1
|
Ur Rehman M, Yin R, Yang ZD, Zhang G, Liu Y, Zhang FM, Yu C, Muhammad S. Fabrication and Modification of Hydrotalcite-Based Photocatalysts and Their Composites for CO 2 Reduction: A Critical Review. CHEMSUSCHEM 2025; 18:e202402333. [PMID: 39838940 DOI: 10.1002/cssc.202402333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 01/23/2025]
Abstract
Layered double hydroxides (LDHs), which resemble hydrotalcite, are a type of materials with cationic layers and exchangeable interlayer anions. They have drawn lots of curiosity as a high-temperature CO2 adsorbent because of its quick desorption/sorption kinetics and renewability. Due to its extensive divalent or trivalent cationic metals, high anion exchange property, memory effect, adjustable behavior, bio-friendliness, easy to prepare and relatively low cost, the LDHs-based materials are becoming increasingly popular for photocatalytic CO2 reduction reaction (CO2RR). Fabrication and modification are good ways to move forward the advancement of LDHs-based catalysts, which will help chemistry and materials science make great progress. In this review we discussed structural characteristics and the methods for preparation and modification of LDHs-based photocatalysts. We also highlighted and discussed the major developments and applications in photocatalytic CO2RR as well as the photocatalytic mechanism. The goal of the present review is to give a broad summary of the various LDHs-based photocatalysts and the corresponding design strategies, which could motivate more excellent research works to explore this kind of CO2RR photocatalysts to further increase CO2 conversion yield and selectivity.
Collapse
Affiliation(s)
- Munir Ur Rehman
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, Heilongjiang, P.R. China
| | - Rong Yin
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, Heilongjiang, P.R. China
| | - Zhao-Di Yang
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, Heilongjiang, P.R. China
| | - Guiling Zhang
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, Heilongjiang, P.R. China
| | - Yang Liu
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, Heilongjiang, P.R. China
| | - Feng-Ming Zhang
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, Heilongjiang, P.R. China
| | - Cancan Yu
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, Heilongjiang, P.R. China
| | - Sheraz Muhammad
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, P.R. China
| |
Collapse
|
2
|
Chen L, Zhang J, Li ZT, Tian J. Systematic Analysis of False-Positive CH 4 Production in Photocatalytic CO 2 Reduction: The Role of Solvent and Reagent Decomposition. Chemistry 2025; 31:e202500403. [PMID: 40042771 DOI: 10.1002/chem.202500403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Indexed: 03/19/2025]
Abstract
Photocatalytic carbon dioxide (CO2) reduction has emerged as a promising strategy for achieving carbon neutrality under mild reaction conditions. While methane (CH4) is widely regarded as a valuable target product in CO2 reduction studies, the reliability of such measurements can be compromised by unintended CH4 generation from solvent or sacrificial reagent decomposition during photoreactions. Herein, we systematically evaluate the stability of seven common solvents and five sacrificial reagents under visible-light irradiation (λ >420 nm) in CO2-, air-, and N2-saturated atmosphere, employing three distinct photosensitizers. Notably, acetone, dimethyl sulfoxide (DMSO), and triethylamine (TEA) were identified as high-risk reagents prone to photodecomposition, generating substantial CH4 yields of up to 2770 μmol ⋅ h-1 ⋅ L-1. Isotopic labeling experiments conclusively demonstrated that the source of CH4 originated from the solvents or sacrificial reagents rather than CO2. These findings highlight critical pitfalls in experimental design for photocatalytic CO2 reduction and emphasize the necessity of rigorous reagent screening to avoid artifactual methane production.
Collapse
Affiliation(s)
- Lingxuan Chen
- State Key Laboratory of Organometallic Chemistry and Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jiangshan Zhang
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai, 200438, China
| | - Zhan-Ting Li
- State Key Laboratory of Organometallic Chemistry and Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jia Tian
- State Key Laboratory of Organometallic Chemistry and Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
3
|
Loprete F, Tosi Brandi E, Calcagno F, De Maron J, Fasolini A, Tarroni R, Basile F, Rivalta I. Advancing CO 2 Conversion with Cu-LDHs: A Review of Computational and Experimental Studies. CHEM REC 2025:e202500014. [PMID: 40227138 DOI: 10.1002/tcr.202500014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/26/2025] [Indexed: 04/15/2025]
Abstract
Layered Double Hydroxides (LDHs) are versatile materials with tuneable properties. They show promising electro- and photo-catalytic activity in the activation and conversion of CO2. Their unique properties make LDHs pivotal materials in emerging sustainable strategies for mitigating the effect of CO2 emissions. However, the intricate structure-property relationship inherent to LDHs challenges their rational design. In this review, we provide a comprehensive overview of both experimental and computational studies about LDHs for photo- and electro-catalytic conversion of CO2, mainly focusing on Cu-based systems due to their superior performance in producing C2 products. We present a background framework, describing the essentials computational and experimental tools, designed to support both experimentalists and theoreticians in the development of tailored LDH materials for efficient and sustainable CO2 valorisation. Finally, we discuss future potential advancements, emphasizing the importance of new synergistic experimental-computational studies.
Collapse
Affiliation(s)
- Fabio Loprete
- Dipartimento di Chimica Industriale "Toso Montanari", Alma Mater Studiorum - Università di Bologna, Via Piero Gobetti 85, 40129, Bologna, Italy
- Center for Chemical Catalysis - C3, Alma Mater Studiorum -, Università di Bologna, Via Piero Gobetti 85, 40129, Bologna, Italy
| | - Eleonora Tosi Brandi
- Dipartimento di Chimica Industriale "Toso Montanari", Alma Mater Studiorum - Università di Bologna, Via Piero Gobetti 85, 40129, Bologna, Italy
- Center for Chemical Catalysis - C3, Alma Mater Studiorum -, Università di Bologna, Via Piero Gobetti 85, 40129, Bologna, Italy
- Interdepartmental Center for Industrial Research, Renewable Sources, Environment, Sea, Energy (CIRI-FRAME), Alma Mater-Studiorum, Università di Bologna, Via Piero Gobetti 85, 40129, Bologna, Italy
| | - Francesco Calcagno
- Dipartimento di Chimica Industriale "Toso Montanari", Alma Mater Studiorum - Università di Bologna, Via Piero Gobetti 85, 40129, Bologna, Italy
- Center for Chemical Catalysis - C3, Alma Mater Studiorum -, Università di Bologna, Via Piero Gobetti 85, 40129, Bologna, Italy
| | - Jacopo De Maron
- Dipartimento di Chimica Industriale "Toso Montanari", Alma Mater Studiorum - Università di Bologna, Via Piero Gobetti 85, 40129, Bologna, Italy
- Center for Chemical Catalysis - C3, Alma Mater Studiorum -, Università di Bologna, Via Piero Gobetti 85, 40129, Bologna, Italy
- Interdepartmental Center for Industrial Research, Renewable Sources, Environment, Sea, Energy (CIRI-FRAME), Alma Mater-Studiorum, Università di Bologna, Via Piero Gobetti 85, 40129, Bologna, Italy
| | - Andrea Fasolini
- Dipartimento di Chimica Industriale "Toso Montanari", Alma Mater Studiorum - Università di Bologna, Via Piero Gobetti 85, 40129, Bologna, Italy
- Center for Chemical Catalysis - C3, Alma Mater Studiorum -, Università di Bologna, Via Piero Gobetti 85, 40129, Bologna, Italy
- Interdepartmental Center for Industrial Research, Renewable Sources, Environment, Sea, Energy (CIRI-FRAME), Alma Mater-Studiorum, Università di Bologna, Via Piero Gobetti 85, 40129, Bologna, Italy
| | - Riccardo Tarroni
- Dipartimento di Chimica Industriale "Toso Montanari", Alma Mater Studiorum - Università di Bologna, Via Piero Gobetti 85, 40129, Bologna, Italy
| | - Francesco Basile
- Dipartimento di Chimica Industriale "Toso Montanari", Alma Mater Studiorum - Università di Bologna, Via Piero Gobetti 85, 40129, Bologna, Italy
- Center for Chemical Catalysis - C3, Alma Mater Studiorum -, Università di Bologna, Via Piero Gobetti 85, 40129, Bologna, Italy
- Interdepartmental Center for Industrial Research, Renewable Sources, Environment, Sea, Energy (CIRI-FRAME), Alma Mater-Studiorum, Università di Bologna, Via Piero Gobetti 85, 40129, Bologna, Italy
| | - Ivan Rivalta
- Dipartimento di Chimica Industriale "Toso Montanari", Alma Mater Studiorum - Università di Bologna, Via Piero Gobetti 85, 40129, Bologna, Italy
- Center for Chemical Catalysis - C3, Alma Mater Studiorum -, Università di Bologna, Via Piero Gobetti 85, 40129, Bologna, Italy
| |
Collapse
|
4
|
Shi Q, Zhang B, Wu Z, Yang D, Wu H, Shi J, Jiang Z. Cascade Catalytic Systems for Converting CO 2 into C 2+ Products. CHEMSUSCHEM 2025; 18:e202401916. [PMID: 39564785 DOI: 10.1002/cssc.202401916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 11/21/2024]
Abstract
The excessive emission and continuous accumulation of CO2 have precipitated serious social and environmental issues. However, CO2 can also serve as an abundant, inexpensive, and non-toxic renewable C1 carbon source for synthetic reactions. To achieve carbon neutrality and recycling, it is crucial to convert CO2 into value-added products through chemical pathways. Multi-carbon (C2+) products, compared to C1 products, offer a broader range of applications and higher economic returns. Despite this, converting CO2 into C2+ products is difficult due to its stability and the high energy required for C-C coupling. Cascade catalytic reactions offer a solution by coordinating active components, promoting intermediate transfers, and facilitating further transformations. This method lowers energy consumption. Recent advancements in cascade catalytic systems have allowed for significant progress in synthesizing C2+ products from CO2. This review highlights the features and advantages of cascade catalysis strategies, explores the synergistic effects among active sites, and examines the mechanisms within these systems. It also outlines future prospects for CO2 cascade catalytic synthesis, offering a framework for efficient CO2 utilization and the development of next-generation catalytic systems.
Collapse
Affiliation(s)
- Qiaochu Shi
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Boyu Zhang
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Zhenhua Wu
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Dong Yang
- School of Chemical Engineering & Engineering, Tianjin University, Tianjin, 300072, China
| | - Hong Wu
- School of Chemical Engineering & Engineering, Tianjin University, Tianjin, 300072, China
| | - Jiafu Shi
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Zhongyi Jiang
- School of Chemical Engineering & Engineering, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
5
|
Ruan J, Cao Q, Li X, Ren Q, Li M, Dong S, Li N, Xu Q, Li H, Lu J, Chen D. Morphology Optimization of Spinel Catalysts for High-Efficiency Photothermal Catalytic Upcycling of Polyethylene Terephthalate. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2500090. [PMID: 40059490 DOI: 10.1002/adma.202500090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/28/2025] [Indexed: 04/24/2025]
Abstract
Thermocatalytic recycling of plastics is typically constrained by high energy input requirements, resulting in poor economic efficiency and necessitating the utilization of light power. Indeed, photothermal catalysis offers several advantages over traditional photocatalysis and enables more efficient use of light energy. In this study, unique octahedral spinel-structured cobalt manganese oxide (CoMn2O4) catalysts are prepared. CoMn2O4 acts as both a photothermal reagent and catalyst, demonstrating low light intensity requirements, high conversion rates, enhanced reactivity, and superior stability during polyethylene terephthalate (PET) glycolysis via photothermocatalysis. Oxygen vacancies created on CoMn2O4 facilitate PET glycolysis by providing reactive sites that promote nucleophilic addition and subsequent elimination reactions. The spinel structure of CoMn2O4 ensures high thermal stability, while the octahedral configuration enhances the optical absorption coefficient and photothermal conversion efficiency. Under identical conditions, the PET conversion efficiency of CoMn2O4 in photothermal catalysis is 3.1 times higher than under purely thermal conditions, while maintaining high selectivity for high-value monomers. This study presents a new catalyst design approach for highly efficient upcycling of plastics, highlighting its substantial potential in this field.
Collapse
Affiliation(s)
- Juanzhang Ruan
- State Key Laboratory of Bioinspired Interfacial Materials Science, College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| | - Qiang Cao
- Cangzhou Risun Chemicals Co. Ltd., Cangzhou, Hebei, 061100, P. R. China
| | - Xunxun Li
- Zhejiang Institute of Tianjin University, Ningbo Key Laboratory of Green Petrochemical Carbon Emission Reduction Technology and Equipment, Ningbo, Zhejiang, 315200, P. R. China
| | - Qiuyuan Ren
- State Key Laboratory of Bioinspired Interfacial Materials Science, College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| | - Menglong Li
- State Key Laboratory of Bioinspired Interfacial Materials Science, College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| | - Shihong Dong
- Suzhou Shijing Technology Co. Ltd., Suzhou, 215137, P. R. China
| | - Najun Li
- State Key Laboratory of Bioinspired Interfacial Materials Science, College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| | - Qingfeng Xu
- State Key Laboratory of Bioinspired Interfacial Materials Science, College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| | - Hua Li
- State Key Laboratory of Bioinspired Interfacial Materials Science, College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| | - Jianmei Lu
- State Key Laboratory of Bioinspired Interfacial Materials Science, College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| | - Dongyun Chen
- State Key Laboratory of Bioinspired Interfacial Materials Science, College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
6
|
Wu X, Zhang S, Ning S, Yang C, Li L, Tang L, Wang J, Liu R, Yin X, Zhu Y, Chen S, Ye J. Recent advances and developments in solar-driven photothermal catalytic CO 2 reduction into multicarbon (C 2+) products. Chem Sci 2025; 16:4568-4594. [PMID: 39991564 PMCID: PMC11841621 DOI: 10.1039/d5sc00330j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 02/13/2025] [Indexed: 02/25/2025] Open
Abstract
Solar-driven catalytic conversion of carbon dioxide (CO2) into value-added C2+ chemicals and fuels has attracted significant attention over the past decades, propelled by urgent environmental and energy demands. However, the catalytic reduction of CO2 continues to face significant challenges due to inherently slow reduction kinetics. This review traces the historical development and current state of photothermal CO2 reduction, detailing the mechanisms by which CO2 is transformed into C2+ products. A key focus is on catalyst design, emphasizing surface defect engineering, bifunctional active site and co-catalyst coupling to enhance the efficiency and selectivity of solar-driven C2+ synthesis. Key reaction pathways to both C1 and C2+ products are discussed, ranging from CO, CH4 and methanol (CH3OH) synthesis to the production of C2-4 products such as C2-4 hydrocarbons, ethanol, acetic acid, and various carbonates. Notably, the advanced synthesis of C5+ hydrocarbons exemplifies the remarkable potential of photothermal technologies to effectively upgrade CO2-derived products, thereby delivering sustainable liquid fuels. This review provides a comprehensive overview of fundamental mechanisms, recent breakthroughs, and pathway optimizations, culminating in valuable insights for future research and industrial-scale prospect of photothermal CO2 reduction.
