronic Material Science and Technology School of Physics and Electronic Information, Anhui Normal UniversityWuhu 241002China
| | - Yicai Zhu
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of EducationHefei230601P.R. China
| | - Mingdi Yang
- School of Materials and Chemical Engineering, Anhui Jianzhu UniversityHefei 230601P. R. China
| | - Jing Huang
- School of Materials and Chemical Engineering, Anhui Jianzhu UniversityHefei 230601P. R. China
| | - Xiaojiao Zhu
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of EducationHefei230601P.R. China
| | - Zhi-Peng Yu
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of EducationHefei230601P.R. China
| | - Zhou Lu
- Anhui Province Key Laboratory of Optoelectronic Material Science and Technology School of Physics and Electronic Information, Anhui Normal UniversityWuhu 241002China
| | - Hongping Zhou
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of EducationHefei230601P.R. China
| |
Collapse
|
29
|
Meng Z, Chen Z, Lu G, Dong X, Dai J, Lou X, Xia F. Short-Wavelength Aggregation-Induced Emission Photosensitizers for Solid Tumor Therapy: Enhanced with White-Light Fiber Optic. Int J Nanomedicine 2022; 17:6607-6619. [PMID: 36578442 PMCID: PMC9791998 DOI: 10.2147/ijn.s384196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Background White-light photodynamic therapy (wPDT) has been used in the treatment of cancer due to its convenience, effectiveness and less painful. However, the limited penetration of white-light into the tissues leads to a reduced effectiveness of solid tumor treatment. Methods Two short-wavelength aggregation-induced emission (AIE) nanoparticles were prepared, PyTPA@PEG and TB@PEG, which have excitation wavelengths of 440 nm and 524 nm, respectively. They were characterized by UV, fluorescence, particle size and TEM. The ability of nanoparticles to produce reactive oxygen species (ROS) and kill cancer cells under different conditions was investigated in vitro, including white-light, after white-light penetrating the skin, laser. A white-light fiber for intra-tumor irradiation was customized. Finally, induced tumor elimination with fiber-mediated wPDT was confirmed in vivo. Results In vitro, both PyTPA@PEG and TB@PEG are more efficient in the production ROS when exposed to white-light compared to laser. However, wPDT also has a fatal flaw in that its level of ROS production after penetrating the skin is reduced to 20-40% of the original level. To this end, we have customized a white-light fiber for intra-tumor irradiation. In vivo, the fiber-mediated wPDT significantly induces tumor elimination with maximized therapeutic outcomes by irradiating the interior of the tumor. In addition, wPDT also has the advantage that its light source can be adapted to a wide range of photosensitizers (wavelength range 400-700 nm), whereas a laser of single wavelength can only target a specific photosensitizer. Conclusion This method of using optical fiber to increase the tissue penetration of white light can greatly improve the therapeutic effect of AIE photosensitizers, which is needed for the treatment of large/deep tumors and holds great promise in cancer treatment.
Collapse
Affiliation(s)
- Zijuan Meng
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, People’s Republic of China
| | - Zhaojun Chen
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, People’s Republic of China
| | - Guangwen Lu
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, People’s Republic of China
| | - Xiaoqi Dong
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, People’s Republic of China
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, People’s Republic of China,Correspondence: Jun Dai, Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, People’s Republic of China, Email ;
| | - Xiaoding Lou
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, People’s Republic of China
| | - Fan Xia
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, People’s Republic of China
| |
Collapse
|
30
|
Liu J, Chen W, Zheng C, Hu F, Zhai J, Bai Q, Sun N, Qian G, Zhang Y, Dong K, Lu T. Recent molecular design strategies for efficient photodynamic therapy and its synergistic therapy based on AIE photosensitizers. Eur J Med Chem 2022; 244:114843. [DOI: 10.1016/j.ejmech.2022.114843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/14/2022] [Accepted: 10/08/2022] [Indexed: 11/04/2022]
|
31
|
Zhang L, Humphrey MG. Multiphoton absorption at metal alkynyl complexes. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
32
|
Yuan J, Dong S, Hao J. Fluorescent assemblies: Synergistic of amphiphilic molecules and fluorescent elements. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
