1
|
Zhao K, Chen P, Wang Z, Varghese P J G, Liu J, Hu J. A multi-modal embolic gel system for long-term fluorescence imaging and photothermal therapy. BIOMATERIALS ADVANCES 2025; 174:214298. [PMID: 40203749 DOI: 10.1016/j.bioadv.2025.214298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 03/14/2025] [Accepted: 04/01/2025] [Indexed: 04/11/2025]
Abstract
Gel embolic agents are increasingly recognized for their versatility in minimally invasive vascular interventions. However, their application in real-time imaging, post-operative monitoring, and thermal treatment remains underexplored. In this study, we present a novel transcatheter injectable nanoclay-alginate (NCA) gel embolic agent integrated with indocyanine green (ICG) for dual fluorescence imaging and thermal ablation. The NCA/ICG embolic gel exhibits excellent shear-thinning properties, transcatheter injectability, and mechanical stability. Furthermore, the mechanism to enhance fluorescence for real-time imaging enhancement and extended post-operative monitoring was discussed. A 28-day fluorescence persistence shows the NCA/ICG gel's long-lasting fluorescent signal, which was significantly stronger and longer compared to current clinically used ICG aqueous solution. Furthermore, the gel can effectively convert near-infrared (NIR) laser energy into heat for potential photothermal therapy. The biocompatibility and enhanced antibacterial properties further highlight the potential clinical benefits of this embolic agent as a multifunctional agent for vascular embolization.
Collapse
Affiliation(s)
- Keren Zhao
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27606, USA.
| | - Peng Chen
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27606, USA.
| | - Ziqi Wang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27606, USA.
| | - George Varghese P J
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27606, USA.
| | - Jun Liu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27606, USA.
| | - Jingjie Hu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27606, USA.
| |
Collapse
|
2
|
Li C, Wang Z, Ge Z. Stimuli-Responsive Polymeric Nanoprobes for Bioimaging of Cancer Metastasis. Macromol Biosci 2025:e00168. [PMID: 40396585 DOI: 10.1002/mabi.202500168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/18/2025] [Indexed: 05/22/2025]
Abstract
Stimuli-responsive polymeric nanoprobes as a type of nanoscale probe can respond to the tumor microenvironment via specific stimuli inside tumors, such as pH, hypoxia, glutathione (GSH), enzymes, aberrant receptors, and high ATP concentration. The ingenious design of the nanoprobes can improve the specificity and sensitivity to distinguish the slight differences between normal tissues and tumors. Thus, the tiny tumor metastasis can be detected by bioimaging of the stimuli-responsive polymeric nanoprobes. This review summarizes the progress and applications of polymeric nanoprobes in the bioimaging of tumor metastasis. The design strategies for the nanoprobes targeting tumor tissues are discussed according to the stimulus types, including tumor pH, hypoxia, glutathione, enzymes, aberrant receptor, and ATP. Moreover, the challenges currently faced in this field are also discussed. This review will provide valuable insights for the design and optimization of stimuli-responsive polymeric nanoprobes to accelerate the development of bioimaging for tumor metastasis and promote the clinical translation.
Collapse
Affiliation(s)
- Cheng Li
- Department of Geriatric General Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Zhidong Wang
- Department of Geriatric General Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Zhishen Ge
- Department of Geriatric General Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
- School of Chemistry, Xi'an Key Laboratory of Sustainable Polymer Materials, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| |
Collapse
|
3
|
Pieczykolan M, Dancer PA, Klein TW, Piwonski H, Rolbieski H, Maity B, Bruns OT, Cavallo L, Kiessling F, Rueping M, Banala S. Small organic fluorophores with SWIR emission detectable beyond 1300 nm. Chem Commun (Camb) 2025; 61:4820-4823. [PMID: 40033975 DOI: 10.1039/d4cc05248j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
3,6-Dimethylamino fluorenone was functionalized with substituents to achieve an absorption maximum at 1012 nm and emission >1300 nm. TD-DFT calculations confirmed that the substituent orbitals contribute to narrowing the HOMO-LUMO energy gap. Imaging with an InGaAs-based SWIR camera and various longpass filters confirmed detection >1300 nm.
Collapse
Affiliation(s)
- Michal Pieczykolan
- Institute of Organic Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | | | - Tjadina-Wencke Klein
- Department of Functional Imaging in Surgical Oncology, National Center for Tumor Diseases (NCT/UCC), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medizinische Fakultät and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | - Hubert Piwonski
- Biological and Environmental Science Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Hannes Rolbieski
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | - Bholanath Maity
- KAUST Catalysis Centre (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Oliver T Bruns
- Department of Functional Imaging in Surgical Oncology, National Center for Tumor Diseases (NCT/UCC), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medizinische Fakultät and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | - Luigi Cavallo
- KAUST Catalysis Centre (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging (ExMI), University Clinic Aachen, 52074 Aachen, Germany.
| | - Magnus Rueping
- KAUST Catalysis Centre (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Institute for Experimental Molecular Imaging (ExMI), University Clinic Aachen, 52074 Aachen, Germany.
| | - Srinivas Banala
- Institute of Organic Chemistry, RWTH Aachen University, 52074 Aachen, Germany
- KAUST Catalysis Centre (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Institute for Experimental Molecular Imaging (ExMI), University Clinic Aachen, 52074 Aachen, Germany.
| |
Collapse
|
4
|
Wang T, Sun J, Teng Z, Yao S, Yuan J, Han L, Mu D, Song H, Yu X, Xu X. Near‐Infrared Emission Perovskites for Multifunctional Bioimaging. SMALL SCIENCE 2025. [DOI: 10.1002/smsc.202500033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025] Open
Abstract
Bioimaging with remarkable noninvasive nature, ultrahigh resolution and sensitivity allows detection of pathologies of bones, organs, and tissues. Nevertheless, the achievement of more complete information in vivo is challenged by the necessity of multiple photodetectors with diverse response ranges. Herein, a multifunctional bioimaging with Cs2AgInCl6:Yb3+ perovskites via a single InGaAs detector for superior tissue presentation is realized in this work. Co‐incorporation of foreign dopant contributes to alterations of local structural symmetry of the Cs2AgInCl6 host, disruption of parity‐forbidden transitions, and reduction in electron–phonon coupling strength, thereby boosting the near‐infrared (NIR) intensity by 40‐fold of the corresponding perovskites drastically. Moreover, an X‐ray excited NIR light output is 2.83 times that of commercial Bi4Ge3O12 scintillators. Thanks to the efficient NIR emission, the versatile perovskites film endows a multifunctional bioimaging with detailed information of biological tissue in vivo, which fundamentally offers viable avenues for promoting bioimaging technology with integrated access of tissue presentation.
Collapse
Affiliation(s)
- Tianchi Wang
- The Central Laboratory and Department of Orthopedic The Second Affiliated Hospital of Kunming Medical University Kunming Yunnan 650106 P. R. China
- Faculty of Materials Science and Engineering Key Laboratory of Advanced Materials of Yunnan Province Kunming University of Science and Technology Kunming Yunnan 650093 P. R. China
| | - Jiabo Sun
- Faculty of Materials Science and Engineering Key Laboratory of Advanced Materials of Yunnan Province Kunming University of Science and Technology Kunming Yunnan 650093 P. R. China
| | - Zhaowei Teng
- The Central Laboratory and Department of Orthopedic The Second Affiliated Hospital of Kunming Medical University Kunming Yunnan 650106 P. R. China
| | - Shuyi Yao
- Faculty of Materials Science and Engineering Key Laboratory of Advanced Materials of Yunnan Province Kunming University of Science and Technology Kunming Yunnan 650093 P. R. China
| | - Junheng Yuan
- Faculty of Materials Science and Engineering Key Laboratory of Advanced Materials of Yunnan Province Kunming University of Science and Technology Kunming Yunnan 650093 P. R. China
| | - Lulu Han
- Faculty of Materials Science and Engineering Key Laboratory of Advanced Materials of Yunnan Province Kunming University of Science and Technology Kunming Yunnan 650093 P. R. China
| | - Dedan Mu
- Faculty of Materials Science and Engineering Key Laboratory of Advanced Materials of Yunnan Province Kunming University of Science and Technology Kunming Yunnan 650093 P. R. China
| | - Hao Song
- Faculty of Materials Science and Engineering Key Laboratory of Advanced Materials of Yunnan Province Kunming University of Science and Technology Kunming Yunnan 650093 P. R. China
| | - Xue Yu
- School of Mechanical Engineering Chengdu University Chengdu Sichuan 610106 P. R. China
| | - Xuhui Xu
- The Central Laboratory and Department of Orthopedic The Second Affiliated Hospital of Kunming Medical University Kunming Yunnan 650106 P. R. China
- Faculty of Materials Science and Engineering Key Laboratory of Advanced Materials of Yunnan Province Kunming University of Science and Technology Kunming Yunnan 650093 P. R. China
| |
Collapse
|
5
|
Wang WJ, Xin ZY, Su X, Hao L, Qiu Z, Li K, Luo Y, Cai XM, Zhang J, Alam P, Feng J, Wang S, Zhao Z, Tang BZ. Aggregation-Induced Emission Luminogens Realizing High-Contrast Bioimaging. ACS NANO 2025; 19:281-306. [PMID: 39745533 DOI: 10.1021/acsnano.4c14887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
A revolutionary transformation in biomedical imaging is unfolding with the advent of aggregation-induced emission luminogens (AIEgens). These cutting-edge molecules not only overcome the limitations of traditional fluorescent probes but also improve the boundaries of high-contrast imaging. Unlike conventional fluorophores suffering from aggregation-caused quenching, AIEgens exhibit enhanced luminescence when aggregated, enabling superior imaging performance. This review delves into the molecular mechanisms of aggregation-induced emission (AIE), demonstrating how strategic molecular design unlocks exceptional luminescence and superior imaging contrast, which is crucial for distinguishing healthy and diseased tissues. This review also highlights key applications of AIEgens, such as time-resolved imaging, second near-infrared window (NIR-II), and the advancement of AIEgens in sensitivity to physical and biochemical cue-responsive imaging. The development of AIE technology promises to transform healthcare from early disease detection to targeted therapies, potentially reshaping personalized medicine. This paradigm shift in biophotonics offers efficient tools to decode the complexities of biological systems at the molecular level, bringing us closer to a future where the invisible becomes visible and the incurable becomes treatable.
Collapse
Affiliation(s)
- Wen-Jin Wang
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, China
| | - Zhuo-Yang Xin
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, China
| | - Xuxian Su
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Biological and Chemical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Liang Hao
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, China
| | - Zijie Qiu
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, China
| | - Kang Li
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, China
| | - Yumei Luo
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, China
| | - Xu-Min Cai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jianquan Zhang
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, China
| | - Parvej Alam
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, China
| | - Jing Feng
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, China
| | - Shaojuan Wang
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, China
| | - Zheng Zhao
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, China
| | - Ben Zhong Tang
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, China
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Biological and Chemical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| |
Collapse
|
6
|
Sun Y, Qu F, Geng R, Xiao W, Bi D, Xiong B, Liu Y, Zhu J, Chen X. Electrostatic Assembly of Gold Nanoclusters in Reverse Emulsion Enabling Nanoassemblies with Tunable Structure and Size for Enhanced NIR-II Fluorescence Imaging. ACS NANO 2024; 18:32126-32144. [PMID: 39495492 DOI: 10.1021/acsnano.4c10973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
The precise control of the assembly structure and size of gold nanoclusters (AuNCs) can potentially amplify their near-infrared II (NIR-II) fluorescence imaging and targeting properties. However, the conventional electrostatic assembly of AuNCs and charged molecules faces challenges in balancing the inherent electrostatic repulsions among charged units and regulating the diffusion of assembly units. These difficulties limit precise control over assembly size and structure, along with limited options for coassembled molecules, thereby restricting imaging properties and targeting capability. To circumvent this challenge, we developed a reverse emulsion-confined electrostatic assembly method. This technique efficiently constructs AuNC nanoassemblies with diverse coassembled molecules, allowing for the fine-tuning of assembly size and structure, including both core-satellite and homogeneous AuNC nanoassemblies. The development of two distinct nanoassemblies can be partially attributed to the varying diffusive rates of AuNCs or the AuNCs/polymer complex within the fused emulsion droplets. This variance arises from steric hindrances encountered during the emulsion fusion process. Interestingly, core-satellite nanoassemblies exhibit the strongest NIR-II fluorescence enhancement. Finally, the introduction of a hyaluronic acid coating on the surfaces of nanoassemblies with varying sizes enables the nanoprobes to achieve enhanced lymph node imaging through size modulation and macrophage targeting, which are used for surgical navigation to remove lymph node metastases. We envision that this self-assembly strategy can be extended to a wide range of electrostatic assembly systems for the development of multicomponent functional materials.
Collapse
Affiliation(s)
- Yufeng Sun
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fei Qu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Rui Geng
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wanyue Xiao
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Duohang Bi
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bijin Xiong
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yijing Liu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518057, China
| | - Jintao Zhu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| |
Collapse
|
7
|
Yu JF, Wen Y, Li M. An Active Self-Mitochondria-Targeting Cyanine Immunomodulator for Near-Infrared II Fluorescence Imaging-Guided Synergistic Photodynamic Immunotherapy. Adv Healthc Mater 2024; 13:e2401061. [PMID: 38849128 DOI: 10.1002/adhm.202401061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/05/2024] [Indexed: 06/09/2024]
Abstract
Photodynamic therapy targeting mitochondria represents a promising therapeutic strategy for fighting diverse types of cancers. However, the currently available photosensitizers (PSs) suffer from insufficient therapeutic potency, limited mitochondria delivery efficiency, and the inability to treat invisible metastatic distal cancers. Herein, an active self-mitochondria-targeting heptapeptide cyanine (HCy) immunomodulator (I2HCy-QAP) is reported for near-infrared II (NIR-II) fluorescence imaging-guided photodynamic immunotherapy of primary and distal metastatic cancers. The I2HCy-QAP is designed by introducing a quaternary ammonium salt with a phenethylamine skeleton (QAP) into the iodinated HCy photosensitizer. The I2HCy-QAP can precisely target mitochondria due to the lipophilic cationic QAP unit, present strong NIR-II fluorescence tail emission, and effectively generate singlet oxygen 1O2 under NIR laser irradiation, thereby inducing mitochondria-targeted damages and eliciting strong systemic immunogenic cell death immune responses. The combination of the I2HCy-QAP-mediated photodynamic immunotherapy with anti-programmed death-1 antibody therapy achieves remarkable therapeutic efficacy against both primary and distal metastatic cancers with significant inhibition of lung metastasis in a triple-negative breast cancer model. This work provides a new concept for designing high-performance NIR emissive cyanine immunomodulators for NIR-II fluorescence-guided photodynamic immunotherapy.
