1
|
Yan N, Ning C, Liu X, Zhu Y. Recent Progress on Preparation of Anisotropic Block Copolymer Particles Self-Assembled in 3D Emulsion Droplets. Macromol Rapid Commun 2025; 46:e2401023. [PMID: 39973237 DOI: 10.1002/marc.202401023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/06/2025] [Indexed: 02/21/2025]
Abstract
Self-assembly of block copolymers (BCPs) into anisotropic colloidal particles within 3D emulsion droplets has attracted considerable interest since the confined assembly in deformable geometries offers significant potential for designing and constructing specific anisotropic polymer materials for various applications. By precisely controlling the deformation of emulsion droplets, nucleation, and deposition sequence of BCP segments at the oil/water interface, various anisotropic polymer assembly particles with tunable shapes and internal structures can be generated. This review summarizes the recent advancements in the design and formation of anisotropic polymer assembly particles via confined assembly of BCPs, including an overview of emulsification techniques and methods, the regulation of particle shapes and internal structures, as well as the diverse applications of resulting anisotropic particles. Typically, the regulation of anisotropic shapes can be achieved through experimental approaches, such as the volume ratio and interactions between blocks, surfactant selectivity, crystallization-induced deformation, stimuli-responsive additives, evaporation rate, post-annealing, confinement degree, and disassembly of prepared polymer colloids. Finally, the further perspectives and challenges in the construction anisotropic functional polymer materials are discussed.
Collapse
Affiliation(s)
- Nan Yan
- College of Chemistry, Research Institute for Scientific and Technological Innovation, Changchun Normal University, Changchun, 130032, China
| | - Cong Ning
- College of Chemistry, Research Institute for Scientific and Technological Innovation, Changchun Normal University, Changchun, 130032, China
| | - Xuejie Liu
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing, 314001, China
| | - Yutian Zhu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| |
Collapse
|
2
|
Bertucci S, Piccinotti D, Garbarino M, Escher A, Bravetti G, Weder C, Lova P, Comoretto D, Steiner U, Di Stasio F, Dodero A. One-pot synthesis of photonic microparticles doped with light-emitting quantum dots. NANOSCALE 2025; 17:10194-10204. [PMID: 40146269 PMCID: PMC11949258 DOI: 10.1039/d5nr00216h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/13/2025] [Indexed: 03/28/2025]
Abstract
Colloidal quantum dots (QDs) exhibit size-dependent, tuneable optical properties that render them useful in a wide range of technological applications. However, integration of QDs into structured materials remains a significant challenge due to their susceptibility to degradation under chemical or physical perturbations. Here, we present a facile, scalable one-pot co-assembly strategy to embed commercially available CdSe/ZnS core-shell quantum dots into photonic microparticles via the confined self-assembly of a poly(styrene)-b-poly(2-vinylpyridine) block copolymer in emulsion droplets. The resulting hybrid particles exhibit a well-defined concentric lamellar structure and the quantum dots are selectively incorporated into the domains formed by the poly(2-vinylpyridine) blocks. This design enables two different optical responses, i.e., vivid, non-iridescent structural colouration from photonic bandgap effects and stable engineered photoluminescence from the embedded QDs. The use of swelling agents provides an effective means to tune the photonic bandgap spectral position, extending the optical range to the entire visible region. Optical experiments reveal a subtle interplay between the photonic structure and QD emission, and the emission properties remain intact despite variations in the structural periodicity and matrix refractive index. This work highlights a robust platform for the integration of functional nanomaterials into photonic architectures, offering significant potential for applications in advanced light sources, displays, and sensing technologies. The simplicity of the approach, combined with its scalability, sets the stage for future exploration into hybrid photonic materials with tailored optical properties.
Collapse
Affiliation(s)
- Simone Bertucci
- Photonic Nanomaterials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy.
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146, Genoa, Italy
| | - Davide Piccinotti
- Photonic Nanomaterials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy.
| | - Mauro Garbarino
- Photonic Nanomaterials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy.
| | - Andrea Escher
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146, Genoa, Italy
| | - Gianluca Bravetti
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland.
| | - Christoph Weder
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland.
- National Center of Competence in Research Bio-Inspired Materials, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Paola Lova
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146, Genoa, Italy
| | - Davide Comoretto
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146, Genoa, Italy
| | - Ullrich Steiner
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland.
- National Center of Competence in Research Bio-Inspired Materials, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Francesco Di Stasio
- Photonic Nanomaterials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy.
| | - Andrea Dodero
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146, Genoa, Italy
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland.
- National Center of Competence in Research Bio-Inspired Materials, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| |
Collapse
|
3
|
Li X, Zheng M, Li J, Fatima R, Xia B, Li Y, Song DP. Synthesis of Photosensitive Bottlebrush Block Copolymers for Tunable Photonic Pigments via Light-Driven Engineering of Chain Conformation. Macromol Rapid Commun 2025:e2500179. [PMID: 40243117 DOI: 10.1002/marc.202500179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/07/2025] [Indexed: 04/18/2025]
Abstract
Structurally colored bottlebrush block copolymers (BBCPs) offer a safer and more environmentally friendly alternative to traditional toxic pigments. For practical applications, precise control of their photonic bandgap is essential to generate various colors. A novel amphiphilic BBCPs designed with photosensitive o-nitrobenzyl ester (NE) groups strategically positioned near the main chain of the hydrophilic block is presented. Under UV radiation, these NE groups convert to acid groups, enhancing the hydrophilicity of the hydrophilic block. This leads to increased hydration and chain extension when assembled at the water-in-oil (W/O) interface of a water-in-oil-in-water (W/O/W) emulsion system. The light-driven engineering of BBCP conformation enables significant control over interfacial curvature, resulting in varied internal droplet diameters and domain spacing in the final photonic pigment particles after solvent removal. Despite the inherent rigidity of BBCPs, approach achieves photonic bandgap tuning across the entire visible spectrum using only three different BBCPs. These structural colored pigments show promise for applications in sensing systems, cosmetics, and inks.
Collapse
Affiliation(s)
- Xingzhou Li
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Mohan Zheng
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Jin Li
- Advanced Materials Research Center, Petrochemical Research Institute, PetroChina Company Limited, Beijing, 102206, China
| | - Rida Fatima
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Bingyuan Xia
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Yuesheng Li
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Dong-Po Song
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
4
|
Zhang YX, Wang Y, Zhang K, Liu D, Fatima R, Li Y, Song DP. Bio-Based Multicompartment Photonic Pigments: Unlocking Non-Iridescent Pure RGB Structural Colors for Versatile Chromatic Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2501303. [PMID: 40025933 DOI: 10.1002/adma.202501303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 02/13/2025] [Indexed: 03/04/2025]
Abstract
Non-iridescent photonic glass pigments of block copolymers show great potential for sustainable structural coloration. However, the ability to create accurate RGB color mixtures for real-world applications is limited by the prevalent use of non-degradable, fossil oil-derived components and the difficulty in achieving pure red hues. This work presents an alternative strategy for achieving more sustainable structural coloration by fabricating composite photonic pigments through controlled self-assembly of water, vegetable oil, and biodegradable bottlebrush block copolymers (BBCPs) in a complex emulsion system. The obtained photonic balls feature unprecedented multicompartment structures characterized by a short-range ordered assembly of water nanodroplets stabilized by the BBCPs, along with oil droplets stabilized by these nanodroplets, which substantially enhances resistance to Ostwald ripening. Furthermore, a new structural model is introduced to eliminate disordered scattering, successfully creating a pure red structural color and overcoming a long-standing limitation in versatile chromatic engineering.
Collapse
Affiliation(s)
- Yu-Xia Zhang
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Yiran Wang
- Advanced Materials Research Center, Petrochemical Research Institute, Petro China Company Limited, Beijing, 102206, China
| | - Kunyu Zhang
- Advanced Materials Research Center, Petrochemical Research Institute, Petro China Company Limited, Beijing, 102206, China
| | - Dezhi Liu
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Rida Fatima
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Yuesheng Li
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Dong-Po Song
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
5
|
Wang B, Zhang K, Pan L, Li Y, Song DP. Scalable and Precise Synthesis of Structurally Colored Bottlebrush Block Copolymers: Enabling Refined Color Calibration for Sustainable Photonic Pigments. Angew Chem Int Ed Engl 2025; 64:e202421315. [PMID: 39833118 DOI: 10.1002/anie.202421315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 01/15/2025] [Accepted: 01/20/2025] [Indexed: 01/22/2025]
Abstract
Self-assembled bottlebrush block copolymers (BBCPs) offer a vibrant, eco-friendly alternative to traditional toxic pigments and dyes, providing vivid structural colors with significantly reduced environmental impact. Scaling up the synthesis of these polymers for practical applications has been challenging with conventional batch methods, which suffer from slow mass and heat transfer, inadequate mixing, and issues with reproducibility. Precise control over molecular weight and dispersity remains a significant challenge for achieving finely tuned color appearances. Here, we present an alternative strategy to overcome the challenges by integrating a rapid continuous flow technique with an in-line self-assembly procedure. This strategy enables the rapid, stable and large-scale synthesis of narrow-dispersed BBCPs, exceeding 2 kg/day, a significant improvement over conventional gram-scale methods. Furthermore, precise control over the degree of polymerization is achieved with an unprecedented interval accuracy of four repeat units. This level of precision enables refined color calibration in the resulting photonic pigments, effectively eliminating the need for labor-intensive and costly multiple batch syntheses.
