1
|
Bès M, Lamont S, Dufour-Lamartinie A, Mancer JC, Olanier L, Robert J, Vernerey F, Kovalenko A. "Magnetic marshmallows" for soft robotics: magneto-mechanical characterization and application in switchable adhesion structures. SOFT MATTER 2025; 21:3030-3039. [PMID: 40152789 DOI: 10.1039/d4sm01503g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Soft magnetic composites exhibit fast and programmable macroscopic deformations in magnetic fields, making them promising for applications in soft untethered robotics or in designing surfaces with switchable adhesion or wetting properties. However, due to the incompressible nature of soft, non-porous actuators, their compression or elongation leads to important shape change due to lateral expansion or compression, respectively. In practice, bending and folding remain preferred actuation modes. Here, we explore the potential of magnetic elastomer "marshmallows" as compressible actuators with low Poisson's ratio. Using a sacrificial salt pellet template method, we fabricate polydimethylsiloxane foams with open porosity filled with carbonyl iron particles. The obtained foams exhibit strong reversible compression under the influence of a magnetic field gradient. We reveal the significance of stress accumulation in the direction of the field gradient due to magnetic body forces and the key role of the foam thickness in magnetic strain. We propose a simple analytical model based on the action of a magnetic body force that explains these effects. Finally, we demonstrate the development of a novel switchable adhesion structure, in which the magnetic foam covered with a pressure-sensitive adhesive serves as a compressible actuator able to switch between adhesive and non-adhesive states.
Collapse
Affiliation(s)
- Maxime Bès
- Laboratoire Sciences et Ingénierie de la Matière Molle, ESPCI Paris, PSL University, Sorbonne Université, CNRS, F-75005 Paris, France.
| | - Samuel Lamont
- Department of Mechanical Engineering and Material Science & Engineering Program, University of Colorado at Boulder, Boulder, Colorado, USA
| | - Azadeh Dufour-Lamartinie
- Laboratoire Sciences et Ingénierie de la Matière Molle, ESPCI Paris, PSL University, Sorbonne Université, CNRS, F-75005 Paris, France.
- Department of Mechanical Engineering and Material Science & Engineering Program, University of Colorado at Boulder, Boulder, Colorado, USA
| | - Jean-Claude Mancer
- Laboratoire Sciences et Ingénierie de la Matière Molle, ESPCI Paris, PSL University, Sorbonne Université, CNRS, F-75005 Paris, France.
| | - Ludovic Olanier
- Laboratoire Sciences et Ingénierie de la Matière Molle, ESPCI Paris, PSL University, Sorbonne Université, CNRS, F-75005 Paris, France.
| | - Jérôme Robert
- Institut de Physique et Chimie des Matériaux de Strasbourg, F-67200 Strasbourg, France
| | - Franck Vernerey
- Department of Mechanical Engineering and Material Science & Engineering Program, University of Colorado at Boulder, Boulder, Colorado, USA
| | - Artem Kovalenko
- Laboratoire Sciences et Ingénierie de la Matière Molle, ESPCI Paris, PSL University, Sorbonne Université, CNRS, F-75005 Paris, France.
| |
Collapse
|
2
|
Cestarollo L, Utomo N, Htet HW, Chen Y, Archer LA, El-Ghazaly A. Amplifying Magneto-Mechanical Performance of Magnetorheological Elastomers through Surface Functionalization of Iron Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2025; 17:15849-15858. [PMID: 40025811 DOI: 10.1021/acsami.4c21502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Challenges posed by the chemical incompatibility between nanoparticles and polymer matrices hinder the widespread use of polymer nanocomposites as the material platform for many innovations. In this study, we demonstrate the effectiveness of a versatile approach to the surface functionalization of commercial nanoparticles. To illustrate the importance of proper surface functionalization, the process was used to functionalize high-moment iron nanoparticles to enhance the magneto-mechanical performance of nanoparticle-based magnetorheological elastomers (MREs). We successfully grafted off-the-shelf iron nanoparticles with poly(dimethylsiloxane) (PDMS) ligands, and then used them to fabricate nanoparticle-based anisotropic MREs with reduced stiffness and improved magnetic properties compared with MREs fabricated with the original nonfunctionalized particles. Structural analysis revealed a regular arrangement of nanoparticles with reduced agglomeration within the elastomeric matrix when functionalized particles were used. Mechanical testing showed enhanced deflection and bending performance for these MREs. Furthermore, this improvement of magneto-mechanical performance was obtained at lower effective magnetic content compared with nonfunctionalized particle elastomers. Magnetic characterization, in turn, revealed amplified magnetic anisotropy and improved chain ordering inside the functionalized-particle MREs. Our findings highlight the potential of surface functionalization of magnetic nanoparticles to improve performance in nanocomposites, such as nanoparticle-based MREs with superior mechanical and magnetic properties.
