1
|
Sun M, Zhou X, Quan Y, Zhang L, Xie Y. Highly flexible elastomer microfluidic chip for single cell manipulation. BIOMICROFLUIDICS 2022; 16:024104. [PMID: 35310421 PMCID: PMC8923708 DOI: 10.1063/5.0086717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
New materials and fabrication technologies have significantly boosted the development of lab-on-a-chip technologies and functionalities. In this work, we developed a highly flexible elastomer microfluidic chip with a microchannel with a minimum width of ∼5 μm manufactured by imprinting onto an SU-8 template. We found that the deformation induced in the microstructures by manual stretching of the chip is higher than that for the chip itself, which we attribute to the stress concentration of microstructures. Here, we demonstrate that the elastomer enables the manipulation of single cells, such as dynamic trapping-releasing operations, by simply stretching and releasing the elastomer chip.
Collapse
Affiliation(s)
- Miao Sun
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, Northwestern Polytechnical University, Xi’an 710072, China
| | - Xi Zhou
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, Northwestern Polytechnical University, Xi’an 710072, China
| | - Yi Quan
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics (CAEP), Mianyang, Sichuan 621000, China
| | - Lianbing Zhang
- School of Life Sciences, Key Laboratory of Space Bioscience & Biotechnology, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yanbo Xie
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, Northwestern Polytechnical University, Xi’an 710072, China
| |
Collapse
|
2
|
Stahlberger M, Schwarz N, Zippel C, Hohmann J, Nieger M, Hassan Z, Bräse S. Diversity-Oriented Synthesis of [2.2]Paracyclophane-derived Fused Imidazo[1,2-a]heterocycles by Groebke-Blackburn-Bienaymé Reaction: Accessing Cyclophanyl Imidazole Ligands Library. Chemistry 2022; 28:e202103511. [PMID: 34792822 PMCID: PMC9300155 DOI: 10.1002/chem.202103511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Indexed: 12/14/2022]
Abstract
This report describes the synthesis of a [2.2]paracyclophane-derived annulated 3-amino-imidazole ligand library through a Groebke-Blackburn-Bienaymé three-component reaction (GBB-3CR) approach employing formyl-cyclophanes in combination with diverse aliphatic and aromatic isocyanides and heteroaromatic amidines. The GBB-3CR process gives access to skeletally-diverse cyclophanyl imidazole ligands, namely 3-amino-imidazo[1,2-a]pyridines and imidazo[1,2-a]pyrazines. Additionally, a one-pot protocol for the GBB-3CR by an in situ generation of cyclophanyl isocyanide is demonstrated. The products were analyzed by detailed spectroscopic techniques, and the cyclophanyl imidazo[1,2-a]pyridine was confirmed unambiguously by single-crystal X-Ray crystallography. The cyclophanyl imidazole ligands can be readily transformed to showcase their useful utility in preparing N,C-palladacycles through regioselective ortho-palladation.
Collapse
Affiliation(s)
- Mareen Stahlberger
- Institute of Organic Chemistry (IOC)Karlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 676131KarlsruheGermany
| | - Noah Schwarz
- Institute of Organic Chemistry (IOC)Karlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 676131KarlsruheGermany
| | - Christoph Zippel
- Institute of Organic Chemistry (IOC)Karlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 676131KarlsruheGermany
| | - Jens Hohmann
- Institute of Organic Chemistry (IOC)Karlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 676131KarlsruheGermany
| | - Martin Nieger
- Department of ChemistryUniversity of HelsinkiP. O. Box 5500014 University ofHelsinkiFinland
| | - Zahid Hassan
- Institute of Organic Chemistry (IOC)Karlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 676131KarlsruheGermany
| | - Stefan Bräse
- Institute of Organic Chemistry (IOC)Karlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 676131KarlsruheGermany
- Institute of Biological and Chemical SystemsFunctional Molecular Systems (IBCS-FMS)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| |
Collapse
|
3
|
Geiselhart CM, Mutlu H. The Vibrant Interplay of Light and Self‐Reporting Macromolecular Architectures. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Christina M. Geiselhart
- Soft Matter Synthesis Laboratory (SML) Institute for Biological Interfaces 3 (IBG 3) Karlsruhe Institute of Technology (KIT) Hermann‐von‐Helmholtz‐Platz 1 Eggenstein Leopoldshafen 76344 Germany
- Macromolecular Architectures Institute for Technical Chemistry and Polymer Chemistry (ITCP) Karlsruhe Institute of Technology (KIT) Engesserstr. 18 Karlsruhe 76131 Germany
- School of Chemistry and Physics Centre for Materials Science Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
| | - Hatice Mutlu
- Soft Matter Synthesis Laboratory (SML) Institute for Biological Interfaces 3 (IBG 3) Karlsruhe Institute of Technology (KIT) Hermann‐von‐Helmholtz‐Platz 1 Eggenstein Leopoldshafen 76344 Germany
| |
Collapse
|
4
|
Zippel C, Hassan Z, Parsa AQ, Hohmann J, Bräse S. Multigram‐Scale Kinetic Resolution of 4‐Acetyl[2.2]Paracyclophane
via
Ru‐Catalyzed Enantioselective Hydrogenation: Accessing [2.2]Paracyclophanes with Planar and Central Chirality. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001536] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Christoph Zippel
- Institute of Organic Chemistry Karlsruhe Institute of Technology (KIT) Fritz-Haber-Weg 6 76131 Karlsruhe Germany
| | - Zahid Hassan
- Institute of Organic Chemistry Karlsruhe Institute of Technology (KIT) Fritz-Haber-Weg 6 76131 Karlsruhe Germany
| | - Ahmad Qais Parsa
- Institute of Organic Chemistry Karlsruhe Institute of Technology (KIT) Fritz-Haber-Weg 6 76131 Karlsruhe Germany
| | - Jens Hohmann
