1
|
Wu X, Chen A, Yu X, Tian Z, Li H, Jiang Y, Xu J. Microfluidic Synthesis of Multifunctional Micro-/Nanomaterials from Process Intensification: Structural Engineering to High Electrochemical Energy Storage. ACS NANO 2024. [PMID: 39086355 DOI: 10.1021/acsnano.4c07599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Multifunctional micro-/nanomaterials featuring functional superiority and high value-added physicochemical nature have received immense attention in electrochemical energy storage. Microfluidic synthesis has become an emergent technology for massively producing multifunctional micro-/nanomaterials with tunable microstructure and morphology due to its rapid mass/heat transfer and precise fluid controllability. In this review, the latest progresses and achievements in microfluidic-synthesized multifunctional micro-/nanomaterials are summarized via reaction process intensification, multifunctional micro-/nanostructural engineering and electrochemical energy storage applications. The reaction process intensification mechanisms of various micro-/nanomaterials, including quantum dots (QDs), metal materials, conducting polymers, metallic oxides, polyanionic compounds, metal-organic frameworks (MOFs) and two-dimensional (2D) materials, are discussed. Especially, the multifunctional structural engineering principles of as-fabricated micro-/nanomaterials, such as vertically aligned structure, heterostructure, core-shell structure, and tunable microsphere, are introduced. Subsequently, the electrochemical energy storage application of as-prepared multifunctional micro-/nanomaterials is clarified in supercapacitors, lithium-ion batteries, sodium-ion batteries, all-vanadium redox flow batteries, and dielectric capacitors. Finally, the current problems and future forecasts are illustrated.
Collapse
Affiliation(s)
- Xingjiang Wu
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - An Chen
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Xude Yu
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Zhicheng Tian
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Hao Li
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Yanjun Jiang
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Jianhong Xu
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
2
|
Adsorptive carbon-based materials for biomedical applications. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
3
|
Xiao H, Wang Y, Hao B, Cao Y, Cui Y, Huang X, Shi B. Collagen Fiber-Based Advanced Separation Materials: Recent Developments and Future Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107891. [PMID: 34894376 DOI: 10.1002/adma.202107891] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/30/2021] [Indexed: 06/14/2023]
Abstract
Separation plays a critical role in a broad range of industrial applications. Developing advanced separation materials is of great significance for the future development of separation technology. Collagen fibers (CFs), the typical structural proteins, exhibit unique structural hierarchy, amphiphilic wettability, and versatile chemical reactivity. These distinctive properties provide infinite possibilities for the rational design of advanced separation materials. During the past 2 decades, many progressive achievements in the development of CFs-derived advanced separation materials have been witnessed already. Herein, the CFs-based separation materials are focused on and the recent progresses in this topic are reviewed. CFs widely existing in animal skins display unique hierarchically fibrous structure, amphiphilicity-enabled surface wetting behaviors, multi-functionality guaranteed covalent/non-covalent reaction versatility. These outstanding merits of CFs bring great opportunities for realizing rational design of a variety of advanced separation materials that were capable of achieving high-performance separations to diverse specific targets, including oily pollutants, natural products, metal ions, anionic contaminants and proteins, etc. Besides, the important issues for the further development of CFs-based advanced separation materials are also discussed.