Collapse
Affiliation(s)
- Xiuting Wu
- Research Center for Solar Driven Carbon Neutrality, The College of Physics Science and Technology, Hebei University Baoding 071002 China
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University Baoding 071002 China
| | - Senlin Zhang
- Research Center for Solar Driven Carbon Neutrality, The College of Physics Science and Technology, Hebei University Baoding 071002 China
| | - Shangbo Ning
- Research Center for Solar Driven Carbon Neutrality, The College of Physics Science and Technology, Hebei University Baoding 071002 China
| | - Chuanyun Yang
- Research Center for Solar Driven Carbon Neutrality, The College of Physics Science and Technology, Hebei University Baoding 071002 China
| | - Ling Li
- Research Center for Solar Driven Carbon Neutrality, The College of Physics Science and Technology, Hebei University Baoding 071002 China
| | - Linjun Tang
- Research Center for Solar Driven Carbon Neutrality, The College of Physics Science and Technology, Hebei University Baoding 071002 China
| | - Jing Wang
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University Baoding 071002 China
| | - Ruixiang Liu
- Research Center for Solar Driven Carbon Neutrality, The College of Physics Science and Technology, Hebei University Baoding 071002 China
| | - Xingyu Yin
- Research Center for Solar Driven Carbon Neutrality, The College of Physics Science and Technology, Hebei University Baoding 071002 China
| | - Ying Zhu
- Research Center for Solar Driven Carbon Neutrality, The College of Physics Science and Technology, Hebei University Baoding 071002 China
| | - Shaohua Chen
- Research Center for Solar Driven Carbon Neutrality, The College of Physics Science and Technology, Hebei University Baoding 071002 China
| | - Jinhua Ye
- Research Center for Solar Driven Carbon Neutrality, The College of Physics Science and Technology, Hebei University Baoding 071002 China
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS) Tsukuba 305-0047 Japan
- Advanced Catalytic Materials Research Center, School of Material Science and Engineering, Tianjin University Tianjin 300072 China
| |
Collapse
|
7
|
Jiang H, Wang L, Wang C, Xie Y, Shi C, Xiao Y, Liu Y, Ding W, Zhong M. Accelerating Reverse Water Gas Shift Reaction through Synergistic CO 2 and H 2 Activation on Ru-Fe-(V O-in-CeO 2) Ternary Catalytic Centers. NANO LETTERS 2025; 25:3579-3587. [PMID: 39992922 DOI: 10.1021/acs.nanolett.4c06427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
The reverse water gas shift (RWGS) reaction shows promise for converting CO2 emissions to chemical feedstocks using renewable H2. However, achieving high selectivity and activity at low temperatures remains challenging due to the thermodynamically more favorable CO2 methanation reaction. Here we develop a robust Ru0.0025Ce0.7Fe0.3O2-δ solid-solution nanorod catalyst featuring a ternary Fe-Ru-oxygen vacancy (VO) center, overcoming limitations in intermediate adsorption and dissociation on single-component catalysts. Incorporating a trace amount of Ru (0.25 at. %) into Ce0.7Fe0.3O2-δ markedly enhances CO2 and H2 dissociation and H2O formation, while the primary Ce0.7Fe0.3O2-δ solid-solution component facilitates CO desorption, lowering the RWGS onset temperature to ∼200 °C. Experimental and computational analyses verify improved kinetics and stable performance with Ru0.0025Ce0.7Fe0.3O2-δ, yielding a CO production rate of 326 mmol gcat-1 h-1, ∼100% selectivity, and a 21% yield, approaching the thermodynamic limit within a 5 min batch reaction at ∼450 °C surface temperature under 300 W xenon lamp illumination.
Collapse
Affiliation(s)
- Haoyang Jiang
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, the Frontiers Science Center for Critical Earth Material Cyclings, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210023, China
| | - Linyu Wang
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, the Frontiers Science Center for Critical Earth Material Cyclings, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210023, China
| | - Chuanhao Wang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Yi Xie
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, the Frontiers Science Center for Critical Earth Material Cyclings, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210023, China
| | - Caijuan Shi
- Institute of High Energy Physics, Beijing Synchrotron Radiation Facility, Chinese Academy of Sciences, Beijing 100049, China
| | - Yongcheng Xiao
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, the Frontiers Science Center for Critical Earth Material Cyclings, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210023, China
| | - Yueren Liu
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, the Frontiers Science Center for Critical Earth Material Cyclings, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210023, China
| | - Weiping Ding
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Miao Zhong
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, the Frontiers Science Center for Critical Earth Material Cyclings, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210023, China
| |
Collapse
|
8
|
Li Y, Li Y, Shi Y, Gao J, Lu J, Wang C, Chang J, Wang Z, Yang Y, Yang B, Feng L, Fu Q, Bao X, Wu ZS. Single cobalt atoms with unconventional dynamic coordination mechanism for selective ammonia sensor. Natl Sci Rev 2025; 12:nwaf031. [PMID: 39974516 PMCID: PMC11837343 DOI: 10.1093/nsr/nwaf031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 01/22/2025] [Indexed: 02/21/2025] Open
Abstract
Developing gas sensors that can simultaneously achieve high sensitivity and selectivity for the detection of a single-type gas remains a significant challenge. Herein we demonstrate cobalt (Co) single atoms with an unconventional dynamically changing coordination structure that could be used as NH3-sensing material with superior sensitivity and selectivity. According to the steric effect of 2-methylimidazole (2MI) molecules and carbonyl groups on graphene, the Co single atom is evolved into a bidentate coordinated structure (Co-2MI-G). In-situ characterization and theoretical simulation reveal that the sensing mechanism of Co-2MI-G is the specific chemical adsorption between unsaturated coordinated Co single atoms and NH3 molecules, causing a reversible switching of coordination number from 2 to 4, a valence state transfer from Co2+ to Co3+ of Co single atoms, and a band-gap width from 0.14 eV to 0.50 eV. Consequently, the Co-2MI-G-based gas sensor presents a sensing response of 67.598% for 1 ppm NH3 and a limit of detection of 2.67 ppb, at least 1.8 times higher than that of state-of-the-art NH3 sensors, together with robust stability and reproducibility. This work provides an innovative perspective on utilizing single atoms for ultra-selective gas sensing by coordination regulation.
Collapse
Affiliation(s)
- Yuejiao Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yaguang Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Research Center for Solar Driven Carbon Neutrality, Engineering Research Center of Zero-Carbon Energy Buildings and Measurement Techniques, Ministry of Education, The College of Physics Science and Technology, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Yushu Shi
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianmei Gao
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jianmin Lu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Chao Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Junyu Chang
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhenming Wang
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Environmental Research Institute, Shandong University, Qingdao 266237, China
| | - Yangyue Yang
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bing Yang
- Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian 116023, China
| | - Liang Feng
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qiang Fu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xinhe Bao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhong-Shuai Wu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
9
|
Jin M, Sun G, Li M, Chen R, Song J, Wang J, Zhao J, Zhou J, Xie E, Pan X. Understanding the Curvature Effect of FeCo Nanoalloy Encapsulated by Nitrogen-Doped Carbon Nanotubes for High-Performance Lithium-Sulfur Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410927. [PMID: 39711248 DOI: 10.1002/smll.202410927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/08/2024] [Indexed: 12/24/2024]
Abstract
Well-designed structures of the electrocatalyst provide excellent catalytic activity and high structural stability during the sulfur reduction reaction of Lithium-sulfur batteries (LSBs). In this study, a novel and efficient structure is developed to encapsulate bimetallic FeCo nanoalloy catalysts within N-doped carbon nanotube (NCNT) on carbon nanofibers (FeCo@NCNT/CNFs) using a combination of electrospinning and rapid-cooling techniques. The NCNT matrix with abundant sites not only serves as a high pathway for electron transport during the reaction, but its encapsulation structure also acts as armor to protect the FeCo nanoalloy. Further, the curvature effect of the FeCo@NCNT structure facilitates greater electron transfer from the FeCo nanoalloy to the NCNT, and lowering the reaction barrier for the liquid-solid conversion process. As a result, the S/FeCo@NCNT/CNFs cathode can achieve exceptional cycle performance of 500 cycles at 5 C, with an ultra-low capacity fade rate of 0.031% per cycle. Moreover, even under extreme temperature conditions of -20 and 80 °C, the battery still delivers a specific capacity of 827.16 and 697.46 mAh g-1 at 1 C. This work shows an effective insight into enhancing the LiPS conversion kinetics over a wide temperature range in Li-S batteries.
Collapse
Affiliation(s)
- Mengjing Jin
- School of Physical Science and Technology, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, China
| | - Guowen Sun
- School of Physical Science and Technology, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, China
| | - Muxuan Li
- School of Physical Science and Technology, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, China
| | - Ru Chen
- School of Physical Science and Technology, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, China
| | - Jianqiao Song
- School of Physical Science and Technology, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, China
| | - Jiuzhou Wang
- School of Physical Science and Technology, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, China
| | - Jianguo Zhao
- School of Physics Science and Electronic Information, Luoyang Normal University, Luoyang, 471934, China
| | - Jinyuan Zhou
- School of Physical Science and Technology, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, China
- Academy of Plateau Science and Sustainability & School of Physics and Electronic Information Engineering, Qinghai Normal University, 38 Haihu Avenue Extension Section, Xining, 810008, China
| | - Erqing Xie
- School of Physical Science and Technology, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, China
| | - Xiaojun Pan
- School of Physical Science and Technology, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, China
| |
Collapse
|
10
|
Achenbach B, Liedtke L, Näther C, Svensson Grape E, Ken Inge A, Stock N. Unlocking the Chemical and Structural Complexity of Aluminum Hydroxy Acetates: from Commodity Chemicals to Porous Materials. Chemistry 2025; 31:e202403634. [PMID: 39392683 PMCID: PMC11739832 DOI: 10.1002/chem.202403634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/12/2024]
Abstract
Aluminum acetates have been in use for more than a century, but despite their widespread commercial applications, essential scientific knowledge of their synthesis-structure-property relationships is lacking. High-throughput screening, followed by fine tuning and extensive optimization of reaction conditions using Al3+, OH- and CH3COO- ions, has unraveled their complex synthetic chemistry, yielding for the first time the four phase pure products Al(OH)(O2CCH3)2 ⋅ x H2O (x=0, 2) (1A and CAU-65, 1B), Al3O(HO2CCH3)(O2CCH3)7 (2), and the porous aluminum salt [Al24(OH)56(CH3COO)12](OH)4 (CAU-55-OH, 3). Structure determination by electron and X-ray diffraction was carried out and the data suggested porosity for 1B and 3, which was confirmed by physisorption experiments. Even the scale-up to the 10 L scale was accomplished for 1A, 1B and 3 with yields of up to 1.1 kg (99 %). This study of a seemingly simple chemical system provides important information on both fundamental inorganic chemistry and porous materials.
Collapse
Affiliation(s)
- Bastian Achenbach
- Institute of Inorganic ChemistryKiel UniversityMax-Eyth-Str. 224118KielGermany
| | - Lena‐Marie Liedtke
- Institute of Inorganic ChemistryKiel UniversityMax-Eyth-Str. 224118KielGermany
| | - Christian Näther
- Institute of Inorganic ChemistryKiel UniversityMax-Eyth-Str. 224118KielGermany
| | - Erik Svensson Grape
- Department of Materials and Environmental ChemistryStockholm UniversityStockholmSweden
- Current address: Department of Chemistry and BiochemistryMaterial Science InstituteUniversity of OregonEugeneOregon97403United States
| | - A. Ken Inge
- Department of Materials and Environmental ChemistryStockholm UniversityStockholmSweden
- Wallenberg Initiative Materials Science for SustainabilityDepartment of Materials and Environmental ChemistryStockholm UniversityStockholmSweden
| | - Norbert Stock
- Institute of Inorganic ChemistryKiel UniversityMax-Eyth-Str. 224118KielGermany
- Kiel Nano, Surface and Interface Science KiNSISKiel UniversityChristian-Albrechts-Platz 424118KielGermany
| |
Collapse
|
11
|
Li P, Liu Y, Yan D. Facts and Fictions About Photocatalytic CO 2 Reduction to C 2+ Products. CHEMSUSCHEM 2025; 18:e202401174. [PMID: 39183181 DOI: 10.1002/cssc.202401174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/06/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
In response to carbon neutrality, photocatalytic reduction of CO2 has been the subject of growing interest for researchers over the past few years. Multi-carbon products (C2+) with higher energy density and larger market value produced from photocatalytic reduction of CO2 are still very limited owing to the low photocatalytic productivity and poor selectivity of products. This review focuses on the recent progress on photocatalytic reduction of CO2 towards C2+ products from the perspective of performance evaluation and mechanistic understanding. We first provide a systematic description of the entire fundamental procedures of photocatalytic reduction of CO2. An in-depth strategy analysis for improving the selectivity of photocatalytic reduction of CO2 to C2+ products is then addressed. Then the focus was on summarizing the ways to improve C2+ selectivity. The intrinsic mechanisms of photocatalytic reduction of CO2 to C2+ products are summarized in the final. Combining the foundation of photocatalysis with promising catalyst strategies, this review will offer valuable guidance for the development of efficient photocatalytic systems for the synthesis of C2+ products.