33
|
Lu Y, Wu W. Conjugated‐Polymer‐Based Photodynamic Therapy. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202200165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yaru Lu
- Institute of Molecular Aggregation Science Tianjin University Tianjin 300072 P. R. China
| | - Wenbo Wu
- Institute of Molecular Aggregation Science Tianjin University Tianjin 300072 P. R. China
| |
Collapse
|
34
|
Wei W, Qiu Z. Diagnostics and theranostics of central nervous system diseases based on aggregation-induced emission luminogens. Biosens Bioelectron 2022; 217:114670. [PMID: 36126555 DOI: 10.1016/j.bios.2022.114670] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/02/2022]
Abstract
Central nervous system (CNS) diseases include Alzheimer's disease (AD), Parkinson's disease (PD), brain tumors, strokes, and other important diseases that are harmful and fatal to human beings. CNS diseases have the characteristics of high fatality rates, difficult diagnosis, and costly treatment. The diagnosis and treatment of CNS diseases by molecular imaging are usually limited by the depth of tissue penetration and the blood-brain barrier (BBB). Therefore, it is still a huge challenge to distinguish between the lesion and the surrounding parenchymal boundary with high sensitivity and specificity. Compared with traditional fluorophores with aggregation-caused quenching effect, luminogens with aggregation-induced emission (AIE) characteristics have strong near-infrared deep penetration, large Stokes shift, excellent biocompatibility, light stability, and desirable BBB permeability. In view of this, developing novel AIE-based materials for diagnostics and theranostics of CNS diseases is promising and of great significance. Herein, we highlight the recent research progress in this field with a special focus on near-infrared imaging and AIE nanorobots for CNS diseases. The design principle of AIE probes is discussed in detail, and the outlook is presented as well.
Collapse
Affiliation(s)
- Weichen Wei
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, 92093, United States
| | - Zijie Qiu
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, 2001 Longxiang Boulevard, Longgang District, Shenzhen City, Guangdong, 518172, China; Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.
| |
Collapse
|
35
|
Li D, Liu P, Tan Y, Zhang Z, Kang M, Wang D, Tang BZ. Type I Photosensitizers Based on Aggregation-Induced Emission: A Rising Star in Photodynamic Therapy. BIOSENSORS 2022; 12:bios12090722. [PMID: 36140107 PMCID: PMC9496375 DOI: 10.3390/bios12090722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/26/2022] [Accepted: 09/01/2022] [Indexed: 05/09/2023]
Abstract
Photodynamic therapy (PDT), emerging as a minimally invasive therapeutic modality with precise controllability and high spatiotemporal accuracy, has earned significant advancements in the field of cancer and other non-cancerous diseases treatment. Thereinto, type I PDT represents an irreplaceable and meritorious part in contributing to these delightful achievements since its distinctive hypoxia tolerance can perfectly compensate for the high oxygen-dependent type II PDT, particularly in hypoxic tissues. Regarding the diverse type I photosensitizers (PSs) that light up type I PDT, aggregation-induced emission (AIE)-active type I PSs are currently arousing great research interest owing to their distinguished AIE and aggregation-induced generation of reactive oxygen species (AIE-ROS) features. In this review, we offer a comprehensive overview of the cutting-edge advances of novel AIE-active type I PSs by delineating the photophysical and photochemical mechanisms of the type I pathway, summarizing the current molecular design strategies for promoting the type I process, and showcasing current bioapplications, in succession. Notably, the strategies to construct highly efficient type I AIE PSs were elucidated in detail from the two aspects of introducing high electron affinity groups, and enhancing intramolecular charge transfer (ICT) intensity. Lastly, we present a brief conclusion, and a discussion on the current limitations and proposed opportunities.
Collapse
Affiliation(s)
- Danxia Li
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Peiying Liu
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yonghong Tan
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zhijun Zhang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Miaomiao Kang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
- Correspondence: (M.K.); (D.W.)
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
- Correspondence: (M.K.); (D.W.)
