1
|
An RZ, Zhao FM, Shang C, Zhou M, Cui LS. Excited-State and Steric Hindrances Engineering Enable Fast Spin-Flip Narrowband Thermally Activated Delayed Fluorescence Emitters with Enhanced Quenching Resistance. Angew Chem Int Ed Engl 2025; 64:e202420489. [PMID: 39777816 DOI: 10.1002/anie.202420489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/18/2024] [Accepted: 01/06/2025] [Indexed: 01/11/2025]
Abstract
Multi-resonance thermally activated delayed fluorescence (MR-TADF) materials have great potential for applications in ultrahigh-definition (UHD) organic light-emitting diode (OLED) displays, that benefit from their narrowband emission characteristic. However, key challenges such as aggregation-caused quenching (ACQ) effect and slow triplet-to-singlet spin-flip process, especially for blue MR-TADF materials, continue to impede their development due to planar skeletons and relatively large ΔESTs. Here, an effective strategy that incorporates multiple carbazole donors into the parent MR moieties is proposed, synergistically engineering their excited states and steric hindrances to enhance both the spin-flip process and quenching resistance. As expected, the designed materials namely 5Cz-BNO and 5Cz-BN exhibit bright blue and green emissions with narrow full-width at half-maximums (FWHMs) around 23 nm, together with significantly improved reverse intersystem crossing (RISC) rates. The OLEDs based on 5Cz-BNO and 5Cz-BN with doping concentrations from 5 to 20 wt % achieve high maximum external quantum efficiency (EQEmax) values exceeding 30 % with suppressed efficiency roll-offs and improved operational stability. This work offers an effective approach for designing doping-insensitive blue and green MR-TADF materials with fast spin-flip processes by integrating the engineering of excited states and steric hindrances.
Collapse
Affiliation(s)
- Rui-Zhi An
- State Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China Hefei, Anhui 230026, China
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China Hefei, Anhui 230026, China
| | - Fang-Ming Zhao
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China Hefei, Anhui 230026, China
| | - Changjiao Shang
- State Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China Hefei, Anhui 230026, China
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China Hefei, Anhui 230026, China
| | - Meng Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China Hefei, Anhui 230026, China
| | - Lin-Song Cui
- State Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China Hefei, Anhui 230026, China
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China Hefei, Anhui 230026, China
| |
Collapse
|
2
|
Dos Santos JM, Hall D, Basumatary B, Bryden M, Chen D, Choudhary P, Comerford T, Crovini E, Danos A, De J, Diesing S, Fatahi M, Griffin M, Gupta AK, Hafeez H, Hämmerling L, Hanover E, Haug J, Heil T, Karthik D, Kumar S, Lee O, Li H, Lucas F, Mackenzie CFR, Mariko A, Matulaitis T, Millward F, Olivier Y, Qi Q, Samuel IDW, Sharma N, Si C, Spierling L, Sudhakar P, Sun D, Tankelevičiu Tė E, Duarte Tonet M, Wang J, Wang T, Wu S, Xu Y, Zhang L, Zysman-Colman E. The Golden Age of Thermally Activated Delayed Fluorescence Materials: Design and Exploitation. Chem Rev 2024; 124:13736-14110. [PMID: 39666979 DOI: 10.1021/acs.chemrev.3c00755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Since the seminal report by Adachi and co-workers in 2012, there has been a veritable explosion of interest in the design of thermally activated delayed fluorescence (TADF) compounds, particularly as emitters for organic light-emitting diodes (OLEDs). With rapid advancements and innovation in materials design, the efficiencies of TADF OLEDs for each of the primary color points as well as for white devices now rival those of state-of-the-art phosphorescent emitters. Beyond electroluminescent devices, TADF compounds have also found increasing utility and applications in numerous related fields, from photocatalysis, to sensing, to imaging and beyond. Following from our previous review in 2017 ( Adv. Mater. 2017, 1605444), we here comprehensively document subsequent advances made in TADF materials design and their uses from 2017-2022. Correlations highlighted between structure and properties as well as detailed comparisons and analyses should assist future TADF materials development. The necessarily broadened breadth and scope of this review attests to the bustling activity in this field. We note that the rapidly expanding and accelerating research activity in TADF material development is indicative of a field that has reached adolescence, with an exciting maturity still yet to come.
Collapse
Affiliation(s)
- John Marques Dos Santos
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - David Hall
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Biju Basumatary
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Megan Bryden
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Dongyang Chen
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Praveen Choudhary
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Thomas Comerford
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Ettore Crovini
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Andrew Danos
- Department of Physics, Durham University, Durham DH1 3LE, UK
| | - Joydip De
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Stefan Diesing
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Mahni Fatahi
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Máire Griffin
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Abhishek Kumar Gupta
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Hassan Hafeez
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Lea Hämmerling
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Emily Hanover
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- EaStCHEM School of Chemistry, The University of Edinburgh, Edinburgh, EH9 3FJ, UK
| | - Janine Haug
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Tabea Heil
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Durai Karthik
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Shiv Kumar
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Oliver Lee
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Haoyang Li
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Fabien Lucas
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | | | - Aminata Mariko
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Tomas Matulaitis
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Francis Millward
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Yoann Olivier
- Laboratory for Computational Modeling of Functional Materials, Namur Institute of Structured Matter, Université de Namur, Rue de Bruxelles, 61, 5000 Namur, Belgium
| | - Quan Qi
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Ifor D W Samuel
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Nidhi Sharma
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Changfeng Si
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Leander Spierling
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Pagidi Sudhakar
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Dianming Sun
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Eglė Tankelevičiu Tė
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Michele Duarte Tonet
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Jingxiang Wang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Tao Wang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Sen Wu
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Yan Xu
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Le Zhang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| |
Collapse
|
3
|
An RZ, Sun Y, Chen HY, Liu Y, Privitera A, Myers WK, Ronson TK, Gillett AJ, Greenham NC, Cui LS. Excited-State Engineering Enables Efficient Deep-Blue Light-Emitting Diodes Exhibiting BT.2020 Color Gamut. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313602. [PMID: 38598847 DOI: 10.1002/adma.202313602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/01/2024] [Indexed: 04/12/2024]
Abstract
Organic luminescent materials that exhibit thermally activated delayed fluorescence (TADF) can convert non-emissive triplet excitons into emissive singlet states through a reverse intersystem crossing (RISC) process. Therefore, they have tremendous potential for applications in organic light-emitting diodes (OLEDs). However, with the development of ultra-high definition 4K/8K display technologies, designing efficient deep-blue TADF materials to achieve the Commission Internationale de l'Éclairage (CIE) coordinates fulfilling BT.2020 remains a significant challenge. Here, an effective approach is proposed to design deep-blue TADF molecules based on hybrid long- and short-range charge-transfer by incorporation of multiple donor moieties into organoboron multiple resonance acceptors. The resulting TADF molecule exhibits deep-blue emission at 414 nm with a full width at half maximum (FWHM) of 29 nm, together with a thousand-fold increase in RISC rate. OLEDs based on the champion material achieve a record maximum external quantum efficiency (EQE) of 22.8% with CIE coordinates of (0.163, 0.046), approaching the coordinates of the BT.2020 blue standard. Moreover, TADF-assisted fluorescence devices employing the designed material as a sensitizer exhibit an exceptional EQE of 33.1%. This work thus provides a blueprint for future development of efficient deep-blue TADF emitters, representing an important milestone towards meeting the blue color gamut standard of BT.2020.
Collapse
Affiliation(s)
- Rui-Zhi An
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yuqi Sun
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Hao-Yang Chen
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yuan Liu
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science & Technology University, No. 12 Xiaoying East Road, Beijing, 100192, China
| | - Alberto Privitera
- Department of Industrial Engineering and INSTM Research Unit, University of Florence, Via Santa Marta 3, Firenze, 50139, Italy
| | - William K Myers
- Centre for Advanced Electron Spin Resonance, Inorganic Chemistry Laboratory, University of Oxford, Oxford, OX1 3QR, UK
| | - Tanya K Ronson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Alexander J Gillett
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Neil C Greenham
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Lin-Song Cui
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
4
|
Zeng XY, Tang YQ, Zhou JX, Zhang K, Wang HY, Zhu YY, Li YQ, Tang JX. Extended Conjugation Strategy Enabling Red-Shifted and Efficient Emission of Orange-Red Thermally Activated Delayed Fluorescence Materials. ACS APPLIED MATERIALS & INTERFACES 2024; 16:16563-16572. [PMID: 38507218 DOI: 10.1021/acsami.3c18880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
In account of the energy gap law, the development of efficient narrow-band gap thermally activated delayed fluorescence (TADF) materials remains a major challenge for the application of organic light-emitting diodes (OLEDs). The orange-red TADF materials are commonly designed with either large π-conjugated systems or strong intramolecular donor-acceptor (D-A) interactions for red-shift emission and small singlet-triplet energy gap (ΔEST). There are rare reports on the simultaneous incorporation of these two strategies on the same material systems. Herein, two orange-red emitters named 1P2D-BP and 2P2D-DQ have been designed by extending the conjugation degree of the center acceptor DQ and increasing the number distribution of the peripheral donor PXZ units, respectively. The emission peak of 1P2D-BP is red-shifted to 615 nm compared to 580 nm for 2P2D-DQ, revealing the pronounced effect of the conjugation extension on the emission band gap. In addition, the distorted molecular structure yields a small ΔEST of 0.02 eV, favoring the acquisition of a high exciton utilization through an efficient reverse intersystem crossing process. As a result, orange-red OLEDs with both 1P2D-BP and 2P2D-DQ have achieved an external quantum efficiency (EQE) of more than 17%. In addition, the efficient white OLED based on 1P2D-BP is realized through precise exciton assignment and energy transport modulation, showing an EQE of 23.6% and a color rendering index of 82. The present work provides an important reference for the design of high-efficiency narrow-band gap materials in the field of solid-state lighting.
Collapse
Affiliation(s)
- Xin-Yi Zeng
- Macao Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa 999078, Macao SAR, China
| | - Yan-Qing Tang
- School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| | - Jing-Xiong Zhou
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Kai Zhang
- Macao Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa 999078, Macao SAR, China
| | - Han-Yang Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Yuan-Ye Zhu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Yan-Qing Li
- School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| | - Jian-Xin Tang
- Macao Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa 999078, Macao SAR, China
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| |
Collapse
|
5
|
Deng H, Li G, Xie H, Yang Z, Mao Z, Zhao J, Yang Z, Zhang Y, Chi Z. Dynamic Ultra-long Room Temperature Phosphorescence Enabled by Amorphous Molecular "Triplet Exciton Pump" for Encryption with Temporospatial Resolution. Angew Chem Int Ed Engl 2024; 63:e202317631. [PMID: 38126932 DOI: 10.1002/anie.202317631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 12/23/2023]
Abstract
Organic ultra-long room-temperature phosphorescence (RTP) materials in the amorphous state have attracted widespread attention due to their simple preparation and flexibility to adopt various forms in sensors, bioimaging, and encryption applications. However, the amorphous molecular host for the host-guest RTP systems is highly demanded but limited. Here, a universal molecular host (DPOBP-Br) has been designed by integration of an amorphous moiety of diphenylphosphine oxide (DPO) and an intersystem crossing (ISC) group of 4-bromo-benzophenone (BP-Br). Various commercial fluorescence dyes were doped into the tight and transparent DPOBP-Br film, respectively, resulting in amorphous host-guest systems with ultra-long RTP colors from green to red. It was found that DPOBP-Br acted as a universal "triplet exciton pump" for promoting the generation of triplet excitons in the guest, through energy transfer processes and external heavy-atom effect based on DPOBP-Br. Interestingly, dynamic RTP was achieved by controlling residual oxygen concentration in the amorphous matrix by UV irradiation. Therefore, multi-dimensional anti-counterfeiting coatings were realized even on curved surfaces, simultaneously exhibiting spatial and 2D-time dependence. This work provides a strategy to design new amorphous molecular hosts for RTP systems and demonstrates the advanced information encryption with tempo-spatial resolution based on the dynamic ultra-long RTP of an amorphous system.