Collapse
Affiliation(s)
- Bangbang Wang
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Kunyu Zhang
- Advanced Materials Research Center, Petrochemical Research Institute, Petro China Company Limited, Beijing, 102206, China
| | - Li Pan
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Yuesheng Li
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Dong-Po Song
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
6
|
Guo J, Wang J, Wang F, Qiao S, Yang Y, Zhang C, Yu H. Recent Progress in Block Copolymer Self-Assembly for the Fabrication of Structural Color Pigments. Macromol Rapid Commun 2025; 46:e2400839. [PMID: 39704634 DOI: 10.1002/marc.202400839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/20/2024] [Indexed: 12/21/2024]
Abstract
The self-assembly of block copolymers (BCPs) into photonic materials has garnered increasing interest due to the versatility and ease of fabrication offered by the synthesized building blocks. BCPs are highly tunable, with their self-assembled structures' size being adjustable by modifying the block lengths, molecular weight(Mw), and polymer composition. This review provides a concise summary of the use of BCPs as photonic pigments, which generate color through structural manipulation rather than relying on chemical pigmentation. These photonic crystal pigments manipulate light behavior, including interference, diffraction, and diffusion, to generate specific colors. BCPs are categorized into two types: linear block copolymers (LBCPs) and brush block copolymers (BBCPs), each involving different monomers that form photonic crystals(PCs). The structural evolution and advancements of BCPs in various practical applications are also explored. It concludes by suggesting that structural color(SC) pigments based on eco-friendly PCs may replace traditional chemical ones in fields such as printing ink, biosensing, chemical sensing, and adaptive photonic materials.
Collapse
Affiliation(s)
- Jingjing Guo
- Information Recording Materials Lab, School of Printing and Packaging Engineering, Beijing Institute of Graphic Communication, Beijing, 102600, P. R. China
| | - Jinwei Wang
- Information Recording Materials Lab, School of Printing and Packaging Engineering, Beijing Institute of Graphic Communication, Beijing, 102600, P. R. China
| | - Fuzhou Wang
- Information Recording Materials Lab, School of Printing and Packaging Engineering, Beijing Institute of Graphic Communication, Beijing, 102600, P. R. China
| | - Shiyi Qiao
- Information Recording Materials Lab, School of Printing and Packaging Engineering, Beijing Institute of Graphic Communication, Beijing, 102600, P. R. China
| | - Yonggang Yang
- Information Recording Materials Lab, School of Printing and Packaging Engineering, Beijing Institute of Graphic Communication, Beijing, 102600, P. R. China
| | - Chunxiu Zhang
- Information Recording Materials Lab, School of Printing and Packaging Engineering, Beijing Institute of Graphic Communication, Beijing, 102600, P. R. China
| | - Haifeng Yu
- Institute of new structural materials, School of Materials Science and Engineering, and Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Beijing, 100871, P. R. China
| |
Collapse
|
7
|
Liu D, Zhang Z, Zhang K, Li Y, Song DP. Host-Guest Interaction Mediated Interfacial Co-Assembly of Cyclodextrin and Bottlebrush Surfactants for Precisely Tunable Photonic Supraballs. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312099. [PMID: 38644335 DOI: 10.1002/smll.202312099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 04/04/2024] [Indexed: 04/23/2024]
Abstract
Investigations of host-guest interactions at water-oil (w/o) interfaces are limited in single emulsion systems producing simple self-assembled objects with limited uses. Here, within hierarchically ordered water-in-oil-in-water (w/o/w) multiple emulsion droplets, interfacial self-assembly of (polynorbornene-graft-polystyrene)-block-(polynorbornene-graft-polyethylene glycol) (PNPS-b-PNPEG) bottlebrush block copolymers can be precisely controlled through host-guest interactions. α-Cyclodextrin (α-CD) in the aqueous phase can thread onto PEG side chains of the bottlebrush surfactants adsorbed at the w/o interface, leading to dehydration and collapsed chain conformation of the PEG block. Consequently, spherical curvature of the w/o internal droplets increases with the increased asymmetry of the bottlebrush molecules, producing photonic supraballs with precisely tailored structural parameters as well as photonic bandgaps. This work provides a simple but highly effective strategy for precise manipulation of complex emulsion systems applicable in a variety of applications, such as photonic pigments, cosmetic products, pesticides, artificial cells, etc.
Collapse
Affiliation(s)
- Dezhi Liu
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Zhenli Zhang
- National Elite Institute of Engineering, CNPC, Beijing, 100096, China
| | - Kunyu Zhang
- Advanced Materials Research Center, Petrochemical Research Institute, Petro China Company Limited, Beijing, 102206, China
| | - Yuesheng Li
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Dong-Po Song
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
8
|
Kim J, Park J, Jung K, Kim EJ, Tan Z, Xu M, Lee YJ, Ku KH, Kim BJ. Light-Responsive Shape- and Color-Changing Block Copolymer Particles with Fast Switching Speed. ACS NANO 2024; 18:8180-8189. [PMID: 38450652 DOI: 10.1021/acsnano.3c12059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Polymer particles capable of dynamic shape changes in response to light have received substantial attention in the development of intelligent multifunctional materials. In this study, we develop a light-responsive block copolymer (BCP) particle system that exhibits fast and reversible shape and color transitions. The key molecular design is the integration of spiropyran photoacid (SPPA) molecules into the BCP particle system, which enables fast and dynamic transformations of polystyrene-b-poly(4-vinylpyridine) (PS-b-P4VP) particles in response to light. The SPPA photoisomerization, induced by 420 nm light irradiation, lowers the pH of the aqueous surroundings from 5.5 to 3.3. The protonated P4VP block substantially increases in domain size from 14 to 39 nm, resulting in significant elongation of the BCP particles (i.e., an increase in the aspect ratio (AR) of the particles from 1.8 to 3.4). Moreover, SPPA adsorbed onto the P4VP surface induces significant changes in the luminescent properties of the BCP particles via photoisomerization of SPPA. Notably, the BCP particles undergo fast, dynamic shape and color transitions within a period of 10 min, maintaining high reversibility over multiple light exposures. Functional dyes are selectively incorporated into different domains of the light-responsive BCP particles to achieve different ranges of color responses. Thus, this study showcases a light-responsive hydrogel display capable of reversible and multicolor photopatterning.
Collapse
Affiliation(s)
- Jinwoo Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jinseok Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Kyunghyun Jung
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Eun Ji Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Zhengping Tan
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Meng Xu
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Young Jun Lee
- Carbon Composite Materials Research Center, Korea Institute of Science and Technology (KIST), Jeollabuk-do 55324, Republic of Korea
| | - Kang Hee Ku
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Bumjoon J Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
9
|
Lee J, Ban S, Jo K, Oh HS, Cho J, Ku KH. Dynamic Photonic Janus Colloids with Axially Stacked Structural Layers. ACS NANO 2024. [PMID: 38306170 DOI: 10.1021/acsnano.4c00230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Diblock copolymer (dBCP) particles capable of dynamic shape and color changes have gained significant attention due to their versatility in programmable shapes and intricate nanostructures. However, their application in photonic systems remains limited due to challenges in achieving a sufficient number of defect-free photonic layers over a tens-of-micrometer scale. In this study, we present a pioneering demonstration of photonic dBCP particles featuring over 300 axially stacked photonic layers with responsive color- and shape-transforming capabilities. Our approach leverages the complex interplay between the macrophase separation of multiple incompatible components and the microphase separation of dBCP from solvent-evaporative microemulsions. Specifically, continuous phase separation of silicone oil from polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP), triggered by solvent evaporation, promotes the anisotropic growth of PS-b-P2VP layers. This results in the formation of Janus colloids, where an oil droplet merges with a nanostructured polymer cone and lamellar structures align along the long axis of the cone. We highlight the capability to precisely adjust the particle morphology and the corresponding orientation, dispersion, and structural color window by modulating both the molecular weight of PS-b-P2VP and the volume ratio between PS-b-P2VP and silicone oil. Furthermore, reversible swelling/deswelling of photonic colloids is visualized and correlated with their structural colors. Finally, we demonstrate the potential of this study by presenting a multicolor-patterned array of photonic colloids, highlighting the possibilities for applications in smart photonic ink and devices.
Collapse
Affiliation(s)
- Juyoung Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Soohyun Ban
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Kyuhyung Jo
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hyeong Seok Oh
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jinhyeok Cho
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Kang Hee Ku
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
10
|
Guo Q, Wang X, Guo J, Wang C. 3D printing of non-iridescent structural color inks for optical anti-counterfeiting. NANOSCALE 2023; 15:18825-18831. [PMID: 37965806 DOI: 10.1039/d3nr05036j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
In this work, structural color inks with practical significance in anti-counterfeiting applications have been successfully manufactured by facilely mixing SiO2@PDA@PHEMA hybrid colloidal particles with the mediated molecules of HEMA. The appropriate rheological properties of these photonic inks provide high viscosity and self-supporting performance, ensuring sufficient interaction between particles to form short-range ordered arrays during the mixing and shearing process and thus generating non-iridescent colors. The strong and broad uniform light absorption capabilities of polydopamine (PDA) not only suppress the incoherent multiple scattering of the photonic inks, but also impart surprising optical anti-counterfeiting properties, i.e. black color under ambient illumination and dazzling reflective coloration under strong illumination. With the 3D printing technique, complicated angle-independent patterns with visualization and high fidelity are expected to be fabricated with the as-prepared photonic inks for real-life applications in smart anti-counterfeiting labels, thus encoding encrypted information and selective color rendering accessories.