Collapse
Affiliation(s)
- Jin-Feng Yu
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Yu Wen
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, China
- Furong Laboratory, Central South University, Changsha, Hunan, 410008, China
| | - Ming Li
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, China
| |
Collapse
|
8
|
Cheng H, Xu H, Peng B, Huang X, Hu Y, Zheng C, Zhang Z. Illuminating the future of precision cancer surgery with fluorescence imaging and artificial intelligence convergence. NPJ Precis Oncol 2024; 8:196. [PMID: 39251820 PMCID: PMC11385925 DOI: 10.1038/s41698-024-00699-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/29/2024] [Indexed: 09/11/2024] Open
Abstract
Real-time and accurate guidance for tumor resection has long been anticipated by surgeons. In the past decade, the flourishing material science has made impressive progress in near-infrared fluorophores that may fulfill this purpose. Fluorescence imaging-guided surgery shows great promise for clinical application and has undergone widespread evaluations, though it still requires continuous improvements to transition this technique from bench to bedside. Concurrently, the rapid progress of artificial intelligence (AI) has revolutionized medicine, aiding in the screening, diagnosis, and treatment of human doctors. Incorporating AI helps enhance fluorescence imaging and is poised to bring major innovations to surgical guidance, thereby realizing precision cancer surgery. This review provides an overview of the principles and clinical evaluations of fluorescence-guided surgery. Furthermore, recent endeavors to synergize AI with fluorescence imaging were presented, and the benefits of this interdisciplinary convergence were discussed. Finally, several implementation strategies to overcome technical hurdles were proposed to encourage and inspire future research to expedite the clinical application of these revolutionary technologies.
Collapse
Affiliation(s)
- Han Cheng
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
- College of Stomatology, Shanghai Jiao Tong University & National Center for Stomatology, Shanghai, 200011, P. R. China
- National Clinical Research Center for Oral Diseases & Shanghai Key Laboratory of Stomatology, Shanghai, 200011, P. R. China
- Shanghai Research Institute of Stomatology, Shanghai, 200011, P. R. China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, P. R. China
| | - Hongtao Xu
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
- College of Stomatology, Shanghai Jiao Tong University & National Center for Stomatology, Shanghai, 200011, P. R. China
- National Clinical Research Center for Oral Diseases & Shanghai Key Laboratory of Stomatology, Shanghai, 200011, P. R. China
- Shanghai Research Institute of Stomatology, Shanghai, 200011, P. R. China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, P. R. China
| | - Boyang Peng
- School of Computer Science and Engineering, University of New South Wales, Sydney, Australia
| | - Xiaojuan Huang
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
- College of Stomatology, Shanghai Jiao Tong University & National Center for Stomatology, Shanghai, 200011, P. R. China
- National Clinical Research Center for Oral Diseases & Shanghai Key Laboratory of Stomatology, Shanghai, 200011, P. R. China
- Shanghai Research Institute of Stomatology, Shanghai, 200011, P. R. China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, P. R. China
| | - Yongjie Hu
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
- College of Stomatology, Shanghai Jiao Tong University & National Center for Stomatology, Shanghai, 200011, P. R. China
- National Clinical Research Center for Oral Diseases & Shanghai Key Laboratory of Stomatology, Shanghai, 200011, P. R. China
- Shanghai Research Institute of Stomatology, Shanghai, 200011, P. R. China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, P. R. China
| | - Chongyang Zheng
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China.
- College of Stomatology, Shanghai Jiao Tong University & National Center for Stomatology, Shanghai, 200011, P. R. China.
- National Clinical Research Center for Oral Diseases & Shanghai Key Laboratory of Stomatology, Shanghai, 200011, P. R. China.
- Shanghai Research Institute of Stomatology, Shanghai, 200011, P. R. China.
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, P. R. China.
| | - Zhiyuan Zhang
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China.
- College of Stomatology, Shanghai Jiao Tong University & National Center for Stomatology, Shanghai, 200011, P. R. China.
- National Clinical Research Center for Oral Diseases & Shanghai Key Laboratory of Stomatology, Shanghai, 200011, P. R. China.
- Shanghai Research Institute of Stomatology, Shanghai, 200011, P. R. China.
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, P. R. China.
| |
Collapse
|
9
|
Xia B, Ren F, Ma X, Yang ZC, Jiang ZL, Fang WW, Wang NW, Hu JL, Zhu WD, He T, Li Q, Cao BQ, Li Z. Preparation of NIR-II Polymer Nanoprobe Through Twisted Intramolecular Charge Transfer and Förster Resonance Energy Transfer of NIR-I Dye. Adv Healthc Mater 2024; 13:e2400760. [PMID: 38703026 DOI: 10.1002/adhm.202400760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/13/2024] [Indexed: 05/06/2024]
Abstract
Near-infrared-II (NIR-II) fluorescence imaging is pivotal in biomedical research. Organic probes exhibit high potential in clinical translation, due to advantages such as precise structure design, low toxicity, and post-modifications convenience. In related preparation, enhancement of NIR-II tail emission from NIR-I dyes is an efficient method. In particular, the promotion of twisted intramolecular charge transfer (TICT) of relevant NIR-I dyes is a convenient protocol. However, present TICT-type probes still show disadvantages in relatively low emission, large particle sizes, or limited choice of NIR-I dyes, etc. Herein, the synthesis of stable small-sized polymer NIR-II fluoroprobes (e.g., 7.2 nm), integrating TICT and Förster resonance energy transfer process to synergistically enhance the NIR-II emission is reported. Strong enhanced emissions can be obtained from various NIR-I dyes and lanthanide elements (e.g., twelvefold at 1250 nm from Nd-DTPA/IR-808 sample). The fluorophore provides high-resolution angiography, with high-contrast imaging on middle cerebral artery occlusion model mice for distinguishing occlusion. The fluorophore can be rapidly excreted from the kidney (urine ≈65% within 4 h) in normal mice and exhibits long-term renal retention on acute kidney injury mice, showing potential applications in the prognosis of kidney diseases. This development provides an effective strategy to design and synthesize effective NIR-II fluoroprobes.
Collapse
Affiliation(s)
- Bin Xia
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, Anhui Province Engineering Research Center of Flexible and Intelligent Materials, Hefei University of Technology, Hefei, 230009, China
| | - Feng Ren
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Xiaopeng Ma
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Zheng-Chuan Yang
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, Anhui Province Engineering Research Center of Flexible and Intelligent Materials, Hefei University of Technology, Hefei, 230009, China
| | - Zhi-Lin Jiang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Wei-Wei Fang
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, Anhui Province Engineering Research Center of Flexible and Intelligent Materials, Hefei University of Technology, Hefei, 230009, China
| | - Ning-Wei Wang
- Department of Gastroenterology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Jin-Long Hu
- Department of General Surgery, Anhui No. 2 Provincial People's Hospital, Hefei, 230041, China
| | - Wei-Duo Zhu
- School of Physics, Hefei University of Technology, Hefei, 230009, P.R. China
| | - Tao He
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, Anhui Province Engineering Research Center of Flexible and Intelligent Materials, Hefei University of Technology, Hefei, 230009, China
| | - Qing Li
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Bao-Qiang Cao
- Department of General Surgery, Anhui No. 2 Provincial People's Hospital, Hefei, 230041, China
| | - Zhen Li
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| |
Collapse
|
10
|
Mc Larney BE, Sonay A, Apfelbaum E, Mostafa N, Monette S, Goerzen D, Aguirre N, Exner RM, Habjan C, Isaac E, Phung NB, Skubal M, Kim M, Ogirala A, Veach D, Heller DA, Grimm J. A pan-cancer dye for solid-tumour screening, resection and wound monitoring via short-wave and near-infrared fluorescence imaging. Nat Biomed Eng 2024; 8:1092-1108. [PMID: 39251765 PMCID: PMC11699565 DOI: 10.1038/s41551-024-01248-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/21/2024] [Indexed: 09/11/2024]
Abstract
The efficacy of fluorescence-guided surgery in facilitating the real-time delineation of tumours depends on the optical contrast of tumour tissue over healthy tissue. Here we show that CJ215-a commercially available, renally cleared carbocyanine dye sensitive to apoptosis, and with an absorption and emission spectra suitable for near-infrared fluorescence imaging (wavelengths of 650-900 nm) and shortwave infrared (SWIR) fluorescence imaging (900-1,700 nm)-can facilitate fluorescence-guided tumour screening, tumour resection and the assessment of wound healing. In tumour models of either murine or human-derived breast, prostate and colon cancers and of fibrosarcoma, and in a model of intraperitoneal carcinomatosis, imaging of CJ215 with ambient light allowed for the delineation of nearly all tumours within 24 h after intravenous injection of the dye, which was minimally taken up by healthy organs. At later timepoints, CJ215 provided tumour-to-muscle contrast ratios up to 100 and tumour-to-liver contrast ratios up to 18. SWIR fluorescence imaging with the dye also allowed for quantifiable non-contact wound monitoring through commercial bandages. CJ215 may be compatible with existing and emerging clinical solutions.
Collapse
Affiliation(s)
| | - Ali Sonay
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Elana Apfelbaum
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
- Pharmacology Program, Weill Cornell Medical College, New York, NY, USA
| | - Nermin Mostafa
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Sébastien Monette
- Laboratory of Comparative Pathology, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, and The Rockefeller University, New York, NY, USA
| | - Dana Goerzen
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
- Department of Physiology, Biophysics, and Systems Biology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Nicole Aguirre
- Colorectal Service, Department of Surgery, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Rüdiger M. Exner
- Department of Radiology, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Christine Habjan
- Pharmacology Program, Weill Cornell Medical College, New York, NY, USA
| | - Elizabeth Isaac
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
- Pharmacology Program, Weill Cornell Medical College, New York, NY, USA
| | - Ngan Bao Phung
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
- Pharmacology Program, Weill Cornell Medical College, New York, NY, USA
| | - Magdalena Skubal
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Mijin Kim
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Anuja Ogirala
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Darren Veach
- Department of Radiology, Memorial Sloan Kettering Cancer Center; New York, NY, USA
- Department of Radiology, Weill Cornell Medical Center; New York, NY, USA
| | - Daniel A. Heller
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
- Pharmacology Program, Weill Cornell Medical College, New York, NY, USA
| | - Jan Grimm
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
- Pharmacology Program, Weill Cornell Medical College, New York, NY, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center; New York, NY, USA
- Department of Radiology, Weill Cornell Medical Center; New York, NY, USA
- Molecular Imaging Therapy Service, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| |
Collapse
|
11
|
Shen L, Bi Y, Yu J, Zhong Y, Chen W, Zhao Z, Ding J, Shu G, Chen M, Lu C, Ji J. The biological applications of near-infrared optical nanomaterials in atherosclerosis. J Nanobiotechnology 2024; 22:478. [PMID: 39135099 PMCID: PMC11320980 DOI: 10.1186/s12951-024-02703-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 07/05/2024] [Indexed: 08/15/2024] Open
Abstract
PURPOSE OF REVIEW Atherosclerosis, a highly pathogenic and lethal disease, is difficult to locate accurately via conventional imaging because of its scattered and deep lesions. However, second near-infrared (NIR-II) nanomaterials show great application potential in the tracing of atherosclerotic plaques due to their excellent penetration and angiographic capabilities. RECENT FINDINGS With the development of nanotechnology, among many nanomaterials available for the visual diagnosis and treatment of cardiovascular diseases, optical nanomaterials provide strong support for various biomedical applications because of their advantages, such as noninvasive, nondestructive and molecular component imaging. Among optical nanomaterials of different wavelengths, NIR-II-range (900 ~ 1700 nm) nanomaterials have been gradually applied in the visual diagnosis and treatment of atherosclerosis and other vascular diseases because of their deep biological tissue penetration and limited background interference. This review explored in detail the prospects and challenges of the biological imaging and clinical application of NIR-II nanomaterials in treating atherosclerosis.
Collapse
Affiliation(s)
- Lin Shen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
- Department of Interventional Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
| | - Yanran Bi
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
- Department of Interventional Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
| | - Junchao Yu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
- Department of Interventional Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
| | - Yi Zhong
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
- Department of Interventional Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
| | - Weiqian Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
- Department of Interventional Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
| | - Zhongwei Zhao
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
- Department of Interventional Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
| | - Jiayi Ding
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
- Department of Interventional Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
| | - Gaofeng Shu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
- Department of Interventional Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
| | - Minjiang Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
- Department of Interventional Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
| | - Chenying Lu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
- Department of Interventional Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China.
- Department of Interventional Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, No 289, Kuocang Road, Lishui, 323000, China.
| |
Collapse
|
12
|
Zhou C, Zeng F, Yang H, Liang Z, Xu G, Li X, Liu X, Yang J. Near-infrared II theranostic agents for the diagnosis and treatment of Alzheimer's disease. Eur J Nucl Med Mol Imaging 2024; 51:2953-2969. [PMID: 38502215 DOI: 10.1007/s00259-024-06690-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/12/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND Near-infrared II theranostic agents have gained great momentum in the research field of AD owing to the appealing advantages. Recently, an array of activatable NIR-II fluorescence probes has been developed to specifically monitor pathological targets of AD. Furthermore, various NIR-II-mediated nanomaterials with desirable photothermal and photodynamic properties have demonstrated favorable outcomes in the management of AD. METHODS We summerized amounts of references and focused on small-molecule probes, nanomaterials, photothermal therapy, and photodynamic therapy based on NIR-II fluorescent imaging for the diagnosis and treatment in AD. In addition, design strategies for NIR-II-triggered theranostics targeting AD are presented, and some prospects are also addressed. RESULTS NIR-II theranostic agents including small molecular probes and nanoparticles have received the increasing attention for biomedical applications. Meanwhile, most of the theranostic agents exhibited the promising results in animal studies. To our surprise, the multifunctional nanoplatforms also show a great potential in the diagnosis and treatment of AD. CONCLUSIONS Although NIR-II theranostic agents showed the great potential in diagnosis and treatment of AD, there are still many challenges: 1) Faborable NIR-II fluorohpores are still lacking; 2) Biocompatibility, bioseurity and dosage of NIR-II theranostic agents should be further revealed; 3) New equipment and software associated with NIR-II imaging system should be explored.