Collapse
Affiliation(s)
- Huangjun Deng
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-sen University, 510275, Guangzhou, P. R. China
| | - Gaoyu Li
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-sen University, 510275, Guangzhou, P. R. China
| | - Haozhi Xie
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-sen University, 510275, Guangzhou, P. R. China
| | - Zhan Yang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-sen University, 510275, Guangzhou, P. R. China
| | - Zhu Mao
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-sen University, 510275, Guangzhou, P. R. China
| | - Juan Zhao
- School of Materials Science and Engineering, Sun Yat-sen University, 510275, Guangzhou, P. R. China
| | - Zhiyong Yang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-sen University, 510275, Guangzhou, P. R. China
| | - Yi Zhang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-sen University, 510275, Guangzhou, P. R. China
| | - Zhenguo Chi
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-sen University, 510275, Guangzhou, P. R. China
- School of Materials Science and Engineering, Sun Yat-sen University, 510275, Guangzhou, P. R. China
| |
Collapse
|
6
|
Chen J, Liu Z, Chen L, Zou P, Tang BZ, Zhao Z. Exploring Robust Delayed Fluorescence Materials via Structural Rigidification for Realizing Organic Light-Emitting Diodes with High Efficiencies and Small Roll-Offs. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306800. [PMID: 37823676 DOI: 10.1002/smll.202306800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/22/2023] [Indexed: 10/13/2023]
Abstract
Thermally activated delayed fluorescence (TADF) materials have been widely studied for the fabrication of high-performance organic light-emitting diodes (OLEDs), but the serious efficiency roll-offs still remain unsolved in most cases. Herein, it is wish to report a series of robust green TADF compounds containing rigid xanthenone acceptor and acridine-based spiro donors. The enhancement in molecular rigidity not only endows the compounds with improved thermal stability but also results in reduced geometric vibrations and thus lowered reorganization energies. These compounds exhibit distinct merits of high thermal stabilities, excellent photoluminescence quantum efficiencies (96%-97%), large horizontal dipole orientation ratios (87.4%-92.1%) and fast TADF rates (1.4-1.5 × 106 s-1 ). The OLEDs using them as emitters furnish superb electroluminescence performances with outstanding external quantum efficiencies (ηext s) of up to 37.4% and very small efficiency roll-offs. Moreover, highly efficient hyperfluorescence OLEDs are obtained by using them as sensitizers for the green mutilresonance TADF emitter BN2, delivering excellent ηext s of up to 34.2% and improved color purity. These results disclose the high potential of these TADF compounds as emitters and sensitizers for OLEDs.
Collapse
Affiliation(s)
- Jinke Chen
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Zhangshan Liu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Letian Chen
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Peng Zou
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, Guangdong
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
7
|
Guo F, Zhang W, Yang S, Wang L, Yu G. 2D Covalent Organic Frameworks Based on Heteroacene Units. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207876. [PMID: 36703526 DOI: 10.1002/smll.202207876] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/12/2023] [Indexed: 06/18/2023]
Abstract
Covalent organic frameworks (COFs) are a unique new class of porous materials that arrange building units into periodic ordered frameworks through strong covalent bonds. Accompanied with structural rigidity and well-defined geometry, heteroacene-based COFs have natural advantages in constructing COFs with high stability and crystallinity. Heteroacene-based COFs usually have high physical and chemical properties, and their extended π-conjugation also leads to relatively low energy gap, effectively promoting π-electron delocalization between network units. Owing to excellent electron-withdrawing or -donating ability, heteroacene units have incomparable advantages in the preparation of donor-acceptor type COFs. Therefore, the physicochemical robust and fully conjugated heteroacene-based COFs solve the problem of traditional COFs lacking π-π interaction and chemical stability. In recent years, significant breakthroughs are made in this field, the choice of various linking modes and building blocks has fundamentally ensured the final applications of COFs. It is of great significance to summarize the heteroacene-based COFs for improving its complexity and controllability. This review first introduces the linkages in heteroacene-based COFs, including reversible and irreversible linkages. Subsequently, some representative building blocks are summarized, and their related applications are especially emphasized. Finally, conclusion and perspectives for future research on heteroacene-based COFs are presented.
Collapse
Affiliation(s)
- Fu Guo
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Weifeng Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shuai Yang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liping Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
8
|
Kothavale S, Kim SC, Cheong K, Zeng S, Wang Y, Lee JY. Solution-Processed Pure Red TADF Organic Light-Emitting Diodes With High External Quantum Efficiency and Saturated Red Emission Color. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208602. [PMID: 36653735 DOI: 10.1002/adma.202208602] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/29/2022] [Indexed: 06/17/2023]
Abstract
In spite of recent research progress in red thermally activated delayed fluorescence (TADF) emitters, highly efficient solution-processable pure red TADF emitters are rarely reported. Most of the red TADF emitters reported to date are designed using a rigid acceptor unit which renders them insoluble and unsuitable for solution-processed organic light-emitting diodes (OLEDs). To resolve this issue, a novel TADF emitter, 6,7-bis(4-(bis(4-(tert-butyl)phenyl)amino)phenyl)-2,3-bis(4-(tert-butyl)phenyl)quinoxaline-5,8-dicarbonitrile (tBuTPA-CNQx) is designed and synthesized. The highly twisted donor-acceptor architecture and appropriate highest occupied molecular orbital/lowest unoccupied molecular orbital distribution lead to a very small singlet-triplet energy gap of 0.07 eV, high photoluminescence quantum yield of 92%, and short delayed fluorescence lifetime of 52.4 µs. The peripheral t-butyl phenyl decorated quinoxaline acceptor unit and t-butyl protected triphenylamine donor unit are proven to be useful building blocks to improve solubility and minimize the intermolecular interaction. The solution-processed OLED based on tBuTPA-CNQx achieves a high external quantum efficiency (EQE) of 16.7% with a pure red emission peak at 662 nm, which is one of the highest EQE values reported till date in the solution-processed pure red TADF OLEDs. Additionally, vacuum-processable OLED based on tBuTPA-CNQx exhibits a high EQE of 22.2% and negligible efficiency roll-off.
Collapse
Affiliation(s)
- Shantaram Kothavale
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Seung Chan Kim
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Kiun Cheong
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Songkun Zeng
- School of Materials Science & Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou, 213164, P. R. China
| | - Yafei Wang
- School of Materials Science & Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou, 213164, P. R. China
| | - Jun Yeob Lee
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi, 16419, Republic of Korea
- SKKU Advanced Institute of Nano Technology, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi, 16419, Republic of Korea
- SKKU Institute of Energy Science and Technology, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi, 16419, Republic of Korea
| |
Collapse
|
9
|
Zou H, Liu H, Mu Q, Zhang K, Song Y, Lin L, Xu Y, Wang CK, Fan J. Theoretical perspective for substitution effect on luminescent properties of through space charge transfer-based thermally activated delayed fluorescence molecules. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121899. [PMID: 36179564 DOI: 10.1016/j.saa.2022.121899] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/03/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Recently, through space charge transfer (TSCT)-based thermally activated delayed fluorescence (TADF) molecules have shown advantages in achieving high efficiencies and tunable emissions. However, the relationships between basic molecular structures and luminescent properties are unclear. Theoretical investigations to reveal the substitution effects with different numbers and positions on excited-state properties are highly desired. Herein, by taking TSCT-based TADF molecules S-CNDF-S-tCz, S-CNDF-D-tCz and T-CNDF-T-tCz as skeletons, a series of promising TADF molecules are designed by adopting ortho, meta and para substitutions with different numbers and positions. Photophysical properties of total 16 molecules are theoretically studied by density functional theory (DFT) and time-dependent density functional theory (TD-DFT) methods in chloroform combined with polarizable continuum model. Results indicate that molecules with ortho-substitution possess small geometric changes and short Donor-Acceptor distances which are induced by the intramolecular van der Waals interactions. Decreased non-radiative consumption and increased TSCT ratio and therefore excellent performance for them can be expected. For molecules with large substitution numbers, twist structures facilitate them to realize small adiabatic energy gaps between the lowest singlet excited state (S1) and the lowest triplet excited state (T1), this designing strategy is consistent with the TADF dendrimers. Thus, the relationships between molecular structures and luminescent properties are revealed and promising TSCT-based TADF molecules with high efficiencies are theoretically proposed. Our investigations provide theoretical perspectives for inner mechanisms of substitution effect, which could further afford meaningful guidance to design new efficient TSCT-based TADF molecules.
Collapse
Affiliation(s)
- Haipei Zou
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Huanling Liu
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Qingfang Mu
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Kai Zhang
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Yuzhi Song
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Lili Lin
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Yuanyuan Xu
- Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Chuan-Kui Wang
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.
| | - Jianzhong Fan
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China; Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates (South China University of Technology), Guangzhou 510640, China.
| |
Collapse
|
10
|
Wang Q, Xu Y, Yang T, Xue J, Wang Y. Precise Functionalization of a Multiple-Resonance Framework: Constructing Narrowband Organic Electroluminescent Materials with External Quantum Efficiency over 40. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2205166. [PMID: 36325646 DOI: 10.1002/adma.202205166] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/10/2022] [Indexed: 06/16/2023]
Abstract
It is of important strategic significance to develop high-efficiency narrowband organic electroluminescent materials that can be employed to fabricate ultrahigh-definition displays with wide color gamut. This topic implies a great challenge to molecular design and synthesis, especially for the development of universality, diversity, scalability, and robustness of molecular architectonics. In this work, a synthetic methodology is demonstrated for functionalizing brominated BN-containing multiple-resonance (MR) frameworks with multifarious functional groups, such as donors, acceptors, and moieties without obvious push-pull electron properties. The m-DPAcP-BNCz-based organic light-emitting diode (OLED) exhibits green emission with a full-width at half-maximum (FWHM) of 28 nm and a maximum external quantum efficiency (EQE) of 40.6%. The outstanding performance of m-DPAcP-BNCz is attributed to the perfect integration of the inherent advantages of the MR framework and the donor-acceptor configuration, which can not only achieve bathochromic shift and narrowband emission, but also obtain high photoluminescence (PL) quantum yield (ΦPL ) and horizontal emitting dipole orientation ratio (Θ// ). This straightforward and efficient approach provides insightful guidance for the construction and enrichment of more high-efficiency narrowband emitters.
Collapse
Affiliation(s)
- Qingyang Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yincai Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Tong Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Jianan Xue
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yue Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
- Jihua Laboratory, 28 Huandao South Road, Foshan, Guangdong Province, 528200, P. R. China
| |
Collapse
|
11
|
Ding D, Wang Z, Duan C, Han C, Zhang J, Chen S, Wei Y, Xu H. White Fluorescent Organic Light-Emitting Diodes with 100% Power Conversion. RESEARCH (WASHINGTON, D.C.) 2022; 2022:0009. [PMID: 39290967 PMCID: PMC11407583 DOI: 10.34133/research.0009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/21/2022] [Indexed: 09/19/2024]
Abstract
Energy-efficient lighting sources are desired to provide another solution of carbon emission reduction. White organic light-emitting diodes are promising, because of theoretical internal quantum efficiencies for 100% electric-to-light conversion. However, pure organic fluorescent materials still face a challenge in harvesting triplet excitons for radiation. Herein, we report a white fluorescent organic light-emitting diode having an external quantum efficiency of 30.7% and a power efficiency of 120.2 lm W-1. In the single emissive layers, we use blue thermally activated delayed fluorescent emitters to sensitize a yellow fluorescent emitter. Transient photoluminescence and electroluminescence analyses suggest that a blue thermally activated delayed fluorescent molecule with ~100% reverse intersystem crossing efficiency and negligible triplet nonradiative rate constant completely converts triplet to singlet, suppressing triplet quenching by a yellow fluorescent emitter and ensuring 100% power conversion.
Collapse
Affiliation(s)
- Dongxue Ding
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, Heilongjiang, China
| | - Zicheng Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, Heilongjiang, China
| | - Chunbo Duan
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, Heilongjiang, China
| | - Chunmiao Han
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, Heilongjiang, China
| | - Jing Zhang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, Heilongjiang, China
| | - Shuo Chen
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, Heilongjiang, China
| | - Ying Wei
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, Heilongjiang, China
| | - Hui Xu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, Heilongjiang, China
| |
Collapse
|
12
|
Choi MG, Lee CH, Adachi C, Lee SY. Highly Effective Thermally Activated Delayed Fluorescence Emitters Based on Symmetry and Asymmetry Nicotinonitrile Derivatives. Molecules 2022; 27:8274. [PMID: 36500367 PMCID: PMC9738715 DOI: 10.3390/molecules27238274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
In this study, we developed two thermally activated delayed fluorescence (TADF) emitters, ICzCN and ICzCYP, to apply to organic light-emitting diodes (OLEDs). These emitters involve indolocarbazole (ICz) donor units and nicotinonitrile acceptor units with a twisted donor-acceptor-donor (D-A-D) structure for small singlet (S1) and triplet (T1) state energy gap (ΔEST) to enable efficient exciton transfer from the T1 to the S1 state. Depending on the position of the cyano-substituent, ICzCN has a symmetric structure by introducing donor units at the 3,5-position of isonicotinonitrile, and ICzCYP has an asymmetric structure by introducing donor units at the 2,6-position of nicotinonitrile. These emitters have different properties, such as the maximum luminance (Lmax) value. The Lmax of ICzCN reached over 10000 cd m-2. The external quantum efficiency (ηext) was 14.8% for ICzCN and 14.9% for ICzCYP, and both achieved a low turn-on voltage (Von) of less than 3.4 eV.