Collapse
Affiliation(s)
- Hanzhong Xiao
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, P. R. China
- Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yujia Wang
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, P. R. China
- Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Baicun Hao
- Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yiran Cao
- Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yiwen Cui
- Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Xin Huang
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, P. R. China
- Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Bi Shi
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, P. R. China
- Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
4
|
Qin L, Yin Q, Li J, Chen Q, Liu Y, Liu M, Yi Y. Fabrication of monodisperse polyacrylonitrile hollow microspheres containing transition metals and low-temperature catalytic graphitization. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03009-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Ye X, Shao C, Fan Q, Shang L, Ye F. Porous carbon nanotube microspheres with tailorable surface wettability areas for oil adsorption. J Colloid Interface Sci 2021; 604:737-745. [PMID: 34293531 DOI: 10.1016/j.jcis.2021.07.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/25/2021] [Accepted: 07/11/2021] [Indexed: 12/20/2022]
Abstract
HYPOTHESIS Oil adsorption is significant for water purification and environmental protection. However, the conventional bulk sorbents face the predicament of uncontrollable motion as well as hydrophobic nature the whole body, which largely restricts their uptake capacity underwater. Hence, novel adsorbent material for high-efficient oil uptake both at the surface and under the water is urgently required. EXPERIMENTS We presented a phase-transition lysozyme coating approach to fabricate porous carbon nanotube microspheres with tailorable surface wettability areas for versatile oil adsorption. Because of the existence of magnetic nanoparticle in one hemisphere, the multi-sites coating was easily achieved by constantly changing orientations of the magnetic field. Owing to the integration of various hydrophilic functional groups in lysozyme as well as remarkable adhesion to virtually arbitrary materials, the intrinsically hydrophobic surface of the microspheres was partially modified hydrophilic on multiple sites. FINDINGS It was demonstrated that the unique surface wettability feature and the porous structure enabled the microspheres to adsorb multiple contaminants both floating on the water and underwater. Besides, the magnetic-responsive ability allowed for controllable collection of oil contaminants. These features, along with the reusability, make the porous carbon nanotube microspheres excellent adsorbents for water purification.
Collapse
Affiliation(s)
- Xiaomin Ye
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, No.8 South 3rd Street Zhongguancun, Beijing 100190, China; School of Physical Sciences, University of Chinese Academy of Sciences, No.1 Yanqihu East Road, Huairou District, Beijing 100049, China
| | - Changmin Shao
- Wenzhou Institute, University of Chinese Academy of Sciences, No.1 Jianlian Road, Longwan District, Wenzhou, Zhejiang 325001, China
| | - Qihui Fan
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, No.8 South 3rd Street Zhongguancun, Beijing 100190, China.
| | - Luoran Shang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, No.131 Dongan Road, Xuhui District, Shanghai 200032, China.
| | - Fangfu Ye
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, No.8 South 3rd Street Zhongguancun, Beijing 100190, China; School of Physical Sciences, University of Chinese Academy of Sciences, No.1 Yanqihu East Road, Huairou District, Beijing 100049, China; Wenzhou Institute, University of Chinese Academy of Sciences, No.1 Jianlian Road, Longwan District, Wenzhou, Zhejiang 325001, China; Songshan Lake Materials Laboratory, Songshan Lake Scenic Area, Dongguan, Guangdong 523808, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), No.1 Jianlian Road, Longwan District, Wenzhou, Zhejiang 325001, China.
| |
Collapse
|
6
|
Jessl S, Engelke S, Copic D, Baumberg JJ, De Volder M. Anisotropic Carbon Nanotube Structures with High Aspect Ratio Nanopores for Li-Ion Battery Anodes. ACS APPLIED NANO MATERIALS 2021; 4:6299-6305. [PMID: 34240009 PMCID: PMC8240089 DOI: 10.1021/acsanm.1c01157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Technological advances in membrane technology, catalysis, and electrochemical energy storage require the fabrication of controlled pore structures at ever smaller length scales. It is therefore important to develop processes allowing for the fabrication of materials with controlled submicron porous structures. We propose a combination of colloidal lithography and chemical vapor deposition of carbon nanotubes to create continuous straight pores with diameters down to 100 nm in structures with thicknesses of more than 300 μm. These structures offer unique features, including continuous and parallel pores with aspect ratios in excess of 3000, a low pore tortuosity, good electrical conductivity, and electrochemical stability. We demonstrate that these structures can be used in Li-ion batteries by coating the carbon nanotubes with Si as an active anode material.