Collapse
Affiliation(s)
- Qilin Guo
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China.
| | - Xiuli Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China.
| | - Jia Guo
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China.
| | - Changchun Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China.
| |
Collapse
|
11
|
Shin JJ. Morphological Evolution of Hybrid Block Copolymer Particles: Toward Magnetic Responsive Particles. Polymers (Basel) 2023; 15:3689. [PMID: 37765544 PMCID: PMC10534701 DOI: 10.3390/polym15183689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The co-assembly of block copolymers (BCPs) and inorganic nanoparticles (NPs) under emulsion confinement allows facile access to hybrid polymeric colloids with controlled hierarchical structures. Here, the effect of inorganic NPs on the structure of the hybrid BCP particles and the local distribution of NPs are studied, with a particular focus on comparing Au and Fe3O4 NPs. To focus on the effect of the NP core, Au and Fe3O4 NPs stabilized with oleyl ligands were synthesized, having a comparable diameter and grafting density. The confined co-assembly of symmetric polystyrene-b-poly(1,4-butadiene) (PS-b-PB) BCPs and NPs in evaporative emulsions resulted in particles with various morphologies including striped ellipsoids, onion-like particles, and their intermediates. The major difference in PS-b-PB/Au and PS-b-PB/Fe3O4 particles was found in the distribution of NPs inside the particles that affected the overall particle morphology. Au NPs were selectively localized inside PB domains with random distributions regardless of the particle morphology. Above the critical volume fraction, however, Au NPs induced the morphological transition of onion-like particles into ellipsoids by acting as an NP surfactant. For PS-b-PB/Fe3O4 ellipsoids, Fe3O4 NPs clustered and segregated to the particle/surrounding interface of the ellipsoids even at a low volume fraction, while Fe3O4 NPs were selectively localized in the middle of PB domains in a string-like pattern for PS-b-PB/Fe3O4 onion-like particles.
Collapse
Affiliation(s)
- Jaeman J. Shin
- Department of Materials Science and Engineering, Soongsil University, Seoul 06978, Republic of Korea;
- Department of Green Chemistry and Materials Engineering, Soongsil University, Seoul 06978, Republic of Korea
| |
Collapse
|
12
|
Wang Z, Li R, Zhang Y, Chan CLC, Haataja JS, Yu K, Parker RM, Vignolini S. Tuning the Color of Photonic Glass Pigments by Thermal Annealing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207923. [PMID: 36482805 DOI: 10.1002/adma.202207923] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/21/2022] [Indexed: 06/17/2023]
Abstract
Thermal or solvent annealing is commonly employed to enhance phase separation and remove defects in block copolymer (BCP) films, leading to well-resolved nanostructures. Annealing is of particular importance for photonic BCP materials, where large, well-ordered lamellar domains are required to generate strong reflections at visible wavelengths. However, such strategies have not been considered for porous BCP systems, such as inverse photonic glasses, where the structure (and thus the optical response) is no longer defined solely by the chemical compatibility of the blocks, but by the size and arrangement of voids within the BCP matrix. In this study, a demonstration of how the concept of "thermal annealing" can be applied to bottlebrush block copolymer (BBCP) microparticles with a photonic glass architecture is presented, enabling their coloration to be tuned from blue to red. By comparing biocompatible BBCPs with similar composition, but different thermal behavior, it is shown that this process is driven by both a temperature-induced softening of the BBCP matrix (i.e., polymer mobility) and the absence of microphase separation (enabling diffusion-induced swelling of the pores). Last, this concept is applied toward the production of a thermochromic patterned hydrogel, exemplifying the potential of such responsive biocompatible photonic-glass pigments toward smart labeling or anticounterfeiting applications.
Collapse
Affiliation(s)
- Zhen Wang
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Ruiting Li
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Yating Zhang
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Chun Lam Clement Chan
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Johannes S Haataja
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Kui Yu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Richard M Parker
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Silvia Vignolini
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| |
Collapse
|
13
|
Nanostructure-free crescent-shaped microparticles as full-color reflective pigments. Nat Commun 2023; 14:793. [PMID: 36774360 PMCID: PMC9922275 DOI: 10.1038/s41467-023-36482-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 01/31/2023] [Indexed: 02/13/2023] Open
Abstract
Structural colors provide a promising visualization with high color saturation, iridescent characteristics, and fade resistance. However, pragmatic uses are frequently impeded by complex manufacturing processes for sophisticated nanostructures. Here, we report a facile emulsion-templating strategy to produce crescent-shaped microparticles as structural color pigments. The micro-crescents exhibit brilliant colors under directional light originating from total internal reflections and optical interferences in the absence of periodic nanostructures while being transparent under ambient light. The colors are finely tunable by adjusting the size of the micro-crescents, which can be further mixed to enrich the variety. Importantly, the pre-defined convex surface secures high stability of colors and enables structural coloration on target surfaces through direct deposition as inks. We anticipate this class of nanostructure-free structural colorants is pragmatic as invisible inks in particular for anti-counterfeiting patches and color cosmetics with distinctive impressions due to low-cost, scalable manufacturing, unique optical properties, and versatility.
Collapse
|
14
|
Kim DH, Kwon HG, Choi HK. Dewetting-Induced Hierarchical Self-Assembly of Block Copolymers Templated by Colloidal Crystals. Polymers (Basel) 2023; 15:polym15040897. [PMID: 36850181 PMCID: PMC9961777 DOI: 10.3390/polym15040897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Recent advances in high-performance flexible electronic devices have increased the demand for more diverse and complex nanofabrication methods; high-resolution, high-efficiency, and low-cost patterning strategies for next-generation devices are therefore required. In this study, we demonstrate the formation of dewetting-induced hierarchical patterns using two self-assembled materials: block copolymers (BCPs) and colloidal crystals. The combination of the two self-assembly methods successfully generates multiscale hierarchical patterns because the length scales of the periodic colloidal crystal structures are suitable for templating the BCP patterns. Various concentric ring patterns were observed on the templated BCP films, and a free energy model of the polymer chain was applied to explain the formation of these patterns relative to the template width. Frequently occurring spiral-defective features were also examined and found to be promoted by Y-junction defects.
Collapse
|
15
|
Dodero A, Djeghdi K, Bauernfeind V, Airoldi M, Wilts BD, Weder C, Steiner U, Gunkel I. Robust Full-Spectral Color Tuning of Photonic Colloids. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205438. [PMID: 36464635 DOI: 10.1002/smll.202205438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Creation of color through photonic morphologies manufactured by molecular self-assembly is a promising approach, but the complexity and lack of robustness of the fabrication processes have limited their technical exploitation. Here, it is shown that photonic spheres with full-color tuning across the entire visible spectrum can be readily and reliably achieved by the emulsification of solutions containing a block copolymer (BCP) and two swelling additives. Solvent diffusion out of the emulsion droplets gives rise to 20-150 µm-sized spheres with an onion-like lamellar morphology. Controlling the lamellar thickness by differential swelling with the two additives enables color tuning of the Bragg interference-based reflection band across the entire visible spectrum. By studying five different systems, a set of important principles for manufacturing photonic colloids is established. Two swelling additives are required, one of which must exhibit strong interactions with one of the BCP blocks. The additives should be chosen to enhance the dielectric contrast, and the formation kinetics of the spheres must be sufficiently slow to enable the emergence of the photonic morphology. The proposed approach is versatile and robust and allows the scalable production of photonic pigments with possible future applications in inks for cosmetics and arts, coatings, and displays.
Collapse
Affiliation(s)
- Andrea Dodero
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, 1700, Switzerland
| | - Kenza Djeghdi
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, 1700, Switzerland
| | - Viola Bauernfeind
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, 1700, Switzerland
| | - Martino Airoldi
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, 1700, Switzerland
| | - Bodo D Wilts
- Department of Chemistry and Physics of Materials, University of Salzburg, Jakob-Haringer-Straße 2A, Salzburg, 5020, Austria
| | - Christoph Weder
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, 1700, Switzerland
| | - Ullrich Steiner
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, 1700, Switzerland
| | - Ilja Gunkel
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, 1700, Switzerland
| |
Collapse
|
16
|
Shi Q, Zou J, Pan C, Fu Y, Supty MN, Sun J, Yi C, Hu J, Tan H. Study of the phase-transition behavior of (AB) 3 type star polystyrene- block-poly( n-butylacrylate) copolymers by the combination of rheology and SAXS. E-POLYMERS 2022. [DOI: 10.1515/epoly-2022-0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Abstract
A series of three-armed star polystyrene-block-poly(n-butylacrylate) copolymers (PS-b-PBA)3 were synthesized to study the phase-transition behavior of the copolymers. The order-to-disorder transition temperature has been determined by oscillatory at different temperatures and dynamic temperature sweep at a fixed frequency. Moreover, the micro-phase separation in the block copolymers has been evaluated by time–temperature superposition, while the free volume and the active energy of the copolymers have been calculated. Interestingly, active energy decreased with the increase in the molecular weight of the PBA components. To further determine the order-to-disorder transition temperature precisely, small angle X-ray scattering was performed at different temperatures. These results confirm that the chain mobility of the star-shaped copolymers is strongly dependent on the arm molecular weight of the star polymers, which will be beneficial for the processing and material preparation of the block copolymers.