Collapse
Affiliation(s)
- Min Gyeong Choi
- Department of Energy and Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Chan Hee Lee
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Department of Chemistry and Biochemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Chihaya Adachi
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Department of Chemistry and Biochemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Sae Youn Lee
- Department of Energy and Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea
| |
Collapse
|
13
|
Xu Y, Wang Q, Wei J, Peng X, Xue J, Wang Z, Su S, Wang Y. Constructing Organic Electroluminescent Material with Very High Color Purity and Efficiency Based on Polycyclization of the Multiple Resonance Parent Core. Angew Chem Int Ed Engl 2022; 61:e202204652. [DOI: 10.1002/anie.202204652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Yincai Xu
- State Key Lab of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Qingyang Wang
- State Key Lab of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Jinbei Wei
- State Key Lab of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Xiaomei Peng
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices South China University of Technology Guangzhou 510640 P. R. China
| | - Jianan Xue
- State Key Lab of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Zhiheng Wang
- Jihua Laboratory 28 Huandao South Road Foshan 528200, Guangdong Province P. R. China
| | - Shi‐Jian Su
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices South China University of Technology Guangzhou 510640 P. R. China
| | - Yue Wang
- State Key Lab of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 P. R. China
- Jihua Laboratory 28 Huandao South Road Foshan 528200, Guangdong Province P. R. China
| |
Collapse
|
14
|
Bian J, Chen S, Qiu L, Zhang N, Zhang J, Duan C, Han C, Xu H. Synergetic Insulation and Induction Effects Selectively Optimize Multiresonance Thermally Activated Delayed Fluorescence. RESEARCH 2022; 2022:9838120. [PMID: 35935131 PMCID: PMC9275084 DOI: 10.34133/2022/9838120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/14/2022] [Indexed: 11/17/2022]
Abstract
Multiresonance (MR) emitters featuring narrowband emissions and theoretically 100% exciton harvesting are great potential for organic light-emitting diode (OLED) applications. However, how to functionalize MR molecules without scarifying emission color purity is still a key challenge. Herein, we report a feasible strategy for selective optimization of MR molecules, which is demonstrated by a blue MR emitter tCBNDASPO substituted with a diphenylphosphine oxide (DPPO) group. Compared to its DPPO-free parent molecule, tCBNDASPO preserves narrowband feature with full widths at half maximum (FWHM) values of 28 nm in film and 32 nm in OLEDs and achieves 40% increased photoluminescence (92%) and electroluminescence quantum efficiencies (28%). It is showed that insulation effect of P=O effectively confines the singlet excited state on MR core to keep emission color purity, and its induction effect enhances singlet radiation and triplet-to-singlet conversion. This synergism for selective optimization is based on rational linkage between MR core and functional groups.
Collapse
Affiliation(s)
- Jinkun Bian
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, China
| | - Su Chen
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, China
| | - Lili Qiu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, China
| | - Nan Zhang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, China
| | - Jing Zhang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, China
| | - Chunbo Duan
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, China
| | - Chunmiao Han
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, China
| | - Hui Xu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, China
| |
Collapse
|
15
|
Murayama N, Jorolan JH, Minoura M, Nakano H, Ikoma T, Matano Y. 9‐(Diphenylphosphoryl)‐10‐(phenylethynyl)anthracene Derivatives: Synthesis and Implications for the Substituent and Solvent Effects on the Light‐Emitting Properties. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Nina Murayama
- Niigata University Faculty of Science: Niigata Daigaku Rigakubu Department of Fundamental Sciences Nishi-ku 950-2181 Niigata JAPAN
| | - Joel Hao Jorolan
- Niigata University Faculty of Science: Niigata Daigaku Rigakubu Department of Chemistry Nishi-ku 950-2181 Niigata JAPAN
| | - Mao Minoura
- Rikkyo University College of Science: Rikkyo Daigaku Rigakubu Daigakuin Rigaku Kekyuka Department of Chemistry Toshima-ku 171-8501 Tokyo JAPAN
| | - Haruyuki Nakano
- Kyushu University Faculty of Sciences Graduate School of Sciences: Kyushu Daigaku Rigaku Kenkyuin Rigakufu Rigakubu Department of Chemistry Nishi-ku 819-0395 Fukuoka JAPAN
| | - Tadaaki Ikoma
- Niigata University Faculty of Science: Niigata Daigaku Rigakubu Department of Chemistry Nishi-ku 950-2181 Niigata JAPAN
| | - Yoshihiro Matano
- Niigata University Department of Chemistry Nishi-ku 950-2181 Niigata JAPAN
| |
Collapse
|
16
|
Xu Y, Wang Q, Wei J, Peng X, Xue J, Wang Z, Su SJ, Wang Y. Constructing Organic Electroluminescent Material with Very High Color Purity and Efficiency Based on Polycyclization of Multiple Resonance Parent Core. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yincai Xu
- Jilin University State Key Lab of Supramolecular Structure and Materials 130012 Changchun CHINA
| | - Qingyang Wang
- Jilin University State Key Lab of Supramolecular Structure and Materials 130012 Changchun CHINA
| | - Jinbei Wei
- Jilin University State Key Lab of Supramolecular Structure and Materials 130012 Changchun CHINA
| | - Xiaomei Peng
- South China University of Technology State Key Laboratory of Luminescent Materials and Devices 510640 Guangzhou CHINA
| | - Jianan Xue
- Jilin University State Key Lab of Supramolecular Structure and Materials 130012 Changchun CHINA
| | | | - Shi-Jian Su
- South China University of Technology State Key Laboratory of Luminescent Materials and Devices 510640 Guangzhou CHINA
| | - Yue Wang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin UniversityChangchun 130012, P. R. China CHINA
| |
Collapse
|
17
|
Bian J, Chen S, Qiu L, Tian R, Man Y, Wang Y, Chen S, Zhang J, Duan C, Han C, Xu H. Ambipolar Self-Host Functionalization Accelerates Blue Multi-Resonance Thermally Activated Delayed Fluorescence with Internal Quantum Efficiency of 100. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110547. [PMID: 35233858 DOI: 10.1002/adma.202110547] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Emerging multi-resonance (MR) thermally activated delayed fluorescence (TADF) emitters can combine 100% exciton harvesting and high color purity for their organic light-emitting diodes (OLED). However, the highly planar configurations of MR molecules lead to intermolecular-interaction-induced quenching. A feasible way is integrating host segments into MR molecules, namely a "self-host" strategy, but without involving additional charge transfer and/or vibrational components to excited states. Herein, an ambipolar self-host featured MR emitter, tCBNDADPO, is demonstrated, whose ambipolar host segment (DADPO) significantly and comprehensively improves the TADF properties, especially greatly accelerated singlet radiative rate constant of 2.11 × 108 s-1 and exponentially reduced nonradiative rate constants. Consequently, at the same time as preserving narrowband blue emission with an FWHM of ≈28 nm at a high doping concentration of 30%, tCBNDADPO reveals state-of-the-art photoluminescence and electroluminescence quantum efficiencies of 99% and 30%, respectively. The corresponding 100% internal quantum efficiency of tCBNDADPO supported by an ultrasimple trilayer and heavily doped device demonstrates the feasibility of the ambipolar self-host strategy for constructing practically applicable MR materials.
Collapse
Affiliation(s)
- Jinkun Bian
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education & School of Chemistry and Material Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150080, P. R. China
| | - Su Chen
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education & School of Chemistry and Material Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150080, P. R. China
| | - Lili Qiu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education & School of Chemistry and Material Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150080, P. R. China
| | - Rundong Tian
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education & School of Chemistry and Material Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150080, P. R. China
| | - Yi Man
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education & School of Chemistry and Material Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150080, P. R. China
| | - Yidan Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education & School of Chemistry and Material Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150080, P. R. China
| | - Shuo Chen
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education & School of Chemistry and Material Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150080, P. R. China
| | - Jing Zhang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education & School of Chemistry and Material Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150080, P. R. China
| | - Chunbo Duan
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education & School of Chemistry and Material Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150080, P. R. China
| | - Chunmiao Han
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education & School of Chemistry and Material Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150080, P. R. China
| | - Hui Xu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education & School of Chemistry and Material Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150080, P. R. China
| |
Collapse
|
18
|
Tao Y, Liu C, Xiang Y, Wang Z, Xue X, Li P, Li H, Xie G, Huang W, Chen R. Resonance-Induced Stimuli-Responsive Capacity Modulation of Organic Ultralong Room Temperature Phosphorescence. J Am Chem Soc 2022; 144:6946-6953. [PMID: 35316606 DOI: 10.1021/jacs.2c01669] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Organic ultralong room temperature phosphorescence (OURTP) materials having stimuli-responsive attributes have attracted great attention due to their great potential in a wide variety of advanced applications. It is of fundamental importance but challengeable to develop stimuli-responsive OURTP materials, especially such materials with modulated optoelectronic properties in a controlled manner probably due to the lack of an authentic construction approach. Here, we propose an effective strategy for OURTP materials with controllably regulated stimuli-responsive properties by engineering the resonance linkage between flexible chain and phosphor units. A quantitative parameter to demonstrate the stimuli-responsive capacity is also established by the responsivity rate constant. The designed OURTP materials demonstrate efficient photoactivated OURTP with lifetimes up to 724 ms and tunable responsivity rate constants ranging from 0.132 to 0.308 min-1 upon continuous UV irradiation. Moreover, the applications of stimuli-responsive resonance OURTP materials have been illustrated by the rewritable paper for snapshot and Morse code for multiple information encryption. Our works, which enable the accomplishment of OURTP materials capable of on-demand manipulated optical properties, demonstrate a viable design to explore smart OURTP materials, giving deep insights into the dynamically stimuli-responsive process.
Collapse
Affiliation(s)
- Ye Tao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Chang Liu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Yuan Xiang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Zijie Wang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Xudong Xue
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Ping Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Huanhuan Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Gaozhan Xie
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Wei Huang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.,Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an 710072, Shanxi, China
| | - Runfeng Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
19
|
Li C, Yu G. Controllable Synthesis and Performance Modulation of 2D Covalent-Organic Frameworks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100918. [PMID: 34288393 DOI: 10.1002/smll.202100918] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/29/2021] [Indexed: 06/13/2023]
Abstract
Covalent-organic frameworks (COFs) are especially interesting and unique as their highly ordered topological structures entirely built from plentiful π-conjugated units through covalent bonds. Arranging tailorable organic building blocks into periodically reticular skeleton bestows predictable lattices and various properties upon COFs in respect of topology diagrams, pore size, properties of channel wall interfaces, etc. Indeed, these peculiar features in terms of crystallinity, conjugation degree, and topology diagrams fundamentally decide the applications of COFs including heterogeneous catalysis, energy conversion, proton conduction, light emission, and optoelectronic devices. Additionally, this research field has attracted widespread attention and is of importance with a major breakthrough in recent year. However, this research field is running with the lack of summaries about tailorable construction of 2D COFs for targeted functionalities. This review first covers some crucial polymeric strategies of preparing COFs, containing boron ester condensation, amine-aldehyde condensation, Knoevenagel condensation, trimerization reaction, Suzuki CC coupling reaction, and hybrid polycondensation. Subsequently, a summary is made of some representative building blocks, and then underlines how the electronic and molecular structures of building blocks can strongly influence the functional performance of COFs. Finally, conclusion and perspectives on 2D COFs for further study are proposed.
Collapse
Affiliation(s)
- Chenyu Li
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
20
|
Fu Y, Liu H, Yang D, Ma D, Zhao Z, Tang BZ. Boosting external quantum efficiency to 38.6% of sky-blue delayed fluorescence molecules by optimizing horizontal dipole orientation. SCIENCE ADVANCES 2021; 7:eabj2504. [PMID: 34669483 PMCID: PMC8528420 DOI: 10.1126/sciadv.abj2504] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/30/2021] [Indexed: 06/02/2023]
Abstract
To achieve high electroluminescence efficiency, great efforts are devoted to enhancing photoluminescence quantum yield (ΦPL) and exciton utilization of luminescent molecule, while another important factor, light out-coupling efficiency (ηout), receives less attention in molecule design. Here, we focus on horizontal dipole orientation engineering of the molecule to increase ηout and external quantum efficiency (ηext). A series of tailor-made luminescent molecules consisting of an electron-accepting carbonyl core plus double electron-donating groups of spiro[acridine-9,9′-fluorene] and carbazole derivatives [e.g., 1,3,5-tri(carbazol-9-yl)benzene] are developed and systematically investigated. These molecules hold distinguished merits of strong sky-blue delayed fluorescence with excellent ΦPL values, large horizontal dipole ratios, and balanced bipolar carrier transport, which furnish record-high ηext values of up to 26.1 and 38.6% in nondoped and doped sky-blue organic light-emitting diodes (OLEDs), respectively. Moreover, the state-of-the-art nondoped hybrid white OLED and all-fluorescence single-emitting layer white OLED are also realized, demonstrating great potentials in OLED industry of these molecules.