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen 518172, China
| |
Collapse
|
36
|
Liang H, Tang L, He J, Li J, Chen Z, Cai S, Pang J, Mahmood Z, Chen W, Li MD, Zhao Z, Huo Y, Ji S. Modulating the intersystem crossing mechanism of anthracene carboxyimide-based photosensitizers via structural adjustments and application as a potent photodynamic therapeutic reagent. Phys Chem Chem Phys 2022; 24:20901-20912. [PMID: 36047252 DOI: 10.1039/d2cp02897b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, a series of compact anthracene carboxyimide (ACI) based donor-acceptor dyads were prepared by substituting bulky aryl moieties with various electron-donating ability to study the triplet-excited state properties. The ISC mechanism and triplet yield of the dyads were successfully tuned via structural manipulation. Efficient ISC (ΦΔ ≈ 99%) and long-lived triplet state (τT ≈ 122 μs) was observed for the orthogonal anthracene-labeled ACI derivative compared to the Ph-ACI and NP-ACI dyads, which showed fast triplet state decay (τT ≈ 7.7 μs). Femtosecond transient absorption study demonstrated the ultrafast charge separation (CS) and efficient charge recombination (CR) in the orthogonal dyads and ISC occurring via spin-orbit charge transfer (SOCT) mechanism (AN-ACI: τCS = 355 fs, τCR = 2.41 ns; PY-ACI: τCS = 321 fs, τCR = 1.61 ns), while in Ph-ACI and NP-ACI dyads triplet populate following the normal ISC channel (nπ* → ππ* transition), no CS was observed. We found that the attachment of suitable aryl donor moiety (AN- or PY-) to the ACI core can ensure the insertion of the intermediate triplet state, resulting in a small energy gap among charge separated state (CSS) and triplet state, which leads to efficient ISC in these derivatives. The SOCT-ISC-based AN-ACI dyad was confirmed to be a potent photodynamic therapeutic reagent; an ultra-low IC50 value (0.27 nM) that was nearly 214 times lower than that of the commercial Rose Bengal photosensitizer (57.8 nM) was observed.
Collapse
Affiliation(s)
- Hui Liang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| | - Liting Tang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| | - Jiaxing He
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, P. R. China.
| | - Jianqing Li
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Zeduan Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| | - Shuqing Cai
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| | - Junhong Pang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, P. R. China.
| | - Zafar Mahmood
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| | - Wencheng Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| | - Ming-De Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, P. R. China.
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Yanping Huo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| | - Shaomin Ji
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| |
Collapse
|
37
|
Wu MY, Wang Y, Wang LJ, Wang JL, Xia FW, Feng S. A novel furo[3,2- c]pyridine-based AIE photosensitizer for specific imaging and photodynamic ablation of Gram-positive bacteria. Chem Commun (Camb) 2022; 58:10392-10395. [PMID: 36039808 DOI: 10.1039/d2cc04084k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An Rh-catalyzed tandem reaction was performed to construct an AIE-active furo[2,3-c]pyridine-based photosensitizer, named LIQ-TF. LIQ-TF showed near-infrared emission with high quantum yield, and high 1O2 and ˙OH generation efficiency, and could be used for specific imaging and photodynamic ablation of Gram-positive bacteria in vitro and in vivo, showing great potential for combating multiple drug-resistant bacteria.
Collapse
Affiliation(s)
- Ming-Yu Wu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Yun Wang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Li-Juan Wang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Jia-Li Wang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Feng-Wei Xia
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Shun Feng
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|
38
|
Abuduwaili W, Wang X, Huang AT, Sun JL, Xu RC, Zhang GC, Liu ZY, Wang F, Zhu CF, Liu TT, Dong L, Zhu JM, Weng SQ, Li Y, Shen XZ. Iridium Complex-Loaded Sorafenib Nanocomposites for Synergistic Chemo-photodynamic Therapy of Hepatocellular Carcinoma. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37356-37368. [PMID: 35951459 DOI: 10.1021/acsami.2c07247] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Although sorafenib, a multi-kinase inhibitor, has provided noteworthy benefits in patients with hepatocellular carcinoma (HCC), the inevitable side effects, narrow therapeutic window, and low bioavailability seriously affect its clinical application. To be clinically distinctive, innovative drugs must meet the needs of reaching tumor tissues and cause limited side effects to normal organs and tissues. Recently, photodynamic therapy, utilizing a combination of a photosensitizer and light irradiation, was selectively accumulated at the tumor site and taken up effectively via inducing apoptosis or necrosis of cancer cells. In this study, a nano-chemo-phototherapy drug was fabricated to compose an iridium-based photosensitizer combined with sorafenib (IPS) via a self-assembly process. Compared to the free iridium photosensitizer or sorafenib, the IPS exhibited significantly improved therapeutic efficacy against tumor cells because of the increased cellular uptake and the subsequent simultaneous release of sorafenib and generation of reactive oxygen species production upon 532 nm laser irradiation. To evaluate the effect of synergistic treatment, cytotoxicity detection, live/dead staining, cell proliferative and apoptotic assay, and Western blot were performed. The IPS exhibited sufficient biocompatibility by hemolysis and serum biochemical tests. Also, the results suggested that IPS significantly inhibited HCC cell proliferation and promoted cell apoptosis. More importantly, marked anti-tumor growth effects via inhibiting cell proliferation and promoting tumor cell death were observed in an orthotopic xenograft HCC model. Therefore, our newly proposed nanotheranostic agent for combined chemotherapeutic and photodynamic therapy notably improves the therapeutic effect of sorafenib and has the potential to be a new alternative option for HCC treatment.