Collapse
Affiliation(s)
- Sarah Jessl
- Department
of Engineering, University of Cambridge, Cambridge CB2 1PZ, United Kingdom
| | - Simon Engelke
- Department
of Engineering, University of Cambridge, Cambridge CB2 1PZ, United Kingdom
- Cambridge
Graphene Centre, University of Cambridge, Cambridge CB3 0FA, United Kingdom
| | - Davor Copic
- Department
of Engineering, University of Cambridge, Cambridge CB2 1PZ, United Kingdom
| | - Jeremy J. Baumberg
- NanoPhotonics
Centre, Cavendish Laboratory, University
of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Michael De Volder
- Department
of Engineering, University of Cambridge, Cambridge CB2 1PZ, United Kingdom
| |
Collapse
|
7
|
Qiao L, Li Y, Liu Y, Wang Y, Du K. High-strength, blood-compatible, and high-capacity bilirubin adsorbent based on cellulose-assisted high-quality dispersion of carbon nanotubes. J Chromatogr A 2020; 1634:461659. [PMID: 33166890 DOI: 10.1016/j.chroma.2020.461659] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023]
Abstract
Excess bilirubin can accumulate in body organs and has serious effects on human health. In this work, a simple engineering strategy, based on cellulose-assisted high-quality dispersion of carbon nanotubes (CNTs), is proposed to produce high-performance bilirubin adsorbents. By dispersing cellulose and CNTs in NaOH/thiourea aqueous solution, a homogeneous and stable cellulose/CNTs solution is achieved. The obtained cellulose/CNTs solution is applied for the fabrication of cellulose/CNTs microspheres (CCMs), in which cellulose serves as a base material and guarantees the blood compatibility of the composite material, and CNTs contribute to the improved mechanical strength and high adsorption capacity. To further improve blood compatibility and adsorption capacity, lysine is immobilized on the CCMs. The obtained lysine-modified CCMs (LCCMs) exhibit a large surface area (171.31 m2/g) and hierarchically porous structure. Experimental results demonstrate LCCMs have high bilirubin adsorption capacity (204.12 mg/g) that is significantly higher than most of the reported adsorbents. The combination of high strength, blood compatibility, and high adsorption capacity positions the LCCMs as a promising candidate for bilirubin removal.
Collapse
Affiliation(s)
- Liangzhi Qiao
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu 610065, PR China
| | - Yaling Li
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu 610065, PR China
| | - Yi Liu
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu 610065, PR China
| | - Yinghong Wang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu 610065, PR China
| | - Kaifeng Du
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu 610065, PR China.
| |
Collapse
|
8
|
Yang W, Lv L, Li X, Han X, Li M, Li C. Quaternized Silk Nanofibrils for Electricity Generation from Moisture and Ion Rectification. ACS NANO 2020; 14:10600-10607. [PMID: 32806080 DOI: 10.1021/acsnano.0c04686] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Protein nanostructures in living organisms have attracted intense interests in biology and material science owing to their intriguing abilities to harness ion transportation for matter/signal transduction and bioelectricity generation. Silk nanofibrils, serving as the fundamental building blocks for silk, not only have the advantages of natural abundance, low cost, biocompatibility, sustainability, and degradability but also play a key role in mechanical toughness and biological functions of silk fibers. Herein, cationic silk nanofibrils (SilkNFs), with an ultrathin thickness of ∼4 nm and a high aspect ratio up to 500, were successfully exfoliated from natural cocoon fibers via quaternization followed by mechanical homogenization. Being positively charged in a wide pH range of 2-12, these cationic SilkNFs could combine with different types of negatively charged biological nanofibrils to produce asymmetric ionic membranes and aerogels that have the ability to tune ion translocation. The asymmetric ionic aerogels could create an electric potential as high as 120 mV in humid ambient air, whereas asymmetric ionic membranes could be used in ionic rectification with a rectification ratio of 5.2. Therefore, this green exfoliation of cationic SilkNFs may provide a biological platform of nanomaterials for applications as diverse as ion electronics, renewable energy, and sustainable nanotechnology.