Collapse
Affiliation(s)
- Qingwen Shi
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, and Key Laboratory of Textile Fiber and Products of Ministry of Education, College of Materials Science and Engineering, Wuhan Textile University , Wuhan , 430200 , China
| | - Jiaqi Zou
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, and Key Laboratory of Textile Fiber and Products of Ministry of Education, College of Materials Science and Engineering, Wuhan Textile University , Wuhan , 430200 , China
| | - Chen Pan
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, and Key Laboratory of Textile Fiber and Products of Ministry of Education, College of Materials Science and Engineering, Wuhan Textile University , Wuhan , 430200 , China
| | - Yin Fu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, and Key Laboratory of Textile Fiber and Products of Ministry of Education, College of Materials Science and Engineering, Wuhan Textile University , Wuhan , 430200 , China
| | - Mahfzun Nahar Supty
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, and Key Laboratory of Textile Fiber and Products of Ministry of Education, College of Materials Science and Engineering, Wuhan Textile University , Wuhan , 430200 , China
| | - Jiuxiao Sun
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, and Key Laboratory of Textile Fiber and Products of Ministry of Education, College of Materials Science and Engineering, Wuhan Textile University , Wuhan , 430200 , China
| | - Chunlong Yi
- China CAMA Engineering Wuhan University Design & Research Company Limited (Camce Whu Design & Research Co., Ltd) , Wuhan , 430000 , China
| | - Jingchuan Hu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, and Key Laboratory of Textile Fiber and Products of Ministry of Education, College of Materials Science and Engineering, Wuhan Textile University , Wuhan , 430200 , China
| | - Haiying Tan
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, and Key Laboratory of Textile Fiber and Products of Ministry of Education, College of Materials Science and Engineering, Wuhan Textile University , Wuhan , 430200 , China
| |
Collapse
|
17
|
Li M, Lyu Q, Peng B, Chen X, Zhang L, Zhu J. Bioinspired Colloidal Photonic Composites: Fabrications and Emerging Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110488. [PMID: 35263465 DOI: 10.1002/adma.202110488] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/05/2022] [Indexed: 06/14/2023]
Abstract
Organisms in nature have evolved unique structural colors and stimuli-responsive functions for camouflage, warning, and communication over millions of years, which are essential to their survival in harsh conditions. Inspired by these characteristics, colloidal photonic composites (CPCs) composed of colloidal photonic crystals embedded in the polymeric matrix are artificially prepared and show great promise in applications. This review focuses on the summary of building blocks, i.e., colloidal particles and polymeric matrices, and constructive strategies from the perspective of designing CPCs with robust performance and specific functionality. Furthermore, their state-of-the-art applications are also discussed, including colorful coatings, anti-counterfeiting, and regulation of photoluminescence, especially in the field of visualized sensing. Finally, current challenges and potential for future developments in this field are discussed. The purpose of this review is not only to clarify the design principle for artificial CPCs but also to serve as a roadmap for the exploration of next-generation photonic materials.
Collapse
Affiliation(s)
- Miaomiao Li
- State Key Laboratory of Materials Processing and Die and Mould Technology and Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Quanqian Lyu
- State Key Laboratory of Materials Processing and Die and Mould Technology and Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Bolun Peng
- State Key Laboratory of Materials Processing and Die and Mould Technology and Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Xiaodong Chen
- State Key Laboratory of Materials Processing and Die and Mould Technology and Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Lianbin Zhang
- State Key Laboratory of Materials Processing and Die and Mould Technology and Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Jintao Zhu
- State Key Laboratory of Materials Processing and Die and Mould Technology and Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| |
Collapse
|
18
|
Peng M, Hu D, Chang X, Zhu Y. Confined Self-Assembly of Block Copolymers within Emulsion Droplets: A Perspective. J Phys Chem B 2022; 126:9435-9442. [PMID: 36378152 DOI: 10.1021/acs.jpcb.2c06225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
When the self-assembly of block copolymers (BCPs) occurs within organic emulsion droplets in the aqueous phase, the strong structural frustration of BCP chains causes the formation of a series of well-regulated BCP particles that cannot be obtained from the self-assembly of BCPs in the bulk state or solution. In this Perspective, we review the recent progress of the self-assembly of BCPs confined in emulsion droplets. The governing factors of the structure and morphology of the as-prepared BCP particles are summarized. In addition, the applications of the as-prepared BCP particles in photonic crystals and drug release are discussed. Finally, we also give a forward-looking perspective on future challenges in this field.
Collapse
Affiliation(s)
- Meiling Peng
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Zhejiang Province, Hangzhou, 311121 Zhejiang, People's Republic of China
| | - Dengwen Hu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Zhejiang Province, Hangzhou, 311121 Zhejiang, People's Republic of China
| | - Xiaohua Chang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Zhejiang Province, Hangzhou, 311121 Zhejiang, People's Republic of China
| | - Yutian Zhu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Zhejiang Province, Hangzhou, 311121 Zhejiang, People's Republic of China
| |
Collapse
|
19
|
Agha H, Geng Y, Ma X, Avşar DI, Kizhakidathazhath R, Zhang YS, Tourani A, Bavle H, Sanchez-Lopez JL, Voos H, Schwartz M, Lagerwall JPF. Unclonable human-invisible machine vision markers leveraging the omnidirectional chiral Bragg diffraction of cholesteric spherical reflectors. LIGHT, SCIENCE & APPLICATIONS 2022; 11:309. [PMID: 36284089 PMCID: PMC9592545 DOI: 10.1038/s41377-022-01002-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 05/16/2023]
Abstract
The seemingly simple step of molding a cholesteric liquid crystal into spherical shape, yielding a Cholesteric Spherical Reflector (CSR), has profound optical consequences that open a range of opportunities for potentially transformative technologies. The chiral Bragg diffraction resulting from the helical self-assembly of cholesterics becomes omnidirectional in CSRs. This turns them into selective retroreflectors that are exceptionally easy to distinguish-regardless of background-by simple and low-cost machine vision, while at the same time they can be made largely imperceptible to human vision. This allows them to be distributed in human-populated environments, laid out in the form of QR-code-like markers that help robots and Augmented Reality (AR) devices to operate reliably, and to identify items in their surroundings. At the scale of individual CSRs, unpredictable features within each marker turn them into Physical Unclonable Functions (PUFs), of great value for secure authentication. Via the machines reading them, CSR markers can thus act as trustworthy yet unobtrusive links between the physical world (buildings, vehicles, packaging,…) and its digital twin computer representation. This opens opportunities to address pressing challenges in logistics and supply chain management, recycling and the circular economy, sustainable construction of the built environment, and many other fields of individual, societal and commercial importance.
Collapse
Affiliation(s)
- Hakam Agha
- University of Luxembourg, Department of Physics & Materials Science, 1511, Luxembourg, Luxembourg
| | - Yong Geng
- University of Luxembourg, Department of Physics & Materials Science, 1511, Luxembourg, Luxembourg
| | - Xu Ma
- University of Luxembourg, Department of Physics & Materials Science, 1511, Luxembourg, Luxembourg
| | - Deniz Işınsu Avşar
- University of Luxembourg, Department of Physics & Materials Science, 1511, Luxembourg, Luxembourg
| | | | - Yan-Song Zhang
- University of Luxembourg, Department of Physics & Materials Science, 1511, Luxembourg, Luxembourg
| | - Ali Tourani
- University of Luxembourg, Interdisciplinary Centre for Security, Reliability and Trust (SnT), 1855, Luxembourg, Luxembourg
| | - Hriday Bavle
- University of Luxembourg, Interdisciplinary Centre for Security, Reliability and Trust (SnT), 1855, Luxembourg, Luxembourg
| | - Jose-Luis Sanchez-Lopez
- University of Luxembourg, Interdisciplinary Centre for Security, Reliability and Trust (SnT), 1855, Luxembourg, Luxembourg
| | - Holger Voos
- University of Luxembourg, Interdisciplinary Centre for Security, Reliability and Trust (SnT), 1855, Luxembourg, Luxembourg
- University of Luxembourg,University of Luxembourg, Department of Engineering, L-1359, Luxembourg, Luxembourg
| | - Mathew Schwartz
- New Jersey Institute of Technology, College of Architecture and Design, University Heights, Newark, NJ, USA
| | - Jan P F Lagerwall
- University of Luxembourg, Department of Physics & Materials Science, 1511, Luxembourg, Luxembourg.