Collapse
Affiliation(s)
- Weinire Abuduwaili
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China
- Shanghai Institute of Liver Disease, 180 Fenglin Rd., Shanghai 200032, China
| | - Xiang Wang
- Institute of Bismuth Science & School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai 200093, China
| | - An-Tian Huang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China
- Shanghai Institute of Liver Disease, 180 Fenglin Rd., Shanghai 200032, China
| | - Jia-Lei Sun
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China
- Shanghai Institute of Liver Disease, 180 Fenglin Rd., Shanghai 200032, China
| | - Ru-Chen Xu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China
- Shanghai Institute of Liver Disease, 180 Fenglin Rd., Shanghai 200032, China
| | - Guang-Cong Zhang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China
- Shanghai Institute of Liver Disease, 180 Fenglin Rd., Shanghai 200032, China
| | - Zhi-Yong Liu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China
- Shanghai Institute of Liver Disease, 180 Fenglin Rd., Shanghai 200032, China
| | - Fu Wang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China
- Shanghai Institute of Liver Disease, 180 Fenglin Rd., Shanghai 200032, China
| | - Chang-Feng Zhu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China
- Shanghai Institute of Liver Disease, 180 Fenglin Rd., Shanghai 200032, China
| | - Tao-Tao Liu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China
- Shanghai Institute of Liver Disease, 180 Fenglin Rd., Shanghai 200032, China
| | - Ling Dong
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China
- Shanghai Institute of Liver Disease, 180 Fenglin Rd., Shanghai 200032, China
| | - Ji-Min Zhu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China
- Shanghai Institute of Liver Disease, 180 Fenglin Rd., Shanghai 200032, China
| | - Shu-Qiang Weng
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China
- Shanghai Institute of Liver Disease, 180 Fenglin Rd., Shanghai 200032, China
| | - Yuhao Li
- Institute of Bismuth Science & School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai 200093, China
- Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai 200093, China
| | - Xi-Zhong Shen
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai 200032, China
- Shanghai Institute of Liver Disease, 180 Fenglin Rd., Shanghai 200032, China
- Key Laboratory of Medical Molecular Virology, Shanghai Medical College of Fudan University, 138 Yixueyuan Rd., Shanghai 200032, China
| |
Collapse
|
39
|
Zhang D, Xiong MC, Niu LY, Yang QZ. Nano-assemblies from J-aggregated dyes to improve the selectivity of a H 2S-activatable photosensitizer. Chem Commun (Camb) 2022; 58:10060-10063. [PMID: 35993255 DOI: 10.1039/d2cc04191j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report J-aggregates of a boron dipyrromethene derivative (BDP-Nit) as an H2S-activatable nano-photosensitizer. The closely packed BDP-Nit in J-aggregates exhibits high selectivity to H2S over biothiols to produce an active photosensitizer.
Collapse
Affiliation(s)
- Dongsheng Zhang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Ming-Chen Xiong
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Li-Ya Niu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Qing-Zheng Yang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| |
Collapse
|
40
|
Kenry, Liu B. Enhancing the Theranostic Performance of Organic Photosensitizers with Aggregation-Induced Emission. ACCOUNTS OF MATERIALS RESEARCH 2022; 3:721-734. [DOI: 10.1021/accountsmr.2c00039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Affiliation(s)
- Kenry
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| |
Collapse
|
41
|
Wu M, Huang X, Gao L, Zhou G, Xie F. The application of photodynamic therapy in plastic and reconstructive surgery. Front Chem 2022; 10:967312. [PMID: 35936104 PMCID: PMC9353173 DOI: 10.3389/fchem.2022.967312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Photodynamic therapy (PDT) is a modern clinical treatment paradigm with the advantages of high selectivity, non-invasiveness, rare side-effect, no obvious drug resistance and easy combination with other therapies. These features have endowed PDT with high focus and application prospects. Studies of photodynamic therapy have been expanded in a lot of biomedical and clinical fields, especially Plastic and Reconstructive Surgery (PRS) the author major in. In this review, we emphasize the mechanism and advances in PDT related to the PRS applications including benign pigmented lesions, vascular malformations, inflammatory lesions, tumor and others. Besides, combined with clinical data analysis, the limitation of PDT and current issues that need to be addressed in the field of PRS have also been discussed. At last, a comprehensive discussion and outlooking represent future progress of PDT in PRS.