Collapse
Affiliation(s)
- Yan Fu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Hao Liu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Dezhi Yang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Dongge Ma
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
- AIE Institute, Guangzhou Development District, Huangpu, Guangzhou 510530, China
| |
Collapse
|
21
|
Abstract
Near ultraviolet (NUV) light-emitting materials and devices are significant due to unique applications in anti-counterfeit, manufacturing industries, and hygienic treatments. However, the development of high-efficiency NUV electroluminescent devices encounters great challenges and is far behind their RGB emitter counterparts. Besides the photoluminescence quantum yields (PLQYs) of NUV materials being higher than 40%, charge injection and lopsided carrier transport also determine the device performance, leading to great efforts in optimizing the frontier molecular orbitals to fit the adjacent function layer. In the exploration of NUV materials, organic molecules are one of the primary candidates, given their preparative facility and structural variability. Recently, all-inorganic quantum-dot light-emitting diodes (QLEDs) of Cd-based, ZnSe, graphene and inorganic perovskite emitters and organic-inorganic hybrid lead halide perovskite nanocrystals (NCs) were demonstrated for achieving NUV electroluminescence. Owing to the great efforts devoted to NUV material engineering and device configuration, NUV materials and devices have achieved great advances over the last two decades. In this review, we retrospect the development of NUV materials and devices covering all promising systems, which may inspire the enthusiasm of researchers to explore the huge potential in the NUV region.
Collapse
Affiliation(s)
- Shuo Chen
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, 74 Xuefu Road, Harbin 150080, P. R. China.
| | | |
Collapse
|
22
|
Dubey DK, Thakur D, Yadav RAK, Ram Nagar M, Liang TW, Ghosh S, Jou JH. High-Throughput Virtual Screening of Host Materials and Rational Device Engineering for Highly Efficient Solution-Processed Organic Light-Emitting Diodes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:26204-26217. [PMID: 34048214 DOI: 10.1021/acsami.1c04015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The appropriate choice of host and electron-transporting material (ETM) plays a very crucial role in the generation and collection of radiative excitons in the desired recombination zone of organic light-emitting diodes (OLEDs). Due to the sustainable development of material organic chemistry, there is a big library of functional materials that leads to uncountable combinations of device structures, which might achieve a desirable high device performance. However, there is no appropriate methodology available for the fast virtual screening of organic materials and designing a suitable device structure. Here, we have used the electrical software package SETFOS 4.5 for high-throughput virtual screening of host materials and developed a highly efficient multistack OLED device structure. To further enhance the device performance, a co-host approach has been used, and the final device structure has also been optimized with two different ETMs. The best-optimized Ir(ppy)3-based solution-processed green OLED device exhibited a maximum power efficiency (PE) of 83.20 lm/W and brightness of 61,362 cd/m2 with a driving voltage of 2.1 V without using any light extraction outcoupling techniques, which is the best among the OLEDs in its own category. The developed device structure has also been utilized to fabricate highly efficient blue hazard-free low-color temperature OLEDs for a physiologically friendly light at night. The resultant 2083 K OLED device displayed a maximum PE of 51.4 lm/W and luminance of 44,548 cd/m2 with a turn-on voltage of 2.1 V that is also 42 and 104 times safer in terms of retinal protection and ∼4 and ∼11 times safer in terms of melatonin generation when compared with those of a real candle and incandescent bulb, respectively. The observed excellent device performance may be attributed to the balanced charge carrier in the recombination zone, broader emissive layer due to a mixed-host system, less accumulation of charges at the injecting surfaces, well-aligned triplet energy and molecular orbital energy level of the host and guest, and high electron mobility and enhanced hole blocking ability of the employed ETM in the designed OLED device structure.
Collapse
Affiliation(s)
- Deepak Kumar Dubey
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, Republic of China
| | - Diksha Thakur
- School of Basic Sciences, IIT Mandi, Mandi, Himachal Pradesh 175005, India
| | - Rohit Ashok Kumar Yadav
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, Republic of China
| | - Mangey Ram Nagar
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, Republic of China
| | - Tzu-Wei Liang
- Global Science Instruments Co., New Taipei City 23144, Taiwan, Republic of China
| | - Subrata Ghosh
- School of Basic Sciences, IIT Mandi, Mandi, Himachal Pradesh 175005, India
| | - Jwo-Huei Jou
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, Republic of China
| |
Collapse
|
23
|
Wu H, Xu H, Shi Y, Yuan T, Meng T, Zhang Y, Xie W, Li X, Li Y, Fan L. Recent Advance in Carbon Dots: From Properties to Applications. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000609] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Hao Wu
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education, Beijing Normal University Beijing 100875 China
| | - Huimin Xu
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education, Beijing Normal University Beijing 100875 China
| | - Yuxin Shi
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education, Beijing Normal University Beijing 100875 China
| | - Ting Yuan
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education, Beijing Normal University Beijing 100875 China
| | - Ting Meng
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education, Beijing Normal University Beijing 100875 China
| | - Yang Zhang
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education, Beijing Normal University Beijing 100875 China
| | - Wenjing Xie
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education, Beijing Normal University Beijing 100875 China
| | - Xiaohong Li
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education, Beijing Normal University Beijing 100875 China
| | - Yunchao Li
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education, Beijing Normal University Beijing 100875 China
| | - Louzhen Fan
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry, and Radiopharmaceuticals, Ministry of Education, Beijing Normal University Beijing 100875 China
| |
Collapse
|
24
|
Fan XW, Bai FQ, Zhang HX. Computational insight into newly anomalous delayed fluorescence emitters based on D-A-A structures. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 250:119392. [PMID: 33422876 DOI: 10.1016/j.saa.2020.119392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/04/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
In variety of skeleton structures of delayed fluorescence molecular materials, the D-A-A type has been widely concerned recently for its improved double efficiency of reverse intersystem crossing process (RISC). Based on the D-A-A structure, eight new D-TRZ-nPO molecules (D = dihydrophenazine (DHPZ), phenothiazine (PTZ), phenoxazine (PXZ) and 9,9-dimethyl-9,10-dihydroacridan (DMAC), TRZ = triphenyltriazine, n = 1 or 2) with potential performance improvement have been deeply investigated by theoretical calculations. Interestingly, these molecules with the closing energy levels of high-lying excited states and charge transfer characters may perform rare high-lying excited state delayed fluorescence. Meanwhile, the changes of RISC and the corresponding effects caused by D-A-A structure from low energy level to high energy level are analyzed in detail. Furthermore, DHPZ-TRZ-2PO with blue emission (452 nm) is expected to be a potential high-lying excited state delayed fluorescence material candidate.
Collapse
Affiliation(s)
- Xue-Wen Fan
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry and College of Chemistry, Jilin University, Changchun 130023, People's Republic of China
| | - Fu-Quan Bai
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry and College of Chemistry, Jilin University, Changchun 130023, People's Republic of China; Beijing National Laboratory for Molecular Sciences, Beijing 100190, People's Republic of China.
| | - Hong-Xing Zhang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry and College of Chemistry, Jilin University, Changchun 130023, People's Republic of China.
| |
Collapse
|
25
|
Su R, Zhao Y, Yang F, Duan L, Lan J, Bin Z, You J. Triazolotriazine-based thermally activated delayed fluorescence materials for highly efficient fluorescent organic light-emitting diodes (TSF-OLEDs). Sci Bull (Beijing) 2021; 66:441-448. [PMID: 36654181 DOI: 10.1016/j.scib.2020.08.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/09/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023]
Abstract
Thermally activated delayed fluorescence (TADF) sensitized fluorescent organic light-emitting diodes (TSF-OLEDs) have shown great potential for the realization of high efficiency with low efficiency roll-off and good color purity. However, the superior examples of TSF-OLEDs are still limited up to now. Herein, a trade-off strategy is presented for designing efficient TADF materials and achieving high-performance TSF-OLEDs via the construction of a new type of triazolotriazine (TAZTRZ) acceptor. The enhanced electron-withdrawing ability of TAZTRZ acceptor, fused by triazine (TRZ) and triazole (TAZ) together, enables TADF luminogens with small singlet-triplet energy gap (ΔEST) values. Meanwhile, the increased planarity from the TRZ-phenyl linkage (6:6 system) to the TAZ-phenyl linkage (5:6 system) can compensate the decrease of oscillator strength (f) while lowing ΔEST, thus achieving a trade-off between small ΔEST and high f. As a result, the related TSF-OLED achieved an extremely low turn-on voltage of 2.1 V, an outstanding maximum external quantum efficiency (EQEmax) of 23.7% with small efficiency roll-off (EQE1000 of 23.2%; EQE5000 of 20.6%) and an impressively high maximum power efficiency of 82.1 lm W-1, which represents the state-of-the-art performance for yellow TSF-OLEDs.
Collapse
Affiliation(s)
- Rongchuan Su
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yuyao Zhao
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Feng Yang
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Lian Duan
- Key Laboratory of Organic Optoelectronics, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Jingbo Lan
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zhengyang Bin
- College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Jingsong You
- College of Chemistry, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
26
|
Ma Y, Zhang K, Zhang Y, Song Y, Lin L, Wang CK, Fan J. Effects of Secondary Acceptors on Excited-State Properties of Sky-Blue Thermally Activated Delayed Fluorescence Molecules: Luminescence Mechanism and Molecular Design. J Phys Chem A 2021; 125:175-186. [PMID: 33373223 DOI: 10.1021/acs.jpca.0c08994] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development of efficient sky-blue thermally activated delayed fluorescence (TADF) emitters is highly desired. However, the types and amounts of sky-blue TADF are far from meeting the requirements, and effective molecular design strategies are expected. Herein, the photophysical properties and excited-state dynamics of 12 molecules are theoretically studied based on the thermal vibration correlation function method. Distributions of holes and electrons are analyzed by the heat maps. The frontier molecular orbital distribution, adiabatic singlet-triplet energy gap, and reorganization energy are analyzed in detail. Furthermore, the radiative and non-radiative as well as the intersystem crossing (ISC) and reverse intersystem crossing (RISC) processes are studied, and the up-conversion process is illustrated. Our results indicate that different substitution positions and numbers play an important role in the luminescence properties of TADF molecules. The meta-position substitutions restrict the geometry variations, hinder the non-radiative energy consumption process, and promote the radiative process of TADF molecules. Meanwhile, molecules with ortho-position substitutions possess the smallest energy gaps (ΔEst) and the largest RISC rates. Moreover, molecules with the substitutions of one tBCz group and two PO groups have the smallest ΔEst and the largest spin orbital coupling. Thus, a wise molecular design strategy, namely, ortho-position substitutions as well as substitutions with one tBCz group and two PO groups, is proposed to facilitate the RISC process. Based on this rule, new efficient TADF molecules are theoretically designed and proposed. Our work reasonably elucidates the experimental measurements, and the effects of different substitution numbers and positions of secondary acceptors on TADF properties are highlighted, which could provide a theoretical perspective for designing efficient sky-blue TADF molecules.