Collapse
Affiliation(s)
- Pengyan Li
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Yumin Liu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Dongpeng Yan
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
12
|
Ding X, Liu W, Zhao J, Wang L, Zou Z. Photothermal CO 2 Catalysis toward the Synthesis of Solar Fuel: From Material and Reactor Engineering to Techno-Economic Analysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2312093. [PMID: 38683953 DOI: 10.1002/adma.202312093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/25/2024] [Indexed: 05/02/2024]
Abstract
Carbon dioxide (CO2), a member of greenhouse gases, contributes significantly to maintaining a tolerable environment for all living species. However, with the development of modern society and the utilization of fossil fuels, the concentration of atmospheric CO2 has increased to 400 ppm, resulting in a serious greenhouse effect. Thus, converting CO2 into valuable chemicals is highly desired, especially with renewable solar energy, which shows great potential with the manner of photothermal catalysis. In this review, recent advancements in photothermal CO2 conversion are discussed, including the design of catalysts, analysis of mechanisms, engineering of reactors, and the corresponding techno-economic analysis. A guideline for future investigation and the anthropogenic carbon cycle are provided.
Collapse
Affiliation(s)
- Xue Ding
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong, 518172, P. R. China
| | - Wenxuan Liu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Junhua Zhao
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong, 518172, P. R. China
- The Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, Guangdong, 518129, P. R. China
| | - Lu Wang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong, 518172, P. R. China
| | - Zhigang Zou
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong, 518172, P. R. China
| |
Collapse
|
13
|
Cai A, Hu G, Chen W, An S, Qi B, Song YF. Single-Atom Pt Anchored Polyoxometalate as Electron-Proton Shuttle for Efficient Photoreduction of CO 2 to CH 4 Catalyzed by NiCo Layered Doubled Hydroxide. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410343. [PMID: 39568210 DOI: 10.1002/smll.202410343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Indexed: 11/22/2024]
Abstract
The crucial role of active hydrogen (H*) in photocatalytic CO2 methanation has long been overlooked, although recently, accelerating proton-coupled electron transfer (PCET) processes to enhance CH4 productivity and selectivity has garnered significant attention. Herein, a single-atom Pt-anchored H3PMo12O40 (Pt1-PMo12) is applied as an efficient proton-electron shuttle to facilitate the photocatalytic performance of NiCo layered double hydroxide (NiCo-LDH). The resultant Pt1-PMo12@NiCo-LDH exhibited superior CH4 productivity (723 µmol g-1 h-1) with CH4 selectivity of 82.3%, showcasing a 24.9 times productivity enhancement over NiCo-LDH (29 µmol g-1 h-1). Systematic investigations revealed that abundant H* is generated by the dissociation of H2O on Pt1 sites and stored within Pt1-PMo12. Subsequently, the multiple H* rapidly migrated from Pt1-PMo12 to the catalytic sites on NiCo-LDH by the engineered strong Mo─O─Ni/Co bonds, thereby significantly expediting the PCET process. The in situ DRIFTS and theoretical calculations elucidated that the Pt1-PMo12 decreased the energy barrier for *CO protonation to *CHO (0.38-0.18 eV) and optimized the rate-determining step of *CH3 to *CH4 (0.64 eV), thus promoting highly active and selective CH4 generation. This work provided novel insights into achieving efficient photocatalytic CO2 methanation by modulating the fast generation and transport of active H*.
Collapse
Affiliation(s)
- Ailin Cai
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Guicong Hu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Wei Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, Zhejiang, 324000, P. R. China
| | - Sai An
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Bo Qi
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yu-Fei Song
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, Zhejiang, 324000, P. R. China
| |
Collapse
|
14
|
Lorber K, Arčon I, Huš M, Zavašnik J, Sancho-Parramon J, Prašnikar A, Likozar B, Novak Tušar N, Djinović P. Light-Assisted Catalysis and the Dynamic Nature of Surface Species in the Reverse Water Gas Shift Reaction over Cu/γ-Al 2O 3. ACS APPLIED MATERIALS & INTERFACES 2024; 16:67778-67790. [PMID: 39610207 DOI: 10.1021/acsami.4c15849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
The reverse water gas shift (RWGS) reaction converts CO2 and H2 into CO and water. We investigated Cu/γ-Al2O3 catalysts in both thermally driven and light-assisted RWGS reactions using visible light. When driven by combined visible light and thermal energy, the CO2 conversion rates were lower than in the dark. Light-assisted reactions showed an increase in the apparent activation energy from 68 to 87 kJ/mol, indicating that light disrupts the energetically favorable pathway active in the dark. A linear correlation between irradiance and decreasing reaction rate suggests a photon-driven phenomenon. In situ diffuse reflectance infrared Fourier transform spectroscopy and TD-DFT analyses revealed that catalyst illumination causes significant, partly irreversible surface dehydroxylation, highlighting the importance of OH groups in the most favorable RWGS pathway. This study offers a novel approach to manipulate surface species and control activity in the RWGS reaction.
Collapse
Affiliation(s)
- Kristijan Lorber
- National Institute of Chemistry, Hajdrihova 19, Ljubljana SI-1000, Slovenia
- University of Nova Gorica, Vipavska 13, Nova Gorica SI-5000, Slovenia
| | - Iztok Arčon
- University of Nova Gorica, Vipavska 13, Nova Gorica SI-5000, Slovenia
- Jožef Stefan Institute, Jamova Cesta 39, Ljubljana SI-1000, Slovenia
| | - Matej Huš
- National Institute of Chemistry, Hajdrihova 19, Ljubljana SI-1000, Slovenia
- Association for Technical Culture of Slovenia, Zaloška 65, Ljubljana SI-1000, Slovenia
- Institute for the Protection of Cultural Heritage, Poljanska 40, Ljubljana SI-1000, Slovenia
| | - Janez Zavašnik
- Jožef Stefan Institute, Jamova Cesta 39, Ljubljana SI-1000, Slovenia
| | | | - Anže Prašnikar
- National Institute of Chemistry, Hajdrihova 19, Ljubljana SI-1000, Slovenia
| | - Blaž Likozar
- National Institute of Chemistry, Hajdrihova 19, Ljubljana SI-1000, Slovenia
| | - Nataša Novak Tušar
- National Institute of Chemistry, Hajdrihova 19, Ljubljana SI-1000, Slovenia
- University of Nova Gorica, Vipavska 13, Nova Gorica SI-5000, Slovenia
| | - Petar Djinović
- National Institute of Chemistry, Hajdrihova 19, Ljubljana SI-1000, Slovenia
- University of Nova Gorica, Vipavska 13, Nova Gorica SI-5000, Slovenia
| |
Collapse
|
15
|
Schuurmans JHA, Masson TM, Zondag SDA, Pilon S, Bragato N, Claros M, den Hartog T, Sastre F, van den Ham J, Buskens P, Fiorani G, Noël T. Light-assisted carbon dioxide reduction in an automated photoreactor system coupled to carbonylation chemistry. Chem Sci 2024; 15:19842-19850. [PMID: 39568953 PMCID: PMC11575595 DOI: 10.1039/d4sc06660j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/05/2024] [Indexed: 11/22/2024] Open
Abstract
Continuous-flow methodologies offer promising avenues for sustainable processing due to their precise process control, scalability, and efficient heat and mass transfer. The small dimensions of continuous-flow reactors render them highly suitable for light-assisted reactions, as can be encountered in carbon dioxide hydrogenations. In this study, we present a reactor system emphasizing reproducibility, modularity, and automation, facilitating streamlined screening of conditions and catalysts for these processes. The proposed commercially available photoreactor, in which carbon dioxide hydrogenation was conducted, features narrow channels with a high-surface area catalyst deposition. Meticulous control over temperature, light intensity, pressure, residence time, and reagent stoichiometry yielded the selective formation of carbon monoxide and methane using heterogeneous catalysts, including a novel variant of ruthenium nanoparticles on titania catalyst. All details on the automation are made available, enabling its use by researchers worldwide. Furthermore, we demonstrated the direct utilization of on-demand generated carbon monoxide in the production of fine chemicals via various carbonylative cross-coupling reactions.
Collapse
Affiliation(s)
- Jasper H A Schuurmans
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), Universiteit van Amsterdam (UvA) 1098 XH Amsterdam The Netherlands
| | - Tom M Masson
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), Universiteit van Amsterdam (UvA) 1098 XH Amsterdam The Netherlands
| | - Stefan D A Zondag
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), Universiteit van Amsterdam (UvA) 1098 XH Amsterdam The Netherlands
| | - Simone Pilon
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), Universiteit van Amsterdam (UvA) 1098 XH Amsterdam The Netherlands
| | - Nicola Bragato
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), Universiteit van Amsterdam (UvA) 1098 XH Amsterdam The Netherlands
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia Via Torino 155 30172 Venezia Italy
| | - Miguel Claros
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), Universiteit van Amsterdam (UvA) 1098 XH Amsterdam The Netherlands
| | - Tim den Hartog
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), Universiteit van Amsterdam (UvA) 1098 XH Amsterdam The Netherlands
- Zuyd University of Applied Sciences Nieuw Eyckholt 300 6419 DJ Heerlen The Netherlands
- The Netherlands Organisation for Applied Scientific Research (TNO) High Tech Campus 25 5656 AE Eindhoven The Netherlands
| | - Francesc Sastre
- The Netherlands Organisation for Applied Scientific Research (TNO) High Tech Campus 25 5656 AE Eindhoven The Netherlands
| | - Jonathan van den Ham
- The Netherlands Organisation for Applied Scientific Research (TNO) High Tech Campus 25 5656 AE Eindhoven The Netherlands
| | - Pascal Buskens
- The Netherlands Organisation for Applied Scientific Research (TNO) High Tech Campus 25 5656 AE Eindhoven The Netherlands
- Design and Synthesis of Inorganic Materials (DESINe), Institute for Materials Research, Hasselt University Agoralaan Building D 3590 Diepenbeek Belgium
| | - Giulia Fiorani
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia Via Torino 155 30172 Venezia Italy
| | - Timothy Noël
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), Universiteit van Amsterdam (UvA) 1098 XH Amsterdam The Netherlands
| |
Collapse
|
16
|
Du Y, Ma D, Li J, Huang Q, He Q, Ji J, Ji H, Ma W, Zhao J. Visible Light-Sensitized CO 2 Methanation along a Relaxed Heat Available Route. Chemistry 2024; 30:e202402102. [PMID: 39087665 DOI: 10.1002/chem.202402102] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/02/2024]
Abstract
In photocatalysis, the resulted heat by the relaxation of most of incident light no longer acts as the industrially favorite driving force back to the target photo-reaction due to more or less the negative relation between photocatalytic efficiency and temperature. Here, we reported a visible light-sensitized protocol that completely reversed the negatively temperature-dependent efficiency in photo-driven CO2 methanation with saturated water vapor. Uniform Pt/N-TiO2/PDI self-assembly material decisively injects the excited electron of PDI sensitizer into N-TiO2 forming Ti-H hydride which is crucially temperature-dependent nucleophilic species to dominate CO2 methanation, rather than conventionally separated and trapped electrons on the conductor band. Meanwhile, the ternary composite lifts itself temperature from room temperature to 305.2 °C within 400 s only by the failure excitation upon simulated sunlight of 2.5 W/cm2, and smoothly achieves CO2 methanation with a record number of 4.98 mmol g-1 h-1 rate, compared to less than 0.02 mol g-1 h-1 at classic Pt/N-TiO2/UV photocatalysis without PDI sensitization. This approach can reuse ~53.9 % of the relaxed heat energy from the incident light thereby allow high-intensity incident light as strong as possible within a flowing photo-reactor, opening the most likely gateways to industrialization.
Collapse
Affiliation(s)
- Yangyang Du
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Dongge Ma
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, 100048, Beijing, P. R. China
| | - Jiazhen Li
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Qiang Huang
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Qin He
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Jianfei Ji
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Hongwei Ji
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Wanhong Ma
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Jincai Zhao
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| |
Collapse
|
17
|
Cui Y, Labidi A, Liang X, Huang X, Wang J, Li X, Dong Q, Zhang X, Othman SI, Allam AA, Bahnemann DW, Wang C. Pivotal Impact Factors in Photocatalytic Reduction of CO 2 to Value-Added C 1 and C 2 Products. CHEMSUSCHEM 2024; 17:e202400551. [PMID: 38618906 DOI: 10.1002/cssc.202400551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
Over the past decades, CO2 greenhouse emission has been considerably increased, causing global warming and climate change. Indeed, converting CO2 into valuable chemicals and fuels is a desired option to resolve issues caused by its continuous emission into the atmosphere. Nevertheless, CO2 conversion has been hampered by the ultrahigh dissociation energy of C=O bonds, which makes it thermodynamically and kinetically challenging. From this prospect, photocatalytic approaches appear promising for CO2 reduction in terms of their efficiency compared to other traditional technologies. Thus, many efforts have been made in the designing of photocatalysts with asymmetric sites and oxygen vacancies, which can break the charge distribution balance of CO2 molecule, reduce hydrogenation energy barrier and accelerate CO2 conversion into chemicals and fuels. Here, we review the recent advances in CO2 hydrogenation to C1 and C2 products utilizing photocatalysis processes. We also pin down the key factors or parameters influencing the generation of C2 products during CO2 hydrogenation. In addition, the current status of CO2 reduction is summarized, projecting the future direction for CO2 conversion by photocatalysis processes.