Collapse
Affiliation(s)
- Min Wu
- Department of Plastic and Reconstructive Surgery, School of Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Min Wu, ; Feng Xie,
| | - Xiaoyu Huang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Lu Gao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Guoyu Zhou
- Department of Oral and Maxillofacial-Head Neck Oncology, School of Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Feng Xie
- Department of Plastic and Reconstructive Surgery, School of Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Min Wu, ; Feng Xie,
| |
Collapse
|
42
|
Optical molecular imaging and theranostics in neurological diseases based on aggregation-induced emission luminogens. Eur J Nucl Med Mol Imaging 2022; 49:4529-4550. [PMID: 35781601 PMCID: PMC9606072 DOI: 10.1007/s00259-022-05894-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/25/2022] [Indexed: 11/17/2022]
Abstract
Optical molecular imaging and image-guided theranostics benefit from special and specific imaging agents, for which aggregation-induced emission luminogens (AIEgens) have been regarded as good candidates in many biomedical applications. They display a large Stokes shift, high quantum yield, good biocompatibility, and resistance to photobleaching. Neurological diseases are becoming a substantial burden on individuals and society that affect over 50 million people worldwide. It is urgently needed to explore in more detail the brain structure and function, learn more about pathological processes of neurological diseases, and develop more efficient approaches for theranostics. Many AIEgens have been successfully designed, synthesized, and further applied for molecular imaging and image-guided theranostics in neurological diseases such as cerebrovascular disease, neurodegenerative disease, and brain tumor, which help us understand more about the pathophysiological state of brain through noninvasive optical imaging approaches. Herein, we focus on representative AIEgens investigated on brain vasculature imaging and theranostics in neurological diseases including cerebrovascular disease, neurodegenerative disease, and brain tumor. Considering different imaging modalities and various therapeutic functions, AIEgens have great potential to broaden neurological research and meet urgent needs in clinical practice. It will be inspiring to develop more practical and versatile AIEgens as molecular imaging agents for preclinical and clinical use on neurological diseases.
Collapse
|
43
|
Wu Q, Li Y, Wang L, Wang D, Tang BZ. Aggregation-induced emission: An emerging concept in brain science. Biomaterials 2022; 286:121581. [PMID: 35633591 DOI: 10.1016/j.biomaterials.2022.121581] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 11/20/2022]
Abstract
As an emerging concept in brain science, aggregation-induced emission (AIE) has captivated much interest by virtue of the unique superiority of AIE fluorophores in terms of emission intensity, imaging resolution, biocompatibility and photosensitivity. This review mainly overviews the current state-of-art advances of AIE fluorophores achieving the superb performance in brain imaging and therapy, which facilitate deep tissue penetration, high contrast to autofluorescence and efficient blood-brain barrier (BBB) crossing by rational molecular design and functionalized strategies. We expect this review serve as a modest spur to push forward the blooming growth of research in this fertile field.
Collapse
Affiliation(s)
- Qian Wu
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518061, China; Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Youmei Li
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Lei Wang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518061, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Ben Zhong Tang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518061, China; Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China; School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China.
| |
Collapse
|
44
|
Yu H, Chen B, Huang H, He Z, Sun J, Wang G, Gu X, Tang BZ. AIE-Active Photosensitizers: Manipulation of Reactive Oxygen Species Generation and Applications in Photodynamic Therapy. BIOSENSORS 2022; 12:bios12050348. [PMID: 35624649 PMCID: PMC9139150 DOI: 10.3390/bios12050348] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/12/2022] [Accepted: 05/15/2022] [Indexed: 05/16/2023]
Abstract
Photodynamic therapy (PDT) is a non-invasive approach for tumor elimination that is attracting more and more attention due to the advantages of minimal side effects and high precision. In typical PDT, reactive oxygen species (ROS) generated from photosensitizers play the pivotal role, determining the efficiency of PDT. However, applications of traditional PDT were usually limited by the aggregation-caused quenching (ACQ) effect of the photosensitizers employed. Fortunately, photosensitizers with aggregation-induced emission (AIE-active photosensitizers) have been developed with biocompatibility, effective ROS generation, and superior absorption, bringing about great interest for applications in oncotherapy. In this review, we review the development of AIE-active photosensitizers and describe molecule and aggregation strategies for manipulating photosensitization. For the molecule strategy, we describe the approaches utilized for tuning ROS generation by attaching heavy atoms, constructing a donor-acceptor effect, introducing ionization, and modifying with activatable moieties. The aggregation strategy to boost ROS generation is reviewed for the first time, including consideration of the aggregation of photosensitizers, polymerization, and aggregation microenvironment manipulation. Moreover, based on AIE-active photosensitizers, the cutting-edge applications of PDT with NIR irradiated therapy, activatable therapy, hypoxic therapy, and synergistic treatment are also outlined.