Collapse
Affiliation(s)
- Can Zhou
- 411 Hospital, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Fantian Zeng
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Haijun Yang
- 411 Hospital, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Zeying Liang
- 411 Hospital, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Guanyu Xu
- 411 Hospital, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Xiao Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.
| | - Xingdang Liu
- Department of Nuclear Medicine, Pudong Hospital, Fudan University, Shanghai, 201399, China.
| | - Jian Yang
- 411 Hospital, School of Medicine, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
13
|
Lu F, Li L, Zhang M, Yu C, Pan Y, Cheng F, Hu W, Lu X, Wang Q, Fan Q. Confined semiconducting polymers with boosted NIR light-triggered H 2O 2 production for hypoxia-tolerant persistent photodynamic therapy. Chem Sci 2024; 15:12086-12097. [PMID: 39092116 PMCID: PMC11290442 DOI: 10.1039/d4sc01609b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/11/2024] [Indexed: 08/04/2024] Open
Abstract
Hypoxia featured in malignant tumors and the short lifespan of photo-induced reactive oxygen species (ROS) are two major issues that limit the efficiency of photodynamic therapy (PDT) in oncotherapy. Developing efficient type-I photosensitizers with long-term ˙OH generation ability provides a possible solution. Herein, a semiconducting polymer-based photosensitizer PCPDTBT was found to generate 1O2, ˙OH, and H2O2 through type-I/II PDT paths. After encapsulation within a mesoporous silica matrix, the NIR-II fluorescence and ROS generation are enhanced by 3-4 times compared with the traditional phase transfer method, which can be attributed to the excited-state lifetime being prolonged by one order of magnitude, resulting from restricted nonradiative decay channels, as confirmed by femtosecond spectroscopy. Notably, H2O2 production reaches 15.8 μM min-1 under a 730 nm laser (80 mW cm-2). Further adsorption of Fe2+ ions on mesoporous silica not only improves the loading capacity of the chemotherapy drug doxorubicin but also triggers a Fenton reaction with photo-generated H2O2 in situ to produce ˙OH continuously after the termination of laser irradiation. Thus, semiconducting polymer-based nanocomposites enables NIR-II fluorescence imaging guided persistent PDT under hypoxic conditions. This work provides a promising paradigm to fabricate persistent photodynamic therapy platforms for hypoxia-tolerant phototheranostics.
Collapse
Affiliation(s)
- Feng Lu
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications Nanjing 210023 China
| | - Lili Li
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications Nanjing 210023 China
| | - Meng Zhang
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications Nanjing 210023 China
| | - Chengwu Yu
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications Nanjing 210023 China
| | - Yonghui Pan
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications Nanjing 210023 China
| | - Fangfang Cheng
- School of Pharmacy, Nanjing University of Chinese Medicine Nanjing 210023 China
| | - Wenbo Hu
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University Xi'an 710072 China
| | - Xiaomei Lu
- Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University Nanjing 211816 China
- Zhengzhou Institute of Biomedical Engineering and Technology Zhengzhou 450001 China
| | - Qi Wang
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications Nanjing 210023 China
| | - Quli Fan
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications Nanjing 210023 China
| |
Collapse
|
14
|
Vahdani A, Moemeni M, Holmes D, Lunt RR, Jackson JE, Borhan B. Mechanistic Insight into the Thermal "Blueing" of Cyanine Dyes. J Am Chem Soc 2024; 146:19756-19767. [PMID: 38989979 PMCID: PMC11273608 DOI: 10.1021/jacs.4c02171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/28/2024] [Accepted: 06/25/2024] [Indexed: 07/12/2024]
Abstract
In recent work to develop cyanine dyes with especially large Stokes shifts, we encountered a "blueing" reaction, in which the heptamethine cyanine dye Cy7 (IUPAC: 1,3,3-trimethyl-2-((1E,3E,5E)-7-((E)-1,3,3-trimethylindolin-2-ylidene)hepta-1,3,5-trien-1-yl)-3H-indol-1-ium) undergoes shortening in two-carbon steps to form the pentamethine (Cy5) and trimethine (Cy3) analogs. Each step blue-shifts the resulting absorbance wavelength by ca. 100 nm. Though photochemical and oxidative chain-shortening reactions had been noted previously, it is simple heating alone or with amine bases that effects this unexpected net C2H2 excision. Explicit acetylene loss would be too endothermic to merit consideration. Our mechanistic studies using 2H labeling, mass spectrometric and NMR spectroscopic analyses, and quantum chemical modeling point instead to electrocyclic closure and aromatization of the heptamethine chain in Cy7 forming Fischer's base FB (1,3,3-trimethyl-2-methyleneindoline), a reactive carbon nucleophile that initiates chain shortening of the cyanine dyes by attack on their polymethine backbones. The byproduct is the cationic indolium species TMP (IUPAC: 1,3,3 trimethyl-2-phenyl indolium).
Collapse
Affiliation(s)
- Aria Vahdani
- Department
of ChemistryDepartment of Chemical Engineering, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Mehdi Moemeni
- Department
of ChemistryDepartment of Chemical Engineering, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Daniel Holmes
- Department
of ChemistryDepartment of Chemical Engineering, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Richard R. Lunt
- Department
of ChemistryDepartment of Chemical Engineering, Michigan
State University, East Lansing, Michigan 48824, United States
| | - James E. Jackson
- Department
of ChemistryDepartment of Chemical Engineering, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Babak Borhan
- Department
of ChemistryDepartment of Chemical Engineering, Michigan
State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
15
|
Wang S, Zhang R, Li X, Chen Y, Zhu L, Yang B, Wang J, Du YH, Liu J, Ye TT, Wang S. "Rigid-Flexible" Dual-Ferrocene Chimeric Nanonetwork for Simultaneous Tumor-Targeted Tracing and Photothermal/Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:36142-36156. [PMID: 38968001 DOI: 10.1021/acsami.4c06437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
There is an urgent need to develop phototherapeutic agents with imaging capabilities to assess the treatment process and efficacy in real-time during cancer phototherapy for precision cancer therapy. The safe near-infrared (NIR) fluorescent dyes have garnered significant attention and are desirable for theranostics agents. However, until now, achieving excellent photostability and fluorescence (FL) imaging capability in aggregation-caused quenching (ACQ) dyes remains a big challenge. Here, for the only FDA-approved NIR dye, indocyanine green (ICG), we developed a dual-ferrocene (Fc) chimeric nanonetwork ICG@HFFC based on the rigid-flexible strategy through one-step self-assembly, which uses rigid Fc-modified hyaluronic acid (HA) copolymer (HA-Fc) and flexible octadecylamine (ODA) bonded Fc (Fc-C18) as the delivery system. HA-Fc reserved the ability of HA to target the CD44 receptor of the tumor cell surface, and the dual-Fc region provided a rigid space for securely binding ICG through metal-ligand interaction and π-π conjugation, ensuring excellent photostability. Additionally, the alkyl chain provided flexible confinement for the remaining ICG through hydrophobic forces, preserving its FL. Thereby, a balance is achieved between outstanding photostability and FL imaging capability. In vitro studies showed improved photobleaching resistance, enhanced FL stability, and increased singlet oxygen (1O2) production efficiency in ICG@HFFC. Further in vivo results display that ICG@HFFC had good tumor tracing ability and significant tumor inhibition which also exhibited good biocompatibility.. Therefore, ICG@HFFC provides an encouraging strategy to realize simultaneous enhanced tumor tracing and photothermal/photodynamic therapy (PTT/PDT) and offers a novel approach to address the limitations of ACQ dyes.
Collapse
Affiliation(s)
- Sixue Wang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
| | - Rui Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
| | - Xianqiang Li
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
| | - Yan Chen
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
| | - Lili Zhu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
| | - Boyang Yang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
| | - Jiale Wang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
| | - Yu Hao Du
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
| | - Jun Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
| | - Tian Tian Ye
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
| | - Shujun Wang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
| |
Collapse
|
16
|
Song R, Dong Y, Zhong Z, Zhao Q, Hu Y, Lei M, Lei P, Jiang Z, Qian K, Shi C, He Z, Qin Y, Wang J, Chen H. Systematic Structural Modification of Squaraine Dye for Near-Infrared Window One and Two Multiplexed In Vivo Imaging and Photothermal Therapy. J Med Chem 2024; 67:10275-10292. [PMID: 38842846 DOI: 10.1021/acs.jmedchem.4c00601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Due to the wide application of reporter gene-related visible/NIR-I bioluminescent imaging, multiplexed fluorescence imaging across visible/NIR-I/NIR-II has excellent potential in biomedical research. However, in vivo multiplexed imaging applications across those regions have rarely been reported due to the lack of proper fluorophores. Herein, nine squaraine dyes, which exhibit diverse adsorption and emission wavelengths, were synthesized. Among them, water-soluble SQ 710-5k and SQ 905 were found to have significant absorption differences, which allowed the tumor and lymph nodes to be identified. Then, for the first time, six-channel multiplexed fluorescence imaging across visible/NIR-I/II was achieved by coordination with reporter gene-related bioluminescent phosphors. Additional research revealed that SQ 710-5k exhibited higher-quality blood vessels and tumor imaging in NIR-II. H-aggregates SQ 905 demonstrated a high photothermal conversion efficiency for photothermal therapy. This study proposed an approach to creating small molecular dyes that coordinate with reporter gene-related bioluminescent phosphors for six-color fluorescence imaging.
Collapse
Affiliation(s)
- Ruihu Song
- State Key Laboratory of Chemical Biology, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Yiyun Dong
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhuoyi Zhong
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qi Zhao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yue Hu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Meiling Lei
- State Key Laboratory of Chemical Biology, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Peng Lei
- State Key Laboratory of Chemical Biology, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhaoning Jiang
- State Key Laboratory of Chemical Biology, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Kun Qian
- State Key Laboratory of Chemical Biology, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chenchen Shi
- State Key Laboratory of Chemical Biology, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhong He
- State Key Laboratory of Chemical Biology, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ye Qin
- State Key Laboratory of Chemical Biology, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jing Wang
- Radiology department, the First Hospital of Jilin University, Changchun 130021, China
| | - Hao Chen
- State Key Laboratory of Chemical Biology, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Pharmacy Department, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| |
Collapse
|
17
|
Sun X, Peng Y, He P, Cheng H, Li D, Liu H, Lin H, Liu G. Repurposing indocyanine green: exploring the potential of an old drug in modern medicine. NANOSCALE 2024; 16:11411-11428. [PMID: 38860512 DOI: 10.1039/d4nr00283k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
The repurposing of existing drugs, referred to as theranostics, has made profound impacts on precision medicine. Indocyanine green (ICG), a well-established and clinical dye, has continued to be a star agent, described as a multifunctional molecule with concurrent photo- or sono-sensitiveness capabilities and co-delivery accessibility, showing remarkable potential in the area of unimodal or multimodal imaging-guided therapy of various diseases, leading to the extensive consideration of immediate clinical translations. In this review, we strive to bring the understanding of repurposing performance assessment for ICG into practice by clarifying the relationships between its features and applicability. Specifically, we address the obstacles encountered in the process of developing an ICG repurposing strategy, as well as the noteworthy advancements made in the field of ICG repurposing. We also go into detail about the structure-function correlations of drugs containing ICG and how different structural groups significantly affect the physicochemical properties.
Collapse
Affiliation(s)
- Xinfei Sun
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Yisheng Peng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Pan He
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Hongwei Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Dong Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Huanhuan Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Huirong Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
18
|
Zhao D, Li Z, Ji DK, Xia Q. Recent Progress of Multifunctional Molecular Probes for Triple-Negative Breast Cancer Theranostics. Pharmaceutics 2024; 16:803. [PMID: 38931924 PMCID: PMC11207493 DOI: 10.3390/pharmaceutics16060803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Breast cancer (BC) poses a significant threat to women's health, with triple-negative breast cancer (TNBC) representing one of the most challenging and aggressive subtypes due to the lack of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) expression. Traditional TNBC treatments often encounter issues such as low drug efficiency, limited tumor enrichment, and substantial side effects. Therefore, it is crucial to explore novel diagnostic and treatment systems for TNBC. Multifunctional molecular probes (MMPs), which integrate target recognition as well as diagnostic and therapeutic functions, introduce advanced molecular tools for TNBC theranostics. Using an MMP system, molecular drugs can be precisely delivered to the tumor site through a targeted ligand. Real-time dynamic monitoring of drug release achieved using imaging technology allows for the evaluation of drug enrichment at the tumor site. This approach enables accurate drug release, thereby improving the therapeutic effect. Therefore, this review summarizes the recent advancements in MMPs for TNBC theranostics, encompassing the design and synthesis of MMPs as well as their applications in the field of TNBC theranostics.
Collapse
Affiliation(s)
- Deyi Zhao
- School of Life Sciences, Shanghai University, Shanghai 200444, China; (D.Z.); (Z.L.)
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Zhe Li
- School of Life Sciences, Shanghai University, Shanghai 200444, China; (D.Z.); (Z.L.)
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Ding-Kun Ji
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Qian Xia
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
19
|
Chen X, Li J, Roy S, Ullah Z, Gu J, Huang H, Yu C, Wang X, Wang H, Zhang Y, Guo B. Development of Polymethine Dyes for NIR-II Fluorescence Imaging and Therapy. Adv Healthc Mater 2024; 13:e2304506. [PMID: 38441392 DOI: 10.1002/adhm.202304506] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/29/2024] [Indexed: 03/16/2024]
Abstract
Fluorescence imaging in the second near-infrared window (NIR-II) is burgeoning because of its higher imaging fidelity in monitoring physiological and pathological processes than clinical visible/the second near-infrared window fluorescence imaging. Notably, the imaging fidelity is heavily dependent on fluorescence agents. So far, indocyanine green, one of the polymethine dyes, with good biocompatibility and renal clearance is the only dye approved by the Food and Drug Administration, but it shows relatively low NIR-II brightness. Importantly, tremendous efforts are devoted to synthesizing polymethine dyes for imaging preclinically and clinically. They have shown feasibility in the customization of structure and properties to fulfill various needs in imaging and therapy. Herein, a timely update on NIR-II polymethine dyes, with a special focus on molecular design strategies for fluorescent, photoacoustic, and multimodal imaging, is offered. Furthermore, the progress of polymethine dyes in sensing pathological biomarkers and even reporting drug release is illustrated. Moreover, the NIR-II fluorescence imaging-guided therapies with polymethine dyes are summarized regarding chemo-, photothermal, photodynamic, and multimodal approaches. In addition, artificial intelligence is pointed out for its potential to expedite dye development. This comprehensive review will inspire interest among a wide audience and offer a handbook for people with an interest in NIR-II polymethine dyes.