Collapse
Affiliation(s)
- Yuying Ma
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Kai Zhang
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Yuchen Zhang
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Yuzhi Song
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Lili Lin
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Chuan-Kui Wang
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Jianzhong Fan
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.,Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
27
|
Chen J, Xiao Y, Wang K, Sun D, Fan X, Zhang X, Zhang M, Shi Y, Yu J, Geng F, Lee C, Zhang X. Managing Locally Excited and Charge‐Transfer Triplet States to Facilitate Up‐Conversion in Red TADF Emitters That Are Available for Both Vacuum‐ and Solution‐Processes. Angew Chem Int Ed Engl 2020; 60:2478-2484. [DOI: 10.1002/anie.202012070] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/28/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Jia‐Xiong Chen
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry City University of Hong Kong Hong Kong SAR P. R. China
- College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS) Soochow University Suzhou 215123 P. R. China
| | - Ya‐Fang Xiao
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry City University of Hong Kong Hong Kong SAR P. R. China
| | - Kai Wang
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Dianming Sun
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Xiao‐Chun Fan
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Xiang Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Ming Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Yi‐Zhong Shi
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Jia Yu
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Feng‐Xia Geng
- College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS) Soochow University Suzhou 215123 P. R. China
| | - Chun‐Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry City University of Hong Kong Hong Kong SAR P. R. China
| | - Xiao‐Hong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| |
Collapse
|
28
|
Chen J, Xiao Y, Wang K, Sun D, Fan X, Zhang X, Zhang M, Shi Y, Yu J, Geng F, Lee C, Zhang X. Managing Locally Excited and Charge‐Transfer Triplet States to Facilitate Up‐Conversion in Red TADF Emitters That Are Available for Both Vacuum‐ and Solution‐Processes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012070] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Jia‐Xiong Chen
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry City University of Hong Kong Hong Kong SAR P. R. China
- College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS) Soochow University Suzhou 215123 P. R. China
| | - Ya‐Fang Xiao
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry City University of Hong Kong Hong Kong SAR P. R. China
| | - Kai Wang
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Dianming Sun
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Xiao‐Chun Fan
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Xiang Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Ming Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Yi‐Zhong Shi
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Jia Yu
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Feng‐Xia Geng
- College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS) Soochow University Suzhou 215123 P. R. China
| | - Chun‐Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry City University of Hong Kong Hong Kong SAR P. R. China
| | - Xiao‐Hong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| |
Collapse
|
29
|
Jin R, Xin J. Rational Design of π-Conjugated Tricoordinated Organoboron Derivatives With Thermally Activated Delayed Fluorescent Properties for Application in Organic Light-Emitting Diodes. Front Chem 2020; 8:577834. [PMID: 33195067 PMCID: PMC7554541 DOI: 10.3389/fchem.2020.577834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/26/2020] [Indexed: 11/17/2022] Open
Abstract
A series of donor–acceptor (D–A) tricoordinated organoboron derivatives (1–10) have been systematically investigated for thermally activated delayed fluorescent (TADF)-based organic light-emitting diode (OLED) materials. The calculated results show that the designed molecules exhibit small singlet-triplet energy gap (ΔEST) values. Density functional theory (DFT) analysis indicated that the designed molecules display an efficient separation between donor and acceptor fragments because of a small overlap between donor and acceptor fragments on HOMOs and LUMOs. Furthermore, the delayed fluorescence emission color can be tuned effectively by introduction of different polycyclic aromatic fragments in parent molecule 1. The calculated results show that molecules 2, 3, and 4 possess more significant Stokes shifts and red emission with small ΔEST values. Nevertheless, other molecules exhibit green (1, 7, and 8), light green (6 and 10), and blue (5 and 9) emissions. Meanwhile, they are potential ambipolar charge transport materials except that 4 and 10 can serve as electron and hole transport materials only, respectively. Therefore, we proposed a rational way for the design of efficient TADF materials as well as charge transport materials for OLEDs simultaneously.
Collapse
Affiliation(s)
- Ruifa Jin
- College of Chemistry and Life Sciences, Chifeng University, Chifeng, China
- Inner Mongolia Key Laboratory of Photoelectric Functional Materials, Chifeng University, Chifeng, China
- *Correspondence: Ruifa Jin
| | - Jingfan Xin
- College of Chemistry and Life Sciences, Chifeng University, Chifeng, China
- Inner Mongolia Key Laboratory of Photoelectric Functional Materials, Chifeng University, Chifeng, China
| |
Collapse
|
30
|
Molecular Configuration Fixation with C–H···F Hydrogen Bonding for Thermally Activated Delayed Fluorescence Acceleration. Chem 2020. [DOI: 10.1016/j.chempr.2020.04.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
31
|
Che W, Xie Y, Li Z. Structural Design of Blue‐to‐Red Thermally‐Activated Delayed Fluorescence Molecules by Adjusting the Strength between Donor and Acceptor. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000128] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Weilong Che
- Institute of Molecular Aggregation ScienceTianjin University Tianjin 300072 P. R. China)
| | - Yujun Xie
- Institute of Molecular Aggregation ScienceTianjin University Tianjin 300072 P. R. China)
| | - Zhen Li
- Institute of Molecular Aggregation ScienceTianjin University Tianjin 300072 P. R. China)
- Sauvage Center for Molecular SciencesDepartment of ChemistryWuhan University Wuhan 430072 P. R. China
| |
Collapse
|
32
|
Kothavale S, Chung WJ, Lee JY. Rational Molecular Design of Highly Efficient Yellow-Red Thermally Activated Delayed Fluorescent Emitters: A Combined Effect of Auxiliary Fluorine and Rigidified Acceptor Unit. ACS APPLIED MATERIALS & INTERFACES 2020; 12:18730-18738. [PMID: 32216325 DOI: 10.1021/acsami.9b22826] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Molecular design strategies are crucial to develop highly efficient and long-wavelength thermally activated delayed fluorescent (TADF) emitters because the inherent limitation of the energy gap law degrades the efficiency of the red or orange TADF emitters. To resolve the low efficiency issue, we designed and synthesized two TADF emitters, 4,4'-(6-(9,9-dimethylacridin-10(9H)-yl)-7-fluoroquinoxaline-2,3-diyl)dibenzonitrile (FDQCNAc) and 11-(9,9-dimethylacridin-10(9H)-yl)-12-fluorodibenzo[a,c]phenazine-3,6-dicarbonitrile (FBPCNAc), by utilizing fluorine and peripheral cyano-substituted quinoxaline and phenazine acceptors of 4,4'-(6-fluoroquinoxaline-2,3-diyl)dibenzonitrile (FDQCN) and 11-fluorodibenzo[a,c]phenazine-3,6-dicarbonitrile (FBPCN), respectively. A fluorine atom at the ortho position of the acridine donor acts as an auxiliary acceptor to minimize the singlet-triplet energy gap (ΔEST) below 0.1 eV and promotes the reverse intersystem crossing (RISC) process. Organic light-emitting diodes (OLEDs) fabricated with FDQCNAc and FBPCNAc emitters demonstrated high external quantum efficiencies (EQEs) of 27.6 and 23.8% in the yellow-red TADF OLEDs, respectively. In particular, the combination of the F auxiliary acceptor unit and the rigidified FBPCN acceptor unit enabled red-shifted emission by about 58 nm without much sacrifice of the EQE in the red region.
Collapse
Affiliation(s)
- Shantaram Kothavale
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 440-746, Korea
| | - Won Jae Chung
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 440-746, Korea
| | - Jun Yeob Lee
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 440-746, Korea
| |
Collapse
|
33
|
Ding D, Wang Z, Li C, Zhang J, Duan C, Wei Y, Xu H. Highly Efficient and Color-Stable Thermally Activated Delayed Fluorescence White Light-Emitting Diodes Featured with Single-Doped Single Emissive Layers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906950. [PMID: 31990429 DOI: 10.1002/adma.201906950] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/12/2019] [Indexed: 05/15/2023]
Abstract
Despite their merits of environmental friendliness, low cost, and large-scale production, thermally activated delayed fluorescence (TADF) based white organic light-emitting diodes (WOLEDs) for daily lighting applications still face the formidable challenges of structural simplification and controllable exciton allocation. Here, the state-of-the-art full-TADF WOLEDs with features of the single-doped single emissive layers (EMLs) and ultrasimple trilayer structure are demonstrated. The EMLs are binary systems as yellow TADF emitter (4CzTPNBu) doped blue TADF matrix (ptBCzPO2 TPTZ) with the large steric hindrance and mismatched frontier molecular orbital energy levels to effectively restrain excessive blue-to-yellow triplet exciton transfer and host-dopant interaction induced triplet quenching. Simultaneously, Förster resonance energy transfer is utilized to optimize exciton allocation for the balance of blue and yellow emissions, giving rise to the photoluminescence quantum yield beyond 90%. Consequently, these single-doped EMLs endow their cool white, pure white, and warm white diodes with the high-quality and ultrastable white light and the 100% exciton utilization efficiencies through the extremely simple structures, making them competent for the diverse daily lighting applications.
Collapse
Affiliation(s)
- Dongxue Ding
- Key Laboratory of Functional Inorganic Material Chemistry, Chinese Ministry of Education & School of Chemistry and Material Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150080, P. R. China
| | - Zicheng Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Chinese Ministry of Education & School of Chemistry and Material Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150080, P. R. China
| | - Chenyu Li
- Key Laboratory of Functional Inorganic Material Chemistry, Chinese Ministry of Education & School of Chemistry and Material Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150080, P. R. China
| | - Jing Zhang
- Key Laboratory of Functional Inorganic Material Chemistry, Chinese Ministry of Education & School of Chemistry and Material Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150080, P. R. China
| | - Chunbo Duan
- Key Laboratory of Functional Inorganic Material Chemistry, Chinese Ministry of Education & School of Chemistry and Material Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150080, P. R. China
| | - Ying Wei
- Key Laboratory of Functional Inorganic Material Chemistry, Chinese Ministry of Education & School of Chemistry and Material Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150080, P. R. China
| | - Hui Xu
- Key Laboratory of Functional Inorganic Material Chemistry, Chinese Ministry of Education & School of Chemistry and Material Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150080, P. R. China
| |
Collapse
|
34
|
Balijapalli U, Tanaka M, Auffray M, Chan CY, Lee YT, Tsuchiya Y, Nakanotani H, Adachi C. Utilization of Multi-Heterodonors in Thermally Activated Delayed Fluorescence Molecules and Their High Performance Bluish-Green Organic Light-Emitting Diodes. ACS APPLIED MATERIALS & INTERFACES 2020; 12:9498-9506. [PMID: 32020791 DOI: 10.1021/acsami.9b20020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We report a series of pentacarbazolyl-benzonitrile derivatives such as 2,4,6-tri(9H-carbazol-9-yl)-3,5-bis(3,6-di(pyridin-3-yl)-9H-carbazol-9-yl)benzonitrile (mPyBN), 3,5-bis(3,6-bis(4-(trifluoromethyl)phenyl)-9H-carbazol-9-yl)-2,4,6-tri(9H-carbazol-9-yl)benzonitrile (pCF3BN), 2,4,6-tri(9H-carbazol-9-yl)-3-(3,6-di(pyridin-3-yl)-9H-carbazol-9-yl)-5-(3,6-diphenyl-9H-carbazol-9-yl)benzonitrile (PyPhBN), 3-(3,6-bis(4-(trifluoromethyl)phenyl)-9H-carbazol-9-yl)-2,4,6-tri(9H-carbazol-9-yl)-5-(3,6-di(pyridin-3-yl)-9H-carbazol-9-yl)benzonitrile (PyCF3BN), and 3-(3,6-bis(4-(trifluoromethyl)phenyl)-9H-carbazol-9-yl)-2,6-di(9H-carbazol-9-yl)-5-(3,6-di(pyridin-3-yl)-9H-carbazol-9-yl)-4-(9H-pyrido[3,4-b]indol-9-yl)benzonitrile (CbPyCF3BN) in which some of the carbazoles are substituted with modified 3,5-diphenyl carbazoles, exhibiting thermally activated delayed fluorescence (TADF) properties. These emitters comprised two, three, and four different types of donors, capable of bluish-green emission of around 480 nm with relatively high photoluminescence quantum yields over 90% in solution. Emitters, namely, PyPhBN, PyCF3BN, and CbPyCF3BN, composed of three and four different types of donors endowed a rather short delayed lifetime (τd) of 4.25, 5.01, and 3.65 μs in their film state, respectively. Bluish-green organic light-emitting diodes based on PyPhBN, PyCF3BN, and CbPyCF3BN exhibit a high external quantum efficiency of 20.6, 19.5, and 19.6%, respectively, with unsurpassed efficiency roll-off behavior. These results indicate that the TADF properties of multidonor type molecules can be manipulated by controlling the types and number of electron donor units.