| |
Collapse
|
20
|
Kim J, Lee YJ, Ku KH, Kim BJ. Effect of Molecular Structure of Photoswitchable Surfactant on Light-Responsive Shape Transition of Block Copolymer Particles. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jinwoo Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Young Jun Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Kang Hee Ku
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Bumjoon J. Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
21
|
Guo Q, Xue R, Zhao J, Zhang Y, van de Kerkhof GT, Zhang K, Li Y, Vignolini S, Song D. Precise Tailoring of Polyester Bottlebrush Amphiphiles toward Eco‐Friendly Photonic Pigments via Interfacial Self‐Assembly. Angew Chem Int Ed Engl 2022; 61:e202206723. [DOI: 10.1002/anie.202206723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Qilin Guo
- Key Laboratory of Composite and Functional Materials School of Materials Science and Engineering Tianjin University Tianjin 300350 China
| | - Runze Xue
- Institute of Coastal Environmental Pollution Control Key Laboratory of Marine Environment and Ecology Ministry of Education Ocean University of China Qingdao 266100 China
| | - Jian Zhao
- Institute of Coastal Environmental Pollution Control Key Laboratory of Marine Environment and Ecology Ministry of Education Ocean University of China Qingdao 266100 China
- Laboratory for Marine Ecology and Environmental Science Qingdao National Laboratory for Marine Science and Technology Qingdao 266237 China
| | - Yuxia Zhang
- Key Laboratory of Composite and Functional Materials School of Materials Science and Engineering Tianjin University Tianjin 300350 China
| | | | - Kunyu Zhang
- Advanced Materials Research Center Petrochemical Research Institute PetroChina Company Limited Beijing 102206 China
| | - Yuesheng Li
- Key Laboratory of Composite and Functional Materials School of Materials Science and Engineering Tianjin University Tianjin 300350 China
| | - Silvia Vignolini
- Department of Chemistry University of Cambridge Cambridge CB2 1EW UK
| | - Dong‐Po Song
- Key Laboratory of Composite and Functional Materials School of Materials Science and Engineering Tianjin University Tianjin 300350 China
| |
Collapse
|
22
|
Chen X, Song DP, Li Y. Precisely Tunable Photonic Pigments via Interfacial Self-Assembly of Bottlebrush Block Copolymer Binary Blends. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xi Chen
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Dong-Po Song
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yuesheng Li
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
23
|
Zhao J, Zhang L, Du X, Xu J, Lin T, Li Y, Yang X, You J. Panther chameleon-inspired, continuously-regulated, high-saturation structural color of a reflective grating on the nano-patterned surface of a shape memory polymer. NANOSCALE ADVANCES 2022; 4:2942-2949. [PMID: 36132013 PMCID: PMC9418828 DOI: 10.1039/d2na00075j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
In this work, surface nano-stripes and a reflective grating have been fabricated on shape memory polymers (SMPs) to simulate the active color change of chameleons. The structural color resulting from the interference of reflected light exhibits high saturation and it can be regulated continuously based on the shape memory effect. In addition to the viewing angle, the attained color is sensitive to the deformation at the macroscale. Uniaxial tension along stripes at high temperature produces a remarkable blueshift of the resultant color (from red to green and blue) which can switch back to red after shape recovery upon heating. The evolution of structural color can be attributed to the lower and higher magnitudes of nano-structure periods in temporary (deformed) and permanent (recovery) states respectively. Based on the combination of angle and deformation dependences of structural color, a "colorful" product code has been fabricated. It exhibits enhanced ability to hide and display information which plays an important role in anti-counterfeiting.
Collapse
Affiliation(s)
- Jiaqin Zhao
- Hangzhou Normal University No. 2318 Yuhangtang Rd. Hangzhou 311121 China
| | - Liang Zhang
- Hangzhou Normal University No. 2318 Yuhangtang Rd. Hangzhou 311121 China
| | - Xinyue Du
- Hangzhou Normal University No. 2318 Yuhangtang Rd. Hangzhou 311121 China
| | - Jinyan Xu
- Hangzhou Normal University No. 2318 Yuhangtang Rd. Hangzhou 311121 China
| | - Taotao Lin
- Hangzhou Normal University No. 2318 Yuhangtang Rd. Hangzhou 311121 China
| | - Yongjin Li
- Hangzhou Normal University No. 2318 Yuhangtang Rd. Hangzhou 311121 China
| | - Xuxin Yang
- Hangzhou Normal University No. 2318 Yuhangtang Rd. Hangzhou 311121 China
| | - Jichun You
- Hangzhou Normal University No. 2318 Yuhangtang Rd. Hangzhou 311121 China
| |
Collapse
|
24
|
Precise Tailoring of Polyester Bottlebrush Amphiphiles toward Eco‐Friendly Photonic Pigments via Interfacial Self‐Assembly. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
25
|
Wang Z, Chan CLC, Parker RM, Vignolini S. The Limited Palette for Photonic Block-Copolymer Materials: A Historical Problem or a Practical Limitation? Angew Chem Int Ed Engl 2022; 61:e202117275. [PMID: 35446459 PMCID: PMC9325480 DOI: 10.1002/anie.202117275] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Indexed: 11/11/2022]
Abstract
Block-copolymer self-assembly has proven to be an effective route for the fabrication of photonic films and, more recently, photonic pigments. However, despite extensive research on this topic over the past two decades, the palette of monomers and polymers employed to produce such structurally colored materials has remained surprisingly limited. In this Scientific Perspective, the commonly used block-copolymer systems reported in the literature are summarized (considering both linear and brush architectures) and their use is rationalized from the point of view of both their historical development and physicochemical constraints. Finally, the current challenges facing the field are discussed and promising new areas of research are highlighted to inspire the community to pursue new directions.
Collapse
Affiliation(s)
- Zhen Wang
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | | | - Richard M. Parker
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | - Silvia Vignolini
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| |
Collapse
|
26
|
Wang Z, Chan CLC, Parker RM, Vignolini S. The Limited Palette for Photonic Block-Copolymer Materials: A Historical Problem or a Practical Limitation? ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202117275. [PMID: 38528985 PMCID: PMC10962576 DOI: 10.1002/ange.202117275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Indexed: 11/08/2022]
Abstract
Block-copolymer self-assembly has proven to be an effective route for the fabrication of photonic films and, more recently, photonic pigments. However, despite extensive research on this topic over the past two decades, the palette of monomers and polymers employed to produce such structurally colored materials has remained surprisingly limited. In this Scientific Perspective, the commonly used block-copolymer systems reported in the literature are summarized (considering both linear and brush architectures) and their use is rationalized from the point of view of both their historical development and physicochemical constraints. Finally, the current challenges facing the field are discussed and promising new areas of research are highlighted to inspire the community to pursue new directions.
Collapse
Affiliation(s)
- Zhen Wang
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | | | - Richard M. Parker
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | - Silvia Vignolini
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| |
Collapse
|
27
|
Zenati A. Triblock Azo copolymers: RAFT synthesis, properties, thin film self-assembly and applications. POLYM-PLAST TECH MAT 2022. [DOI: 10.1080/25740881.2021.2015779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Athmen Zenati
- Refining and Petrochemistry, Division of Method and Operation, Sonatrach, Arzew, Algeria
- Central Directorate of Research and Development, Sonatrach, Boumerdes, Algeria
| |
Collapse
|
28
|
Yuan T, Li Y, Song DP. Interfacial Self-Assembly of Amphiphilic Core-Shell Bottlebrush Block Copolymers Toward Responsive Photonic Balls Bearing Ionic Channels. Macromol Rapid Commun 2022; 43:e2200188. [PMID: 35436806 DOI: 10.1002/marc.202200188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/11/2022] [Indexed: 11/11/2022]
Abstract
Photonic balls can be facilely obtained through interfacial self-assembly of amphiphilic bottlebrush block polymers (BBCPs) within a water-in-oil-in-water (w/o/w) multiple emulsion system, and polystyrene (PS) has been employed as the skeleton of the balls showing no responsive properties. Here, we demonstrate the design and synthesis of core-shell BBCPs with a poly(tert-butyl acrylate)-block-polystyrene (PtBA-b-PS) block copolymer as the hydrophobic side chains and poly(ethylene glycol) (PEG) as the hydrophilic block. Interfacial self-assembly of the core-shell BBCPs within shrinking droplets produces porous microspheres with full-spectrum structural colors through an organized spontaneous emulsification (OSE) process. The PtBA core wrapped by PS in the skeleton of the balls can be converted into polyacrylic acid (PAA) forming an ionic channel responsive to pH variations. Consequently, the hydrolyzed photonic balls show different colors under different pH conditions dependent on varied degrees of ionization and hydration of the PAA channel. Reflected colors can be verified using an optical spectrometer, providing an effective strategy for precise pH indication. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Tengfei Yuan
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Yuesheng Li
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Dong-Po Song
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
29
|
Azhdari S, Herrmann F, Coban D, Linders J, Gröschel AH. Confinement-Assembly of Terpolymer-based Janus Nanoparticles. Macromol Rapid Commun 2022; 43:e2100932. [PMID: 35377525 DOI: 10.1002/marc.202100932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/24/2022] [Indexed: 11/09/2022]
Abstract
While the confinement assembly of block copolymers (BCPs) into functional microparticles has been extensively studied, little is known about the behavior of Janus nanoparticles (JNPs) in spherical confinement. Here, we investigate the confinement self-assembly of JNPs in drying emulsion droplets and compare their behavior to their ABC triblock terpolymer precursor. Emulsions of both materials were prepared using Shirasu Porous Glass (SPG) membranes leading to narrow size distributions of the microparticles with average hydrodynamic radii in the range of Rh = 250 - 500 nm (depending on the pore radius, Rpore ). The internal structure of the microparticles was verified with transmission electron microscopy (TEM) on ultrathin cross-sections and compared to the corresponding bulk morphologies. While the confinement-assembly of terpolymers resulted in microparticles with ordered inner morphologies, order for JNPs diminished when the Janus balance (JB) deviated from parity. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Suna Azhdari
- Physical Chemistry, University of Münster Corrensstraße 28-30, Münster, 48149, Germany
| | - Fabian Herrmann
- Pharmaceutical Biology and Phytochemistry, University of Münster Corrensstrasse 48, Münster, 48149, Germany
| | - Deniz Coban
- Physical Chemistry, University of Münster Corrensstraße 28-30, Münster, 48149, Germany
| | - Jürgen Linders
- Physical Chemistry, University Duisburg-Essen Universitätsstr. 2, Essen, 45141, Germany
| | - André H Gröschel
- Physical Chemistry, University of Münster Corrensstraße 28-30, Münster, 48149, Germany
| |
Collapse
|
30
|
He Q, Vijayamohanan H, Li J, Swager TM. Multifunctional Photonic Janus Particles. J Am Chem Soc 2022; 144:5661-5667. [PMID: 35297624 DOI: 10.1021/jacs.2c01787] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Photonic Janus particles with a sphere fused to a cone are created from the phase separation of dendronized brush block copolymers (den-BBCP) and poly(4-vinylpyridine)-r-polystyrene (P4VP-r-PS) during the solvent evaporation of oil-in-water emulsions. Rapid self-assembly of den-BBCP generates well-ordered lamellar structures stacking along the long axis of the particles, producing structural colors that are dependent on the incident light angle. The colors are tunable over the visible spectrum by varying the molecular weight of den-BBCP. The P4VP-r-PS phase can undergo further surface modifications to produce multifunctional photonic Janus particles. Specifically, real-time magnetic control of the reflected color is achieved by coating the P4VP-r-PS phase with citric acid-capped Fe3O4 nanoparticles. Charged biomolecules (i.e., antibodies) are electrostatically immobilized to the Fe3O4 coating for potential applications in biosensing. As a demonstration, a new photonic sensor for the foodborne pathogen Salmonella is developed with antibody-modified photonic Janus particles, where the angle-dependent structural color plays a key role in the sensing mechanism.