Collapse
Affiliation(s)
- Xin Chen
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Jieyan Li
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Shubham Roy
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Zia Ullah
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Jingsi Gu
- Education Center and Experiments and Innovations, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Haiyan Huang
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Chen Yu
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xuejin Wang
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Han Wang
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Yinghe Zhang
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Bing Guo
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| |
Collapse
|
20
|
Zhang Z, Du Y, Shi X, Wang K, Qu Q, Liang Q, Ma X, He K, Chi C, Tang J, Liu B, Ji J, Wang J, Dong J, Hu Z, Tian J. NIR-II light in clinical oncology: opportunities and challenges. Nat Rev Clin Oncol 2024; 21:449-467. [PMID: 38693335 DOI: 10.1038/s41571-024-00892-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2024] [Indexed: 05/03/2024]
Abstract
Novel strategies utilizing light in the second near-infrared region (NIR-II; 900-1,880 nm wavelengths) offer the potential to visualize and treat solid tumours with enhanced precision. Over the past few decades, numerous techniques leveraging NIR-II light have been developed with the aim of precisely eliminating tumours while maximally preserving organ function. During cancer surgery, NIR-II optical imaging enables the visualization of clinically occult lesions and surrounding vital structures with increased sensitivity and resolution, thereby enhancing surgical quality and improving patient prognosis. Furthermore, the use of NIR-II light promises to improve cancer phototherapy by enabling the selective delivery of increased therapeutic energy to tissues at greater depths. Initial clinical studies of NIR-II-based imaging and phototherapy have indicated impressive potential to decrease cancer recurrence, reduce complications and prolong survival. Despite the encouraging results achieved, clinical translation of innovative NIR-II techniques remains challenging and inefficient; multidisciplinary cooperation is necessary to bridge the gap between preclinical research and clinical practice, and thus accelerate the translation of technical advances into clinical benefits. In this Review, we summarize the available clinical data on NIR-II-based imaging and phototherapy, demonstrating the feasibility and utility of integrating these technologies into the treatment of cancer. We also introduce emerging NIR-II-based approaches with substantial potential to further enhance patient outcomes, while also highlighting the challenges associated with imminent clinical studies of these modalities.
Collapse
Affiliation(s)
- Zeyu Zhang
- Key Laboratory of Big Data-Based Precision Medicine of Ministry of Industry and Information Technology, School of Engineering Medicine, Beihang University, Beijing, China
| | - Yang Du
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Chinese Academy of Sciences, Beijing, China
| | - Xiaojing Shi
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Chinese Academy of Sciences, Beijing, China
| | - Kun Wang
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Chinese Academy of Sciences, Beijing, China
| | - Qiaojun Qu
- Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Qian Liang
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Chinese Academy of Sciences, Beijing, China
| | - Xiaopeng Ma
- School of Control Science and Engineering, Shandong University, Jinan, China
| | - Kunshan He
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Chinese Academy of Sciences, Beijing, China
| | - Chongwei Chi
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Chinese Academy of Sciences, Beijing, China
| | - Jianqiang Tang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Liu
- Department of General Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiafu Ji
- Department of Gastrointestinal Surgery, Peking University Cancer Hospital and Institute, Beijing, China.
| | - Jun Wang
- Thoracic Oncology Institute/Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China.
| | - Jiahong Dong
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China.
| | - Zhenhua Hu
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Chinese Academy of Sciences, Beijing, China.
| | - Jie Tian
- Key Laboratory of Big Data-Based Precision Medicine of Ministry of Industry and Information Technology, School of Engineering Medicine, Beihang University, Beijing, China.
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Chinese Academy of Sciences, Beijing, China.
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China.
| |
Collapse
|
21
|
Ullah Z, Roy S, Gu J, Ko Soe S, Jin J, Guo B. NIR-II Fluorescent Probes for Fluorescence-Imaging-Guided Tumor Surgery. BIOSENSORS 2024; 14:282. [PMID: 38920586 PMCID: PMC11201439 DOI: 10.3390/bios14060282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024]
Abstract
Second near-infrared (NIR-II) fluorescence imaging is the most advanced imaging fidelity method with extraordinary penetration depth, signal-to-background ratio, biocompatibility, and targeting ability. It is currently booming in the medical realm to diagnose tumors and is being widely applied for fluorescence-imaging-guided tumor surgery. To efficiently execute this modern imaging modality, scientists have designed various probes capable of showing fluorescence in the NIR-II window. Here, we update the state-of-the-art NIR-II fluorescent probes in the most recent literature, including indocyanine green, NIR-II emissive cyanine dyes, BODIPY probes, aggregation-induced emission fluorophores, conjugated polymers, donor-acceptor-donor dyes, carbon nanotubes, and quantum dots for imaging-guided tumor surgery. Furthermore, we point out that the new materials with fluorescence in NIR-III and higher wavelength range to further optimize the imaging results in the medical realm are a new challenge for the scientific world. In general, we hope this review will serve as a handbook for researchers and students who have an interest in developing and applying fluorescent probes for NIR-II fluorescence-imaging-guided surgery and that it will expedite the clinical translation of the probes from bench to bedside.
Collapse
Affiliation(s)
- Zia Ullah
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen 518055, China; (Z.U.); (S.R.); (S.K.S.)
| | - Shubham Roy
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen 518055, China; (Z.U.); (S.R.); (S.K.S.)
| | - Jingshi Gu
- Education Center of Experiments and Innovations, Harbin Institute of Technology, Shenzhen 518055, China;
| | - Sai Ko Soe
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen 518055, China; (Z.U.); (S.R.); (S.K.S.)
| | - Jian Jin
- Education Center of Experiments and Innovations, Harbin Institute of Technology, Shenzhen 518055, China;
| | - Bing Guo
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen 518055, China; (Z.U.); (S.R.); (S.K.S.)
| |
Collapse
|
22
|
Liu X, Xiang C, Lv Y, Xiang J, Ma G, Li C, Hu Y, Guo C, Sun H, Cai L, Gong P. Preparation of near-infrared photoacoustic imaging and photothermal treatment agent for cancer using a modifiable acid-triggered molecular platform. Analyst 2024; 149:3064-3072. [PMID: 38712864 DOI: 10.1039/d4an00189c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Ratiometric near-infrared fluorescent pH probes with various pKa values were innovatively designed and synthesized based on cyanine with a diamine moiety. The photochemical properties of these probes were thoroughly evaluated. Among the series, IR-PHA exhibited an optimal pKa value of approximately 6.40, closely matching the pH of cancerous tissues. This feature is particularly valuable for real-time pH monitoring in both living cells and living mice. Moreover, when administered intravenously to tumor-bearing mice, IR-PHA demonstrated rapid and significant enhancement of near-infrared fluorescence and photoacoustic signals within the tumor region. This outcome underscores the probe's exceptional capability for dual-modal cancer imaging utilizing near-infrared fluorescence (NIRF) and photoacoustic (PA) modalities. Concurrently, the application of a continuous-wave near-infrared laser efficiently ablated cancer cells in vivo, attributed to the photothermal effect induced by IR-PHA. The results strongly indicate that IR-PHA is well-suited for NIRF/PA dual-modality imaging and photothermal therapy of tumors. This makes it a promising candidate for theranostic applications involving small molecules.
Collapse
Affiliation(s)
- Xiaoming Liu
- College of Bioengineering, Tianjin University of Science and Technology, Tianjin, 300457, China.
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- Sino-Euro Center of Biomedicine and Health, Luohu, Shenzhen, 518024, China
| | - Chunbai Xiang
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- Sino-Euro Center of Biomedicine and Health, Luohu, Shenzhen, 518024, China
| | - Yalin Lv
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- Sino-Euro Center of Biomedicine and Health, Luohu, Shenzhen, 518024, China
| | - Jingjing Xiang
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- Sino-Euro Center of Biomedicine and Health, Luohu, Shenzhen, 518024, China
| | - Gongcheng Ma
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- Sino-Euro Center of Biomedicine and Health, Luohu, Shenzhen, 518024, China
| | - Changzhong Li
- Peking University Shenzhen Hospital, Shenzhen, 518053, China
| | - Yan Hu
- Peking University Shenzhen Hospital, Shenzhen, 518053, China
| | - Chunlei Guo
- Peking University Shenzhen Hospital, Shenzhen, 518053, China
| | - Hua Sun
- College of Bioengineering, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- Sino-Euro Center of Biomedicine and Health, Luohu, Shenzhen, 518024, China
| | - Ping Gong
- Guangdong Key Laboratory of Nanomedicine, CAS Key Laboratory of Health Informatics, Shenzhen Bioactive Materials Engineering Lab for Medicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- Sino-Euro Center of Biomedicine and Health, Luohu, Shenzhen, 518024, China
| |
Collapse
|
23
|
Zheng M, Li Y, Zhang L, Li C, Liu M, Tang H. Detection of free DNA based on metal-enhanced fluorescence triggered by CRISPR-Cas12a and colorimetric analysis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3099-3108. [PMID: 38695127 DOI: 10.1039/d4ay00149d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The CRISPR-Cas system has been found to be extremely sensitive and there is an urgent demand to extend its potential in bioassays. Herein, we developed a novel nanobiosensor to detect the human papillomavirus 16 genes (HPV-16 DNA), which is triggered by CRISPR-Cas12a to amplify the fluorescence signal by metal-enhanced fluorescence (CAMEF). Along with the changing of the fluorescence signal, the aggregation of the substrate of MEF also leads to a change in the color of the mixture solution, enabling dual signal detection with the fluorescence and the naked eye. Furthermore, the designed CAMEF probe was verified to detect the HPV-16 DNA accurately and reliably in biological samples. Triggered by the CRISPR system, the designed CAMEF probe allows quantitative detection of the HPV-16 DNA in the wide range of 10-500 pM. Owing to the MEF, the fluorescence signal of the CAMEF probe was significantly amplified with the detection limit as low as 1 pM. Besides, we can determine the concentration of HPV-16 DNA simply by the naked eye, which also drastically reduces the possibility of false-positive signals. Theoretically, the target ssDNA could be any strand of DNA obtained by designing the crRNA sequence in the CRISPR-Cas system. We believe that the designed CAMEF sensor can present a reliable approach for the accurate detection of low amounts of target ssDNA in complex biological samples.
Collapse
Affiliation(s)
- Mingqiu Zheng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| | - Yuyao Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| | - Liling Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| | - Chengyu Li
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, People's Republic of China
| | - Menghan Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| | - Hongwu Tang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| |
Collapse
|
24
|
Gui Y, Wang Y, Wang D, Qin Y, Song G, Yan D, Tang BZ, Wang D. Thiophene π-Bridge Manipulation of NIR-II AIEgens for Multimodal Tumor Phototheranostics. Angew Chem Int Ed Engl 2024; 63:e202318609. [PMID: 38345594 DOI: 10.1002/anie.202318609] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Indexed: 03/01/2024]
Abstract
The fabrication of a multimodal phototheranostic platform on the basis of single-component theranostic agent to afford both imaging and therapy simultaneously, is attractive yet full of challenges. The emergence of aggregation-induced emission luminogens (AIEgens), particularly those emit fluorescence in the second near-infrared window (NIR-II), provides a powerful tool for cancer treatment by virtue of adjustable pathway for radiative/non-radiative energy consumption, deeper penetration depth and aggregation-enhanced theranostic performance. Although bulky thiophene π-bridges such as ortho-alkylated thiophene, 3,4-ethoxylene dioxythiophene and benzo[c]thiophene are commonly adopted to construct NIR-II AIEgens, the subtle differentiation on their theranostic behaviours has yet to be comprehensively investigated. In this work, systematical investigations discovered that AIEgen BT-NS bearing benzo[c]thiophene possesses acceptable NIR-II fluorescence emission intensity, efficient reactive oxygen species generation, and high photothermal conversion efficiency. Eventually, by using of BT-NS nanoparticles, unprecedented performance on NIR-II fluorescence/photoacoustic/photothermal imaging-guided synergistic photodynamic/photothermal elimination of tumors was demonstrated. This study thus offers useful insights into developing versatile phototheranostic systems for clinical trials.
Collapse
Affiliation(s)
- Yixiong Gui
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yuanwei Wang
- Center for Child Care and Mental Health (CCCMH), Shenzhen Children's Hospital, Shenzhen, 518034, China
| | - Deliang Wang
- Department of Materials Chemistry, Huzhou University, Huzhou, 313000, East 2nd Ring Rd. No. 759, China
| | - Yi Qin
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Guangjie Song
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Dingyuan Yan
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen) Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen City, Guangdong, 518172, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
25
|
Feng X, Wang G, Pan J, Wang X, Wang J, Sun SK. Purification-free synthesis of bright lactoglobulin@dye nanoprobe for second near-infrared fluorescence imaging of kidney dysfunction in vivo. Colloids Surf B Biointerfaces 2024; 236:113796. [PMID: 38368756 DOI: 10.1016/j.colsurfb.2024.113796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/06/2024] [Accepted: 02/10/2024] [Indexed: 02/20/2024]
Abstract
Kidney disease is currently prevalent worldwide but only shows insidious symptoms in the early stages. The second near-infrared window (NIR-II) fluorescence imaging has become a widely used preclinical technology for evaluating renal dysfunction due to its high resolution and sensitivity. However, bright renal clearable NIR-II fluorescence nanoprobes with a simple synthesis process are still lacking. Herein, we develop a lactoglobulin (LG)@dye nanoprobe for NIR-II fluorescence imaging of kidney dysfunction in vivo based on a purification-free method. The nanoprobe was synthesized by simply mixing LG and IR820 in aqueous solutions at 70 °C for 2 h based on the covalent interaction between the meso-Cl in IR820 and LG. The synthesized LG@IR820 nanoprobe has bright and stable NIR-II fluorescence, ultra-small size (<5 nm), low toxicity, and renal-clearable ability. The high reaction efficiency and pure aqueous reaction media make the synthesis method purification-free. In a unilateral ureteral obstruction mouse model, incipient renal dysfunction assessment was achieved by LG@IR820 nanoprobe, which couldn't be diagnosed with conventional kidney function indicators. This study provides a bright and purification-free NIR-II LG@IR820 nanoprobe to visualize kidney dysfunction at the early stage.