Collapse
Affiliation(s)
- Weiqing Yang
- Group of Biomimetic Smart Materials, CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Road 189, Qingdao 266101, P.R. China
- College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao, Shandong 266071, P.R. China
| | - Lili Lv
- Group of Biomimetic Smart Materials, CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Road 189, Qingdao 266101, P.R. China
- Center of Material and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P.R. China
| | - Xiankai Li
- Group of Biomimetic Smart Materials, CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Road 189, Qingdao 266101, P.R. China
- Center of Material and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P.R. China
| | - Xiao Han
- Group of Biomimetic Smart Materials, CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Road 189, Qingdao 266101, P.R. China
- Center of Material and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P.R. China
| | - Mingjie Li
- Group of Biomimetic Smart Materials, CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Road 189, Qingdao 266101, P.R. China
- Center of Material and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P.R. China
| | - Chaoxu Li
- Group of Biomimetic Smart Materials, CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Road 189, Qingdao 266101, P.R. China
- Center of Material and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P.R. China
| |
Collapse
|
9
|
Luo J, Fan JB, Wang S. Recent Progress of Microfluidic Devices for Hemodialysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1904076. [PMID: 31535786 DOI: 10.1002/smll.201904076] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/31/2019] [Indexed: 06/10/2023]
Abstract
Microfluidic hemodialysis techniques have recently attracted great attention in the treatment of kidney disease due to their advantages of portability and wearability as well as their great potential for replacing clinical hospital-centered blood purification with continuous in-home hemodialysis. This Review summarizes the recent progress in microfluidic devices for hemodialysis. First, the history of kidney-inspired hemodialysis is introduced. Then, recent achievements in the preparation of microfluidic devices and hemodialysis nanoporous membrane materials are presented and categorized. Subsequently, attention is drawn to the recent progress of nanoporous membrane-based microfluidic devices for hemodialysis. Finally, the challenges and opportunities of hemodialysis microfluidic devices in the future are also discussed. This Review is expected to provide a comprehensive guide for the design of hemodialysis microfluidic devices that are closely related to clinical applications.
Collapse
Affiliation(s)
- Jing Luo
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jun-Bing Fan
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
10
|
Xi G, Liu W, Chen M, Li Q, Hao X, Wang M, Yang X, Feng Y, He H, Shi C, Li W. Polysaccharide-Based Lotus Seedpod Surface-Like Porous Microsphere with Precise and Controllable Micromorphology for Ultrarapid Hemostasis. ACS APPLIED MATERIALS & INTERFACES 2019; 11:46558-46571. [PMID: 31769962 DOI: 10.1021/acsami.9b17543] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Rapid water absorption rate has become a bottleneck that limits ultrarapid hemostatic performance of hemostatic microspheres. Herein, we reported a "lotus seedpod surface-like" polysaccharide hemostatic microsphere (PHM) with "macropits on surface" morphology and "micropores in macropits" structure. Unique macropits on surface can promote the water absorption rate because they are advantageous to quickly guide blood into the micropores. Special micropores are internally connected with each other, which endows PHM4 with high water absorption ratio. During the process of blood entering the micropores from micropits, the pore size decreases gradually. In this way, blood clotting factors could be rapidly concentrated. PHM4 showed the highest water absorption rate (40.7 mL/s/cm2) and rapid hemostatic property in vivo (hemostatic time shortened from 210 to 45 s). Lotus seedpod surface-like PHMs are believed to have further clinical application as an effective hemostasis.