Collapse
Affiliation(s)
- Umamahesh Balijapalli
- Center for Organic Photonics and Electronics Research (OPERA) , Kyushu University , 744 Motooka , Nishi, Fukuoka 819-0395 , Japan
| | - Masaki Tanaka
- Center for Organic Photonics and Electronics Research (OPERA) , Kyushu University , 744 Motooka , Nishi, Fukuoka 819-0395 , Japan
| | - Morgan Auffray
- Center for Organic Photonics and Electronics Research (OPERA) , Kyushu University , 744 Motooka , Nishi, Fukuoka 819-0395 , Japan
| | - Chin-Yiu Chan
- Center for Organic Photonics and Electronics Research (OPERA) , Kyushu University , 744 Motooka , Nishi, Fukuoka 819-0395 , Japan
| | - Yi-Ting Lee
- Center for Organic Photonics and Electronics Research (OPERA) , Kyushu University , 744 Motooka , Nishi, Fukuoka 819-0395 , Japan
| | - Youichi Tsuchiya
- Center for Organic Photonics and Electronics Research (OPERA) , Kyushu University , 744 Motooka , Nishi, Fukuoka 819-0395 , Japan
- International Institute for Carbon Neutral Energy Research (WPI-I2CNER) , Kyushu University , 744 Motooka , Nishi, Fukuoka 819-0395 , Japan
| | - Hajime Nakanotani
- Center for Organic Photonics and Electronics Research (OPERA) , Kyushu University , 744 Motooka , Nishi, Fukuoka 819-0395 , Japan
- International Institute for Carbon Neutral Energy Research (WPI-I2CNER) , Kyushu University , 744 Motooka , Nishi, Fukuoka 819-0395 , Japan
| | - Chihaya Adachi
- Center for Organic Photonics and Electronics Research (OPERA) , Kyushu University , 744 Motooka , Nishi, Fukuoka 819-0395 , Japan
- International Institute for Carbon Neutral Energy Research (WPI-I2CNER) , Kyushu University , 744 Motooka , Nishi, Fukuoka 819-0395 , Japan
| |
Collapse
|
35
|
Li H, Zhi Y, Dai Y, Jiang Y, Yang Q, Li M, Li P, Tao Y, Li H, Huang W, Chen R. Asymmetric Thermally Activated Delayed Fluorescence Materials With Aggregation-Induced Emission for High-Efficiency Organic Light-Emitting Diodes. Front Chem 2020; 8:49. [PMID: 32175303 PMCID: PMC7054483 DOI: 10.3389/fchem.2020.00049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 01/15/2020] [Indexed: 01/29/2023] Open
Abstract
The exploitation of thermally activated delayed fluorescence (TADF) emitters with aggregation-induced emission is highly prerequisite for the construction of highly efficient electroluminescent devices in materials science. Herein, two asymmetric TADF emitters of SFCOCz and SFCODPAC with charming aggregation-induced emission are expediently designed and prepared based on highly twisted strong electron-withdrawing acceptor (A) of sulfurafluorene (SF)-modified ketone (CO) and arylamine donor (D) in D1-A-D2 architecture by simple synthetic procedure in high yields. High photoluminescence quantum yields up to 73% and small singlet-triplet splitting of 0.03 eV; short exciton lifetimes are obtained in the resultant molecules. Strikingly, efficient non-doped and doped TADF organic light-emitting diodes (OLEDs) facilitated by these emitters show high luminance of 5,598 and 11,595 cd m-2, current efficiencies (CEs) of 16.8 and 35.6 cd/A, power efficiencies (PEs) of 9.1 and 29.8 lm/W, and external quantum efficiencies (EQEs) of 7.5 and 15.9%, respectively. This work furnishes a concrete instance in exploring efficient TADF emitter, which is highly conducive and encouraging in stimulating the development of TADF OLEDs with high brightness and excellent efficiencies simultaneously.
Collapse
Affiliation(s)
- Huanhuan Li
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Yibin Zhi
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Yizhong Dai
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Yunbo Jiang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Qingqing Yang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Mingguang Li
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Ping Li
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Ye Tao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Hui Li
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, China
- Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, China
| | - Runfeng Chen
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, China
| |
Collapse
|
36
|
Wang L, Cai X, Li B, Li M, Wang Z, Gan L, Qiao Z, Xie W, Liang Q, Zheng N, Liu K, Su SJ. Achieving Enhanced Thermally Activated Delayed Fluorescence Rates and Shortened Exciton Lifetimes by Constructing Intramolecular Hydrogen Bonding Channels. ACS APPLIED MATERIALS & INTERFACES 2019; 11:45999-46007. [PMID: 31718132 DOI: 10.1021/acsami.9b16073] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A fast radiative rate, highly suppressed nonradiation, and a short exciton lifetime are key elements for achieving efficient thermally activated delayed fluorescence (TADF) organic light-emitting diodes (OLEDs) with reduced efficiency roll-off at a high current density. Herein, four representative TADF emitters are designed and synthesized based on the combination of benzophenone (BP) or 3-benzoylpyridine (BPy3) acceptors, with dendritic 3,3″,6,6″-tetra-tert-butyl-9'H-9,3':6',9″-tercarbazole (CDTC) or 10H-spiro(acridine-9,9'-thioxanthene) (TXDMAc) donors, respectively. Density functional theory simulation and X-ray diffraction analysis validated the formation of CH···N intramolecular hydrogen bonds regarding the BPy3-CDTC and BPy3-TXDMAc compounds. Notably, the construction of intramolecular hydrogen bonding within TADF emitters significantly enhances the intramolecular charge transfer (ICT) strength while reducing the donor-acceptor (D-A) dihedral angle, resulting in accelerated radiative and suppressed nonradiative processes. With short TADF exciton lifetimes (τTADF) and high photoluminescence quantum yields (ϕPL), OLEDs employing BPy3-CDTC and BPy3-TXDMAc dopants realized maximum external quantum efficiencies (EQEs) up to 18.9 and 25.6%, respectively. Moreover, the nondoped device based on BPy3-TXDMAc exhibited a maximum EQE of 18.7%, accompanied by an extremely small efficiency loss of only 4.1% at the luminance of 1000 cd m-2. In particular, the operational lifetime of the sky-blue BPy3-CDTC-based device was greatly extended by 10 times in contrast to the BP-CDTC-based counterpart, verifying the idea that the in-built intramolecular hydrogen bonding strategy was promising for the realization of efficient and stable TADF-OLEDs.
Collapse
Affiliation(s)
- Liangying Wang
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices , South China University of Technology , Wushan Road 381 , Guangzhou 510640 , P. R. China
| | - Xinyi Cai
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices , South China University of Technology , Wushan Road 381 , Guangzhou 510640 , P. R. China
| | - BinBin Li
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices , South China University of Technology , Wushan Road 381 , Guangzhou 510640 , P. R. China
| | - Mengke Li
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices , South China University of Technology , Wushan Road 381 , Guangzhou 510640 , P. R. China
| | - Zhiheng Wang
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices , South China University of Technology , Wushan Road 381 , Guangzhou 510640 , P. R. China
| | - Lin Gan
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices , South China University of Technology , Wushan Road 381 , Guangzhou 510640 , P. R. China
| | - Zhenyang Qiao
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices , South China University of Technology , Wushan Road 381 , Guangzhou 510640 , P. R. China
| | - Wentao Xie
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices , South China University of Technology , Wushan Road 381 , Guangzhou 510640 , P. R. China
| | - Qiumin Liang
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices , South China University of Technology , Wushan Road 381 , Guangzhou 510640 , P. R. China
| | - Nan Zheng
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices , South China University of Technology , Wushan Road 381 , Guangzhou 510640 , P. R. China
| | - Kunkun Liu
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices , South China University of Technology , Wushan Road 381 , Guangzhou 510640 , P. R. China
| | - Shi-Jian Su
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices , South China University of Technology , Wushan Road 381 , Guangzhou 510640 , P. R. China
| |
Collapse
|
37
|
Oda S, Kawakami B, Kawasumi R, Okita R, Hatakeyama T. Multiple Resonance Effect-Induced Sky-Blue Thermally Activated Delayed Fluorescence with a Narrow Emission Band. Org Lett 2019; 21:9311-9314. [DOI: 10.1021/acs.orglett.9b03342] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Susumu Oda
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Bungo Kawakami
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Ryosuke Kawasumi
- JNC Petrochemical Corporation, 5-1 Goi Kaigan, Ichihara, Chiba 290-8551, Japan
| | - Ryota Okita
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Takuji Hatakeyama
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| |
Collapse
|
38
|
Min H, Park IS, Yasuda T. Dipolar and Quadrupolar Luminophores Based on 1,8‐Dimethylcarbazole−Triazine Conjugates for High‐Efficiency Blue Thermally Activated Delayed Fluorescence OLEDs. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900186] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Hyukgi Min
- INAMORI Frontier Research Center (IFRC)Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
- Department of Applied Chemistry, Graduate School of EngineeringKyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - In Seob Park
- INAMORI Frontier Research Center (IFRC)Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Takuma Yasuda
- INAMORI Frontier Research Center (IFRC)Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
- Department of Applied Chemistry, Graduate School of EngineeringKyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| |
Collapse
|
39
|
Kim DS, Lee KH, Lee JY, Hong WP. Design Strategy of Decorating Phenylcarbazole with a Donor and Acceptor for Blue‐Shifted Emission in Thermally Activated Delayed Fluorescent Emitters. Chemistry 2019; 25:11765-11771. [DOI: 10.1002/chem.201902615] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/04/2019] [Indexed: 11/05/2022]
Affiliation(s)
- Do Sik Kim
- School of Chemical Engineering Sungkyunkwan University 2066, Seobu-ro, Jangan-gu Suwon Gyeonggi 440-746 Republic of Korea
| | - Kyung Hyung Lee
- School of Chemical Engineering Sungkyunkwan University 2066, Seobu-ro, Jangan-gu Suwon Gyeonggi 440-746 Republic of Korea
| | - Jun Yeob Lee
- School of Chemical Engineering Sungkyunkwan University 2066, Seobu-ro, Jangan-gu Suwon Gyeonggi 440-746 Republic of Korea
| | - Wan Pyo Hong
- LG Chem, Ltd, LG Science Park, 30 Magokjungang 10-ro, Gangseo-gu Seoul 07796 Republic of Korea
| |
Collapse
|
40
|
Li W, Li B, Cai X, Gan L, Xu Z, Li W, Liu K, Chen D, Su S. Tri‐Spiral Donor for High Efficiency and Versatile Blue Thermally Activated Delayed Fluorescence Materials. Angew Chem Int Ed Engl 2019; 58:11301-11305. [DOI: 10.1002/anie.201904272] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/25/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Wei Li
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and DevicesSouth China University of Technology Wushan Road 381, Tianhe District Guangzhou 510640 Guangdong Province P. R. China
| | - Binbin Li
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and DevicesSouth China University of Technology Wushan Road 381, Tianhe District Guangzhou 510640 Guangdong Province P. R. China
| | - Xinyi Cai
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and DevicesSouth China University of Technology Wushan Road 381, Tianhe District Guangzhou 510640 Guangdong Province P. R. China
| | - Lin Gan
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and DevicesSouth China University of Technology Wushan Road 381, Tianhe District Guangzhou 510640 Guangdong Province P. R. China
| | - Zhida Xu
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and DevicesSouth China University of Technology Wushan Road 381, Tianhe District Guangzhou 510640 Guangdong Province P. R. China
| | - Wenqi Li
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and DevicesSouth China University of Technology Wushan Road 381, Tianhe District Guangzhou 510640 Guangdong Province P. R. China
| | - Kunkun Liu
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and DevicesSouth China University of Technology Wushan Road 381, Tianhe District Guangzhou 510640 Guangdong Province P. R. China
| | - Dongcheng Chen
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and DevicesSouth China University of Technology Wushan Road 381, Tianhe District Guangzhou 510640 Guangdong Province P. R. China
| | - Shi‐Jian Su
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and DevicesSouth China University of Technology Wushan Road 381, Tianhe District Guangzhou 510640 Guangdong Province P. R. China
| |
Collapse
|
41
|
Cheng Z, Li Z, Xu Y, Liang J, Lin C, Wei J, Wang Y. Achieving Efficient Blue Delayed Electrofluorescence by Shielding Acceptors with Carbazole Units. ACS APPLIED MATERIALS & INTERFACES 2019; 11:28096-28105. [PMID: 31290328 DOI: 10.1021/acsami.9b07820] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The design and synthesis of blue thermally activated delayed fluorescence (TADF) emitters that have high electroluminescence efficiency and low efficiency roll-off features remain a great challenge. Herein, we developed a facile and efficient strategy by shielding acceptors with carbazole units for constructing high-performance blue TADF emitters. Benzonitrile (BN), 9,9-diphenylacridan (DPAc), and carbazole (Cz) were adopted as the acceptor, donor, and protector, respectively, to build two TADF emitters named DPAc-DCzBN and DPAc-DtCzBN. The nondoped organic light-emitting diodes (OLEDs) of DPAc-DCzBN as the emitter exhibited a standard sky-blue emission with Commission Internationale de L'Eclairage (CIE) coordinates of (0.16, 0.26), high external quantum efficiency (EQE) of 20.0%, and low efficiency roll-off (EQEs of 19.5, 16.1, and 12.6% at 100, 500, and 1000 cd m-2, respectively), which is an outstanding nondoped blue TADF OLED. The doped device of DPAc-DtCzBN displayed a pure blue emission and the corresponding CIE coordinates are (0.16, 0.15). Meanwhile, it also demonstrated high and stabilized EQE values of 23.1, 18.3, and 11.5% at maxima, 100 and 500 cd m-2, respectively, which is a quite high level among the pure blue TADF OLEDs. This study testifies the feasibility of our strategy in constructing high-performance TADF electroluminescent materials.