Collapse
Affiliation(s)
- Yongqian Cui
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian, 710021, P. R. China
| | - Abdelkader Labidi
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian, 710021, P. R. China
| | - Xinxin Liang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian, 710021, P. R. China
| | - Xin Huang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian, 710021, P. R. China
| | - Jingyi Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian, 710021, P. R. China
| | - Ximing Li
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian, 710021, P. R. China
| | - Qibing Dong
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian, 710021, P. R. China
| | - Xiaolong Zhang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian, 710021, P. R. China
| | - Sarah I Othman
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Ahmed A Allam
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, 11623, Saudi Arabia
| | - Detlef W Bahnemann
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian, 710021, P. R. China
- Institute for Technical Chemistry, Leibniz University Hannover, 30167, Hannover, Germany
- Laboratory of Photoactive Nanocomposite Materials, Saint Petersburg State University, Saint-Petersburg, 198504, Russia
| | - Chuanyi Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian, 710021, P. R. China
| |
Collapse
|
18
|
Yang Z, Wu ZY, Lin Z, Liu T, Ding L, Zhai W, Chen Z, Jiang Y, Li J, Ren S, Lin Z, Liu W, Feng J, Zhang X, Li W, Yu Y, Zhu B, Ding F, Li Z, Zhu J. Optically selective catalyst design with minimized thermal emission for facilitating photothermal catalysis. Nat Commun 2024; 15:7599. [PMID: 39217177 PMCID: PMC11365982 DOI: 10.1038/s41467-024-51896-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
Converting solar energy into fuels is pursued as an attractive route to reduce dependence on fossil fuel. In this context, photothermal catalysis is a very promising approach through converting photons into heat to drive catalytic reactions. There are mainly three key factors that govern the photothermal catalysis performance: maximized solar absorption, minimized thermal emission and excellent catalytic property of catalyst. However, the previous research has focused on improving solar absorption and catalytic performance of catalyst, largely neglected the optimization of thermal emission. Here, we demonstrate an optically selective catalyst based Ti3C2Tx Janus design, that enables minimized thermal emission, maximized solar absorption and good catalytic activity simultaneously, thereby achieving excellent photothermal catalytic performance. When applied to Sabatier reaction and reverse water-gas shift (RWGS) as demonstrations, we obtain an approximately 300% increase in catalytic yield through reducing the thermal emission of catalyst by ~70% under the same irradiation intensity. It is worth noting that the CO2 methanation yield reaches 3317.2 mmol gRu-1 h-1 at light power of 2 W cm-2, setting a performance record among catalysts without active supports. We expect that this design opens up a new pathway for the development of high-performance photothermal catalysts.
Collapse
Affiliation(s)
- Zhengwei Yang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Frontiers Science Center for Critical Earth Material Cycling, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, PR China
| | - Zhen-Yu Wu
- Department of Chemistry, Institute of Innovative Material, Guangdong Provincial Key Laboratory of Sustainable Biomimetic Materials and Green Energy, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - Zhexing Lin
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Frontiers Science Center for Critical Earth Material Cycling, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, PR China
| | - Tianji Liu
- GPL Photonics Laboratory, State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, PR China
| | - Liping Ding
- School of Electronic Information and Artificial Intelligence, Shaanxi University of Science & Technology, Xi'an, China
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wenbo Zhai
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zipeng Chen
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Frontiers Science Center for Critical Earth Material Cycling, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, PR China
| | - Yi Jiang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Frontiers Science Center for Critical Earth Material Cycling, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, PR China
| | - Jinlei Li
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Frontiers Science Center for Critical Earth Material Cycling, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, PR China
| | - Siyun Ren
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Frontiers Science Center for Critical Earth Material Cycling, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, PR China
| | - Zhenhui Lin
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Frontiers Science Center for Critical Earth Material Cycling, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, PR China
| | - Wangxi Liu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Frontiers Science Center for Critical Earth Material Cycling, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, PR China
| | - Jianyong Feng
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Frontiers Science Center for Critical Earth Material Cycling, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, PR China
| | - Xing Zhang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Frontiers Science Center for Critical Earth Material Cycling, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, PR China
| | - Wei Li
- GPL Photonics Laboratory, State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, PR China
| | - Yi Yu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Bin Zhu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Frontiers Science Center for Critical Earth Material Cycling, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, PR China.
| | - Feng Ding
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhaosheng Li
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Frontiers Science Center for Critical Earth Material Cycling, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, PR China
| | - Jia Zhu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Frontiers Science Center for Critical Earth Material Cycling, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, PR China.
| |
Collapse
|
19
|
Yuan Z, Sun X, Wang H, Zhao X, Jiang Z. Applications of Ni-Based Catalysts in Photothermal CO 2 Hydrogenation Reaction. Molecules 2024; 29:3882. [PMID: 39202961 PMCID: PMC11357118 DOI: 10.3390/molecules29163882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 09/03/2024] Open
Abstract
Heterogeneous CO2 hydrogenation catalytic reactions, as the strategies for CO2 emission reduction and green carbon resource recycling, play important roles in alleviating global warming and energy shortages. Among these strategies, photothermal CO2 hydrogenation technology has become one of the hot catalytic technologies by virtue of the synergistic advantages of thermal catalysis and photocatalysis. And it has attracted more and more researchers' attentions. Various kinds of effective photothermal catalysts have been gradually discovered, and nickel-based catalysts have been widely studied for their advantages of low cost, high catalytic activity, abundant reserves and thermal stability. In this review, the applications of nickel-based catalysts in photothermal CO2 hydrogenation are summarized. Finally, through a good understanding of the above applications, future modification strategies and design directions of nickel-based catalysts for improving their photothermal CO2 hydrogenation activities are proposed.
Collapse
Affiliation(s)
- Zhimin Yuan
- School of Chemistry & Chemical Engineering and Environmental Engineering, Weifang University, Weifang 261061, China
| | - Xianhui Sun
- Food and Drug Department, Weifang Vocational College, Weifang 261061, China
| | - Haiquan Wang
- School of Chemistry & Chemical Engineering and Environmental Engineering, Weifang University, Weifang 261061, China
| | - Xingling Zhao
- School of Chemistry & Chemical Engineering and Environmental Engineering, Weifang University, Weifang 261061, China
| | - Zaiyong Jiang
- School of Chemistry & Chemical Engineering and Environmental Engineering, Weifang University, Weifang 261061, China
| |
Collapse
|
20
|
Hong X, Zhao Q, Chen Y, Yu Z, Zhou M, Chen Y, Luo W, Wang C, Ta N, Li H, Ye R, Zu X, Liu W, Liu J. Visualizing Phase Evolution of Co 2C for Efficient Fischer-Tropsch to Olefins. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404046. [PMID: 38842820 DOI: 10.1002/adma.202404046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/21/2024] [Indexed: 06/07/2024]
Abstract
Cobalt carbide (Co2C) possesses high catalytic efficiency Fischer-Tropsch synthesis (FTS), while the products selectivity appears sensitive to crystallography geometry. Since the Anderson-Schulz-Flory (ASF) distribution in FTS is broken through fabricating facetted Co2C nanocrystals, yet the underlying mechanism of Co2C crystallization remains unclarified suffering from sophisticated catalyst composition involving promoter agents. Herein, the synthesis of high-purity single-crystal nanoprisms (Co2C-p) for highly efficient FTS is reported to lower olefins. Through comprehensive microstructure analysis, e.g., high-resolution TEM, in situ TEM and electron diffraction, as well as finite element simulation of gas flow field, for the first time the full roadmap of forming catalytic active cobalt carbides is disclosed, starting from reduction of Co3O4 precursor to CoO intermediate, then carburization into Co2C-s and subsequent ripening growth into Co2C-p. This gas-induced engineering of crystal phase provides a new synthesis strategy, with many new possibilities for precise design of metal-based catalyst for diverse catalytic applications.
Collapse
Affiliation(s)
- Xiaoling Hong
- School of Physics, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Qiao Zhao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanping Chen
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Zhibin Yu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Mengzhen Zhou
- School of Environment and Energy, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Yan Chen
- School of Environment and Energy, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Wenhao Luo
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia, 010021, China
| | - Chang Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Na Ta
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Haitao Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Runping Ye
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, Institute of Applied Chemistry, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Xiaotao Zu
- School of Physics, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China
| | - Wei Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia, 010021, China
- DICP-Surrey Joint Centre for Future Materials, and Advanced Technology Institute, University of Surrey, Guilford, Surrey, GU2 7XH, UK
| |
Collapse
|
21
|
Li XY, Zhu ZL, Dagnaw FW, Yu JR, Wu ZX, Chen YJ, Zhou MH, Wang T, Tong QX, Jian JX. Silicon photocathode functionalized with osmium complex catalyst for selective catalytic conversion of CO 2 to methane. Nat Commun 2024; 15:5882. [PMID: 39003268 PMCID: PMC11246507 DOI: 10.1038/s41467-024-50244-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/04/2024] [Indexed: 07/15/2024] Open
Abstract
Solar-driven CO2 reduction to yield high-value chemicals presents an appealing avenue for combating climate change, yet achieving selective production of specific products remains a significant challenge. We showcase two osmium complexes, przpOs, and trzpOs, as CO2 reduction catalysts for selective CO2-to-methane conversion. Kinetically, the przpOs and trzpOs exhibit high CO2 reduction catalytic rate constants of 0.544 and 6.41 s-1, respectively. Under AM1.5 G irradiation, the optimal Si/TiO2/trzpOs have CH4 as the main product and >90% Faradaic efficiency, reaching -14.11 mA cm-2 photocurrent density at 0.0 VRHE. Density functional theory calculations reveal that the N atoms on the bipyrazole and triazole ligands effectively stabilize the CO2-adduct intermediates, which tend to be further hydrogenated to produce CH4, leading to their ultrahigh CO2-to-CH4 selectivity. These results are comparable to cutting-edge Si-based photocathodes for CO2 reduction, revealing a vast research potential in employing molecular catalysts for the photoelectrochemical conversion of CO2 to methane.
Collapse
Affiliation(s)
- Xing-Yi Li
- Department of Chemistry, Shantou University, Shantou, 515063, PR China
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, 515063, PR China
| | - Ze-Lin Zhu
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, PR China
| | | | - Jie-Rong Yu
- Department of Chemistry, Shantou University, Shantou, 515063, PR China
| | - Zhi-Xing Wu
- Laboratory of Organic Electronics, Department of Science and Technology (ITN), Linköping University, Norrköping, SE, 60174, Sweden
| | - Yi-Jing Chen
- Department of Chemistry, Shantou University, Shantou, 515063, PR China
| | - Mu-Han Zhou
- Department of Chemistry, Shantou University, Shantou, 515063, PR China
| | - Tieyu Wang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, 515063, PR China
| | - Qing-Xiao Tong
- Department of Chemistry, Shantou University, Shantou, 515063, PR China.
- Key Laboratory for Preparation and Application of Ordered Structural Material of Guangdong Province, Shantou University, Shantou, 515063, PR China.
| | - Jing-Xin Jian
- Department of Chemistry, Shantou University, Shantou, 515063, PR China.
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, 515063, PR China.
| |
Collapse
|
22
|
Tian PJ, Han XH, Qi QY, Zhao X. An Azulene-Based Crystalline Porous Covalent Organic Framework for Efficient Photothermal Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307635. [PMID: 38105336 DOI: 10.1002/smll.202307635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/21/2023] [Indexed: 12/19/2023]
Abstract
The designed synthesis of a crystalline azulene-based covalent organic framework (COF-Azu-TP) is presented and its photothermal property is investigated. Azulene, a distinctive 5-7 fused ring non-benzenoid aromatic compound with a large intramolecular dipole moment and unique photophysical characteristics, is introduced as the key feature in COF-Azu-TP. The incorporation of azulene moiety imparts COF-Azu-TP with broad-spectrum light absorption capability and interlayer dipole interactions, which makes COF-Azu-TP a highly efficient photothermal conversion material. Its polyurethane (PU) composite exhibits a solar-to-vapor conversion efficiency (97.2%) and displays a water evaporation rate (1.43 kg m-2 h-1) under one sun irradiation, even at a very low dosage of COF-Azu-TP (2.2 wt%). Furthermore, COF-Azu-TP is utilized as a filler in a polylactic acid (PLA)/polycaprolactone (PCL) composited shape memory material, enabling rapid shape recovery under laser stimulation. A comparison study with a naphthalene-based COF isomer further emphasizes the crucial role of azulene in enhancing photothermal conversion efficiency. This study demonstrates the significance of incorporating specific building blocks into COFs for the development of functional porous materials with enhanced properties, paving the way for future applications in diverse fields.