- Institute of Organic Chemistry Karlsruhe Institute of Technology (KIT) Fritz-Haber-Weg 6 76131 Karlsruhe Germany
| | - Stefan Bräse
- Institute of Organic Chemistry Karlsruhe Institute of Technology (KIT) Fritz-Haber-Weg 6 76131 Karlsruhe Germany
- Institute of Biological and Chemical Systems – FMS Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
5
|
Zippel C, Spuling E, Hassan Z, Polamo M, Nieger M, Bräse S. Controlling Regioselectivity in Palladium-Catalyzed C-H Activation/Aryl-Aryl Coupling of 4-Phenylamino[2.2]paracyclophane. Chemistry 2020; 26:13771-13775. [PMID: 33245570 PMCID: PMC7693239 DOI: 10.1002/chem.202003709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Indexed: 12/13/2022]
Abstract
Selective activation/functionalization of C-H bonds has emerged as an atom- and step-economical process at the forefront of modern synthetic chemistry. This work reports palladium-catalyzed exclusively para-selective C-H activation/aryl-aryl bond formation with a preference over N-arylation under the Buchwald-Hartwig amination reaction of 4-phenylamino[2.2]paracyclophane. This innovative synthetic strategy allows a facile preparation of [2.2]paracyclophane derivatives featuring disparate para-substitutions at C-4 and C-7 positions in a highly selective manner, gives access to a series of potential candidates for [2.2]paracyclophane-derived new planar chiral ligands. The unprecedented behavior in reactivity and preferential selectivity of C-C coupling over C-N bond formation via C-H activation is unique to the [2.2]paracyclophane scaffold compared to the non-cyclophane analogue under the same reaction conditions. Selective C-H activation/aryl-aryl bond formation and sequential C-N coupling product formation is evidenced unambiguously by X-ray crystallography.
Collapse
Affiliation(s)
- Christoph Zippel
- Institute of Organic Chemistry (IOC)Karlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 676131KarlsruheGermany
| | - Eduard Spuling
- Institute of Organic Chemistry (IOC)Karlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 676131KarlsruheGermany
| | - Zahid Hassan
- Institute of Organic Chemistry (IOC)Karlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 676131KarlsruheGermany
- 3D Matter Made To Order—Cluster of Excellence (EXC-2082/1–390761711)Karlsruhe Institute of Technology (KIT)76131KarlsruheGermany
| | - Mika Polamo
- Department of ChemistryUniversity of HelsinkiP. O. Box 5500014HelsinkiFinland
| | - Martin Nieger
- Department of ChemistryUniversity of HelsinkiP. O. Box 5500014HelsinkiFinland
| | - Stefan Bräse
- Institute of Organic Chemistry (IOC)Karlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 676131KarlsruheGermany
- 3D Matter Made To Order—Cluster of Excellence (EXC-2082/1–390761711)Karlsruhe Institute of Technology (KIT)76131KarlsruheGermany
- Institute of Biological and Chemical SystemsFunctional Molecular Systems (IBCS-FMS)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| |
Collapse
|
6
|
Zhang J, Lu N, Peng H, Li J, Yan R, Shi X, Ma P, Lv M, Wang L, Tang Z, Zhang M. Multi-triggered and enzyme-mimicking graphene oxide/polyvinyl alcohol/G-quartet supramolecular hydrogels. NANOSCALE 2020; 12:5186-5195. [PMID: 32073092 DOI: 10.1039/c9nr10779g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Supramolecular hydrogels with stimuli-responsive behaviors under aqueous environments are attractive for their potential applications in controlled drug delivery, clinical diagnostics, and tissue engineering. However, there still remain challenges in developing multicomponent hydrogels as a new generation of "smart" soft materials with multiple intelligent functions toward complex biochemical stimuli. In this work, a three dimensional (3D)-nanostructured supramolecular hydrogel was fabricated using a simple and facile strategy via the self-assembly of graphene oxide (GO) nanosheets, poly(vinyl alcohol) (PVA) chains, and G-quartet/hemin (G4/H) motifs. The as-prepared GO/PVA/G4/H hydrogel exhibited a honeycomb-like 3D GO network architecture as well as excellent mechanical properties. Importantly, the hydrogel demonstrated pH-inducing reversible and cyclic phase transitions between solution and hydrogel states, which could be used as "ink" for injectable 3D printing of different shaped patterns. Also, binary AND and OR logic gates were successfully built by encapsulating enzymes into the hydrogels, which responded to a variety of biochemicals. In addition, the hydrogels showed excellent peroxidase-like activity, achieving the ultrasensitive detection of H2O2 at a concentration as low as 100 nM by their deposition on an electrochemical electrode. The design of multicomponent hydrogels opens up an avenue to fabricate novel "smart" soft matter for biological and medical applications.
Collapse
Affiliation(s)
- Jiaxing Zhang
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Na Lu
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Hongzhen Peng
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China and Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Li
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Ruohong Yan
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Xuerong Shi
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Pan Ma
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Min Lv
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China and Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Lihua Wang
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China and Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Zisheng Tang
- Department of Endodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China and National Clinical Research Center of Oral Diseases, Shanghai 200011, China and Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China.
| | - Min Zhang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| |
Collapse
|