Collapse
Affiliation(s)
- Hao Yu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China; (H.Y.); (B.C.); (H.H.); (Z.H.); (J.S.)
| | - Binjie Chen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China; (H.Y.); (B.C.); (H.H.); (Z.H.); (J.S.)
| | - Huiming Huang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China; (H.Y.); (B.C.); (H.H.); (Z.H.); (J.S.)
| | - Zhentao He
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China; (H.Y.); (B.C.); (H.H.); (Z.H.); (J.S.)
| | - Jiangman Sun
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China; (H.Y.); (B.C.); (H.H.); (Z.H.); (J.S.)
| | - Guan Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China; (H.Y.); (B.C.); (H.H.); (Z.H.); (J.S.)
- Correspondence: (G.W.); (X.G.)
| | - Xinggui Gu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China; (H.Y.); (B.C.); (H.H.); (Z.H.); (J.S.)
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
- Correspondence: (G.W.); (X.G.)
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China;
| |
Collapse
|
45
|
Li C, Liu J, Hong Y, Lin R, Liu Z, Chen M, Lam JWY, Ning GH, Zheng X, Qin A, Tang BZ. Click Synthesis Enabled Sulfur Atom Strategy for Polymerization-Enhanced and Two-Photon Photosensitization. Angew Chem Int Ed Engl 2022; 61:e202202005. [PMID: 35257452 DOI: 10.1002/anie.202202005] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Indexed: 01/10/2023]
Abstract
Facile tailoring of photosensitizers (PSs) with advanced and synergetic properties is highly expected to broaden and deepen photodynamic therapy (PDT) applications. Herein, a catalyst-free thiol-yne click reaction was employed to develop the sulfur atom-based PSs by using the in situ formed sulfur "heavy atom effect" to enhance the intersystem crossing (ISC), while such an effect can be remarkably magnified by the polymerization. The introduction of a tetraphenylpyrazine-based aggregation-induced emission (AIE) unit was also advantageous in PS design by suppressing their non-radiative decay to facilitate the ISC in the aggregated state. Besides, the resulting sulfur atom electron donor, together with a double-bond π bridge and AIE electron acceptor, created a donor-π-acceptor (D-π-A) molecular system with good two-photon excitation properties. Combined with the high singlet oxygen generation efficiency, the fabricated polymer nanoparticles exhibited an excellent in vitro two-photon-excited PDT towards cancer cells, therefore possessing a huge potential for the deep-tissue disease therapy.
Collapse
Affiliation(s)
- Chongyang Li
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Junkai Liu
- Department of Chemistry and The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yingjuan Hong
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Runfeng Lin
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Zicheng Liu
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Ming Chen
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China.,Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Jacky W Y Lam
- Department of Chemistry and The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Guo-Hong Ning
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Xiuli Zheng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Anjun Qin
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, No. 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong, 518172, China.,Department of Chemistry and The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.,Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
46
|
Nguyen VN, Zhao Z, Tang BZ, Yoon J. Organic photosensitizers for antimicrobial phototherapy. Chem Soc Rev 2022; 51:3324-3340. [PMID: 35373787 DOI: 10.1039/d1cs00647a] [Citation(s) in RCA: 182] [Impact Index Per Article: 60.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Microbial infectious diseases, especially those caused by new and antibiotic-resistant pathogenic microbes, have become a significant threat to global human health. As an antibiotic-free therapy, phototherapy is a promising approach to treat microbial infections due to its spatiotemporal selectivity, non-invasiveness, minimal side effects, and broad antimicrobial spectrum. Although organic photosensitizer-based antimicrobial phototherapy has been extensively studied over the last decade, there has been no specific review article on this topic yet. It is important and timely to summarize recent research progress in this field. This tutorial review highlights the concept and significance of phototherapy and summarizes innovative types of organic photosensitizers with design strategies to deal with microbial infections. In addition, examples of organic antimicrobial photosensitizers, including antibacterial photosensitizers, antiviral photosensitizers, and antifungal photosensitizers are discussed. Finally, current challenges and future directions of organic photosensitizer-based phototherapy for clinical antimicrobial applications are presented. We believe that this tutorial review will provide general guidance for the future development of efficient photosensitizers and encourage preclinical and clinical studies for phototherapy-mediated antimicrobial treatments.