Collapse
Affiliation(s)
- Peng-Ju Tian
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Xiang-Hao Han
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Qiao-Yan Qi
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Xin Zhao
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| |
Collapse
|
23
|
Zhang X, Ju S, Li C, Hao J, Sun Y, Hu X, Chen W, Chen J, He L, Xia G, Fang F, Sun D, Yu X. Atomic reconstruction for realizing stable solar-driven reversible hydrogen storage of magnesium hydride. Nat Commun 2024; 15:2815. [PMID: 38561357 PMCID: PMC10984991 DOI: 10.1038/s41467-024-47077-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 03/14/2024] [Indexed: 04/04/2024] Open
Abstract
Reversible solid-state hydrogen storage of magnesium hydride, traditionally driven by external heating, is constrained by massive energy input and low systematic energy density. Herein, a single phase of Mg2Ni(Cu) alloy is designed via atomic reconstruction to achieve the ideal integration of photothermal and catalytic effects for stable solar-driven hydrogen storage of MgH2. With the intra/inter-band transitions of Mg2Ni(Cu) and its hydrogenated state, over 85% absorption in the entire spectrum is achieved, resulting in the temperature up to 261.8 °C under 2.6 W cm-2. Moreover, the hydrogen storage reaction of Mg2Ni(Cu) is thermodynamically and kinetically favored, and the imbalanced distribution of the light-induced hot electrons within CuNi and Mg2Ni(Cu) facilitates the weakening of Mg-H bonds of MgH2, enhancing the "hydrogen pump" effect of Mg2Ni(Cu)/Mg2Ni(Cu)H4. The reversible generation of Mg2Ni(Cu) upon repeated dehydrogenation process enables the continuous integration of photothermal and catalytic roles stably, ensuring the direct action of localized heat on the catalytic sites without any heat loss, thereby achieving a 6.1 wt.% H2 reversible capacity with 95% retention under 3.5 W cm-2.
Collapse
Affiliation(s)
- Xiaoyue Zhang
- Department of Materials Science, Fudan University, Shanghai, China
| | - Shunlong Ju
- Department of Materials Science, Fudan University, Shanghai, China
| | - Chaoqun Li
- Department of Materials Science, Fudan University, Shanghai, China
| | - Jiazheng Hao
- Spallation Neutron Source Science Center, Dongguan, China
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Yahui Sun
- Department of Materials Science, Fudan University, Shanghai, China
| | - Xuechun Hu
- Department of Materials Science, Fudan University, Shanghai, China
| | - Wei Chen
- Department of Materials Science, Fudan University, Shanghai, China
| | - Jie Chen
- Spallation Neutron Source Science Center, Dongguan, China
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Lunhua He
- Spallation Neutron Source Science Center, Dongguan, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, PR China
- Songshan Lake Materials Laboratory, Dongguan, PR China
| | - Guanglin Xia
- Department of Materials Science, Fudan University, Shanghai, China.
| | - Fang Fang
- Department of Materials Science, Fudan University, Shanghai, China.
| | - Dalin Sun
- Department of Materials Science, Fudan University, Shanghai, China
| | - Xuebin Yu
- Department of Materials Science, Fudan University, Shanghai, China.
| |
Collapse
|
24
|
Zhou J, Zhu Z, Li Q, Zhang Q, Liu Z, Deng Q, Zhou Z, Li C, Fu L, Zhou J, Li H, Wu K. Fabrication of Heterostructural FeNi 3-Loaded Perovskite Catalysts by Rapid Plasma for Highly Efficient Photothermal Reverse Water Gas Shift Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307302. [PMID: 37994389 DOI: 10.1002/smll.202307302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/26/2023] [Indexed: 11/24/2023]
Abstract
Metal-semiconductor heterostructured catalysts have attracted great attention because of their unique interfacial characteristics and superior catalytic performance. Exsolution of nanoparticles is one of the effective and simple ways for in-situ growth of metal nanoparticles embedded in oxide surfaces and their favorable dispersion and stability. However, both high-temperature and a reducing atmosphere are required simultaneously in conventional exsolution, which is time-consuming and costly, and particles often agglomerate during the process. In this work, Ca0.9Ti0.8Ni0.1Fe0.1O3-δ (CTNF) is exposed to dielectric blocking discharge (DBD) plasma at room temperature to fabricate alloying FeNi3 nanoparticles from CTNF perovskite. FeNi3-CTNF has outstanding catalytic activity for photothermal reverse water gas shift reaction (RWGS). At 350 °C under full-spectrum irradiation, the carbon monoxide (CO) yield of FeNi3-CTNF (10.78 mmol g-1 h-1) is 11 times that of pure CaTiO3(CTO), and the CO selectivity is 98.9%. This superior catalytic activity is attributed to the narrow band gap, photogenerated electron migration to alloy particles, and abundant surface oxygen vacancies. The carbene pathway reaction is also investigated through in-situ Raman spectroscopy. The present work presents a straightforward method for the exsolution of nanoalloys in metal-semiconductor heterostructures for photothermal CO2 reduction.
Collapse
Affiliation(s)
- Jun Zhou
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Zihe Zhu
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Qinghao Li
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Qiankai Zhang
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- School of Electronics and Information, Xi'an Polytechnic University, Xi'an, 710048, People's Republic of China
| | - Zhengrong Liu
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Qinyuan Deng
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Zilin Zhou
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Cunxin Li
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Lei Fu
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Jiacheng Zhou
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Haonan Li
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Kai Wu
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| |
Collapse
|
25
|
Wang Z, Tan G, Zhang B, Yang Q, Feng S, Liu Y, Liu T, Guo L, Zeng C, Liu W, Xia A, Ren H, Yin L, Fan S. Intrinsic Polarized Electric Field Induces a Storing Mechanism to Achieve Energy Storing Catalysis in V 2 C MXene. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307795. [PMID: 37823519 DOI: 10.1002/adma.202307795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/10/2023] [Indexed: 10/13/2023]
Abstract
Efficient storage and separation of holes and electrons pose significant challenges for catalytic reactions, particularly in the context of single-phase catalysis. Herein, V2 C MXene, with its intrinsic polarized electric field, successfully overcomes this obstacle. To enhance hole storage, a multistep etching process is employed under reducing conditions to control the content of surface termination groups, thus exposing more defective active sites. The intrinsically polarized electric field confines holes to the surface of the layer and free electrons within the layer, leading to a lag in e- release compared to h+ . The quantities of stored holes and electrons are measured to be 18.13 µmol g-1 and 106.37 µmol g-1 , respectively. Under dark, V2 C demonstrates excellent and stable dark-catalytic performance, degrading 57.91% of tetracycline (TC 40 mg L-1 ) and removing 23% of total organic carbon (TOC) after 140 min. In simulated sunlight and near-infrared light, the corresponding degradation rates reach 72.24% and 79.54%, with corresponding TOC removal rates of 49% and 48%, respectively. The hole and electron induced localized surface plasmon resonance (LSPR) effects contribute to a long-lasting and enhanced broad-spectrum mineralization of V2 C MXene. This study provides valuable insights into the research and application of all-weather MXene energy storage catalytic materials.
Collapse
Affiliation(s)
- Zeqiong Wang
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Guoqiang Tan
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Bixin Zhang
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Qian Yang
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Shuaijun Feng
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Ying Liu
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Tian Liu
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Linxin Guo
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Chunyan Zeng
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Wenlong Liu
- School of Electronic Information and Artiffcial Intelligence, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Ao Xia
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Huijun Ren
- School of Arts and Sciences, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Lixiong Yin
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Sizhe Fan
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, China
| |
Collapse
|
26
|
He H, Jian X, Zen T, Feng B, Hu Y, Yuan Z, Zhao Z, Gao X, Lv L, Cao Z. Sulfur defect induced Cd 0.3Zn 0.7S in-situ anchoring on metal organic framework for enhanced photothermal catalytic CO 2 reduction to prepare proportionally adjustable syngas. J Colloid Interface Sci 2024; 653:687-696. [PMID: 37741176 DOI: 10.1016/j.jcis.2023.09.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/25/2023]
Abstract
The rapid recombination of interfacial charges is considered to be the main obstacle limiting the photocatalytic CO2 reduction. Thus, it is a challenge to research an accurate and stable charge transfer control strategy. MIL-53 (Al)-S/Cd0.3Zn0.7S (MAS/CZS-0.3) photocatalysts with chemically bonded interfaces were constructed by in-situ electrostatic assembly of sulfur defect Cd0.3Zn0.7S (CZS-0.3) on the surface of MIL-53 (Al) (MAW), which enhanced interfacial coupling and accelerated electron transfer efficiency. An adjustable proportion of syngas (H2/CO) was prepared by photothermal catalytic CO2 reduction at micro-interface. and the optimal yield of CO (66.10 μmol∙g-1∙h-1) and H2 (71.0 μmol∙g-1∙h-1) was realized by the MAS/CZS-0.3 photocatalyst. The improved activity was due to the photogenerated electrons migrated from CZS-0.3 to the adsorption active sites of MAS, which strengthened the adsorption and activation of CO2 on MAS. The photothermal catalytic CO2 reduction to CO follows the pathway of CO2→*COOH → CO and CO2→*HCO3-→CO. This work provided a reference for the research, characterization, and application of in-situ anchoring of metal organic frameworks in photothermal catalytic CO2 reduction, and provided a green path for the supply of Syngas in industry.
Collapse
Affiliation(s)
- Hongbin He
- Department of Chemistry and Chemical Engineering, Clean Utilization of Low Rank Coal of Shaanxi Collaborative Innovation Center, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an 716000, PR China
| | - Xuan Jian
- Department of Chemistry and Chemical Engineering, Clean Utilization of Low Rank Coal of Shaanxi Collaborative Innovation Center, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an 716000, PR China
| | - Tianxu Zen
- Department of Chemistry and Chemical Engineering, Clean Utilization of Low Rank Coal of Shaanxi Collaborative Innovation Center, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an 716000, PR China
| | - Bingbing Feng
- Department of Chemistry and Chemical Engineering, Clean Utilization of Low Rank Coal of Shaanxi Collaborative Innovation Center, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an 716000, PR China
| | - Yanan Hu
- Department of Chemistry and Chemical Engineering, Clean Utilization of Low Rank Coal of Shaanxi Collaborative Innovation Center, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an 716000, PR China
| | - Zhongqiang Yuan
- Department of Chemistry and Chemical Engineering, Clean Utilization of Low Rank Coal of Shaanxi Collaborative Innovation Center, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an 716000, PR China
| | - Zizhen Zhao
- Department of Chemistry and Chemical Engineering, Clean Utilization of Low Rank Coal of Shaanxi Collaborative Innovation Center, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an 716000, PR China
| | - Xiaoming Gao
- Department of Chemistry and Chemical Engineering, Clean Utilization of Low Rank Coal of Shaanxi Collaborative Innovation Center, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an 716000, PR China.
| | - Lei Lv
- Department of Chemistry and Chemical Engineering, Clean Utilization of Low Rank Coal of Shaanxi Collaborative Innovation Center, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an 716000, PR China
| | - Zhenheng Cao
- Department of Chemistry and Chemical Engineering, Clean Utilization of Low Rank Coal of Shaanxi Collaborative Innovation Center, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an 716000, PR China
| |
Collapse
|
27
|
Mo S, Zhao X, Li S, Huang L, Zhao X, Ren Q, Zhang M, Peng R, Zhang Y, Zhou X, Fan Y, Xie Q, Guo Y, Ye D, Chen Y. Non-Interacting Ni and Fe Dual-Atom Pair Sites in N-Doped Carbon Catalysts for Efficient Concentrating Solar-Driven Photothermal CO 2 Reduction. Angew Chem Int Ed Engl 2023; 62:e202313868. [PMID: 37899658 DOI: 10.1002/anie.202313868] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/17/2023] [Accepted: 10/26/2023] [Indexed: 10/31/2023]
Abstract
Solar-to-chemical energy conversion under weak solar irradiation is generally difficult to meet the heat demand of CO2 reduction. Herein, a new concentrated solar-driven photothermal system coupling a dual-metal single-atom catalyst (DSAC) with adjacent Ni-N4 and Fe-N4 pair sites is designed for boosting gas-solid CO2 reduction with H2 O under simulated solar irradiation, even under ambient sunlight. As expected, the (Ni, Fe)-N-C DSAC exhibits a superior photothermal catalytic performance for CO2 reduction to CO (86.16 μmol g-1 h-1 ), CH4 (135.35 μmol g-1 h-1 ) and CH3 OH (59.81 μmol g-1 h-1 ), which are equivalent to 1.70-fold, 1.27-fold and 1.23-fold higher than those of the Fe-N-C catalyst, respectively. Based on theoretical simulations, the Fermi level and d-band center of Fe atom is efficiently regulated in non-interacting Ni and Fe dual-atom pair sites with electronic interaction through electron orbital hybridization on (Ni, Fe)-N-C DSAC. Crucially, the distance between adjacent Ni and Fe atoms of the Ni-N-N-Fe configuration means that the additional Ni atom as a new active site contributes to the main *COOH and *HCO3 dissociation to optimize the corresponding energy barriers in the reaction process, leading to specific dual reaction pathways (COOH and HCO3 pathways) for solar-driven photothermal CO2 reduction to initial CO production.