Collapse
Affiliation(s)
- Xinyu Feng
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Guohe Wang
- School of Medical Imaging, Tianjin Medical University, Tianjin 300203, China
| | - Jinbin Pan
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xu Wang
- Tianjin Key Laboratory of Technologies Enabling Development on Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Junping Wang
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China.
| | - Shao-Kai Sun
- School of Medical Imaging, Tianjin Medical University, Tianjin 300203, China.
| |
Collapse
|
26
|
Wu X, Zhou Z, Li K, Liu S. Nanomaterials-Induced Redox Imbalance: Challenged and Opportunities for Nanomaterials in Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308632. [PMID: 38380505 PMCID: PMC11040387 DOI: 10.1002/advs.202308632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/24/2024] [Indexed: 02/22/2024]
Abstract
Cancer cells typically display redox imbalance compared with normal cells due to increased metabolic rate, accumulated mitochondrial dysfunction, elevated cell signaling, and accelerated peroxisomal activities. This redox imbalance may regulate gene expression, alter protein stability, and modulate existing cellular programs, resulting in inefficient treatment modalities. Therapeutic strategies targeting intra- or extracellular redox states of cancer cells at varying state of progression may trigger programmed cell death if exceeded a certain threshold, enabling therapeutic selectivity and overcoming cancer resistance to radiotherapy and chemotherapy. Nanotechnology provides new opportunities for modulating redox state in cancer cells due to their excellent designability and high reactivity. Various nanomaterials are widely researched to enhance highly reactive substances (free radicals) production, disrupt the endogenous antioxidant defense systems, or both. Here, the physiological features of redox imbalance in cancer cells are described and the challenges in modulating redox state in cancer cells are illustrated. Then, nanomaterials that regulate redox imbalance are classified and elaborated upon based on their ability to target redox regulations. Finally, the future perspectives in this field are proposed. It is hoped this review provides guidance for the design of nanomaterials-based approaches involving modulating intra- or extracellular redox states for cancer therapy, especially for cancers resistant to radiotherapy or chemotherapy, etc.
Collapse
Affiliation(s)
- Xumeng Wu
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbin150006China
- Zhengzhou Research InstituteHarbin Institute of TechnologyZhengzhou450046China
| | - Ziqi Zhou
- Zhengzhou Research InstituteHarbin Institute of TechnologyZhengzhou450046China
- School of Medicine and HealthHarbin Institute of TechnologyHarbin150006China
| | - Kai Li
- Zhengzhou Research InstituteHarbin Institute of TechnologyZhengzhou450046China
- School of Medicine and HealthHarbin Institute of TechnologyHarbin150006China
| | - Shaoqin Liu
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbin150006China
- Zhengzhou Research InstituteHarbin Institute of TechnologyZhengzhou450046China
- School of Medicine and HealthHarbin Institute of TechnologyHarbin150006China
| |
Collapse
|
27
|
Kalaba P, Sanchez de la Rosa C, Möller A, Alewood PF, Muttenthaler M. Targeting the Oxytocin Receptor for Breast Cancer Management: A Niche for Peptide Tracers. J Med Chem 2024; 67:1625-1640. [PMID: 38235665 PMCID: PMC10859963 DOI: 10.1021/acs.jmedchem.3c01089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 12/07/2023] [Accepted: 12/20/2023] [Indexed: 01/19/2024]
Abstract
Breast cancer is a leading cause of death in women, and its management highly depends on early disease diagnosis and monitoring. This remains challenging due to breast cancer's heterogeneity and a scarcity of specific biomarkers that could predict responses to therapy and enable personalized treatment. This Perspective describes the diagnostic landscape for breast cancer management, molecular strategies targeting receptors overexpressed in tumors, the theranostic potential of the oxytocin receptor (OTR) as an emerging breast cancer target, and the development of OTR-specific optical and nuclear tracers to study, visualize, and treat tumors. A special focus is on the chemistry and pharmacology underpinning OTR tracer development, preclinical in vitro and in vivo studies, challenges, and future directions. The use of peptide-based tracers targeting upregulated receptors in cancer is a highly promising strategy complementing current diagnostics and therapies and providing new opportunities to improve cancer management and patient survival.
Collapse
Affiliation(s)
- Predrag Kalaba
- Institute
of Biological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | | | - Andreas Möller
- QIMR
Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
- The
Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Paul F. Alewood
- Institute
for Molecular Bioscience, The University
of Queensland, Brisbane, Queensland 4072, Australia
| | - Markus Muttenthaler
- Institute
of Biological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Institute
for Molecular Bioscience, The University
of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
28
|
Kondelaji MHR, Sharma GP, Jagtap J, Shafiee S, Hansen C, Gasperetti T, Frei A, Veley D, Narayanan J, Fish BL, Parchur AK, Ibrahim ESH, Medhora M, Himburg HA, Joshi A. 2 nd Window NIR Imaging of Radiation Injury Mitigation Provided by Reduced Notch-Dll4 Expression on Vasculature. Mol Imaging Biol 2024; 26:124-137. [PMID: 37530966 PMCID: PMC11188939 DOI: 10.1007/s11307-023-01840-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 08/03/2023]
Abstract
PURPOSE Vascular endothelium plays a central role in the pathogenesis of acute and chronic radiation injuries, yet the mechanisms which promote sustained endothelial dysfunction and contribute to late responding organ failure are unclear. We employed 2nd window (> 1100 nm emission) Near-Infrared (NIR) imaging using indocyanine green (ICG) to track and define the role of the notch ligand Delta-like ligand 4 (Dll4) in mediating vascular injury in two late-responding radiosensitive organs: the lung and kidney. PROCEDURES Consomic strains of female Salt Sensitive or SS (Dll4-high) and SS with 3rd chromosome inherited from Brown Norway, SS.BN3 (Dll4-low) rats at ages 11-12 weeks were used to demonstrate the impact of reduced Dll4 expression on long-term vascular integrity, renal function, and survival following high-dose 13 Gy partial body irradiation at 42- and 90 days post-radiation. 2nd window dynamic NIR fluorescence imaging with ICG was analyzed with physiology-based pharmacokinetic modeling and confirmed with assays of endothelial Dll4 expression to assess the role of endogenous Dll4 expression on radiation injury protection. RESULTS We show that SS.BN3 (Dll4-low) rats are relatively protected from vascular permeability disruption compared to the SS (Dll4-high) strain. We further demonstrated that SS.BN3 (Dll4-low) rats have reduced radiation induced loss of CD31+ vascular endothelial cells, and increased Dll4 vascular expression is correlated with vascular dysfunction. CONCLUSIONS Together, these data suggest Dll4 plays a key role in pathogenesis of radiation-induced vascular injury to the lung and kidney.
Collapse
Affiliation(s)
| | - Guru Prasad Sharma
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jaidip Jagtap
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Shayan Shafiee
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Christopher Hansen
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Tracy Gasperetti
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Anne Frei
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Dana Veley
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jayashree Narayanan
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Brian L Fish
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Abdul K Parchur
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - El-Sayed H Ibrahim
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Meetha Medhora
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Heather A Himburg
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Amit Joshi
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
29
|
Kravchenko Y, Sikora K, Wireko AA, Lyndin M. Fluorescence visualization for cancer DETECTION: EXPERIENCE and perspectives. Heliyon 2024; 10:e24390. [PMID: 38293525 PMCID: PMC10827512 DOI: 10.1016/j.heliyon.2024.e24390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 12/24/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024] Open
Abstract
The current review focuses on the latest advances in the improvement and application of fluorescence imaging technology. Near-infrared (NIR) fluorescence imaging is a promising new technique that uses non-specific fluorescent agents and targeted fluorescent tracers combined with a dedicated camera to better navigate and visualize tumors. Fluorescence-guided surgery (FGS) is used to perform various tasks, helping the surgeon to distinguish lymphatic vessels and nodes from surrounding tissues easily and quickly assess the perfusion of the planned resection area, including intraoperative visualization of metastases. The results of the insertion of fluorescence visualization as an auxiliary method to cancer detection and high-risk metastatic lesions in clinical practice have demonstrated enthusiastic results and huge potential. However, intraoperative fluorescence visualization must not be considered as a main diagnostic or treatment method but as an aid to the surgeon. Thus, fluorescence study does not dispense the diagnostic gold standards of benign or malignant tumors (conventional examination, biopsy, ultrasonography and computed tomography, etc.) and can be done usually during intraoperative treatment. Moreover, as fluorescence surgery and fluorescence diagnostic techniques continue to improve, it is likely that they will evolve towards targeted fluorescence imaging probes that will increasingly target a specific type of cancer cell. The most important point remains the search for highly selective messengers of fluorescent labels, which make it possible to identify tumor cells exclusively in the affected organs and indicate to surgeons the boundaries of their spread and metastasis.
Collapse
Affiliation(s)
- Yaroslav Kravchenko
- Sumy State University, Sumy, Ukraine
- NanoBioMedical Centre, Adam Mickiewicz University in Poznan, Poznan, Poland
| | | | | | - Mykola Lyndin
- Sumy State University, Sumy, Ukraine
- Institute of Anatomy, Medical Faculty, University of Duisburg-Essen, Essen, 45147, Germany
| |
Collapse
|
30
|
Hu X, Zhu C, Sun F, Chen Z, Zou J, Chen X, Yang Z. J-Aggregation Strategy toward Potentiated NIR-II Fluorescence Bioimaging of Molecular Fluorophores. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304848. [PMID: 37526997 DOI: 10.1002/adma.202304848] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/28/2023] [Indexed: 08/03/2023]
Abstract
Molecular fluorophores emitting in the second near-infrared (NIR-II, 1000-1700 nm) window with strong optical harvesting and high quantum yields hold great potential for in vivo deep-tissue bioimaging and high-resolution biosensing. Recently, J-aggregates are harnessed to engineer long-wavelength NIR-II emitters and show unique superiority in tumor detection, vessel mapping, surgical navigation, and phototheranostics due to their bathochromic-shifted optical bands in the required slip-stacked arrangement aggregation state. However, despite the preliminary progress of NIR-II J-aggregates and theoretical study of structure-property relationships, further paradigms of NIR-II J-aggregates remain scarce due to the lack of study on aggregated fluorophores with slip-stacked fashion. In this effort, how to utilize the specific molecular structure to form slip-stacked packing motifs with J-type aggregated exciton coupling is emphatically elucidated. First, several molecular regulating strategies to achieve NIR-II J-aggregates containing intermolecular interactions and external conditions are positively summarized and deeply analyzed. Then, the recent reports on J-aggregates for NIR-II bioimaging and theranostics are systematically summarized to provide a clear reference and direction for promoting the development of NIR-II organic fluorophores. Eventually, the prospective efforts on ameliorating and promoting NIR-II J-aggregates to further clinical practices are outlined.
Collapse
Affiliation(s)
- Xiaoming Hu
- Jiangxi Key Laboratory of Nanobiomaterials, School of Materials Science and Engineering, East China Jiaotong University, Nanchang, 330013, China
- Strait Laboratory of Flexible Electronics (SLoFE), Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Caijun Zhu
- Jiangxi Key Laboratory of Nanobiomaterials, School of Materials Science and Engineering, East China Jiaotong University, Nanchang, 330013, China
| | - Fengwei Sun
- Strait Laboratory of Flexible Electronics (SLoFE), Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Zejing Chen
- Jiangxi Key Laboratory of Nanobiomaterials, School of Materials Science and Engineering, East China Jiaotong University, Nanchang, 330013, China
| | - Jianhua Zou
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR) 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Zhen Yang
- Strait Laboratory of Flexible Electronics (SLoFE), Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, China
| |
Collapse
|
31
|
Qu F, Sun Y, Bi D, Peng S, Li M, Liu H, Zhang L, Tao J, Liu Y, Zhu J. Regulating Size and Charge of Liposomes in Microneedles to Enhance Intracellular Drug Delivery Efficiency in Skin for Psoriasis Therapy. Adv Healthc Mater 2023; 12:e2302314. [PMID: 37714523 DOI: 10.1002/adhm.202302314] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/01/2023] [Indexed: 09/17/2023]
Abstract
The stratum corneum (SC) and cell membrane are two major barriers that hinder the therapeutic outcomes of transdermal drug delivery for the treatment of skin diseases. While microneedles (MNs) can efficiently penetrate the SC to deliver nanomedicines, the optimization of physicochemical properties of nanomedicines in MNs to enhance their in vivo cellular delivery efficiency remains unclear. Here, how the size and surface charge of drug-loaded liposomes in MNs influence the retention time and cellular delivery in psoriatic skin is systematically investigated. The results indicate that while 100 nm negatively-charged liposomes in MNs show higher cellular uptake in vitro, 250 and 450 nm liposomes could enhance skin retention and the long-term in vivo cellular delivery efficiency of drugs. Moreover, 250 nm cationic liposomes with a stronger positive charge show an extraordinarily long skin retention time of 132 h and significantly higher in vivo cellular internalization. In the treatment study, dexamethasone (dex)-loaded cationic liposomes-integrated MNs show better therapeutic outcomes than dex-loaded anionic liposomes-integrated MNs in a psoriasis-like animal model. The design principles of liposomes in MN drug delivery systems explored in the study hold the potential for enhancing the therapeutic outcomes of psoriasis and are instrumental for successful translation.