Collapse
Affiliation(s)
- Ludovico Cestarollo
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Nyalaliska Utomo
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Htoo Wai Htet
- Department of Electrical and Computer Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Yulan Chen
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Lynden A Archer
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Amal El-Ghazaly
- Department of Electrical and Computer Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
3
|
Wang S, Li X. Soft composites with liquid inclusions: functional properties and theoretical models. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:493003. [PMID: 39222657 DOI: 10.1088/1361-648x/ad765d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 09/02/2024] [Indexed: 09/04/2024]
Abstract
Soft materials containing liquid inclusions have emerged as a promising class of materials. Unlike solid inclusions, liquid inclusions possess intrinsic fluidity, which allows them to retain the excellent deformation ability of soft materials. This can prevent compliance mismatches between the inclusions and the matrix, thus leading to improved performance and durability. Various liquids, including metallic, water-based, and ionic liquids, have been selected as inclusions for embedding into soft materials, resulting in unique properties and functionalities that enable a wide range of applications in soft robotics, wearable devices, and other cutting-edge fields. This review provides an overview of recent studies on the functional properties of composites with liquid inclusions and discusses theoretical models used to estimate these properties, aiming to bridge the gap between the microstructure/components and the overall properties of the composite from a theoretical perspective. Furthermore, current challenges and future opportunities for the widespread application of these composites are explored, highlighting their potential in advancing technologies.
Collapse
Affiliation(s)
- Shuang Wang
- School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Xiying Li
- Robotic Materials Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| |
Collapse
|
4
|
Zhao Y, Hu H, Huang Y, Liu H, Yan C, Xu C, Zhang R, Wang Y, Xu Q. Elasticity-controlled jamming criticality in soft composite solids. Nat Commun 2024; 15:1691. [PMID: 38402229 PMCID: PMC10894283 DOI: 10.1038/s41467-024-45964-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/08/2024] [Indexed: 02/26/2024] Open
Abstract
Soft composite solids are made of inclusions dispersed within soft matrices. They are ubiquitous in nature and form the basis of many biological tissues. In the field of materials science, synthetic soft composites are promising candidates for building various engineering devices due to their highly programmable features. However, when the volume fraction of the inclusions increases, predicting the mechanical properties of these materials poses a significant challenge for the classical theories of composite mechanics. The difficulty arises from the inherently disordered, multi-scale interactions between the inclusions and the matrix. To address this challenge, we systematically investigated the mechanics of densely filled soft elastomers containing stiff microspheres. We experimentally demonstrate how the strain-stiffening response of the soft composites is governed by the critical scalings in the vicinity of a shear-jamming transition of the included particles. The proposed criticality framework quantitatively connects the overall mechanics of a soft composite with the elasticity of the matrix and the particles, and captures the diverse mechanical responses observed across a wide range of material parameters. The findings uncover a novel design paradigm of composite mechanics that relies on engineering the jamming properties of the embedded inclusions.
Collapse
Grants
- Early Career Scheme (No. 26309620) Research Grants Council, University Grants Committee (RGC, UGC)
- General Research Fund (No. 16307422) Research Grants Council, University Grants Committee (RGC, UGC)
- Collaborative Research Fund No. C6008-20E Research Grants Council, University Grants Committee (RGC, UGC)
- PDFS2324-6S02 Research Grants Council, University Grants Committee (RGC, UGC)
- No. 16300221 Research Grants Council, University Grants Committee (RGC, UGC)
- Asian Science and Technology Pioneering Institutes of Research and Educational League (No. ASPIRE2021#1).
Collapse
Affiliation(s)
- Yiqiu Zhao
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong SAR, China.
| | - Haitao Hu
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Yulu Huang
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Hanqing Liu
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Caishan Yan
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Chang Xu
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Rui Zhang
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Yifan Wang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Qin Xu
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong SAR, China.