Collapse
Affiliation(s)
- Shengpeng Mo
- College of Environment Science and Engineering, Guilin University of Technology, Guilin, 541004, P. R. China
| | - Xinya Zhao
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Shuangde Li
- State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Lili Huang
- College of Environment Science and Engineering, Guilin University of Technology, Guilin, 541004, P. R. China
| | - Xin Zhao
- College of Environment Science and Engineering, Guilin University of Technology, Guilin, 541004, P. R. China
| | - Quanming Ren
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Mingyuan Zhang
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, P. R. China
| | - Ruosi Peng
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, P. R. China
| | - Yanan Zhang
- College of Environment Science and Engineering, Guilin University of Technology, Guilin, 541004, P. R. China
| | - Xiaobin Zhou
- College of Environment Science and Engineering, Guilin University of Technology, Guilin, 541004, P. R. China
| | - Yinming Fan
- College of Environment Science and Engineering, Guilin University of Technology, Guilin, 541004, P. R. China
| | - Qinglin Xie
- College of Environment Science and Engineering, Guilin University of Technology, Guilin, 541004, P. R. China
| | - Yanbing Guo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Daiqi Ye
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Yunfa Chen
- State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
28
|
Fan WK, Tahir M, Alias H. Synergistic Effect of Nickel Nanoparticles Dispersed on MOF-Derived Defective Co 3O 4 In Situ Grown over TiO 2 Nanowires toward UV and Visible Light Driven Photothermal CO 2 Methanation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54353-54372. [PMID: 37963084 DOI: 10.1021/acsami.3c10022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Catalytic CO2 hydrogenation is an effective approach to producing clean fuels, but this process is expensive, in addition to the low efficiency of catalysts. Thus, photothermal CO2 hydrogenation can effectively utilize solar energy for CH4 production. Metal-organic framework (MOF) derived materials with a controlled structure and morphology are promising to give a high number of active sites and photostability in thermal catalytic reactions. For the first time, a novel heterostructure catalyst was synthesized using a facile approach to in situ grow MOF-derived 0D Co3O4 over 1D TiO2 nanowires (NWs). The original 3D dodecahedral structure of the MOF is engineered into novel 0D Co3O4 nanospheres, which were uniformly embedded over Ni-dispersed 1D TiO2 NWs. In situ prepared 10Ni-7Co3O4@TiO2 NWs-I achieved an excellent photothermal CH4 evolution rate of 8.28 mmol/h at 250 °C under low-intensity visible light, whereas UV light treatment further increased activity by 1.2-fold. UV irradiations promoted high CH4 production while improving the susceptibility of the catalyst to visible light irradiation. The photothermal effect is prominent at lower temperatures, due to the harmonization of both solar and thermal energy. By paralleling with mechanically assembled 10Ni-7Co3O4/TiO2 NWs-M, the catalytic performance of the in situ approach is far superior, attributing to the morphological transformation of 0D Co3O4, which induced intimate interfacial interactions, formation of oxygen vacancies and boosted photo-to-thermal effects. The co-existence of metallic/metal oxide Ni-Co provided beneficial synergies, enhanced photo-to-thermal effects, and improved charge transfer kinetics of the composite. This work uncovers a facile approach to engineering the morphology of MOF derivatives for efficient photothermal CO2 methanation.
Collapse
Affiliation(s)
- Wei Keen Fan
- School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310 Johor, Malaysia
| | - Muhammad Tahir
- Chemical and Petroleum Engineering Department, United Arab Emirates (UAE) University, P. O. Box 15551, Al Ain, United Arab Emirates
| | - Hajar Alias
- School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310 Johor, Malaysia
| |
Collapse
|
29
|
Pei L, Wang X, Zhu H, Yu H, Bandaru S, Yan S, Zou Z. Photothermal Effect- and Interfacial Chemical Bond-Modulated NiO x/Ta 3N 5 Heterojunction for Efficient CO 2 Photoreduction. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37903001 DOI: 10.1021/acsami.3c13538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Photothermal catalysis, which combines light promotion and thermal activation, is a promising approach for converting CO2 into fuels. However, the development of photothermal catalysts with effective light-to-heat conversion, strong charge transfer ability, and suitable active sites remains a challenge. Herein, the photothermal effect- and interfacial N-Ni/Ta-O bond-modulated heterostructure composed of oxygen vacancy-rich NiOx and Ta3N5 was rationally fabricated for efficient photothermal catalytic CO2 reduction. Beyond the charge separation capability conferred by the NiOx/Ta3N5 heterojunction, we observed that the N-Ni and Ta-O bonds linking NiOx and Ta3N5 form a spatial charge transfer channel, which enhances the interfacial electron transfer. Additionally, the presence of surface oxygen vacancies in NiOx induced nonradiative relaxation, resulting in a pronounced photothermal effect that locally heated the catalyst and accelerated the reaction kinetically. Leveraging these favorable factors, the NiOx/Ta3N5 hybrids exhibit remarkably elevated activity (≈32.3 μmol·g-1·h-1) in the conversion of CO2 to CH4 with near-unity selectivity, surpassing the performance of bare Ta3N5 by over 14 times. This study unveils the synergistic effect of photothermal and interfacial chemical bonds in the photothermal-photocatalytic heterojunction system, offering a novel approach to enhance the reaction kinetics of various catalysts.
Collapse
Affiliation(s)
- Lang Pei
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, P. R. China
| | - Xusheng Wang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Heng Zhu
- School of Physical and Mathematical Sciences, Nanjing Tech University, No. 30, Puzhu Nanlu Road, Pukou District, Nanjing 211800, Jiangsu, P. R. China
| | - He Yu
- School of Physical and Mathematical Sciences, Nanjing Tech University, No. 30, Puzhu Nanlu Road, Pukou District, Nanjing 211800, Jiangsu, P. R. China
| | - Sateesh Bandaru
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, P. R. China
| | - Shicheng Yan
- Eco-materials and Renewable Energy Research Center (ERERC), Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, P. R. China
| | - Zhigang Zou
- Eco-materials and Renewable Energy Research Center (ERERC), Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
30
|
Zhu L, Tian L, Jiang S, Han L, Liang Y, Li Q, Chen S. Advances in photothermal regulation strategies: from efficient solar heating to daytime passive cooling. Chem Soc Rev 2023; 52:7389-7460. [PMID: 37743823 DOI: 10.1039/d3cs00500c] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Photothermal regulation concerning solar harvesting and repelling has recently attracted significant interest due to the fast-growing research focus in the areas of solar heating for evaporation, photocatalysis, motion, and electricity generation, as well as passive cooling for cooling textiles and smart buildings. The parallel development of photothermal regulation strategies through both material and system designs has further improved the overall solar utilization efficiency for heating/cooling. In this review, we will review the latest progress in photothermal regulation, including solar heating and passive cooling, and their manipulating strategies. The underlying mechanisms and criteria of highly efficient photothermal regulation in terms of optical absorption/reflection, thermal conversion, transfer, and emission properties corresponding to the extensive catalog of nanostructured materials are discussed. The rational material and structural designs with spectral selectivity for improving the photothermal regulation performance are then highlighted. We finally present the recent significant developments of applications of photothermal regulation in clean energy and environmental areas and give a brief perspective on the current challenges and future development of controlled solar energy utilization.
Collapse
Affiliation(s)
- Liangliang Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China.
| | - Liang Tian
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China.
| | - Siyi Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China.
| | - Lihua Han
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China.
| | - Yunzheng Liang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China.
| | - Qing Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China.
| | - Su Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China.
| |
Collapse
|
31
|
Bao S, Liu T, Fu H, Xu Z, Qu X, Zheng S, Zhu D. Ni 12P 5 Confined in Mesoporous SiO 2 with Near-Unity CO Selectivity and Enhanced Catalytic Activity for CO 2 Hydrogenation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:45949-45959. [PMID: 37748196 DOI: 10.1021/acsami.3c12413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
CO2 hydrogenation via the reverse water gas shift (RWGS) reaction is a promising strategy for CO2 utilization while constructing Ni-based catalysts with high catalytic activity and perfect CO selectivity remains a great challenging. Here, we demonstrate that the product selectivity for CO2 hydrogenation can be significantly tuned from CH4 to CO by phosphating of SiO2-supported Ni catalysts due to the geometric effect. Interestingly, nickel phosphide catalysts with different crystalline phases (Ni12P5 and Ni2P) differ sharply in CO2 conversion, and Ni12P5 is remarkably more active. Furthermore, we developed a facile strategy to confine small Ni12P5 nanoparticles in mesoporous SiO2 channels (Ni12P5@SBA-15). Enhanced activity is exhibited on Ni12P5@SBA-15, ascribed to the highly effective confinement effect. The in situ diffuse reflectance infrared Fourier transform spectroscopy and density functional theory calculations unveil that catalytic CO2 hydrogenation follows a direct CO2 dissociation route with adsorbed CO as the key intermediate. Notably, strong multibonded CO (threefold and bridge-bonded CO) is feasibly formed on the Ni catalyst accounting for CH4 as the dominant product whereas only weak linearly bonded CO exists on nickel phosphide catalysts resulting in almost 100% CO selectivity. The present results indicate that Ni12P5@SBA-15 combining the geometric effect and the confinement effect can achieve near-unity CO selectivity and enhanced activity for CO2 hydrogenation.
Collapse
Affiliation(s)
- Shidong Bao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Tao Liu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Heyun Fu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Zhaoyi Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xiaolei Qu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Shourong Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Dongqiang Zhu
- School of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
32
|
Ma J, Yu J, Chen G, Bai Y, Liu S, Hu Y, Al-Mamun M, Wang Y, Gong W, Liu D, Li Y, Long R, Zhao H, Xiong Y. Rational Design of N-Doped Carbon-Coated Cobalt Nanoparticles for Highly Efficient and Durable Photothermal CO 2 Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302537. [PMID: 37471253 DOI: 10.1002/adma.202302537] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 07/01/2023] [Accepted: 07/14/2023] [Indexed: 07/22/2023]
Abstract
Photothermal CO2 hydrogenation to high-value-added chemicals and fuels is an appealing approach to alleviate energy and environmental concerns. However, it still relies on the development of earth-abundant, efficient, and durable catalysts. Here, the design of N-doped carbon-coated Co nanoparticles (NPs), as a photothermal catalyst, synthesized through a two-step pyrolysis of Co-based ZIF-67 precursor, is reported. Consequently, the catalyst exhibits remarkable activity and stability for photothermal CO2 hydrogenation to CO with a 0.75 mol gcat -1 h-1 CO production rate under the full spectrum of light illumination. The high activity and durability of these Co NPs are mainly attributed to the synergy of the attuned size of Co NPs, the thickness of carbon layers, and the N doping species. Impressively, the experimental characterizations and theoretical simulations show that such a simple N-doped carbon coating strategy can effectively facilitate the desorption of generated CO and activation of reactants due to the strong photothermal effect. This work provides a simple and efficient route for the preparation of highly active and durable nonprecious metal catalysts for promising photothermal catalytic reactions.
Collapse
Affiliation(s)
- Jun Ma
- School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, P. R. China
| | - Jing Yu
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu, 210023, P. R. China
| | - Guangyu Chen
- School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yu Bai
- School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Shengkun Liu
- School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yangguang Hu
- School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Mohammad Al-Mamun
- Centre for Catalysis and Clean Energy, Gold Coast Campus, Griffith University, Queensland, 4222, Australia
| | - Yu Wang
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu, 210023, P. R. China
| | - Wanbing Gong
- School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Dong Liu
- School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, P. R. China
| | - Yafei Li
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu, 210023, P. R. China
| | - Ran Long
- School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Huijun Zhao
- Centre for Catalysis and Clean Energy, Gold Coast Campus, Griffith University, Queensland, 4222, Australia
| | - Yujie Xiong
- School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
33
|
Ojelade OA. CO 2 Hydrogenation to Gasoline and Aromatics: Mechanistic and Predictive Insights from DFT, DRIFTS and Machine Learning. Chempluschem 2023; 88:e202300301. [PMID: 37580947 DOI: 10.1002/cplu.202300301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/16/2023]
Abstract
The emission of CO2 from fossil fuels is the largest driver of global climate change. To realize the target of a carbon-neutrality by 2050, CO2 capture and utilization is crucial. The efficient conversion of CO2 to C5+ gasoline and aromatics remains elusive mainly due to CO2 thermodynamic stability and the high energy barrier of the C-C coupling step. Herein, advances in mechanistic understanding via Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS), density functional theory (DFT), and microkinetic modeling are discussed. It further emphasizes the power of machine learning (ML) to accelerate the search for optimal catalysts. A significant effort has been invested into this field of research with volumes of experimental and characterization data, this study discusses how they can be used as input features for machine learning prediction in a bid to better understand catalytic properties capable of accelerating breakthroughs in the process.
Collapse
Affiliation(s)
- Opeyemi A Ojelade
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
34
|
Yao Y, Li B, Gao X, Yang Y, Yu J, Lei J, Li Q, Meng X, Chen L, Xu D. Highly Efficient Solar-Driven Dry Reforming of Methane on a Rh/LaNiO 3 Catalyst through a Light-induced Metal-To-Metal Charge Transfer Process. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303654. [PMID: 37314337 DOI: 10.1002/adma.202303654] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/01/2023] [Indexed: 06/15/2023]
Abstract
As an energy-saving and green method, solar-driven dry reforming of methane (DRM) is expected to introduce new activation processes and prevent sintering and coking of the catalysts. However, it still lacks an efficient way to coordinate the regulation of activation of reactants and lattice oxygen migration. In this study, Rh/LaNiO3 is designed as a highly efficient photothermal catalyst for solar-driven DRM, which performs production rates of 452.3 mmol h-1 gRh -1 for H2 and 527.6 mmol h-1 gRh -1 for CO2 under a light intensity of 1.5 W cm-2 , with an excellent stability. Moreover, a remarkable light-to-chemical energy efficiency (LTCEE) of 10.72% is achieved under a light intensity of 3.5 W cm-2 . The characterizations of surface electronic and chemical properties and theoretical analysis demonstrate that strong adsorption for CH4 and CO2 , light-induced metal-to-metal charge transfer (MMCT) process and high oxygen mobility together bring Rh/LaNiO3 excellent performance for solar-driven DRM.