Collapse
Affiliation(s)
- Guanghui Xi
- School of Ophthalmology & Optometry, Eye Hospital, School of Biomedical Engineering , Wenzhou Medical University , Wenzhou , Zhejiang 325027 , China
- Wenzhou Institute of Biomaterials and Engineering, Wenzhou Institute , University of Chinese Academy of Sciences , Wenzhou , Zhejiang 325011 , China
| | - Wen Liu
- School of Ophthalmology & Optometry, Eye Hospital, School of Biomedical Engineering , Wenzhou Medical University , Wenzhou , Zhejiang 325027 , China
- Wenzhou Institute of Biomaterials and Engineering, Wenzhou Institute , University of Chinese Academy of Sciences , Wenzhou , Zhejiang 325011 , China
| | - Miao Chen
- School of Ophthalmology & Optometry, Eye Hospital, School of Biomedical Engineering , Wenzhou Medical University , Wenzhou , Zhejiang 325027 , China
| | - Qian Li
- Department of Biomedical Sciences , Texas A&M University College of Dentistry , Dallas , Texas 75246 , United States
| | - Xiao Hao
- Cardiovascular Division 1 , Hebei General Hospital , Shijiazhuang , Hebei 050051 , China
| | - Mingshan Wang
- The First Affiliated Hospital of Wenzhou Medical University , Wenzhou Medical University , Wenzhou , Zhejiang 325000 , China
| | - Xiao Yang
- School of Chemical Engineering and Technology , Tianjin University , Tianjin 300350 , China
| | - Yakai Feng
- School of Chemical Engineering and Technology , Tianjin University , Tianjin 300350 , China
| | - Hongchao He
- Department of Urology , Shanghai Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine , Shanghai 200025 , China
| | - Changcan Shi
- School of Ophthalmology & Optometry, Eye Hospital, School of Biomedical Engineering , Wenzhou Medical University , Wenzhou , Zhejiang 325027 , China
- Wenzhou Institute of Biomaterials and Engineering, Wenzhou Institute , University of Chinese Academy of Sciences , Wenzhou , Zhejiang 325011 , China
| | - Wenzhong Li
- Institute of Chemistry and Biochemistry , Free University of Berlin , Takustrasse 3 , Berlin 14195 , Germany
| |
Collapse
|
11
|
Yew M, Ren Y, Koh KS, Sun C, Snape C. A Review of State-of-the-Art Microfluidic Technologies for Environmental Applications: Detection and Remediation. GLOBAL CHALLENGES (HOBOKEN, NJ) 2019; 3:1800060. [PMID: 31565355 PMCID: PMC6383963 DOI: 10.1002/gch2.201800060] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/09/2018] [Indexed: 05/17/2023]
Abstract
Microfluidic systems have advanced beyond natural and life science applications and lab-on-a-chip uses. A growing trend of employing microfluidic technologies for environmental detection has emerged thanks to the precision, time-effectiveness, and cost-effectiveness of advanced microfluidic systems. This paper reviews state-of-the-art microfluidic technologies for environmental applications, such as on-site environmental monitoring and detection. Microdevices are extensively used in collecting environmental samples as a means to facilitate detection and quantification of targeted components with minimal quantities of samples. Likewise, microfluidic-inspired approaches for separation and treatment of contaminated water and air, such as the removal of heavy metals and waterborne pathogens from wastewater and carbon capture are also investigated.
Collapse
Affiliation(s)
- Maxine Yew
- Department of MechanicalMaterials and Manufacturing EngineeringUniversity of Nottingham Ningbo China199 Taikang East Road315100NingboChina
| | - Yong Ren
- Department of MechanicalMaterials and Manufacturing EngineeringUniversity of Nottingham Ningbo China199 Taikang East Road315100NingboChina
| | - Kai Seng Koh
- School of Engineering and Physical SciencesHeriot‐Watt University MalaysiaNo. 1 Jalan Venna P5/2, Precinct 562200PutrajayaMalaysia
| | - Chenggong Sun
- Faculty of EngineeringUniversity of NottinghamThe Energy Technologies Building, Jubilee CampusNottinghamNG7 2TUUK
| | - Colin Snape
- Faculty of EngineeringUniversity of NottinghamThe Energy Technologies Building, Jubilee CampusNottinghamNG7 2TUUK
| |
Collapse
|