Collapse
Affiliation(s)
- Van-Nghia Nguyen
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea.
| | - Zheng Zhao
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China.
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China.
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
47
|
Tavakkoli Yaraki M, Liu B, Tan YN. Emerging Strategies in Enhancing Singlet Oxygen Generation of Nano-Photosensitizers Toward Advanced Phototherapy. NANO-MICRO LETTERS 2022; 14:123. [PMID: 35513555 PMCID: PMC9072609 DOI: 10.1007/s40820-022-00856-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/21/2022] [Indexed: 05/06/2023]
Abstract
The great promise of photodynamic therapy (PDT) has thrusted the rapid progress of developing highly effective photosensitizers (PS) in killing cancerous cells and bacteria. To mitigate the intrinsic limitations of the classical molecular photosensitizers, researchers have been looking into designing new generation of nanomaterial-based photosensitizers (nano-photosensitizers) with better photostability and higher singlet oxygen generation (SOG) efficiency, and ways of enhancing the performance of existing photosensitizers. In this paper, we review the recent development of nano-photosensitizers and nanoplasmonic strategies to enhance the SOG efficiency for better PDT performance. Firstly, we explain the mechanism of reactive oxygen species generation by classical photosensitizers, followed by a brief discussion on the commercially available photosensitizers and their limitations in PDT. We then introduce three types of new generation nano-photosensitizers that can effectively produce singlet oxygen molecules under visible light illumination, i.e., aggregation-induced emission nanodots, metal nanoclusters (< 2 nm), and carbon dots. Different design approaches to synthesize these nano-photosensitizers were also discussed. To further enhance the SOG rate of nano-photosensitizers, plasmonic strategies on using different types of metal nanoparticles in both colloidal and planar metal-PS systems are reviewed. The key parameters that determine the metal-enhanced SOG (ME-SOG) efficiency and their underlined enhancement mechanism are discussed. Lastly, we highlight the future prospects of these nanoengineering strategies, and discuss how the future development in nanobiotechnology and theoretical simulation could accelerate the design of new photosensitizers and ME-SOG systems for highly effective image-guided photodynamic therapy.
Collapse
Affiliation(s)
- Mohammad Tavakkoli Yaraki
- Institute of Materials Research and Engineering, The Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03, Innovis, 138634, Singapore
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
| | - Yen Nee Tan
- Institute of Materials Research and Engineering, The Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03, Innovis, 138634, Singapore.
- Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK.
- Newcastle Research and Innovation Institute, Newcastle University in Singapore, 80 Jurong East Street 21, #05-04, Singapore, 609607, Singapore.
| |
Collapse
|
48
|
Xu Z, Jiang Y, Shen Y, Tang L, Hu Z, Lin G, Law WC, Ma M, Dong B, Yong KT, Xu G, Tao Y, Chen R, Yang C. A biocompatible photosensitizer with a high intersystem crossing efficiency for precise two-photon photodynamic therapy. MATERIALS HORIZONS 2022; 9:1283-1292. [PMID: 35170613 DOI: 10.1039/d1mh01869h] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photodynamic efficiency is strongly dependent on the generation rate of reactive oxygen species (ROS) and the tissue penetration depth. Recent advances in materials science reveal that organic molecules with room-temperature phosphorescence (RTP) can potentially serve as efficient photosensitizers owing to their limited dark cytotoxicity and abundant triplet excitons upon light irradiation. In this study, we combine RTP materials with two-photon excitation to improve the ROS generation, therapeutic precision, and tissue penetration of photodynamic therapy. We successfully prepared a novel RTP-based photosensitizer (BF2DCz) with a high photoluminescence quantum yield of 47.7 ± 3% and a remarkable intersystem crossing efficiency of ∼90.3%. By encapsulation into the bovine serum albumin (BSA) matrix, BF2DCz-BSA exhibits excellent biocompatibility, negligible dark toxicity, and superior photostability. Excitation using a femtosecond laser causes BF2DCz-BSA to efficiently generate ROS and precisely exert cell damage at the desired location.