Collapse
Affiliation(s)
- Zong Cheng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun 130012 , P. R. China
| | - Zhiqiang Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun 130012 , P. R. China
| | - Yincai Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun 130012 , P. R. China
| | - Jixiong Liang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun 130012 , P. R. China
| | - Chunhui Lin
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun 130012 , P. R. China
| | - Jinbei Wei
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun 130012 , P. R. China
| | - Yue Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun 130012 , P. R. China
| |
Collapse
|
42
|
Zhang M, Liu W, Zheng C, Wang K, Shi Y, Li X, Lin H, Tao S, Zhang X. Tricomponent Exciplex Emitter Realizing over 20% External Quantum Efficiency in Organic Light-Emitting Diode with Multiple Reverse Intersystem Crossing Channels. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801938. [PMID: 31380198 PMCID: PMC6661936 DOI: 10.1002/advs.201801938] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 04/11/2019] [Indexed: 06/10/2023]
Abstract
With the naturally separated frontier molecular orbitals, exciplexes are capable of thermally activated delayed fluorescence emitters for organic light-emitting diodes (OLEDs). And, the current key issue for exciplex emitters is improving their exciton utilization. In this work, a strategy of building exciplex emitters with three components is proposed to realize multiple reverse intersystem crossing (RISC) channels, improving their exciton utilization by enhancing upconversion of nonradiative triplet excitons. Accordingly, a tricomponent exciplex DBT-SADF:PO-T2T:CDBP is constructed with three RISC channels respectively on DBT-SADF, DBT-SADF:PO-T2T, and CDBP:PO-T2T. Furthermore, its photoluminescence quantum yield and rate constant of the RISC process are successfully improved. In the OLED, DBT-SADF:PO-T2T:CDBP exhibits a remarkably high maximum external quantum efficiency (EQE) of 20.5%, which is the first report with an EQE over 20% for the OLEDs based on exciplex emitters to the best of our knowledge. This work not only demonstrates that introducing multiple RISC channels can effectively improve the exciton utilization of exciplex emitters, but also proves the superiority of the tricomponent exciplex strategy for further development of exciplex emitters.
Collapse
Affiliation(s)
- Ming Zhang
- School of Optoelectronic Science and EngineeringUniversity of Electronic Science and Technology of China (UESTC)Chengdu610054P. R. China
- Institute of Functional Nano & Soft Materials (FUNSOM)Soochow UniversitySuzhou215123P. R. China
| | - Wei Liu
- Institute of Functional Nano & Soft Materials (FUNSOM)Soochow UniversitySuzhou215123P. R. China
| | - Cai‐Jun Zheng
- School of Optoelectronic Science and EngineeringUniversity of Electronic Science and Technology of China (UESTC)Chengdu610054P. R. China
| | - Kai Wang
- Institute of Functional Nano & Soft Materials (FUNSOM)Soochow UniversitySuzhou215123P. R. China
| | - Yi‐Zhong Shi
- Institute of Functional Nano & Soft Materials (FUNSOM)Soochow UniversitySuzhou215123P. R. China
| | - Xing Li
- Institute of Functional Nano & Soft Materials (FUNSOM)Soochow UniversitySuzhou215123P. R. China
| | - Hui Lin
- School of Optoelectronic Science and EngineeringUniversity of Electronic Science and Technology of China (UESTC)Chengdu610054P. R. China
| | - Si‐Lu Tao
- School of Optoelectronic Science and EngineeringUniversity of Electronic Science and Technology of China (UESTC)Chengdu610054P. R. China
| | - Xiao‐Hong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM)Soochow UniversitySuzhou215123P. R. China
| |
Collapse
|
43
|
Zhou D, Liu D, Gong X, Ma H, Qian G, Gong S, Xie G, Zhu W, Wang Y. Solution-Processed Highly Efficient Bluish-Green Thermally Activated Delayed Fluorescence Emitter Bearing an Asymmetric Oxadiazole-Difluoroboron Double Acceptor. ACS APPLIED MATERIALS & INTERFACES 2019; 11:24339-24348. [PMID: 31187977 DOI: 10.1021/acsami.9b07511] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Difluoroboron (BF2)-containing dyes have attracted great interest owing to their exceptionally high luminescence efficiency and good electron-withdrawing properties. However, only a few reports on difluoroboron-based thermally activated delayed fluorescence (TADF) have been addressed. In this contribution, a novel BF2-containing TADF molecule of BFOXD, which contains two acceptor fragments of oxadiazole (OXD) and BF2 and one donor unit of 9,9-dimethylacridine, was synthesized and characterized. For comparison, the precursor of OHOXD bearing one acceptor unit was also investigated. Both molecules clearly show TADF characteristics with sky-blue emission in solution and film state. Additionally, OHOXD undergoes excited-state intramolecular proton transfer-coupled intramolecular charge transfer processes. Using 9-(4-tert-butylphenyl)-3,6-bis(triphenylsilyl)-9H-carbazole (CzSi) as the host, the organic light-emitting diodes fabricated via a solution process show maximum external quantum efficiency (EQE) of 2.98 and 13.8% for OHOXD- and BFOXD-based devices, respectively. While the bipolar TADF host of 10-(4-((4-(9H-carbazol-9-yl)phenyl)sulfonyl)phenyl)-9,9-dimethyl-9,10-dihydroacridine (CzAcSF) is utilized instead of CzSi, the OHOXD- and BFOXD-based devices exhibit better performances with the maximum EQEs of 12.1 and 20.1%, respectively, which render the most efficient and the bluest emission ever reported for the BF2-based TADF molecules. This research demonstrates that introduction of one more acceptor unit into the TADF molecule could have a positive effect on emission efficiency, which opens a new way to design high-efficiency TADF molecules.
Collapse
Affiliation(s)
- Di Zhou
- National Experimental Demonstration Center for Materials Science and Engineering, Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, School of Materials Science & Engineering , Changzhou University , Changzhou 213164 , China
- College of Chemistry , Xiangtan University , Xiangtan 411105 , China
| | - Denghui Liu
- National Experimental Demonstration Center for Materials Science and Engineering, Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, School of Materials Science & Engineering , Changzhou University , Changzhou 213164 , China
| | - Xu Gong
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry , Wuhan University , Wuhan 430072 , China
| | - Huili Ma
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211816 , China
| | - Gaowei Qian
- National Experimental Demonstration Center for Materials Science and Engineering, Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, School of Materials Science & Engineering , Changzhou University , Changzhou 213164 , China
| | - Shaolong Gong
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry , Wuhan University , Wuhan 430072 , China
| | - Guohua Xie
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry , Wuhan University , Wuhan 430072 , China
| | - Weiguo Zhu
- National Experimental Demonstration Center for Materials Science and Engineering, Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, School of Materials Science & Engineering , Changzhou University , Changzhou 213164 , China
| | - Yafei Wang
- National Experimental Demonstration Center for Materials Science and Engineering, Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, School of Materials Science & Engineering , Changzhou University , Changzhou 213164 , China
- Key Laboratory of Advanced Display and System Applications of Ministry of Education , Shanghai University , 149 Yanchang Road , Shanghai 200072 , China
| |
Collapse
|
44
|
Li W, Li B, Cai X, Gan L, Xu Z, Li W, Liu K, Chen D, Su S. Tri‐Spiral Donor for High Efficiency and Versatile Blue Thermally Activated Delayed Fluorescence Materials. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Wei Li
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and DevicesSouth China University of Technology Wushan Road 381, Tianhe District Guangzhou 510640 Guangdong Province P. R. China
| | - Binbin Li
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and DevicesSouth China University of Technology Wushan Road 381, Tianhe District Guangzhou 510640 Guangdong Province P. R. China
| | - Xinyi Cai
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and DevicesSouth China University of Technology Wushan Road 381, Tianhe District Guangzhou 510640 Guangdong Province P. R. China
| | - Lin Gan
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and DevicesSouth China University of Technology Wushan Road 381, Tianhe District Guangzhou 510640 Guangdong Province P. R. China
| | - Zhida Xu
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and DevicesSouth China University of Technology Wushan Road 381, Tianhe District Guangzhou 510640 Guangdong Province P. R. China
| | - Wenqi Li
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and DevicesSouth China University of Technology Wushan Road 381, Tianhe District Guangzhou 510640 Guangdong Province P. R. China
| | - Kunkun Liu
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and DevicesSouth China University of Technology Wushan Road 381, Tianhe District Guangzhou 510640 Guangdong Province P. R. China
| | - Dongcheng Chen
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and DevicesSouth China University of Technology Wushan Road 381, Tianhe District Guangzhou 510640 Guangdong Province P. R. China
| | - Shi‐Jian Su
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and DevicesSouth China University of Technology Wushan Road 381, Tianhe District Guangzhou 510640 Guangdong Province P. R. China
| |
Collapse
|
45
|
Gao F, Du R, Han C, Zhang J, Wei Y, Lu G, Xu H. High-efficiency blue thermally activated delayed fluorescence from donor-acceptor-donor systems via the through-space conjugation effect. Chem Sci 2019; 10:5556-5567. [PMID: 31293740 PMCID: PMC6553033 DOI: 10.1039/c9sc01240k] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 04/25/2019] [Indexed: 12/11/2022] Open
Abstract
The photophysical optimization of donor (D)-acceptor (A) molecules is a real challenge because of the intrinsic limitation of their charger transfer (CT) excited states. Herein, two D-A-D molecules featuring blue thermally activated delayed fluorescence (TADF) are developed, in which a homoconjugated acceptor 5,10-diphenyl-5,10-dihydrophosphanthrene oxide (DPDPO2A) is incorporated to bridge four carbazolyl or 3,6-di-t-butyl-carbazolyl groups for D-A interaction optimization without immoderate conjugation extension. It is shown that the through-space conjugation effect of DPDPO2A can efficiently enhance intramolecular CT (ICT) and simultaneously facilitate the uniform dispersion of the frontier molecular orbitals (FMO), which remarkably reduces the singlet-triplet splitting energy (ΔE ST) and increases FMO overlaps for radiation facilitation, resulting in the 4-6 fold increased rate constants of reverse intersystem crossing (RISC) and singlet radiation. The maximum external quantum efficiency beyond 20% and the state-of-the-art efficiency stability from sky-blue TADF OLEDs demonstrate the effectiveness of the "conjugation modulation" strategy for developing high-performance optoelectronic D-A systems.
Collapse
Affiliation(s)
- Feifei Gao
- Key Laboratory of Functional Inorganic Material Chemistry , Ministry of Education & School of Chemistry and Material Science , Heilongjiang University , 74 Xuefu Road , Harbin 150080 , People's Republic of China . ;
| | - Ruiming Du
- Key Laboratory of Functional Inorganic Material Chemistry , Ministry of Education & School of Chemistry and Material Science , Heilongjiang University , 74 Xuefu Road , Harbin 150080 , People's Republic of China . ;
| | - Chunmiao Han
- Key Laboratory of Functional Inorganic Material Chemistry , Ministry of Education & School of Chemistry and Material Science , Heilongjiang University , 74 Xuefu Road , Harbin 150080 , People's Republic of China . ;
| | - Jing Zhang
- Key Laboratory of Functional Inorganic Material Chemistry , Ministry of Education & School of Chemistry and Material Science , Heilongjiang University , 74 Xuefu Road , Harbin 150080 , People's Republic of China . ;
| | - Ying Wei
- Key Laboratory of Functional Inorganic Material Chemistry , Ministry of Education & School of Chemistry and Material Science , Heilongjiang University , 74 Xuefu Road , Harbin 150080 , People's Republic of China . ;
| | - Guang Lu
- Key Laboratory of Functional Inorganic Material Chemistry , Ministry of Education & School of Chemistry and Material Science , Heilongjiang University , 74 Xuefu Road , Harbin 150080 , People's Republic of China . ;
| | - Hui Xu
- Key Laboratory of Functional Inorganic Material Chemistry , Ministry of Education & School of Chemistry and Material Science , Heilongjiang University , 74 Xuefu Road , Harbin 150080 , People's Republic of China . ;
| |
Collapse
|
46
|
Chen Z, Ni F, Wu Z, Hou Y, Zhong C, Huang M, Xie G, Ma D, Yang C. Enhancing Spin-Orbit Coupling by Introducing a Lone Pair Electron with p Orbital Character in a Thermally Activated Delayed Fluorescence Emitter: Photophysics and Devices. J Phys Chem Lett 2019; 10:2669-2675. [PMID: 31055932 DOI: 10.1021/acs.jpclett.9b00937] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Reverse intersystem crossing (RISC) is the rate-limited step for the radiative process of thermally activated delayed fluorescence (TADF) materials, which is important to achieve ideal photoluminescence and electroluminescence efficiency. Herein, we propose a new strategy of introducing a lone pair (n) electron with p orbital character to enhance spin-orbit coupling (SOC) for promoting the RISC process. A proof-of-concept TADF molecule with p orbital lone pairs, namely, MoCz-PCN, was developed, and three counterparts without any p lone pairs, namely, DMAc-PCN, DPAc-PCN, and SpiroAc-PCN, were constructed for comparison. The experimental data revealed that MoCz-PCN exhibits a ca. 1.9 times higher RISC rate than the counterparts, which can be ascribed to enhanced SOC. Moreover, a significant increase in external quantum efficiency is observed in the MoCz-PCN-based OLED device. These findings provide a feasible strategy to develop highly efficient TADF emitters by introducing a lone pair (n) electron with p orbital character.