Collapse
Affiliation(s)
- Fei Qu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yufeng Sun
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Duohang Bi
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Siyu Peng
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Min Li
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hongmei Liu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Lianbin Zhang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Juan Tao
- Department of Dermatology, Union Hospital, Tongji Medical College. HUST, Wuhan, 430022, China
| | - Yijing Liu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518057, China
| | - Jintao Zhu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
32
|
Xiao J, Qiu S, Ma Q, Bai S, Guo X, Wang L. Near-infrared dye IRDye800CW-NHS coupled to Trastuzumab for near-infrared II fluorescence imaging in tumor xenograft models of HER-2-positive breast cancer. J Mater Chem B 2023; 11:10738-10746. [PMID: 37929679 DOI: 10.1039/d3tb01486j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Near-infrared II fluorescent probes targeting tumors for diagnostic purposes have received much attention in recent years. In this study, a fluorescent probe for the NIR-II was constructed by using IRDye800CW-NHS fluorescent dye with Trastuzumab, which was investigated for its ability to target HER-2-positive breast cancer in xenograft mice models. This probe was compared with Trastuzumab-ICG which was synthesized using a similar structure, ICG-NHS. The results demonstrated that the IRDye800CW-NHS had significantly stronger fluorescence in the NIR-I and NIR-II than ICG-NHS in the aqueous phase. And the different metabolic modes of IRDye800CW-NHS and ICG-NHS were revealed in bioimaging experiments. IRDye800CW-NHS was mainly metabolised by the kidneys, while ICG-NHS was mainly metabolised by the liver. After coupling with Trastuzumab, Trastuzumab-800CW (TMR = 5.35 ± 0.39) not only had a stronger tumor targeting ability than Trastuzumab-ICG (TMR = 4.42 ± 0.10) based on the calculated maximum tumor muscle ratio (TMR), but also had a comparatively lower hepatic uptake and faster metabolism. Histopathology analysis proved that both fluorescent probes were non-toxic to various organ tissues. These results reveal the excellent optical properties of IRDye800CW-NHS, and the great potential of coupling with antibodies to develop fluorescent probes that will hopefully be applied to intraoperative breast cancer navigation in humans.
Collapse
Affiliation(s)
- Junhui Xiao
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China.
| | - Siqi Qiu
- Diagnosis and Treatment Center of Breast Diseases, Shantou Central Hospital, Shantou 515041, China
- Clinical Research Center, Shantou Central Hospital, Shantou 515041, China
| | - Qiufeng Ma
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China.
| | - Silan Bai
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China.
| | - Xinrong Guo
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, People's Republic of China.
| | - Lishi Wang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China.
| |
Collapse
|
33
|
Ma S, Sun B, Li M, Han T, Yu C, Wang X, Zheng X, Li S, Zhu S, Wang Q. High-precision detection and navigation surgery of colorectal cancer micrometastases. J Nanobiotechnology 2023; 21:403. [PMID: 37919717 PMCID: PMC10621104 DOI: 10.1186/s12951-023-02171-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023] Open
Abstract
Surgical resection is an effective treatment for colorectal cancer (CRC) patients, whereas occult metastases hinder the curative effect. Currently, there is no effective method to achieve intraoperatively diagnosis of tumor-positive lymph nodes (LNs). Herein, we adopt a near-infrared-II (NIR-II) organic donor-pi-acceptor-pi-donor probe FE-2PEG, which exhibits bright fluorescence over 1100 nm, excellent photostability, blood circulation time, and biocompatibility, to achieve high-performance bioimaging with improved temporal and spatial resolution. Importantly, the FE-2PEG shows efficient passive enrichment in orthotopic CRC, metastatic mesenteric LNs, and peritoneal metastases by enhanced permeability and retention effect. Under NIR-II fluorescence-guided surgery (FGS), the peritoneal micrometastases were resected with a sensitivity of 94.51%, specificity of 86.59%, positive predictive value (PPV) of 96.57%, and negative predictive value of 79.78%. The PPV still achieves 96.07% even for micrometastases less than 3 mm. Pathological staining and NIR-II microscopy imaging proved that FE-2PEG could successfully delineate the boundary between the tumor and normal tissues. Dual-color NIR-II imaging strategy with FE-2PEG (1100 ~ 1300 nm) and PbS@CdS quantum dots (> 1500 nm) successfully protects both blood supply and normal tissues during surgery. The NIR-II-based FGS provides a promising prospect for precise intraoperative diagnosis and minimally invasive surgery of CRC.
Collapse
Affiliation(s)
- Shengjie Ma
- Department of Gastrocolorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130012, People's Republic of China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| | - Bin Sun
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
| | - Mengfei Li
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
| | - Tianyang Han
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
| | - Chenlong Yu
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
| | - Xin Wang
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
| | - Xue Zheng
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
| | - Shuang Li
- Department of Gastrocolorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130012, People's Republic of China
| | - Shoujun Zhu
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China.
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China.
| | - Quan Wang
- Department of Gastrocolorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130012, People's Republic of China.
| |
Collapse
|
34
|
Su Q, Zhang Y, Zhu S. Site-specific albumin tagging with chloride-containing near-infrared cyanine dyes: molecular engineering, mechanism, and imaging applications. Chem Commun (Camb) 2023; 59:13125-13138. [PMID: 37850230 DOI: 10.1039/d3cc04200f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Near-infrared dyes, particularly cyanine dyes, have shown great potential in biomedical imaging due to their deep tissue penetration, high resolution, and minimal tissue autofluorescence/scattering. These dyes can be adjusted in terms of absorption and emission wavelengths by modifying their chemical structures. The current issues with cyanine dyes include aggregation-induced quenching, poor photostability, and short in vivo circulation time. Encapsulating cyanine dyes with albumin, whether exogenous or endogenous, has been proven to be an effective strategy for improving their brightness and pharmacokinetics. In detail, the chloride-containing (Cl-containing) cyanine dyes have been found to selectively bind to albumin to achieve site-specific albumin tagging, resulting in enhanced optical properties and improved biosafety. This feature article provides an overview of the progress in the covalent binding of Cl-containing cyanine dyes with albumin, including molecular engineering methods, binding sites, and the selective binding mechanism. The improved optical properties of cyanine dyes and albumin complexes have led to cutting-edge applications in biological imaging, such as tumor imaging (diagnostics) and imaging-guided surgery.
Collapse
Affiliation(s)
- Qi Su
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Yuewei Zhang
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Jilin University, Changchun 130021, P. R. China.
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, P. R. China
| | - Shoujun Zhu
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Jilin University, Changchun 130021, P. R. China.
| |
Collapse
|
35
|
Yu K, Ye B, Yang H, Xu X, Mao Z, Zhang Q, Tian M, Zhang H, Zhang H, He Q. A Mitochondria-Targeted NIR-II AIEgen Induced Pyroptosis for Enhanced Tumor Immunotherapy. Adv Healthc Mater 2023; 12:e2301693. [PMID: 37285905 DOI: 10.1002/adhm.202301693] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Indexed: 06/09/2023]
Abstract
Cancer immunotherapy is a favorable strategy for facilitating anti-tumor immunity, but it shows limited benefits in clinical practice owing to the immunosuppressive tumor microenvironment. Pyroptosis shows great immunostimulatory effect on tumor, whereas the lack of pyroptotic inducer with imaging property has restricted its progress in tumor theranostics. Herein, a mitochondria-targeted aggregation-induced emission (AIE) luminogen (TPA-2TIN) with NIR-II emission is designed for highly efficient induction of tumor cell pyroptosis. The fabricated TPA-2TIN nanoparticles can be efficiently taken up by tumor cells and selectively accumulated in tumor for a long term observed by NIR-II fluorescence imaging. More importantly, the TPA-2TIN nanoparticles can effectively stimulate immune responses both in vitro and in vivo mediated by the mitochondrial dysfunctions and the subsequent activation of the pyroptotic pathway. Ultimately, the reversal of the immunosuppressive tumor microenvironment significantly enhances the immune checkpoint therapy. This study paves a new avenue for adjuvant immunotherapy of cancer.
Collapse
Affiliation(s)
- Kaiwu Yu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Binglin Ye
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, P. R. China
| | - Huang Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Xinxin Xu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Zhengwei Mao
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, P. R. China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Qinghua Zhang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Mei Tian
- Department of Nuclear Medicine and PET Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P. R. China
| | - Haoke Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Hong Zhang
- Department of Nuclear Medicine and PET Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P. R. China
| | - Qinggang He
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| |
Collapse
|
36
|
Zhang P, Guo R, Zhang H, Yang W, Tian Y. Fluoropolymer Coated DNA Nanoclews for Volumetric Visualization of Oligonucleotides Delivery and Near Infrared Light Activated Anti-Angiogenic Oncotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304633. [PMID: 37768835 PMCID: PMC10646232 DOI: 10.1002/advs.202304633] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Indexed: 09/30/2023]
Abstract
The potential of microRNA regulation in oncotherapy is limited by the lack of delivery vehicles. Herein, it is shown that fluoropolymer coated DNA nanoclews (FNCs) provide outstanding ability to deliver oligonucleotide through circulation and realize near infrared (NIR) light activated angiogenesis suppression to abrogate tumors. Oligonucleotides are loaded in DNA nanoclews through sequence specific bindings and then a fluorinated zwitterionic polymer is coated onto the surface of nanoclews. Further incorporating quantum dots in the polymer coating endows the vectors with NIR-IIb (1500-1700 nm) fluorescence and NIR light triggered release ability. The FNC vector can deliver oligonucleotides to cancer cells systemically and realize on-demand cytosolic release of the cargo with high transfection efficiency. Taking advantage of the NIR-IIb emission, the whole delivery process of FNCs is visualized volumetrically in vivo with a NIR light sheet microscope. Loaded by FNCs, an oligonucleotide can effectively silence the target miRNA when activated with NIR light, and inhibit angiogenesis inside tumor, leading to complete ablation of cancer. These findings suggest FNCs can be used as an efficient oligonucleotide delivery platform to modulate the expression of endogenous microRNA in gene therapy of cancer.
Collapse
Affiliation(s)
- Peng Zhang
- Biomaterials Research CenterSchool of Biomedical EngineeringGuangdong Provincial Key Laboratory of Construction and Detection in Tissue EngineeringSouthern Medical UniversityGuangzhou510515China
| | - Ranran Guo
- School of Biomedical EngineeringGuangzhou Medical UniversityGuangzhou510182China
| | - Haiting Zhang
- Biomaterials Research CenterSchool of Biomedical EngineeringGuangdong Provincial Key Laboratory of Construction and Detection in Tissue EngineeringSouthern Medical UniversityGuangzhou510515China
| | - Wuli Yang
- State Key Laboratory of Molecular Engineering of Polymers & Department of Macromolecular ScienceFudan UniversityShanghai200438China
| | - Ye Tian
- Biomaterials Research CenterSchool of Biomedical EngineeringGuangdong Provincial Key Laboratory of Construction and Detection in Tissue EngineeringSouthern Medical UniversityGuangzhou510515China
| |
Collapse
|
37
|
Ma Y, Liu L, Ye Z, Xu L, Li Y, Liu S, Song G, Zhang XB. Engineering of cyanine-based nanoplatform with tunable response toward reactive species for ratiometric NIR-II fluorescent imaging in mice. Sci Bull (Beijing) 2023; 68:2382-2390. [PMID: 37679256 DOI: 10.1016/j.scib.2023.08.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/05/2023] [Accepted: 08/10/2023] [Indexed: 09/09/2023]
Abstract
High-quality second near-infrared (NIR-II) nanoprobes are of great significance for real-time bioimaging and medical diagnosis. Cyanine is an important class of fluorophores to construct activatable probes; however, there are still significant challenges hindering their biological applications, including weak fluorescence in aqueous solution, instability, and insufficient specificity. Herein, an integrated engineering strategy is conducted to develop the cyanine-based activatable NIR-II nanoplatforms with bright, stable emission and high specificity. Specifically, poly(styrene-co-maleic anhydride) (PSMA) is employed to encapsulate NIR-II fluorescent molecules (IR1048) to render the stable and bright NIR-II nanoparticles (PSMA@IR1048 NPs). By charge-modulated strategy, a series of cyanine-fluorophores are loaded on the surface of PSMA@IR1048 NPs and exhibit tunable response toward reactive species. Combing those two strategies, NIR-II ratiometric fluorescent nanoprobes (RNPs, including RNP1, RNP2, and RNP3) are constructed; among them, RNP2 displays hypochlorous acid (HClO) responsive performance and generates a higher NIR-II fluorescent ratio (FL2/FL1) signal. Such nanoprobe can reliably report the pathological HClO level in models of diabetic liver injury and lower limb ischemia-reperfusion (I/R) injury mice. Our study paves an engineering strategy to construct cyanine-based stable, bright, and specific NIR-II probes for bioimaging.
Collapse
Affiliation(s)
- Yuan Ma
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Liuhui Liu
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Zhifei Ye
- Department of Chemistry, Case Western Reserve University, Cleveland OH 44106, USA
| | - Li Xu
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yuhang Li
- Department of Hepatobiliary Surgery/Central Laboratory, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha 410082, China
| | - Sulai Liu
- Department of Hepatobiliary Surgery/Central Laboratory, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha 410082, China.
| | - Guosheng Song
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Xiao-Bing Zhang
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| |
Collapse
|
38
|
Luo H, Gao S. Recent advances in fluorescence imaging-guided photothermal therapy and photodynamic therapy for cancer: From near-infrared-I to near-infrared-II. J Control Release 2023; 362:425-445. [PMID: 37660989 DOI: 10.1016/j.jconrel.2023.08.056] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/20/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
Phototherapy (including photothermal therapy, PTT; and photodynamic therapy, PDT) has been widely used for cancer treatment, but conventional PTT/PDT show limited therapeutic effects due to the lack of disease recognition ability. The integration of fluorescence imaging with PTT/PDT can reveal tumor locations in a real-time manner, holding great potential in early diagnosis and precision treatment of cancers. However, the traditional fluorescence imaging in the visible and near-infrared-I regions (VIS/NIR-I, 400-900 nm) might be interfered by the scattering and autofluorescence from tissues, leading to a low imaging resolution and high false positive rate. The deeper near-infrared-II (NIR-II, 1000-1700 nm) fluorescence imaging can address these interferences. Combining NIR-II fluorescence imaging with PTT/PDT can significantly improve the accuracy of tumor theranostics and minimize damages to normal tissues. This review summarized recent advances in tumor PTT/PDT and NIR-II fluorophores, especially discussed achievements, challenges and prospects around NIR-II fluorescence imaging-guided PTT/PDT for cancers.