Collapse
Affiliation(s)
- Yuan Yao
- Beijng National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong, 266100, China
| | - Ben Li
- Beijng National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Xiaowen Gao
- Beijng National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yuying Yang
- Beijng National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jianbo Yu
- Beijng National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Jianan Lei
- Beijng National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Qi Li
- Beijng National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Xiangchao Meng
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong, 266100, China
| | - Langxing Chen
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Dongsheng Xu
- Beijng National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
35
|
Li J, Shen T, Wu Z, Bai S, Song Z, Song YF. Photocatalytic Oxidative Coupling of Ethane to n-Butane Using CO 2 as a Soft Oxidant over NiTi-Layered Double Hydroxide. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2304604. [PMID: 37635099 DOI: 10.1002/smll.202304604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/28/2023] [Indexed: 08/29/2023]
Abstract
Selective conversion of ethane (C2 H6 ) to high-value-added chemicals is a very important chemical process, yet it remains challenging owing to the difficulty of ethane activation. Here, a NiTi-layered double hydroxide (NiTi-LDH) photocatalyst is reported for oxidative coupling of ethane to n-butane (n-C4 H10 ) by using CO2 as an oxidant. Remarkably, the as-prepared NiTi-LDH exhibits a high selectivity for n-C4 H10 (92.35%) with a production rate of 62.06 µmol g-1 h-1 when the feed gas (CO2 /C2 H6 ) ratio is 2:8. The X-ray absorption fine structure (XAFS) and photoelectron characterizations demonstrate that NiTi-LDH possesses rich vacancies and high electron-hole separation efficiency, which can promote the coupling of C2 H6 to n-C4 H10 . More importantly, density functional theory (DFT) calculations reveal that ethane is first activated on the oxygen vacancies of the catalyst surface, and the C─C coupling pathway is more favorable than the C─H cleavage to C2 H4 or CH4 , resulting in the high production rate and selectivity for n-C4 H10 .
Collapse
Affiliation(s)
- Jiaxin Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Tianyang Shen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhaohui Wu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Sha Bai
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Ziheng Song
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yu-Fei Song
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, Zhejiang Province, 324000, P. R. China
| |
Collapse
|
36
|
Zhu Z, Tang R, Li C, An X, He L. Promises of Plasmonic Antenna-Reactor Systems in Gas-Phase CO 2 Photocatalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302568. [PMID: 37338243 PMCID: PMC10460874 DOI: 10.1002/advs.202302568] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/26/2023] [Indexed: 06/21/2023]
Abstract
Sunlight-driven photocatalytic CO2 reduction provides intriguing opportunities for addressing the energy and environmental crises faced by humans. The rational combination of plasmonic antennas and active transition metal-based catalysts, known as "antenna-reactor" (AR) nanostructures, allows the simultaneous optimization of optical and catalytic performances of photocatalysts, and thus holds great promise for CO2 photocatalysis. Such design combines the favorable absorption, radiative, and photochemical properties of the plasmonic components with the great catalytic potentials and conductivities of the reactor components. In this review, recent developments of photocatalysts based on plasmonic AR systems for various gas-phase CO2 reduction reactions with emphasis on the electronic structure of plasmonic and catalytic metals, plasmon-driven catalytic pathways, and the role of AR complex in photocatalytic processes are summarized. Perspectives in terms of challenges and future research in this area are also highlighted.
Collapse
Affiliation(s)
- Zhijie Zhu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
| | - Rui Tang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
| | - Chaoran Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Xingda An
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Le He
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
37
|
Zhu D, Zhang B, Chen J, Xie F, Zou Y, Chen P. CoFe nanoalloys encapsulated in nitrogen-doped carbon for efficient nitrite electroreduction to ammonia. Chem Commun (Camb) 2023. [PMID: 37464814 DOI: 10.1039/d3cc02073h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Electrochemical nitrite (NO2-) reduction to ammonia (NH3) can not only remove harmful NO2- in wastewater, but also produce valuable NH3. Herein, a CoFe nanoalloy encapsulated in nitrogen-doped carbon (CoFe-NC) electrocatalyst was fabricated for nitrite reduction, which achieved a high NH3 Faraday efficiency of 94.5%, and a large NH3 yield of 4050.6 μg h-1 cm-2 in a neutral electrolyte.
Collapse
Affiliation(s)
- Dongdong Zhu
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Binbin Zhang
- School of Materials Science and Engineering, Anhui University, Hefei, Anhui, 230601, China.
| | - Junlong Chen
- School of Materials Science and Engineering, Anhui University, Hefei, Anhui, 230601, China.
| | - Fangxi Xie
- Department of Chemical Engineering, The University of Melbourne, Victoria, 3010, Australia
| | - Yan Zou
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Ping Chen
- School of Materials Science and Engineering, Anhui University, Hefei, Anhui, 230601, China.
| |
Collapse
|
38
|
Miao Y, Zhao Y, Waterhouse GIN, Shi R, Wu LZ, Zhang T. Photothermal recycling of waste polyolefin plastics into liquid fuels with high selectivity under solvent-free conditions. Nat Commun 2023; 14:4242. [PMID: 37454122 DOI: 10.1038/s41467-023-40005-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 07/06/2023] [Indexed: 07/18/2023] Open
Abstract
The widespread use of polyolefin plastics in modern societies generates huge amounts of plastic waste. With a view toward sustainability, researchers are now seeking novel and low-cost strategies for recycling and valorizing polyolefin plastics. Herein, we report the successful development of a photothermal catalytic recycling system for transforming polyolefin plastics into liquid/waxy fuels under concentrated sunlight or xenon lamp irradiation. Photothermal heating of a Ru/TiO2 catalyst to 200-300 °C in the presence of polyolefin plastics results in intimate catalyst-plastic contact and controllable hydrogenolysis of C-C and C-H bonds in the polymer chains (mediated by Ru sites). By optimizing the reaction temperature and pressure, the complete conversion of waste polyolefins into valuable liquid fuels (86% gasoline- and diesel-range hydrocarbons, C5-C21) is possible in short periods (3 h). This work demonstrates a simple and efficient strategy for recycling waste polyolefin plastics using abundant solar energy.
Collapse
Affiliation(s)
- Yingxuan Miao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yunxuan Zhao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, China.
| | | | - Run Shi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Tierui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
39
|
Fresno F, Iglesias-Juez A, Coronado JM. Photothermal Catalytic CO 2 Conversion: Beyond Catalysis and Photocatalysis. Top Curr Chem (Cham) 2023; 381:21. [PMID: 37253819 DOI: 10.1007/s41061-023-00430-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/28/2023] [Indexed: 06/01/2023]
Abstract
In recent years, the combination of both thermal and photochemical contributions has provided interesting opportunities for solar upgrading of catalytic processes. Photothermal catalysis works at the interface between purely photochemical processes, which involve the direct conversion of photon energy into chemical energy, and classical thermal catalysis, in which the catalyst is activated by temperature. Thus, photothermal catalysis acts in two different ways on the energy path of the reaction. This combined catalysis, of which the fundamental principles will be reviewed here, is particularly promising for the activation of small reactive molecules at moderate temperatures compared to thermal catalysis and with higher reaction rates than those attained in photocatalysis, and it has gained a great deal of attention in the last years. Among the different applications of photothermal catalysis, CO2 conversion is probably the most studied, although reaction mechanisms and photonic-thermal synergy pathways are still quite unclear and, from the reaction route point of view, it can be said that photothermal-catalytic CO2 reduction processes are still in their infancy. This article intends to provide an overview of the principles underpinning photothermal catalysis and its application to the conversion of CO2 into useful molecules, with application essentially as fuels but also as chemical building blocks. The most relevant specific cases published to date will be also reviewed from the viewpoint of selectivity towards the most frequent target products.
Collapse
Affiliation(s)
- Fernando Fresno
- Instituto de Catálisis y Petroleoquímica (ICP), CSIC, C/Marie Curie 2, 28049, Madrid, Spain.
| | - Ana Iglesias-Juez
- Instituto de Catálisis y Petroleoquímica (ICP), CSIC, C/Marie Curie 2, 28049, Madrid, Spain.
| | - Juan M Coronado
- Instituto de Catálisis y Petroleoquímica (ICP), CSIC, C/Marie Curie 2, 28049, Madrid, Spain.
| |
Collapse
|
40
|
Gao F, Wang X, Cui WG, Liu Y, Yang Y, Sun W, Chen J, Liu P, Pan H. Topologically Porous Heterostructures for Photo/Photothermal Catalysis of Clean Energy Conversion. SMALL METHODS 2023; 7:e2201532. [PMID: 36813753 DOI: 10.1002/smtd.202201532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/26/2023] [Indexed: 06/18/2023]
Abstract
As a straightforward way to fix solar energy, photo/photothermal catalysis with semiconductor provides a promising way to settle the energy shortage and environmental crisis in many fields, especially in clean energy conversion. Topologically porous heterostructures (TPHs), featured with well-defined pores and mainly composed by the derivatives of some precursors with specific morphology, are a major part of hierarchical materials in photo/photothermal catalysis and provide a versatile platform to construct efficient photocatalysts for their enhanced light absorption, accelerated charges transfer, improved stability, and promoted mass transportation. Therefore, a comprehensive and timely review on the advantages and recent applications of the TPHs is of great importance to forecast the potential applications and research trend in the future. This review initially demonstrates the advantages of TPHs in photo/photothermal catalysis. Then the universal classifications and design strategies of TPHs are emphasized. Besides, the applications and mechanisms of photo/photothermal catalysis in hydrogen evolution from water splitting and COx hydrogenation over TPHs are carefully reviewed and highlighted. Finally, the challenges and perspectives of TPHs in photo/photothermal catalysis are also critically discussed.
Collapse
Affiliation(s)
- Fan Gao
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Xinqiang Wang
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Wen-Gang Cui
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Yanxia Liu
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Yaxiong Yang
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Wenping Sun
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Jian Chen
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Ping Liu
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Hongge Pan
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
41
|
Ning C, Bai S, Wang J, Li Z, Han Z, Zhao Y, O'Hare D, Song YF. Review of photo- and electro-catalytic multi-metallic layered double hydroxides. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.215008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
42
|
Niche Applications of MXene Materials in Photothermal Catalysis. CHEMISTRY 2023. [DOI: 10.3390/chemistry5010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
MXene materials have found emerging applications as catalysts for chemical reactions due to their intriguing physical and chemical applications. In particular, their broad light response and strong photothermal conversion capabilities are likely to render MXenes promising candidates for photothermal catalysis, which is drawing increasing attention in both academic research and industrial applications. MXenes are likely to satisfy all three criteria of a desirable photothermal catalyst: strong light absorption, effective heat management, and versatile surface reactivity. However, their specific functionalities are largely dependent on their structure and composition, which makes understandings of the structure–function relationship of crucial significance. In this review, we mainly focus on the recent progress of MXene–based photothermal catalysts, emphasizing the functionalities and potential applications of MXene materials in fields of photothermal catalysis, and provide insights on design principles of highly efficient MXene–based photothermal catalysts from the atomic scale. This review provides a relatively thorough understanding of MXene–based materials for photothermal catalysis, as well as an in–depth investigation of emerging high-prospect applications in photothermal catalysis.
Collapse
|
43
|
Zhang X, Luo D, Liu Y, Wang X, Hu H, Ye J, Wang D. Efficient photothermal alcohol dehydration over a plasmonic W18O49 nanostructure under visible-to-near-infrared irradiation. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
44
|
Lv C, Bai X, Ning S, Song C, Guan Q, Liu B, Li Y, Ye J. Nanostructured Materials for Photothermal Carbon Dioxide Hydrogenation: Regulating Solar Utilization and Catalytic Performance. ACS NANO 2023; 17:1725-1738. [PMID: 36734978 DOI: 10.1021/acsnano.2c09025] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Converting carbon dioxide (CO2) into value-added fuels or chemicals through photothermal catalytic CO2 hydrogenation is a promising approach to alleviate the energy shortage and global warming. Understanding the nanostructured material strategies in the photothermal catalytic CO2 hydrogenation process is vital for designing photothermal devices and catalysts and maximizing the photothermal CO2 hydrogenation performance. In this Perspective, we first describe several essential nanomaterial design concepts to enhance sunlight absorption and utilization in photothermal CO2 hydrogenation. Subsequently, we review the latest progress in photothermal CO2 hydrogenation into C1 (e.g., CO, CH4, and CH3OH) and multicarbon hydrocarbon (C2+) products. Finally, the relevant challenges and opportunities in this exciting research realm are discussed. This perspective provides a comprehensive understanding for the light-heat synergy over nanomaterials and instruction for rational photothermal catalyst design for CO2 utilization.