Collapse
Affiliation(s)
- Zhanxiang Chen
- Department of Chemistry, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials , Wuhan University , Wuhan 430072 , People's Republic of China
| | - Fan Ni
- College of Materials Science and Engineering , Shenzhen University , Shenzhen 518060 , People's Republic of China
| | - Zhongbin Wu
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices , South China University of Technology , Guangzhou 510640 , People's Republic of China
| | - Yuchen Hou
- Department of Chemistry, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials , Wuhan University , Wuhan 430072 , People's Republic of China
| | - Cheng Zhong
- Department of Chemistry, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials , Wuhan University , Wuhan 430072 , People's Republic of China
| | - Manli Huang
- Department of Chemistry, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials , Wuhan University , Wuhan 430072 , People's Republic of China
| | - Guohua Xie
- Department of Chemistry, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials , Wuhan University , Wuhan 430072 , People's Republic of China
| | - Dongge Ma
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices , South China University of Technology , Guangzhou 510640 , People's Republic of China
| | - Chuluo Yang
- Department of Chemistry, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials , Wuhan University , Wuhan 430072 , People's Republic of China
- College of Materials Science and Engineering , Shenzhen University , Shenzhen 518060 , People's Republic of China
| |
Collapse
|
47
|
Konidena RK, Lee KH, Lee JY, Hong WP. Triggering Thermally Activated Delayed Fluorescence by Managing the Heteroatom in Donor Scaffolds: Intriguing Photophysical and Electroluminescence Properties. Chem Asian J 2019; 14:2251-2258. [PMID: 30969458 DOI: 10.1002/asia.201900388] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 04/09/2019] [Indexed: 02/06/2023]
Abstract
Establishment of the structure-property relationships of thermally activated delayed fluorescence (TADF) materials has become a significant quest for the scientific community. Herein, two new donors, 10H-benzofuro[3,2-b]indole (BFI) and 10H-benzo[4,5]thieno[3,2-b]indole (BTI), have been developed and integrated with a aryltriazine acceptor to design the green TADF emitters benzofuro[3,2-b]indol-10-yl)-5-(4,6-diphenyl-1,3,5-triazin-2-yl)benzonitrile (BFICNTrz) and 2-(10H-benzo[4,5]thieno[3,2-b]indol-10-yl)-5-(4,6-diphenyl-1,3,5-triazin-2-yl)benzonitrile (BTICNTrz), respectively. The physicochemical and electroluminescence properties of the compounds were tuned by exchanging the heteroatom in the donor scaffold. Intriguingly, the electronegativity of the heteroatom and the ionization potential of the donor unit played vital roles in control of the singlet-triplet energy splitting and TADF mechanism of the compounds. Both compounds showed similar singlet excited states that originated from the charge transfer (CT) states (1 CT), whereas the triplet excited states were tuned by the heteroatom in the donor unit. The origin of phosphorescence in the BTICNTrz emitter was CT emission from the triplet state (3 CT), whereas that in the BFICNTrz emitter stemmed from the local triplet excited state (3 LE). Consequently, BTICNTrz showed a small singlet-triplet energy splitting of 0.08 eV, compared with 0.26 eV for BFICNTrz. Thus, BTICNTrz showed efficient delayed fluorescence with a high quantum yield and a short delayed exciton lifetime, whereas BFICNTrz displayed weak delayed fluorescence with a relatively long lifetime. Furthermore, a BTICNTrz-based device exhibited a maximum external quantum efficiency (EQE) of 15.2 % and reduced efficiency roll-off (12 %) compared with its BFICNTrz-based counterpart, which showed a maximum EQE of 6.4 % and severe efficiency roll-off (55 %) at a practical brightness range of 1000 cd m-2 . These results demonstrate that the choice of subunit plays a vital role in the design of efficient TADF emitters.
Collapse
Affiliation(s)
- Rajendra Kumar Konidena
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi, 440-746, Korea
| | - Kyung Hyung Lee
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi, 440-746, Korea
| | - Jun Yeob Lee
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi, 440-746, Korea
| | - Wan Pyo Hong
- LG Chem, Ltd, LG Science Park, 30, Magokjungang 10-ro, Gangseo-gu, Seoul, 07796, Republic of Korea
| |
Collapse
|
48
|
Li X, Shi YZ, Wang K, Zhang M, Zheng CJ, Sun DM, Dai GL, Fan XC, Wang DQ, Liu W, Li YQ, Yu J, Ou XM, Adachi C, Zhang XH. Thermally Activated Delayed Fluorescence Carbonyl Derivatives for Organic Light-Emitting Diodes with Extremely Narrow Full Width at Half-Maximum. ACS APPLIED MATERIALS & INTERFACES 2019; 11:13472-13480. [PMID: 30892014 DOI: 10.1021/acsami.8b19635] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Two novel thermally activated delayed fluorescence (TADF) emitters, 3-phenylquinolino[3,2,1- de]acridine-5,9-dione (3-PhQAD) and 7-phenylquinolino[3,2,1- de]acridine-5,9-dione (7-PhQAD), were designed and synthesized based on a rigid quinolino[3,2,1- de]acridine-5,9-dione (QAD) framework. With the effective superimposed resonance effect from electron-deficient carbonyls and electron-rich nitrogen atom, both emitters realize significant TADF characteristics with small Δ ESTs of 0.18 and 0.19 eV, respectively. And, molecular relaxations were dramatically suppressed for both emitters because of their conjugated structure. In the devices, 3-PhQAD realizes superior performance with a maximum external quantum efficiency (EQE) of 19.1% and a narrow full width at half-maximum (FWHM) of 44 nm, whereas a maximum EQE of 18.7% and an extremely narrow FWHM of 34 nm are realized for 7-PhQAD. These superior results reveal that apart from nitrogen and boron-aromatic systems, QAD framework can also act as a TADF matrix with effective resonance effect, and QAD derivatives are ideal candidates to develop TADF emitters with narrow FWHMs for practical applications.
Collapse
Affiliation(s)
- Xing Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou , Jiangsu 215123 , P. R. China
| | - Yi-Zhong Shi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou , Jiangsu 215123 , P. R. China
| | - Kai Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou , Jiangsu 215123 , P. R. China
| | - Ming Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou , Jiangsu 215123 , P. R. China
- School of Optoelectronic Science and Engineering , University of Electronic Science and Technology of China (UESTC) , Chengdu , Sichuan 610054 , P. R. China
| | - Cai-Jun Zheng
- School of Optoelectronic Science and Engineering , University of Electronic Science and Technology of China (UESTC) , Chengdu , Sichuan 610054 , P. R. China
| | - Dian-Ming Sun
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou , Jiangsu 215123 , P. R. China
| | - Gao-Le Dai
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou , Jiangsu 215123 , P. R. China
| | - Xiao-Chun Fan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou , Jiangsu 215123 , P. R. China
| | - De-Qi Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou , Jiangsu 215123 , P. R. China
- School of Optoelectronic Science and Engineering , University of Electronic Science and Technology of China (UESTC) , Chengdu , Sichuan 610054 , P. R. China
| | - Wei Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou , Jiangsu 215123 , P. R. China
| | - Yan-Qing Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou , Jiangsu 215123 , P. R. China
| | - Jia Yu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou , Jiangsu 215123 , P. R. China
| | - Xue-Mei Ou
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou , Jiangsu 215123 , P. R. China
| | - Chihaya Adachi
- Japan Science and Technology Agency (JST), ERATO, Adachi Molecular Exciton Engineering Project , 744 Motooka , Nishi, Fukuoka 819-0395 , Japan
| | - Xiao-Hong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou , Jiangsu 215123 , P. R. China
| |
Collapse
|
49
|
Liang X, Tu ZL, Zheng YX. Thermally Activated Delayed Fluorescence Materials: Towards Realization of High Efficiency through Strategic Small Molecular Design. Chemistry 2019; 25:5623-5642. [PMID: 30648301 DOI: 10.1002/chem.201805952] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Indexed: 12/22/2022]
Abstract
Thermally activated delayed fluorescence (TADF) is one of the most intriguing and promising discoveries towards realization of highly-efficient organic light emitting diodes (OLED) utilizing small molecules as emitters. It has the capability of manifesting all excitons generated during the electroluminescent processes, consequently achieving 100 % of internal quantum efficiency. Since the report of the first efficient OLED based on a TADF small molecule in 2012 by Adachi et al., the quest for optimal TADF materials for OLED application has never stopped. Various TADF molecules bearing different design concepts and strategies have been designed and produced, with the aim to boost the overall performances of corresponding OLEDs. In this minireview, the general principles of TADF molecular design based on three basic categories of TADF species: twisted intramolecular charge transfer (TICT), through-space charge transfer (TSCT) and multi-resonance induced TADF (MR-TADF) are discussed in detail. Several key aspects with respect to each category, as well as some effective methods to enhance the efficiency of TADF materials and corresponding OLEDs from the molecular engineering perspectives, are summarized and discussed to exhibit a general landscape of TADF molecular design to a wide variety of scientific researchers within this particular disciplinary area.
Collapse
Affiliation(s)
- Xiao Liang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Zhen-Long Tu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - You-Xuan Zheng
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| |
Collapse
|
50
|
Wang Q, Zhang YX, Yuan Y, Hu Y, Tian QS, Jiang ZQ, Liao LS. Alleviating Efficiency Roll-Off of Hybrid Single-Emitting Layer WOLED Utilizing Bipolar TADF Material as Host and Emitter. ACS APPLIED MATERIALS & INTERFACES 2019; 11:2197-2204. [PMID: 30565918 DOI: 10.1021/acsami.8b18665] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Hybrid single-emitting layer (SEML) white organic light-emitting diodes (WOLEDs) incorporating blue thermally activated delayed fluorescent (TADF) or fluorescent materials and yellow phosphors have been widely utilized for solid-state lighting. Nonetheless, developing appropriate host materials to reduce the large efficiency roll-off at high luminance is still an unsolved issue. Here, two TADF materials denoted as TRZ-CF and TRZ-CzF were synthesized, with electroluminescent emission peaking at 476 and 460 nm, respectively. In particular, TRZ-CF, using 7,7-dimethyl-5,7-dihydroindeno[2,1- b]carbazole (CF) as donor moiety, maintained both highly efficient blue emission (EQEmax = 20.0%) and excellent charge transport abilities. The WOLED utilizing TRZ-CF as host material, doped by 0.8 wt % iridium(III) bis(4-phenylthieno[3,2- c]pyridinato- N, C2') (PO-01), has EQEmax of 20.3%, realizing the lowest roll-off to date of less than 2% at a luminance of 10 000 cd/m2. The efficiency roll-off is alleviated through the reduction the exciton quenching and triplet-triplet annihilation (TTA) within the light-emitting layer, benefited from the TADF effect and bipolar property. The hybrid SEML WOLED exhibits Commission Internationale de L'Eclairage (CIE) coordinates of (0.38, 0.45), providing a practical way to simplify the production complexity and to reduce efficiency roll-off for solid-state lighting.
Collapse
Affiliation(s)
- Qiang Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , 199 Ren'ai Road , Suzhou , Jiangsu 215123 , P. R. China
| | - Ye-Xin Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , 199 Ren'ai Road , Suzhou , Jiangsu 215123 , P. R. China
| | - Yi Yuan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , 199 Ren'ai Road , Suzhou , Jiangsu 215123 , P. R. China
| | - Yun Hu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , 199 Ren'ai Road , Suzhou , Jiangsu 215123 , P. R. China
| | - Qi-Sheng Tian
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , 199 Ren'ai Road , Suzhou , Jiangsu 215123 , P. R. China
| | - Zuo-Quan Jiang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , 199 Ren'ai Road , Suzhou , Jiangsu 215123 , P. R. China
| | - Liang-Sheng Liao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , 199 Ren'ai Road , Suzhou , Jiangsu 215123 , P. R. China
- Institute of Organic Optoelectronics Jiangsu Industrial Technology Research Institute (JITRI) , Wujiang, Suzhou , Jiangsu 215211 , P. R. China
| |
Collapse
|