Collapse
Affiliation(s)
- Hangqi Luo
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06511, USA
| | - Shuai Gao
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
39
|
Tian Y, Chen Z, Liu S, Wu F, Cao W, Pang DW, Xiong H. "Dual-Key-and-Lock" NIR-II NSCyanines Enable High-Contrast Activatable Phototheranostics in Extrahepatic Diseases. Angew Chem Int Ed Engl 2023; 62:e202309768. [PMID: 37559354 DOI: 10.1002/anie.202309768] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/23/2023] [Accepted: 08/09/2023] [Indexed: 08/11/2023]
Abstract
Conventional cyanine dyes with a symmetric structure are "always-on", which can easily accumulate in the liver and display high liver background fluorescence, inevitably interfering the accurate diagnosis and therapy in extrahepatic diseases. We herein report a platform of NIR-II non-symmetric cyanine (NSCyanine) dyes by harnessing a non-symmetric strategy, which are extremely sensitive to pH/viscosity and can be activated via a "dual-key-and-lock" strategy. These NSCyanine dyes with a low pKa (<4.0) only show weak fluorescence at lysosome pH (key1), however, the fluorescence can be completely switched on and significantly enhanced by intracellular viscosity (key2) in disease tissues, exhibiting high target-to-liver ratios up to 19.5/1. Notably, high-contrast phototheranostics in extrahepatic diseases are achieved, including intestinal metastasis-imaging, acute gastritis-imaging, bacteria infected wound healing, and tumor ablation via targeted combined photothermal therapy and chemotherapy.
Collapse
Affiliation(s)
- Yang Tian
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, 300071, Tianjin, China
| | - Zhaoming Chen
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, 300071, Tianjin, China
| | - Senyao Liu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, 300071, Tianjin, China
| | - Fapu Wu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, 300071, Tianjin, China
| | - Wenwen Cao
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, 300071, Tianjin, China
| | - Dai-Wen Pang
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, 300071, Tianjin, China
| | - Hu Xiong
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, 300071, Tianjin, China
| |
Collapse
|
40
|
An L, Zheng L, Zhao Z, Qu X, Liang C, Ou C, Mou X, Dong X, Cai Y. Revisiting molecularly conformation-planarized organic dyes for NIR-II fluorescence imaging. J Mater Chem B 2023; 11:8456-8463. [PMID: 37581240 DOI: 10.1039/d3tb01334k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Fluorescence imaging in the second window (NIR-II, 1000-1700 nm) provides deeper penetration depth and higher resolution, but there is still a dilemma for designing NIR-II dyes for simultaneously enhancing fluorescence efficiency and prolonging excitation wavelength. Herein, a molecular conformation planarization strategy has been revisited to guide the synthesis of two donor-acceptor-donor dyes (named T-BBT and BT-BBT). On the one hand, conformational planarization can extend the absorption peaks of T-BBT and BT-BBT to the NIR region with high molar extinction coefficients of 30.5 × 103 and 16.4 × 103 L (mol-1 cm-1) at 1064 nm, respectively. On the other hand, structural rigidity can weaken electronic vibration coupling-related non-radiative decay pathways, whereby both T-BBT and BT-BBT display rather high fluorescence efficiencies of 3.6% and 13.5% in solution. Furthermore, a molecular doping strategy is adopted to alleviate fluorescence quenching in the aggregated state by suppressing long-distance energy migration, and 2.5 wt% doped BT-BBT nanoparticles show a high fluorescence efficiency of 2.0%, which enables the application of in vivo deep NIR-II fluorescence imaging for vessels and tumors with high resolution under 980 nm excitation. This work demonstrates that organic dyes with structural planarization can bridge the gap between NIR-II absorption and fluorescence efficiency.
Collapse
Affiliation(s)
- Lei An
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Liangyu Zheng
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Ziqi Zhao
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Xinyu Qu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China.
| | - Chen Liang
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China.
| | - Changjin Ou
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Xiaozhou Mou
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China.
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China.
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Yu Cai
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
41
|
Kozlenko AS, Ozhogin IV, Pugachev AD, Rostovtseva IA, Makarova NI, Demidova NV, Tkachev VV, Borodkin GS, Metelitsa AV, El-Sewify IM, Lukyanov BS. New cationic spiropyrans with photoswitchable NIR fluorescence. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 297:122712. [PMID: 37054564 DOI: 10.1016/j.saa.2023.122712] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/27/2023] [Accepted: 04/03/2023] [Indexed: 05/14/2023]
Abstract
Visible-light-mediated photochromic compounds with NIR absorption and fluorescence are of great interest for use in different biomedical applications. In this work, new representatives of spiropyrans with conjugated cationic 3H-indolium substituents in different positions of 2H-chromene moiety were synthesized. The electron-donating methoxy groups were introduced in the uncharged indoline and charged indolium cycles to form the effective conjugation chain between the hetarene moiety and the cationic fragment for reaching NIR absorption and fluorescence. The molecular structure and the effects of cationic fragment position on the mutual stability of the spirocyclic and merocyanine forms of compounds were carefully studied in the solutions and solid state by NMR, IR, HRMS, single-crystal XRD, and quantum chemical calculations. It was found that the obtained spiropyrans demonstrate positive or negative photochromism depending on the cationic fragment's position. One of spiropyrans has shown bidirectional photochromic properties induced exclusively by visible light of different wavelengths in both directions. The photoinduced merocyanine forms of compounds possessed far-red shifted absorption maxima and NIR fluorescence, which makes them prospective fluorescent probes for bioimaging.
Collapse
Affiliation(s)
- Anastasia S Kozlenko
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka ave., 344090 Rostov-on-Don, Russian Federation.
| | - Ilya V Ozhogin
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka ave., 344090 Rostov-on-Don, Russian Federation
| | - Artem D Pugachev
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka ave., 344090 Rostov-on-Don, Russian Federation
| | - Irina A Rostovtseva
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka ave., 344090 Rostov-on-Don, Russian Federation
| | - Nadezhda I Makarova
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka ave., 344090 Rostov-on-Don, Russian Federation
| | - Natalya V Demidova
- North-Caucasus Federal University, 1 Pushkina str., Stavropol 355017, Russian Federation
| | - Valery V Tkachev
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, 1Ac. Semenov ave., 142432 Chernogolovka, Moscow Region, Russian Federation
| | - Gennady S Borodkin
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka ave., 344090 Rostov-on-Don, Russian Federation
| | - Anatoly V Metelitsa
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka ave., 344090 Rostov-on-Don, Russian Federation
| | - Islam M El-Sewify
- Department of Chemistry, Faculty of Science, Ain Shams University, 11566 Cairo, Abbassia, Egypt
| | - Boris S Lukyanov
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka ave., 344090 Rostov-on-Don, Russian Federation
| |
Collapse
|
42
|
Feng X, Wei L, Liu Y, Chen X, Tian R. Orchestrated Strategies for Developing Fluorophores for NIR-II Imaging. Adv Healthc Mater 2023; 12:e2300537. [PMID: 37161650 DOI: 10.1002/adhm.202300537] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/05/2023] [Indexed: 05/11/2023]
Abstract
Fluorescence imaging (FLI), a non-invasive, real-time, and highly sensitive imaging modality, allows for investigating the molecular/cellular level activities to understand physiological functions and diseases. The emergence of the second near-infrared window (NIR-II, 1000-1700 nm) has endowed fluorescence imaging with deeper tissue penetration and unprecedented clarity. Among the various NIR-II imaging fluorophores, the organic fluorescent probes have occupied a pivotal position in bioimaging due to their higher biocompatibility, safety, and potential for clinical applications compared with those of the inorganic probes. To obtain high-quality organic dyes, diverse strategies have been taken. In this review, different strategies for optimizing NIR-II organic fluorophores are summarized, including traditional chemical modifications, and emerging bioengineering operations, which have not previously been elaborated on and summarized. Moreover, the bioengineering strategies are highlighted using endogenous serum proteins and even exogenous gene-editing proteins, which would provide fresh insights to design good-performance dyes and help develop NIR-II probes with clinical translation potential in the future. A critical perspective on the direction of the design strategies of NIR-II dyes for disease imaging is also proposed.
Collapse
Affiliation(s)
- Xin Feng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Long Wei
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Yanlin Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117609, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Rui Tian
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
43
|
Waterhouse DJ, Privitera L, Anderson J, Stoyanov D, Giuliani S. Enhancing intraoperative tumor delineation with multispectral short-wave infrared fluorescence imaging and machine learning. JOURNAL OF BIOMEDICAL OPTICS 2023; 28:094804. [PMID: 36993142 PMCID: PMC10042297 DOI: 10.1117/1.jbo.28.9.094804] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
SIGNIFICANCE Fluorescence-guided surgery (FGS) provides specific real-time visualization of tumors, but intensity-based measurement of fluorescence is prone to errors. Multispectral imaging (MSI) in the short-wave infrared (SWIR) has the potential to improve tumor delineation by enabling machine-learning classification of pixels based on their spectral characteristics. AIM Determine whether MSI can be applied to FGS and combined with machine learning to provide a robust method for tumor visualization. APPROACH A multispectral SWIR fluorescence imaging device capable of collecting data from six spectral filters was constructed and deployed on neuroblastoma (NB) subcutaneous xenografts ( n = 6 ) after the injection of a NB-specific NIR-I fluorescent probe (Dinutuximab-IRDye800). We constructed image cubes representing fluorescence collected from ∼ 850 to 1450 nm and compared the performance of seven learning-based methods for pixel-by-pixel classification, including linear discriminant analysis, k -nearest neighbor classification, and a neural network. RESULTS The spectra of tumor and non-tumor tissue were subtly different and conserved between individuals. In classification, a combine principal component analysis and k -nearest-neighbor approach with area under curve normalization performed best, achieving 97.5% per-pixel classification accuracy (97.1%, 93.5%, and 99.2% for tumor, non-tumor tissue and background, respectively). CONCLUSIONS The development of dozens of new imaging agents provides a timely opportunity for multispectral SWIR imaging to revolutionize next-generation FGS.
Collapse
Affiliation(s)
- Dale J. Waterhouse
- University College London, Wellcome, EPSRC Centre for Interventional and Surgical Sciences, London, United Kingdom
| | - Laura Privitera
- University College London, Wellcome, EPSRC Centre for Interventional and Surgical Sciences, London, United Kingdom
- UCL Great Ormond Street Institute of Child Health, Cancer Section, Developmental Biology and Cancer Programme, London, United Kingdom
| | - John Anderson
- UCL Great Ormond Street Institute of Child Health, Cancer Section, Developmental Biology and Cancer Programme, London, United Kingdom
| | - Danail Stoyanov
- University College London, Wellcome, EPSRC Centre for Interventional and Surgical Sciences, London, United Kingdom
| | - Stefano Giuliani
- University College London, Wellcome, EPSRC Centre for Interventional and Surgical Sciences, London, United Kingdom
- UCL Great Ormond Street Institute of Child Health, Cancer Section, Developmental Biology and Cancer Programme, London, United Kingdom
- Great Ormond Street Hospital for Children NHS Trust, Department of Specialist Neonatal and Paediatric Surgery, London, United Kingdom
| |
Collapse
|
44
|
Chon B, Ghann W, Uddin J, Anvari B, Kundra V. Indocyanine Green (ICG) Fluorescence Is Dependent on Monomer with Planar and Twisted Structures and Inhibited by H-Aggregation. Int J Mol Sci 2023; 24:13030. [PMID: 37685837 PMCID: PMC10488082 DOI: 10.3390/ijms241713030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/14/2023] [Accepted: 07/28/2023] [Indexed: 09/10/2023] Open
Abstract
The optical properties of indocyanine green (ICG) as a near-infrared (NIR) fluorescence dye depend on the nature of the solvent medium and the dye concentration. In the ICG absorption spectra of water, at high concentrations, there were absorption maxima at 700 nm, implying H-aggregates. With ICG dilution, the main absorption peak was at 780 nm, implying monomers. However, in ethanol, the absorption maximum was 780 nm, and the shapes of the absorption spectra were identical regardless of the ICG concentration, indicating that ICG in ethanol exists only as a monomer without H-aggregates. We found that emission was due to the monomer form and decreased with H-aggregate formation. In the fluorescence spectra, the 820 nm emission band was dominant at low concentrations, whereas at high concentrations, we found that the emission peaks were converted to 880 nm, suggesting a new form via the twisted intramolecular charge transfer (TICT) process of ICG. The NIR fluorescence intensity of ICG in ethanol was approximately 12- and 9-times brighter than in water in the NIR-I and -II regions, respectively. We propose an energy diagram of ICG to describe absorptive and emissive transitions through the ICG structures such as the monomer, H-aggregated, and TICT monomer forms.