Collapse
Affiliation(s)
- Qilin He
- Department of Chemistry, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, United States
| | - Harikrishnan Vijayamohanan
- Department of Chemistry, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, United States
| | - Jie Li
- Department of Chemistry, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, United States
| | - Timothy M Swager
- Department of Chemistry, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, United States
| |
Collapse
|
31
|
Lyu Q, Li M, Zhang L, Zhu J. Bioinspired Supramolecular Photonic Composites: Construction and Emerging Applications. Macromol Rapid Commun 2022; 43:e2100867. [PMID: 35255176 DOI: 10.1002/marc.202100867] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/29/2022] [Indexed: 11/08/2022]
Abstract
Natural organisms have evolved fascinating structural colors to survive in complex natural environments. Artificial photonic composites developed by imitating the structural colors of organisms have been applied in displaying, sensing, biomedicine, and many other fields. As emerging materials, photonic composites mediated by supramolecular chemistry, namely, supramolecular photonic composites, have been designed and constructed to meet emerging application needs and challenges. This feature article mainly introduces the constructive strategies, properties, and applications of supramolecular photonic composites. First, constructive strategies of supramolecular photonic composites are summarized, including the introduction of supramolecular polymers into colloidal photonic array templates, co-assembly of colloidal particles (CPs) with supramolecular polymers, self-assembly of soft CPs, and compounding photonic elastomers with functional substances via supramolecular interactions. Supramolecular interactions endow photonic composites with attractive properties, such as stimuli-responsiveness and healability. Subsequently, the unique optical and mechanical properties of supramolecular photonic composites are summarized, and their applications in emerging fields, such as colorful coatings, real-time and visual motion monitoring, and biochemical sensors, are introduced. Finally, challenges and perspectives in supramolecular photonic composites are discussed. This feature article provides general strategies and considerations for the design of photonic materials based on supramolecular chemistry. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Quanqian Lyu
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Miaomiao Li
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Lianbin Zhang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Jintao Zhu
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| |
Collapse
|
32
|
Mao X, Wang M, Jin S, Rao J, Deng R, Zhu J. Monodispersed polymer particles with tunable surface structures: Droplet
microfluidic‐assisted
fabrication and biomedical applications. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xi Mao
- State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST) Wuhan China
| | - Mian Wang
- State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST) Wuhan China
| | - Shaohong Jin
- State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST) Wuhan China
| | - Jingyi Rao
- State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST) Wuhan China
| | - Renhua Deng
- State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST) Wuhan China
| | - Jintao Zhu
- State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST) Wuhan China
| |
Collapse
|
33
|
Guo Q, Li Y, Liu Q, Li Y, Song D. Janus Photonic Microspheres with Bridged Lamellar Structures via Droplet‐Confined Block Copolymer Co‐Assembly. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Qilin Guo
- Key Laboratory of Composite and Functional Materials School of Materials Science and Engineering Tianjin University Tianjin 300350 China
| | - Yulian Li
- Key Laboratory of Composite and Functional Materials School of Materials Science and Engineering Tianjin University Tianjin 300350 China
| | - Qiujun Liu
- Key Laboratory of Composite and Functional Materials School of Materials Science and Engineering Tianjin University Tianjin 300350 China
| | - Yuesheng Li
- Key Laboratory of Composite and Functional Materials School of Materials Science and Engineering Tianjin University Tianjin 300350 China
| | - Dong‐Po Song
- Key Laboratory of Composite and Functional Materials School of Materials Science and Engineering Tianjin University Tianjin 300350 China
| |
Collapse
|
34
|
Zhang X, Qu Q, Zhou A, Wang Y, Zhang J, Xiong R, Lenders V, Manshian BB, Hua D, Soenen SJ, Huang C. Core-shell microparticles: From rational engineering to diverse applications. Adv Colloid Interface Sci 2022; 299:102568. [PMID: 34896747 DOI: 10.1016/j.cis.2021.102568] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/16/2021] [Accepted: 11/20/2021] [Indexed: 12/24/2022]
Abstract
Core-shell microparticles, composed of solid, liquid, or gas bubbles surrounded by a protective shell, are gaining considerable attention as intelligent and versatile carriers that show great potential in biomedical fields. In this review, an overview is given of recent developments in design and applications of biodegradable core-shell systems. Several emerging methodologies including self-assembly, gas-shearing, and coaxial electrospray are discussed and microfluidics technology is emphasized in detail. Furthermore, the characteristics of core-shell microparticles in artificial cells, drug release and cell culture applications are discussed and the superiority of these advanced multi-core microparticles for the generation of artificial cells is highlighted. Finally, the respective developing orientations and limitations inherent to these systems are addressed. It is hoped that this review can inspire researchers to propel the development of this field with new ideas.
Collapse
|
35
|
Lee D, Kim J, Ku KH, Li S, Shin JJ, Kim B. Poly(vinylpyridine)-Containing Block Copolymers for Smart, Multicompartment Particles. Polym Chem 2022. [DOI: 10.1039/d2py00150k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multicompartment particles generated by the self-assembly of block copolymers (BCPs) have received considerable attention due to their unique morphologies and functionalities. A class of important building blocks for multicomponent particles...
Collapse
|
36
|
Understanding on the Surfactants Engineered Morphology Evolution of Block Copolymer Particles and Their Precise Mesoporous Silica Replicas. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1403-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
37
|
Guo Q, Li Y, Liu Q, Li Y, Song DP. Janus Photonic Microspheres with Bridged Lamellar Structures via Droplet-Confined Block Copolymer Co-Assembly. Angew Chem Int Ed Engl 2021; 61:e202113759. [PMID: 34859551 DOI: 10.1002/anie.202113759] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Indexed: 11/07/2022]
Abstract
Artificial self-assembly systems typically exhibit limited capability in creating nature-inspired complex materials with advanced functionalities. Here, an effective co-assembly strategy is demonstrated for the facile creation of complex photonic structures with intriguing light reflections. Two different lipophilic and amphiphilic bottlebrush block copolymers (BCPs) are placed within shrinking droplets to enable a cooperative working mechanism of microphase segregation and organized spontaneous emulsification, respectively. Layer assemblies of the lipophilic BCP and uniform water nanodroplets stabilized by the bottlebrush surfactant are both generated, and co-assembled into a bridged lamellar structure with the alternating arrangement of layers and closely packed nanodroplet arrays. Janus microspheres with diverse dual optical characteristics are successfully fabricated, and reflected wavelengths of light are highly tunable simply by changing the formulation or molecular weight of BCP.
Collapse
Affiliation(s)
- Qilin Guo
- Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Yulian Li
- Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Qiujun Liu
- Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Yuesheng Li
- Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Dong-Po Song
- Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
38
|
Abstract
Colloidal self-assembly refers to a solution-processed assembly of nanometer-/micrometer-sized, well-dispersed particles into secondary structures, whose collective properties are controlled by not only nanoparticle property but also the superstructure symmetry, orientation, phase, and dimension. This combination of characteristics makes colloidal superstructures highly susceptible to remote stimuli or local environmental changes, representing a prominent platform for developing stimuli-responsive materials and smart devices. Chemists are achieving even more delicate control over their active responses to various practical stimuli, setting the stage ready for fully exploiting the potential of this unique set of materials. This review addresses the assembly of colloids into stimuli-responsive or smart nanostructured materials. We first delineate the colloidal self-assembly driven by forces of different length scales. A set of concepts and equations are outlined for controlling the colloidal crystal growth, appreciating the importance of particle connectivity in creating responsive superstructures. We then present working mechanisms and practical strategies for engineering smart colloidal assemblies. The concepts underpinning separation and connectivity control are systematically introduced, allowing active tuning and precise prediction of the colloidal crystal properties in response to external stimuli. Various exciting applications of these unique materials are summarized with a specific focus on the structure-property correlation in smart materials and functional devices. We conclude this review with a summary of existing challenges in colloidal self-assembly of smart materials and provide a perspective on their further advances to the next generation.