Collapse
Affiliation(s)
- Zhourui Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, 1066th Xueyuan Rd, Nanshan District, Shenzhen, Guangdong Province, China.
| | - Yihang Jiang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, 1066th Xueyuan Rd, Nanshan District, Shenzhen, Guangdong Province, China.
| | - Yuanyuan Shen
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, 1066th Xueyuan Rd, Nanshan District, Shenzhen, Guangdong Province, China.
| | - Lele Tang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9th Wenyuan Road, Nanjing 210023, China.
| | - Zulu Hu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, 1066th Xueyuan Rd, Nanshan District, Shenzhen, Guangdong Province, China.
| | - Guimiao Lin
- Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences, Shenzhen University, 1066th Xueyuan Rd, Nanshan District, Shenzhen, Guangdong Province, China
| | - Wing-Cheung Law
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, 11th YukChoi Rd, Hong Hum, Kowloon, Hong Kong
| | - Mingze Ma
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, 1066th Xueyuan Rd, Nanshan District, Shenzhen, Guangdong Province, China.
| | - Biqin Dong
- Guangdong Provincial Key Laboratory of Durability for Marine Civil Engineering, College of Civil and Transportation Engineering, Shenzhen University, 3688th Nanhai Rd, Nanshan District, Shenzhen, Guangdong Province, China
| | - Ken-Tye Yong
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Gaixia Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, 1066th Xueyuan Rd, Nanshan District, Shenzhen, Guangdong Province, China.
| | - Ye Tao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9th Wenyuan Road, Nanjing 210023, China.
| | - Runfeng Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9th Wenyuan Road, Nanjing 210023, China.
| | - Chengbin Yang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, 1066th Xueyuan Rd, Nanshan District, Shenzhen, Guangdong Province, China.
| |
Collapse
|
49
|
Yuan YX, Jia JH, Song YP, Ye FY, Zheng YS, Zang SQ. Fluorescent TPE Macrocycle Relayed Light-Harvesting System for Bright Customized-Color Circularly Polarized Luminescence. J Am Chem Soc 2022; 144:5389-5399. [PMID: 35302750 DOI: 10.1021/jacs.1c12767] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Artificial systems for sequential chirality transmission/amplification and energy relay are perpetual topics that entail learning from nature. However, engineering chiral light-harvesting supramolecular systems remains a challenge. Here, we developed new chiral light-harvesting systems with a sequential Förster resonance energy transfer process where a designed blue-violet-emitting BINOL (1,1'-Bi-2-naphthol) compound, BINOL-di-octadecylamide (BDA), functions as an initiator of chirality and light absorbance, a new green-emitting hexagonal tetraphenylethene-based macrocycle (TPEM) with aggregation-induced emission serves as a conveyor, and Nile red (NiR) or/and a near-infrared dye, tetraphenylethene (TPE)-based benzoselenodiazole (TPESe), are the terminal acceptors. Benefiting from the close contact and large optical overlap between donors and acceptors at each level, triad and tetrad relaying systems sequentially and efficiently furnish chirality transmission/amplification and energy transfer along the cascaded line BDA-TPEM-NiR (or/and TPESe), leading to bright customized-color circularly polarized luminescence (CPL) and bright white-light-emitting CPL (CIE coordinates: 0.33, 0.34) with an amplified dissymmetry factor (glum) of 3.5 × 10-2 over a wide wavelength range. This work provides a new direction for the construction of chiral light-harvesting systems for a broad range of applications in chiroptical physics and chemistry.
Collapse
Affiliation(s)
- Ying-Xue Yuan
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jing-Hui Jia
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yu-Pan Song
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Feng-Ying Ye
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yan-Song Zheng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
50
|
Li C, Liu J, Hong Y, Lin R, Liu Z, Chen M, Lam JWY, Ning G, Zheng X, Qin A, Tang BZ. Click Synthesis Enabled Sulfur Atom Strategy for Polymerization‐Enhanced and Two‐Photon Photosensitization. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chongyang Li
- College of Chemistry and Materials Science Jinan University Guangzhou 510632 China
| | - Junkai Liu
- Department of Chemistry and The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Yingjuan Hong
- College of Chemistry and Materials Science Jinan University Guangzhou 510632 China
| | - Runfeng Lin
- College of Chemistry and Materials Science Jinan University Guangzhou 510632 China
| | - Zicheng Liu
- College of Chemistry and Materials Science Jinan University Guangzhou 510632 China
| | - Ming Chen
- College of Chemistry and Materials Science Jinan University Guangzhou 510632 China
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
| | - Jacky W. Y. Lam
- Department of Chemistry and The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Guo‐Hong Ning
- College of Chemistry and Materials Science Jinan University Guangzhou 510632 China
| | - Xiuli Zheng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Anjun Qin
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
| | - Ben Zhong Tang
- School of Science and Engineering Shenzhen Institute of Aggregate Science and Technology The Chinese University of Hong Kong, Shenzhen No. 2001 Longxiang Boulevard, Longgang District Shenzhen Guangdong 518172 China
- Department of Chemistry and The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
| |
Collapse
|