Collapse
Affiliation(s)
- Bonghwan Chon
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 22 S. Greene St., Baltimore, MD 21201, USA;
| | - William Ghann
- Center for Nanotechnology, Department of Natural Sciences, Coppin State University, 2500 W North Ave, Baltimore, MD 21216, USA
| | - Jamal Uddin
- Center for Nanotechnology, Department of Natural Sciences, Coppin State University, 2500 W North Ave, Baltimore, MD 21216, USA
| | - Bahman Anvari
- Department of Biochemistry, University of California, Riverside, 900 University Ave, Riverside, CA 92521, USA
- Department of Bioengineering, University of California, Riverside, 900 University Ave, Riverside, CA 92521, USA
| | - Vikas Kundra
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 22 S. Greene St., Baltimore, MD 21201, USA;
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center Program in Oncology, Experimental Therapeutics, University of Maryland School of Medicine, 22 South Greene Street, Baltimore, MD 21201, USA
| |
Collapse
|
45
|
Zhang Y, Wang L, Zhang C, Zhang J, Yuan L, Jin S, Zhou W, Guan X, Kang P, Zhang C, Tian J, Chen X, Li D, Jia W. Preclinical assessment of IRDye800CW-labeled gastrin-releasing peptide receptor-targeting peptide for near infrared-II imaging of brain malignancies. Bioeng Transl Med 2023; 8:e10532. [PMID: 37476052 PMCID: PMC10354759 DOI: 10.1002/btm2.10532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 07/22/2023] Open
Abstract
We aimed to develop a new biocompatible gastrin-releasing peptide receptor (GRPR) targeted optical probe, IRDye800-RM26, for fluorescence image-guided surgery (FGS) of brain malignancies in near-infrared window II (NIR-II) imaging. We developed a novel GRPR targeting probe using a nine-amino-acid bombesin antagonist analog RM26 combined with IRDye800CW, and explored the fluorescent probe according to optical properties. Fluorescence imaging characterization in NIR-I/II region was performed in vitro and in vivo. Following simulated NIR-II image-guided surgery, we obtained time-fluorescent intensity curves and time-signal and background ratio curves. Further, we used histological sections of brain from tumor-beating mice model to compare imaging specificity between 5-aminolevulinic acid (5-ALA) and IRDye800-RM26, and evaluated biodistribution and biocompatibility. IRDye800-RM26 had broad emission ranging from 800 to 1200 nm, showing considerable fluorescent intensity in NIR-II region. High-resolution NIR-II imaging of IRDye800-RM26 can enhance the advantages of NIR-I imaging. Dynamic and real time fluorescence imaging in NIR-II region showed that the probe can be used to treat brain malignancies in mice between 12 and 24 h post injection. Its specificity in targeting glioblastoma was superior to 5-ALA. Biodistribution analysis indicated IRDye800-RM26 excretion in the kidney and liver. Histological and blood test analyses did not reveal acute severe toxicities in mice treated with effective dose (40 μg) of the probe for NIR-II imaging. Because of the considerable fluorescent intensity in NIR-II region and high spatial resolution, biocompatible and excretable IRDye800-RM26 holds great potentials for FGS, and is essential for translation into human use.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Beijing Neurosurgical InstituteBeijingChina
| | - Li Wang
- Jiangsu Xinrui Pharmaceutical Co., Ltd.NantongChina
| | - Chengkai Zhang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Beijing Neurosurgical InstituteBeijingChina
| | - Jingjing Zhang
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of EngineeringNational University of SingaporeSingaporeSingapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Linhao Yuan
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Beijing Neurosurgical InstituteBeijingChina
| | - Shucheng Jin
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Beijing Neurosurgical InstituteBeijingChina
| | - Wenjianlong Zhou
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Beijing Neurosurgical InstituteBeijingChina
| | - Xiudong Guan
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Beijing Neurosurgical InstituteBeijingChina
| | - Peng Kang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Beijing Neurosurgical InstituteBeijingChina
| | - Chuanbao Zhang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Beijing Neurosurgical InstituteBeijingChina
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex SystemsInstitute of Automation, Chinese Academy of SciencesBeijingChina
- School of Artificial IntelligenceUniversity of Chinese Academy of SciencesBeijingChina
- Beijing Advanced Innovation Center for Big Data‐Based Precision Medicine, School of MedicineBeihang UniversityBeijingChina
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of EngineeringNational University of SingaporeSingaporeSingapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Deling Li
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Beijing Neurosurgical InstituteBeijingChina
| | - Wang Jia
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Beijing Neurosurgical InstituteBeijingChina
| |
Collapse
|
46
|
Dai Y, Zhang F, Chen K, Sun Z, Wang Z, Xue Y, Li M, Fan Q, Shen Q, Zhao Q. An Activatable Phototheranostic Nanoplatform for Tumor Specific NIR-II Fluorescence Imaging and Synergistic NIR-II Photothermal-Chemodynamic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206053. [PMID: 36852618 DOI: 10.1002/smll.202206053] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 02/10/2023] [Indexed: 06/02/2023]
Abstract
The phototheranostics in the second near-infrared window (NIR-II) have proven to be promising for the precise cancer theranostics. However, the non-responsive and "always on" imaging mode lacks the selectivity, leading to the poor diagnosis specificity. Herein, a tumor microenvironment (TME) activated NIR-II phototheranostic nanoplatform (Ag2 S-Fe(III)-DBZ Pdots, AFD NPs) is designed based on the principle of Förster resonance energy transfer (FRET). The AFD NPs are fabricated through self-assembly of Ag2 S QDs (NIR-II fluorescence probe) and ultra-small semiconductor polymer dots (DBZ Pdots, NIR-II fluorescence quencher) utilizing Fe(III) as coordination nodes. In normal tissues, the AFD NPs maintain in "off" state, due to the FRET between Ag2 S QDs and DBZ Pdots. However, the NIR-II fluorescence signal of AFD NPs can be rapidly "turn on" by the overexpressed GSH in tumor tissues, achieving a superior tumor-to-normal tissue (T/NT) signal ratio. Moreover, the released Pdots and reduced Fe(II) ions provide NIR-II photothermal therapy (PTT) and chemodynamic therapy (CDT), respectively. The GSH depletion and NIR-II PTT effect further aggravate CDT mediated oxidative damage toward tumors, achieving the synergistic anti-tumor therapeutic effect. The work provides a promising strategy for the development of TME activated NIR-II phototheranostic nanoprobes.
Collapse
Affiliation(s)
- Yeneng Dai
- State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
- Cancer Centre, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, 999078, China
| | - Fan Zhang
- State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Kai Chen
- State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Zhiquan Sun
- State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Zhihang Wang
- State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Yuwen Xue
- State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Meixing Li
- State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Quli Fan
- State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Qingming Shen
- State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Qi Zhao
- Cancer Centre, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, 999078, China
| |
Collapse
|
47
|
Li Q, Hou Y, Cao P, Bi R, Zhu S. Near-Infrared Light-Activated Mesoporous Polydopamine for Temporomandibular Joint Osteoarthritis Combined Photothermal-Chemo Therapy. Int J Mol Sci 2023; 24:ijms24109055. [PMID: 37240401 DOI: 10.3390/ijms24109055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/04/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
The treatments generally employed for temporomandibular joint osteoarthritis (TMJOA) involve physical therapy and chemotherapy, etc., whose therapeutic efficacies are impaired by the side effects and suboptimal stimulus responsiveness. Although the intra-articular drug delivery system (DDS) has shown effectiveness in addressing osteoarthritis, there is currently little reported research regarding the use of stimuli-responsive DDS in managing TMJOA. Herein, we prepared a novel near-infrared (NIR) light-sensitive DDS (DS-TD/MPDA) by using mesoporous polydopamine nanospheres (MPDA) as NIR responders and drug carriers; diclofenac sodium (DS) as the anti-inflammatory medication; and 1-tetradecanol (TD) with a phase-inversion temperature of 39 °C as the drug administrator. Upon exposure to 808 nm NIR laser, DS-TD/MPDA could raise the temperature up to the melting point of TD through photothermal conversion, and intelligently trigger DS release. The resultant nanospheres exhibited an excellent photothermal effect and effectively controlled the release of DS through laser irradiation to accommodate the multifunctional therapeutic effect. More importantly, the biological evaluation of DS-TD/MPDA for TMJOA treatment was also performed for the first time. The experiments' results demonstrated that DS-TD/MPDA displayed a good biocompatibility in vitro and in vivo during metabolism. After injection into the TMJ of rats afflicted with TMJOA induced by unilateral anterior crossbite for 14 days, DS-TD/MPDA could alleviate the deterioration of TMJ cartilage, thus ameliorating osteoarthritis. Therefore, DS-TD/MPDA could be a promising candidate for photothermal-chemotherapy for TMJOA.
Collapse
Affiliation(s)
- Qianli Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yi Hou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Pinyin Cao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ruiye Bi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Songsong Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
48
|
Wang C, Wang F, Zou W, Miao Y, Zhu Y, Cao M, Yu B, Cong H, Shen Y. Donor-Acceptor-Donor small molecules for fluorescence/photoacoustic imaging and integrated photothermal therapy. Acta Biomater 2023; 164:588-603. [PMID: 37086828 DOI: 10.1016/j.actbio.2023.04.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 04/24/2023]
Abstract
Here, a D-A-D type fluorescent conjugated molecule with a high molar absorption coefficient and emission at 1120 nm in the near-infrared region was synthesized. Conjugated molecules and two polyethylene glycol polymers with different lipophilic ends are assembled into water-soluble nanoparticles to improve their biocompatibility. Then, their physical and chemical properties were studied and compared. Compared with phospholipid-based PEG, styrene-based PEG can reduce the π-π stacking between molecules and the quenching caused by molecular aggregation. It has more advantages in particle size and fluorescence performance and can be better used in biological imaging. In addition, the Nano-particles have good photo-thermal conversion efficiency; the temperature rises to 62.8°C after 980 nm irradiation for 6 min, which can be used as a potential near-infrared II photothermal therapeutic agent. In vivo imaging experiments confirmed that nanomaterials have fluorescence, photoacoustic dual-modal imaging and good biological safety. STATEMENT OF SIGNIFICANCE: : In this work, we constructed D-A-D type dual donor fluorescent molecules using BBTD, CPDT and EDOT, and used amphiphilic polymers to improve their biocompatibility. Compared with DSPE NPs, PS-NPs can reduce intermolecular π-π stacking and increase quantum yield (QY = 0.98 %). Deep penetration and low biological toxicity make it have biomedical value and realize the integration of multi-functional collaborative imaging. This work can still be further improved and supplemented, and the molecular structure can be optimized to improve its application in biomedical imaging.
Collapse
Affiliation(s)
- Chang Wang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Fang Wang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Wentao Zou
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Yawei Miao
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Yaowei Zhu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Mengyu Cao
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China; School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| |
Collapse
|
49
|
Sandberg E, Piguet J, Kostiv U, Baryshnikov G, Liu H, Widengren J. Photoisomerization of Heptamethine Cyanine Dyes Results in Red-Emissive Species: Implications for Near-IR, Single-Molecule, and Super-Resolution Fluorescence Spectroscopy and Imaging. J Phys Chem B 2023; 127:3208-3222. [PMID: 37011608 PMCID: PMC10108366 DOI: 10.1021/acs.jpcb.2c08016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Photoisomerization kinetics of the near-infrared (NIR) fluorophore Sulfo-Cyanine7 (SCy7) was studied by a combination of fluorescence correlation spectroscopy (FCS) and transient state (TRAST) excitation modulation spectroscopy. A photoisomerized state with redshifted emission was identified, with kinetics consistent with a three-state photoisomerization model. Combining TRAST excitation modulation with spectrofluorimetry (spectral-TRAST) further confirmed an excitation-induced redshift in the emission spectrum of SCy7. We show how this red-emissive photoisomerized state contributes to the blinking kinetics in different emission bands of NIR cyanine dyes, and how it can influence single-molecule, super-resolution, as well as Förster resonance energy transfer (FRET) and multicolor readouts. Since this state can also be populated at moderate excitation intensities, it can also more broadly influence fluorescence readouts, also readouts not relying on high excitation conditions. However, this additional red-emissive state and its photodynamics, as identified and characterized in this work, can also be used as a strategy to push the emission of NIR cyanine dyes further into the NIR and to enhance photosensitization of nanoparticles with absorption spectra further into the NIR. Finally, we show that the photoisomerization kinetics of SCy7 and the formation of its redshifted photoisomer depend strongly on local environmental conditions, such as viscosity, polarity, and steric constraints, which suggests the use of SCy7 and other NIR cyanine dyes as environmental sensors. Such environmental information can be monitored by TRAST, in the NIR, with low autofluorescence and scattering conditions and on a broad range of samples and experimental conditions.
Collapse
Affiliation(s)
- Elin Sandberg
- Experimental Biomolecular Physics, Dept. Applied Physics, Royal Institute of Technology (KTH), Albanova Univ Center, 106 91 Stockholm, Sweden
| | - Joachim Piguet
- Experimental Biomolecular Physics, Dept. Applied Physics, Royal Institute of Technology (KTH), Albanova Univ Center, 106 91 Stockholm, Sweden
| | - Uliana Kostiv
- Experimental Biomolecular Physics, Dept. Applied Physics, Royal Institute of Technology (KTH), Albanova Univ Center, 106 91 Stockholm, Sweden
| | - Glib Baryshnikov
- Dept. Science and Technology, Linköping University, Campus Norrköping, 601 74 Norrköping, Sweden
| | - Haichun Liu
- Experimental Biomolecular Physics, Dept. Applied Physics, Royal Institute of Technology (KTH), Albanova Univ Center, 106 91 Stockholm, Sweden
| | - Jerker Widengren
- Experimental Biomolecular Physics, Dept. Applied Physics, Royal Institute of Technology (KTH), Albanova Univ Center, 106 91 Stockholm, Sweden
| |
Collapse
|
50
|
Xin Q, Ma H, Wang H, Zhang X. Tracking tumor heterogeneity and progression with near-infrared II fluorophores. EXPLORATION (BEIJING, CHINA) 2023; 3:20220011. [PMID: 37324032 PMCID: PMC10191063 DOI: 10.1002/exp.20220011] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 09/22/2022] [Indexed: 06/17/2023]
Abstract
Heterogeneous cells are the main feature of tumors with unique genetic and phenotypic characteristics, which can stimulate differentially the progression, metastasis, and drug resistance. Importantly, heterogeneity is pervasive in human malignant tumors, and identification of the degree of tumor heterogeneity in individual tumors and progression is a critical task for tumor treatment. However, current medical tests cannot meet these needs; in particular, the need for noninvasive visualization of single-cell heterogeneity. Near-infrared II (NIR-II, 1000-1700 nm) imaging exhibits an exciting prospect for non-invasive monitoring due to the high temporal-spatial resolution. More importantly, NIR-II imaging displays more extended tissue penetration depths and reduced tissue backgrounds because of the significantly lower photon scattering and tissue autofluorescence than traditional the near-infrared I (NIR-I) imaging. In this review, we summarize systematically the advances made in NIR-II in tumor imaging, especially in the detection of tumor heterogeneity and progression as well as in tumor treatment. As a non-invasive visual inspection modality, NIR-II imaging shows promising prospects for understanding the differences in tumor heterogeneity and progression and is envisioned to have the potential to be used clinically.
Collapse
Affiliation(s)
- Qi Xin
- Tianjin Key Laboratory of Brain Science and Neural EngineeringAcademy of Medical Engineering and Translational Medicine, Tianjin UniversityTianjinChina
- Department of PathologyTianjin Third Central Hospital, Tianjin Key Laboratory of Extracorporeal Life Support for Critical DiseasesTianjinChina
| | - Huizhen Ma
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of SciencesTianjin UniversityTianjinChina
| | - Hao Wang
- Tianjin Key Laboratory of Brain Science and Neural EngineeringAcademy of Medical Engineering and Translational Medicine, Tianjin UniversityTianjinChina
| | - Xiao‐Dong Zhang
- Tianjin Key Laboratory of Brain Science and Neural EngineeringAcademy of Medical Engineering and Translational Medicine, Tianjin UniversityTianjinChina
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of SciencesTianjin UniversityTianjinChina
| |
Collapse
|