Collapse
Affiliation(s)
- Zhiwei Li
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Qingsong Fan
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
39
|
Song KM, Kim S, Kang S, Nam TW, Kim GY, Lim H, Cho EN, Kim KH, Kwon SH, Jang MS, Jung YS. Microcellular sensing media with ternary transparency states for fast and intuitive identification of unknown liquids. SCIENCE ADVANCES 2021; 7:eabg8013. [PMID: 34524852 PMCID: PMC8443176 DOI: 10.1126/sciadv.abg8013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Rapid, accurate, and intuitive detection of unknown liquids is greatly important for various fields such as food and drink safety, management of chemical hazards, manufacturing process monitoring, and so on. Here, we demonstrate a highly responsive and selective transparency-switching medium for on-site, visual identification of various liquids. The light scattering–based sensing medium, which is designed to be composed of polymeric interphase voids and hollow nanoparticles, provides an extremely large transmittance window (>95%) with outstanding selectivity and versatility. This sensing medium features ternary transparency states (transparent, semitransparent, and opaque) when immersed in liquids depending on liquid-polymer interactions and diffusion kinetics. Several different types of these transparency-changing media can be configured into an arrayed platform to discriminate a wide variety of liquids and also quantify their mixing ratios. The outstanding versatility and user friendliness of the sensing platform allow the development of a practical tool for discrimination of diverse organic liquids.
Collapse
Affiliation(s)
- Kyeong Min Song
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Shinho Kim
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sungmin Kang
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Tae Won Nam
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Geon Yeong Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hunhee Lim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Eugene N. Cho
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST Institute for NanoCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Kwang Ho Kim
- Global Frontier R&D Center for Hybrid Interface Materials (HIM), Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 609-735, Republic of Korea
- School of Materials Science and Engineering, Pusan National University, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 609-735, Republic of Korea
| | - Se Hun Kwon
- School of Materials Science and Engineering, Pusan National University, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 609-735, Republic of Korea
| | - Min Seok Jang
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Yeon Sik Jung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST Institute for NanoCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
40
|
Moriceau G, Kilchoer C, Djeghdi K, Weder C, Steiner U, Wilts BD, Gunkel I. Photonic Particles Made by the Confined Self-Assembly of a Supramolecular Comb-Like Block Copolymer. Macromol Rapid Commun 2021; 42:e2100522. [PMID: 34523759 DOI: 10.1002/marc.202100522] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/10/2021] [Indexed: 12/25/2022]
Abstract
Approaches that enable the preparation of robust polymeric photonic particles are of interest for the development of nonfading and highly reflective pigments for applications such as paints and display technologies. Here, the preparation of photonic particles that display structural color in both, aqueous suspension and the dry solid state is reported. This is achieved by exploiting the confined self-assembly of a supramolecular comb-like block copolymer (BCP) that microphase separates into a well-ordered lamellar morphology with dimensions that promote a photonic bandgap in the visible range. The comb-like BCP is formed by robust ionic interactions between poly(styrene-b-4-vinyl-pyridine) (PS-b-P4VP) BCP and dodecylbenzene sulfonic acid (DBSA), which selectively interacts with P4VP blocks. The components are combined in chloroform, and an aqueous emulsion is prepared. Evaporation of the organic solvent leads to the formation of solid microparticles with an onion-like 3D morphology. These photonic pigments display brilliant colors with reflectance spectra featuring pronounced optical bandgaps across the entire visible wavelength range with a peak reflectivity of 80-90%.
Collapse
Affiliation(s)
- Guillaume Moriceau
- Adolphe Merkle Institute, University of Fribourg, Fribourg, 1700, Switzerland
| | - Cédric Kilchoer
- Adolphe Merkle Institute, University of Fribourg, Fribourg, 1700, Switzerland
| | - Kenza Djeghdi
- Adolphe Merkle Institute, University of Fribourg, Fribourg, 1700, Switzerland
| | - Christoph Weder
- Adolphe Merkle Institute, University of Fribourg, Fribourg, 1700, Switzerland
| | - Ullrich Steiner
- Adolphe Merkle Institute, University of Fribourg, Fribourg, 1700, Switzerland
| | - Bodo D Wilts
- Adolphe Merkle Institute, University of Fribourg, Fribourg, 1700, Switzerland
| | - Ilja Gunkel
- Adolphe Merkle Institute, University of Fribourg, Fribourg, 1700, Switzerland
| |
Collapse
|
41
|
Kim J, Yun H, Lee YJ, Lee J, Kim SH, Ku KH, Kim BJ. Photoswitchable Surfactant-Driven Reversible Shape- and Color-Changing Block Copolymer Particles. J Am Chem Soc 2021; 143:13333-13341. [PMID: 34379395 DOI: 10.1021/jacs.1c06377] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Polymer particles that switch their shape and color in response to light are of great interest for the development of programmable smart materials. Herein, we report block copolymer (BCP) particles with reversible shapes and colors activated by irradiation with ultraviolet (UV) and visible lights. This shape transformation of the BCP particles is achieved by a spiropyran-dodecyltrimethylammoium bromide (SP-DTAB) surfactant that changes its amphiphilicity upon photoisomerization. Under UV light (365 nm) irradiation, the hydrophilic ring-opened merocyanine form of the SP-DTAB surfactant affords the formation of spherical, onion-like BCP particles. In contrast, when exposed to visible light, surfactants with the ring-closed form yield prolate or oblate BCP ellipsoids with axially stacked nanostructures. Importantly, the change in BCP particle morphology between spheres and ellipsoids is reversible over multiple UV and visible light irradiation cycles. In addition, the shape- and color-switchable BCP particles are integrated to form a composite hydrogel, demonstrating their potential as high-resolution displays with reversible patterning capabilities.
Collapse
Affiliation(s)
- Jinwoo Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hongseok Yun
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea
| | - Young Jun Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Junhyuk Lee
- Packaging Center, Korea Institute of Industrial Technology (KITECH), Bucheon, Gyeonggi 14449, Republic of Korea
| | - Shin-Hyun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Kang Hee Ku
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Bumjoon J Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
42
|
Kim T, Xu M, Lee YJ, Ku KH, Shin DJ, Lee DC, Jang SG, Yun H, Kim BJ. Fluorescence Switchable Block Copolymer Particles with Doubly Alternate-Layered Nanoparticle Arrays. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101222. [PMID: 34114319 DOI: 10.1002/smll.202101222] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/28/2021] [Indexed: 06/12/2023]
Abstract
The precise self-assembly of block copolymers (BCPs) and inorganic nanoparticles (NPs) under 3D confinement offers microparticles with programmable nanostructures and functionalities. Here, fluorescence-switchable hybrid microspheres are developed by forming doubly alternating arrays of Au NPs and CdSe/ZnS quantum dots (QDs) within polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) BCP domains. These doubly alternating arrays afford controlled nonradiative energy transfer (NRET) between the QDs and Au NPs that is dependent on the layer-to-layer distance. Solvent-selective swelling of the hybrid particles tunes the distance between layers, modulating their NRET behavior and affording switchable fluorescence. The particle fluorescence is "OFF" in water through strong NRET from the QDs to Au NPs, but is "ON" in alcohols due to the increased distance between the Au NP and QD arrays in the swollen P4VP domains. The experimentally observed NRET intensity as a function of interparticle distance shows larger quenching efficiencies than those theoretically predicted due to the enhanced quenching within a 3D-confined system. Finally, the robust and reversible fluorescence switching of the hybrid particles in different solvents is demonstrated, highlighting their potentials for bioimaging, sensing, and diagnostic applications.
Collapse
Affiliation(s)
- Taewan Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Meng Xu
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Young Jun Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Kang Hee Ku
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Do Joong Shin
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Doh C Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Se Gyu Jang
- Functional Composite Materials Research Center, Korea Institute of Science and Technology (KIST), Jeonbuk, 55324, Republic of Korea
| | - Hongseok Yun
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Bumjoon J Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
43
|
Li X, Wang B, Liu QJ, Zhao R, Song DP, Li Y. Supersoft Elastic Bottlebrush Microspheres with Stimuli-Responsive Color-Changing Properties in Brine. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:6744-6753. [PMID: 34036783 DOI: 10.1021/acs.langmuir.1c00751] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Solvent-free supersoft elastomer is highly desirable for building photonic structures with significant stimuli-responsive color changes. We report supersoft elastic porous microspheres with vivid structural colors obtained via self-assembly of amphiphilic bottlebrush block copolymers at the water/oil interface templated by ordered water-in-oil-in-water double emulsions. The porous structure is composed of cross-linked bottlebrush polydimethylsiloxane (PDMS) as the supersoft elastic skeleton and bottlebrush poly(ethylene oxide) (PEO) as the internal responsive layer. The obtained microspheres show large reversible volume changes through well-controlled dehydration or hydration of PEO in response to salt ions in an aqueous environment. As a result, full-spectrum colors are obtained dependent on different salt concentrations. In-situ observation of color reflection of a microsphere indicates a gradual structural transition from the outside to the inside corresponding to migration of water molecules and salt ions. Moreover, rod-like bottlebrush PEO exhibits an anion-induced salting-out behavior different from that of random coil polymers. The significantly responsive behaviors of bottlebrush block copolymer (BBCP) assemblies in the presence of salt ions primarily rely on the supersoft elastic skeleton of the porous structure, providing a facile route to the creation of stimuli-responsive photonic materials by low-cost self-assembly methods.