Collapse
Affiliation(s)
- Cuncai Lv
- Research Center for Solar Driven Carbon Neutrality, The College of Physics Science and Technology, Institute of Life Science and Green Development, Hebei University, 071002 Baoding, People's Republic of China
| | - Xianhua Bai
- Research Center for Solar Driven Carbon Neutrality, The College of Physics Science and Technology, Institute of Life Science and Green Development, Hebei University, 071002 Baoding, People's Republic of China
| | - Shangbo Ning
- Research Center for Solar Driven Carbon Neutrality, The College of Physics Science and Technology, Institute of Life Science and Green Development, Hebei University, 071002 Baoding, People's Republic of China
| | - Chenxi Song
- Research Center for Solar Driven Carbon Neutrality, The College of Physics Science and Technology, Institute of Life Science and Green Development, Hebei University, 071002 Baoding, People's Republic of China
| | - Qingqing Guan
- Research Center for Solar Driven Carbon Neutrality, The College of Physics Science and Technology, Institute of Life Science and Green Development, Hebei University, 071002 Baoding, People's Republic of China
| | - Bang Liu
- Research Center for Solar Driven Carbon Neutrality, The College of Physics Science and Technology, Institute of Life Science and Green Development, Hebei University, 071002 Baoding, People's Republic of China
| | - Yaguang Li
- Research Center for Solar Driven Carbon Neutrality, The College of Physics Science and Technology, Institute of Life Science and Green Development, Hebei University, 071002 Baoding, People's Republic of China
| | - Jinhua Ye
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0814, Japan
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
45
|
Miao W, Hao R, Wang J, Wang Z, Lin W, Liu H, Feng Z, Lyu Y, Li Q, Jia D, Ouyang R, Cheng J, Nie A, Wu J. Architecture Design and Catalytic Activity: Non-Noble Bimetallic CoFe/fe 3 O 4 Core-Shell Structures for CO 2 Hydrogenation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205087. [PMID: 36529701 PMCID: PMC9929264 DOI: 10.1002/advs.202205087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/28/2022] [Indexed: 05/04/2023]
Abstract
Non-noble metal catalysts now play a key role in promoting efficiently and economically catalytic reduction of CO2 into clean energy, which is an important strategy to ameliorate global warming and resource shortage issues. Here, a non-noble bimetallic catalyst of CoFe/Fe3 O4 nanoparticles is successfully designed with a core-shell structure that is well dispersed on the defect-rich carbon substrate for the hydrogenation of CO2 under mild conditions. The catalysts exhibit a high CO2 conversion activity with the rate of 30% and CO selectivity of 99%, and extremely robust stability without performance decay over 90 h in the reverse water gas shift reaction process. Notably, it is found that the reversible exsolution/dissolution of cobalt in the Fe3 O4 shell will lead to a dynamic and reversible deactivation/regeneration of the catalysts, accompanying by shell thickness breathing during the repeated cycles, via atomic structure study of the catalysts at different reaction stages. Combined with density functional theory calculations, the catalytic activity reversible regeneration mechanism is proposed. This work reveals the structure-property relationship for rational structure design of the advanced non-noble metallic catalyst materials with much improved performance.
Collapse
Affiliation(s)
- Wenkang Miao
- Materials Genome InstituteShanghai UniversityShanghai200444China
| | - Ronghui Hao
- Materials Genome InstituteShanghai UniversityShanghai200444China
| | - Jingzhou Wang
- Materials Genome InstituteShanghai UniversityShanghai200444China
| | - Zihan Wang
- Materials Genome InstituteShanghai UniversityShanghai200444China
| | - Wenxin Lin
- School of Materials Science and EngineeringZhejiang Sci‐Tech UniversityHangzhou310018China
| | - Heguang Liu
- School of Materials Science and EngineeringXi'an University of TechnologyXi'an710048China
| | - Zhenjie Feng
- Materials Genome InstituteShanghai UniversityShanghai200444China
| | - Yingchun Lyu
- Materials Genome InstituteShanghai UniversityShanghai200444China
| | - Qianqian Li
- Materials Genome InstituteShanghai UniversityShanghai200444China
| | - Dongling Jia
- Collaborative Research CenterShanghai University of Medicine and Health SciencesShanghai201318China
| | - Runhai Ouyang
- Materials Genome InstituteShanghai UniversityShanghai200444China
| | - Jipeng Cheng
- School of Materials Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Anmin Nie
- Center for High Pressure ScienceState Key Laboratory of Metastable Materials Science and TechnologyYanshan UniversityQinhuangdao066004China
| | - Jinsong Wu
- Nanostructure Research CenterWuhan University of TechnologyWuhan430070China
| |
Collapse
|
46
|
Zhang X, Sun Y, Ju S, Ye J, Hu X, Chen W, Yao L, Xia G, Fang F, Sun D, Yu X. Solar-Driven Reversible Hydrogen Storage. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206946. [PMID: 36308031 DOI: 10.1002/adma.202206946] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/02/2022] [Indexed: 06/16/2023]
Abstract
The lack of safe and efficient hydrogen storage is a major bottleneck for large-scale application of hydrogen energy. Reversible hydrogen storage of light-weight metal hydrides with high theoretical gravimetric and volumetric hydrogen density is one ideal solution but requires extremely high operating temperature with large energy input. Herein, taking MgH2 as an example, a concept is demonstrated to achieve solar-driven reversible hydrogen storage of metal hydrides via coupling the photothermal effect and catalytic role of Cu nanoparticles uniformly distributed on the surface of MXene nanosheets (Cu@MXene). The photothermal effect of Cu@MXene, coupled with the "heat isolator" role of MgH2 indued by its poor thermal conductivity, effectively elevates the temperature of MgH2 upon solar irradiation. The "hydrogen pump" effect of Ti and TiHx species that are in situ formed on the surface of MXene from the reduction of MgH2 , on the other hand, plays a catalytic role in effectively alleviating the kinetic barrier and hence decreasing the operating temperature required for reversible hydrogen adsorption and desorption of MgH2 . Based on the combination of photothermal and catalytic effect of Cu@MXene, a reversible hydrogen storage capacity of 5.9 wt% is achieved for MgH2 after 30 cycles using solar irradiation as the only energy source.
Collapse
Affiliation(s)
- Xiaoyue Zhang
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Yahui Sun
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Shunlong Ju
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Jikai Ye
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Xuechun Hu
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Wei Chen
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Long Yao
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Guanglin Xia
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Fang Fang
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Dalin Sun
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Xuebin Yu
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| |
Collapse
|
47
|
Local surface plasmon resonance promotion of photogenerated electrons to hot electrons for enhancing photothermal CO2 hydrogenation over Ni(OH)2/Ti3C2 catalysts. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
48
|
Wu Z, Shen J, Li C, Zhang C, Feng K, Wang Z, Wang X, Meira DM, Cai M, Zhang D, Wang S, Chu M, Chen J, Xi Y, Zhang L, Sham TK, Genest A, Rupprechter G, Zhang X, He L. Mo 2TiC 2 MXene-Supported Ru Clusters for Efficient Photothermal Reverse Water-Gas Shift. ACS NANO 2022; 17:1550-1559. [PMID: 36584240 PMCID: PMC9878975 DOI: 10.1021/acsnano.2c10707] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Driving metal-cluster-catalyzed high-temperature chemical reactions by sunlight holds promise for the development of negative-carbon-footprint industrial catalysis, which has yet often been hindered by the poor ability of metal clusters to harvest and utilize the full spectrum of solar energy. Here, we report the preparation of Mo2TiC2 MXene-supported Ru clusters (Ru/Mo2TiC2) with pronounced broadband sunlight absorption ability and high sintering resistance. Under illumination of focused sunlight, Ru/Mo2TiC2 can catalyze the reverse water-gas shift (RWGS) reaction to produce carbon monoxide from the greenhouse gas carbon dioxide and renewable hydrogen with enhanced activity, selectivity, and stability compared to their nanoparticle counterparts. Notably, the CO production rate of MXene-supported Ru clusters reached 4.0 mol·gRu-1·h-1, which is among the best reported so far for photothermal RWGS catalysts. Detailed studies suggest that the production of methane is kinetically inhibited by the rapid desorption of CO from the surface of the Ru clusters.
Collapse
Affiliation(s)
- Zhiyi Wu
- Institute
of Functional Nano & Soft Materials (FUNSOM), Soochow University-Western
University Centre for Synchrotron Radiation Research, Soochow University, Suzhou 215123, PR China
- Jiangsu
Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123 Jiangsu. PR China
| | - Jiahui Shen
- Institute
of Functional Nano & Soft Materials (FUNSOM), Soochow University-Western
University Centre for Synchrotron Radiation Research, Soochow University, Suzhou 215123, PR China
| | - Chaoran Li
- Institute
of Functional Nano & Soft Materials (FUNSOM), Soochow University-Western
University Centre for Synchrotron Radiation Research, Soochow University, Suzhou 215123, PR China
- Jiangsu
Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123 Jiangsu. PR China
| | - Chengcheng Zhang
- Institute
of Functional Nano & Soft Materials (FUNSOM), Soochow University-Western
University Centre for Synchrotron Radiation Research, Soochow University, Suzhou 215123, PR China
| | - Kai Feng
- Institute
of Functional Nano & Soft Materials (FUNSOM), Soochow University-Western
University Centre for Synchrotron Radiation Research, Soochow University, Suzhou 215123, PR China
| | - Zhiqiang Wang
- Department
of Chemistry, Soochow University-Western University Centre for Synchrotron
Radiation Research, University of Western
Ontario, London, Ontario N6A 5B7, Canada
| | - Xuchun Wang
- Department
of Chemistry, Soochow University-Western University Centre for Synchrotron
Radiation Research, University of Western
Ontario, London, Ontario N6A 5B7, Canada
| | - Debora Motta Meira
- CLS@APS,
Advanced Photon Source, Argonne National
Laboratory, Lemont, Illinois 60439, United States
| | - Mujin Cai
- Institute
of Functional Nano & Soft Materials (FUNSOM), Soochow University-Western
University Centre for Synchrotron Radiation Research, Soochow University, Suzhou 215123, PR China
| | - Dake Zhang
- Institute
of Functional Nano & Soft Materials (FUNSOM), Soochow University-Western
University Centre for Synchrotron Radiation Research, Soochow University, Suzhou 215123, PR China
| | - Shenghua Wang
- Institute
of Functional Nano & Soft Materials (FUNSOM), Soochow University-Western
University Centre for Synchrotron Radiation Research, Soochow University, Suzhou 215123, PR China
| | - Mingyu Chu
- Institute
of Functional Nano & Soft Materials (FUNSOM), Soochow University-Western
University Centre for Synchrotron Radiation Research, Soochow University, Suzhou 215123, PR China
| | - Jinxing Chen
- Institute
of Functional Nano & Soft Materials (FUNSOM), Soochow University-Western
University Centre for Synchrotron Radiation Research, Soochow University, Suzhou 215123, PR China
| | - Yuyao Xi
- Institute
of Functional Nano & Soft Materials (FUNSOM), Soochow University-Western
University Centre for Synchrotron Radiation Research, Soochow University, Suzhou 215123, PR China
| | - Liang Zhang
- Institute
of Functional Nano & Soft Materials (FUNSOM), Soochow University-Western
University Centre for Synchrotron Radiation Research, Soochow University, Suzhou 215123, PR China
- Jiangsu
Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123 Jiangsu. PR China
| | - Tsun-Kong Sham
- Department
of Chemistry, Soochow University-Western University Centre for Synchrotron
Radiation Research, University of Western
Ontario, London, Ontario N6A 5B7, Canada
| | - Alexander Genest
- Institute
of Materials Chemistry, Technische Universität
Wein, Wien 1060, Austria
| | - Günther Rupprechter
- Institute
of Materials Chemistry, Technische Universität
Wein, Wien 1060, Austria
| | - Xiaohong Zhang
- Institute
of Functional Nano & Soft Materials (FUNSOM), Soochow University-Western
University Centre for Synchrotron Radiation Research, Soochow University, Suzhou 215123, PR China
- Jiangsu
Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123 Jiangsu. PR China
| | - Le He
- Institute
of Functional Nano & Soft Materials (FUNSOM), Soochow University-Western
University Centre for Synchrotron Radiation Research, Soochow University, Suzhou 215123, PR China
- Jiangsu
Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123 Jiangsu. PR China
| |
Collapse
|
49
|
Wu Q, Ma H, Wang Y, Chen J, Dai J, Xu X, Wu X. Surface Electron Localization in Cu-MOF-Bonded Double-Heterojunction Cu 2O Induces Highly Efficient Photocatalytic CO 2 Reduction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54328-54337. [PMID: 36399665 DOI: 10.1021/acsami.2c15278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Truncated octahedron Cu2O (TOC) has attracted more attention for its suitable band gap and high carrier separation efficiency due to introduction of the facet heterojunction, but its practical drawback is still the instability caused by the irreversible disproportionation reaction (Cu2O → Cu + CuO). Here, we design and fabricate the TOC/Cu-MOF (MOF: metal-organic framework) double-heterojunction structures with different Cu-MOF loadings. The introduced heterojunction between TOC and Cu-MOF not only produces a stable interface Cux+ bonding structure with the electronic states localized within the average collisional diameter of electrons 1.72 nm for TOC/2.1 wt %Cu-MOF as the active sites, but also promotes the surface energy level difference between the (100) and (111) facet heterojunctions. Meanwhile, the bonded Cu-MOF with a narrow bandgap effectively consumes holes by recombination with the photoexcited electrons from Cu-MOF itself. In our experiments, the TOC/Cu-MOF double heterostructure with a loading amount of 2.1 wt % Cu-MOF shows an optimal photocatalytic CO2 reduction performance. The CO evolution rate reaches 23.01 μmol g-1 h-1, which is about 2.01 and 4.47 times larger than those of octahedral and hexahedral Cu2O/Cu-MOF, respectively, and an excellent photostability is shown for four cycles with each cycle lasting for 4 h. Such a double heterostructure provides insight into highly efficient electron transfer and photostability in Cu2O-related composite materials.
Collapse
Affiliation(s)
- Qifan Wu
- National Laboratory of Solid States Microstructures and School of Physics, Nanjing University, Nanjing210093, China
| | - Heng Ma
- National Laboratory of Solid States Microstructures and School of Physics, Nanjing University, Nanjing210093, China
| | - Yixian Wang
- National Laboratory of Solid States Microstructures and School of Physics, Nanjing University, Nanjing210093, China
| | - Jian Chen
- National Laboratory of Solid States Microstructures and Research Institute of Superconductor Electronics, Nanjing University, Nanjing210093, China
| | - Jun Dai
- School of Mathematics & Physics, Jiangsu University Science & Technology, Zhenjiang212003, China
| | - Xiaobing Xu
- College of Electronic Engineering, Nanjing Xiaozhuang University, Nanjing211171, China
| | - Xinglong Wu
- National Laboratory of Solid States Microstructures and School of Physics, Nanjing University, Nanjing210093, China
| |
Collapse
|
50
|
Wang Z, Yang Z, Kadirova ZC, Guo M, Fang R, He J, Yan Y, Ran J. Photothermal functional material and structure for photothermal catalytic CO2 reduction: Recent advance, application and prospect. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|