Collapse
Affiliation(s)
- Xiaotong Li
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Bangbang Wang
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Qiu-Jun Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Ruijun Zhao
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Dong-Po Song
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yuesheng Li
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
44
|
Dong Y, Ma Z, Song DP, Ma G, Li Y. Rapid Responsive Mechanochromic Photonic Pigments with Alternating Glassy-Rubbery Concentric Lamellar Nanostructures. ACS NANO 2021; 15:8770-8779. [PMID: 33913333 DOI: 10.1021/acsnano.1c01147] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Photonic pigment particles prepared via self-assembly have been suffering from their poor mechanical performances; i.e., they can easily be damaged and lose structural color under a compression force. This greatly limits their uses as mechanochromic pigments. Here, a nanoscale concentric lamellar structure of alternating glassy-rubbery microdomains is successfully created within photonic microparticles through a confined self-assembly and photo-cross-linking strategy. The glassy domain is composed of polystyrene, and cross-linked bottlebrush polydimethylsiloxane served as the supersoft elastic domain. The obtained photonic structure not only shows large deformation and visible color changes under a loaded compression force but also rapidly recovers to its original state in less than 1 s (∼0.16 s) upon unloading. Continuously loading-unloading micro compression test indicates that no obvious damage can be identified after 250 cycles, indicating the high durability of the pigments against deformation. These pigments with different reflected colors are simply obtained using bottlebrush block copolymer formulations with tunable weight percentages of polymer additives. The mechanical robust photonic pigments may be useful in many important applications.
Collapse
Affiliation(s)
- Yun Dong
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Zhe Ma
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Dong-Po Song
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Guiqiu Ma
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yuesheng Li
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
45
|
Liu S, Li Q, Li Y, Zhang J, Pan X, Zhu J, Zhu X. Controllable Radical Polymerization of Selenide Functionalized Vinyl Monomers and Its Application in Redox Responsive Photonic Crystals. Macromol Rapid Commun 2021; 42:e2000764. [PMID: 33544949 DOI: 10.1002/marc.202000764] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/24/2021] [Indexed: 12/30/2022]
Abstract
Selenium-containing monomer (p-phenylseleno) styrene (p-PhSeSt) is polymerized by reversible addition-fragmentation chain transfer polymerization. Polymer, (P(p-PhSeSt)), with controlled molecular weight and narrow molecular weight is obtained. The selenide moiety in obtained P(p-PhSeSt) can be selectively oxidized to selenoxide or selenone groups by H2 O2 or NaClO, respectively. These oxidized groups can be further reduced to selenide by Na2 S2 O4 . The structure changing of polymers during such redox cycle is characterized by nuclear magnetic resonance, X-ray photoelectron spectroscopy, and size exclusion chromatography. Properties, such as thermal performance, glass transition temperature, water contact angles, and refractive indices, of the resulting polymers are systematically investigated before and after oxidation. In addition, SiO2 inverse opal photonic crystal (IOPC) is fabricated by sacrificial polymer colloidal template method. Owing to changes of the RIs of P(p-PhSeSt) after selective oxidation, the predictable change of PC bandgap as a redox-responsive PC sensor is successfully realized, which provides new perspectives for modulating photonic crystals.
Collapse
Affiliation(s)
- Shaoxiang Liu
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Qilong Li
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Yingying Li
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Jiandong Zhang
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Xiangqiang Pan
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Jian Zhu
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Xiulin Zhu
- Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and RIRI Science, Soochow University, Suzhou, 215123, P. R. China.,Global Institute of Software Technology, Suzhou, 215163, P. R. China
| |
Collapse
|
46
|
Wang X, Qi Y, Zhang S, Niu W, Ma W, Wu S, Tang B. Mechanical nondiscoloring and antistretching photonic crystal films based on Zn
2+
coordination and hydroxypropyl methylcellulose. J Appl Polym Sci 2021. [DOI: 10.1002/app.49916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xueyu Wang
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian China
| | - Yong Qi
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian China
| | - Shufen Zhang
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian China
| | - Wenbin Niu
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian China
| | | | - Suli Wu
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian China
| | - Bingtao Tang
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian China
| |
Collapse
|
47
|
Ku KH. Responsive Nanostructured Polymer Particles. Polymers (Basel) 2021; 13:273. [PMID: 33467649 PMCID: PMC7829942 DOI: 10.3390/polym13020273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 11/16/2022] Open
Abstract
Responsive polymer particles with switchable properties are of great importance for designing smart materials in various applications. Recently, the self-assembly of block copolymers (BCPs) and polymer blends within evaporative emulsions has led to advances in the shape-controlled synthesis of polymer particles. Despite extensive recent progress on BCP particles, the responsive shape tuning of BCP particles and their applications have received little attention. This review provides a brief overview of recent approaches to developing non-spherical polymer particles from soft evaporative emulsions based on the physical principles affecting both particle shape and inner structure. Special attention is paid to the stimuli-responsive, shape-changing nanostructured polymer particles, i.e., design of polymers and surfactant pairs, detailed experimental results, and their applications, including the state-of-the-art progress in this field. Finally, the perspectives on current challenges and future directions in this research field are presented, including the development of surfactants with higher reversibility to multiple stimuli and polymers with unique structural functionality, and diversification of polymer architectures.
Collapse
Affiliation(s)
- Kang Hee Ku
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
48
|
Lyu X, Tang Z, Li Y, Xiao A, Shen Z, Zheng S, Fan XH. Tailored Polymer Particles with Ordered Network Structures in Emulsion Droplets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:509-515. [PMID: 33347292 DOI: 10.1021/acs.langmuir.0c03179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The structural control of block copolymer (BCP) particles, which determines their properties and utilities, is quite important. Understanding the structural relationship between solution-cast samples and polymer particles in a confined space is necessary to precisely regulate the internal structure of polymer particles. Therefore, a facile method by choosing an appropriate selective solvent is reported to prepare spherical polymer particles with ordered network structures. The rod-coil BCP, poly(dimethylsiloxane)-b-poly{2,5-bis[(4-methoxyphenyl)-oxycarbonyl]styrene} (PDMS-b-PMPCS), was chosen as a model polymer because of its strong phase segregation ability. First, the structures of the BCP with a thermodynamically stable lamellar structure cast from different selective solvents were systematically studied. Then, a polymer particle with the same internal structure as that of the solution-cast sample can be easily prepared by self-assembling in an emulsion confined space. The relatively large particle size is of importance in this process because the large value of the particle size to periodicity ratio can provide a weak confined environment. This method helps us understand the inherent self-assembling mechanism of polymer particles in an emulsion confined space and accurately control the internal structure of the polymer particle obtained.
Collapse
Affiliation(s)
- Xiaolin Lyu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Key Laboratory of Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Zhehao Tang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yujie Li
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450000, China
| | - Anqi Xiao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhihao Shen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Shijun Zheng
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450000, China
| | - Xing-He Fan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
49
|
Deng R, Zheng L, Mao X, Li B, Zhu J. Transformable Colloidal Polymer Particles with Ordered Internal Structures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006132. [PMID: 33373115 DOI: 10.1002/smll.202006132] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/05/2020] [Indexed: 06/12/2023]
Abstract
Based on studies combining experiments and simulations, internally ordered colloidal particles that are able to undergo morphological transformations both in shape and internal structure are presented. The particles are prepared by emulsion solvent evaporation-induced 3D soft confined assembly of di-block copolymer polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP). Control over the solvent selectivity leads to a dramatic change in shape and internal structure for particles. Pupa-like particles of lamellar morphology are obtained when using a non-selective solvent, while patchy particles possessing a plum pudding structure formed when the solvent is selective for PS-block. More interestingly, 3D soft confined annealing drives order-order morphological transformation of the particles. The morphology of reshaped particles can be well controlled by varying the solvent selectivity, annealing time, and interfacial interaction. The experimental results can be explained based on simulations. This study can offer considerable scope for the design of new stimuli-responsive colloidal particles for potential applications in photonic crystal, drug delivery and release, sensor and smart coating, etc.
Collapse
Affiliation(s)
- Renhua Deng
- State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Lingfei Zheng
- School of Physics and Key Laboratory of Functional Polymer Materials of the Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Xi Mao
- State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Baohui Li
- School of Physics and Key Laboratory of Functional Polymer Materials of the Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Jintao Zhu
- State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| |
Collapse
|
50
|
Cui T, Li X, Wang Z, Wu L, Li H. Polymer-surfactant-controlled 3D confined assembly of block copolymers for nanostructured colloidal particles. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|