| |
Collapse
|
5
|
Hidalgo-Alvarez V, Madl CM. Leveraging Biomaterial Platforms to Study Aging-Related Neural and Muscular Degeneration. Biomolecules 2024; 14:69. [PMID: 38254669 PMCID: PMC10813704 DOI: 10.3390/biom14010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/28/2023] [Accepted: 12/30/2023] [Indexed: 01/24/2024] Open
Abstract
Aging is a complex multifactorial process that results in tissue function impairment across the whole organism. One of the common consequences of this process is the loss of muscle mass and the associated decline in muscle function, known as sarcopenia. Aging also presents with an increased risk of developing other pathological conditions such as neurodegeneration. Muscular and neuronal degeneration cause mobility issues and cognitive impairment, hence having a major impact on the quality of life of the older population. The development of novel therapies that can ameliorate the effects of aging is currently hindered by our limited knowledge of the underlying mechanisms and the use of models that fail to recapitulate the structure and composition of the cell microenvironment. The emergence of bioengineering techniques based on the use of biomimetic materials and biofabrication methods has opened the possibility of generating 3D models of muscular and nervous tissues that better mimic the native extracellular matrix. These platforms are particularly advantageous for drug testing and mechanistic studies. In this review, we discuss the developments made in the creation of 3D models of aging-related neuronal and muscular degeneration and we provide a perspective on the future directions for the field.
Collapse
Affiliation(s)
| | - Christopher M. Madl
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA;
| |
Collapse
|
6
|
Li L, Yang G, Lyu J, Sheng Z, Ma F, Zhang X. Folk arts-inspired twice-coagulated configuration-editable tough aerogels enabled by transformable gel precursors. Nat Commun 2023; 14:8450. [PMID: 38114508 PMCID: PMC10730912 DOI: 10.1038/s41467-023-44156-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023] Open
Abstract
Aerogels, as famous lightweight and porous nanomaterials, have attracted considerable attention in various emerging fields in recent decades, however, both low density and weak mechanical performance make their configuration-editing capability challenging. Inspired by folk arts, herein we establish a highly efficient twice-coagulated (TC) strategy to fabricate configuration-editable tough aerogels enabled by transformable gel precursors. As a proof of concept, aramid nanofibers (ANFs) and polyvinyl alcohol (PVA) are selected as the main components of aerogel, among which PVA forms a flexible configuration-editing gel network in the first coagulation process, and ANF forms a configuration-locking gel network in the second coagulation process. TC strategy guarantees the resulting aerogels with both high toughness and feasible configuration editing capability individually or simultaneously. Altogether, the resulting tough aerogels with special configuration through soft to hard modulation provide great opportunities to break through the performance limits of the aerogels and expand application areas of aerogels.
Collapse
Affiliation(s)
- Lishan Li
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, PR China
| | - Guandu Yang
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, PR China
- Key Laboratory of Rubber-Plastics (Ministry of Education), School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, PR China
| | - Jing Lyu
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, PR China
| | - Zhizhi Sheng
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, PR China
| | - Fengguo Ma
- Key Laboratory of Rubber-Plastics (Ministry of Education), School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, PR China
| | - Xuetong Zhang
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, PR China.
- Division of Surgery & Interventional Science, University College London, London, UK.
| |
Collapse
|
7
|
Liu J, Zeng S, Zhang M, Xiong J, Gu H, Wang Z, Hu Y, Zhang X, Du Y, Ren L. Giant Piezoelectric Output and Stability Enhancement in Piezopolymer Composites with Liquid Metal Nanofillers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304096. [PMID: 37705125 PMCID: PMC10754131 DOI: 10.1002/advs.202304096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Indexed: 09/15/2023]
Abstract
Integrating nanomaterials into the polymer matrix is an effective strategy to optimize the performance of polymer-based piezoelectric devices. Nevertheless, the trade-off between the output enhancement and stability maintenance of piezoelectric composites usually leads to an unsatisfied overall performance for the high-strength operation of devices. Here, by setting liquid metal (LM) nanodroplets as the nanofillers in a poly(vinylidene difluoride) (PVDF) matrix, the as-formed liquid-solid/conductive-dielectric interfaces significantly promote the piezoelectric output and the reliability of this piezoelectric composite. A giant performance improvement featured is obtained with, nearly 1000% boosting on the output voltage (as high as 212 V), 270% increment on the piezoelectric coefficient (d33 ∼51.1 pC N-1 ) and long-term reliability on both structure and output (over 36 000 cycles). The design of a novel heterogenous interface with both mechanical matching and electric coupling can be the new orientation for developing high performance piezoelectric composite-based devices.
Collapse
Affiliation(s)
- Jingyan Liu
- Hubei Key Laboratory of Ferro & Piezoelectric Materials and DevicesSchool of MicroelectronicsHubei UniversityWuhan430062P. R. China
| | - Shi Zeng
- Hubei Key Laboratory of Ferro & Piezoelectric Materials and DevicesSchool of MicroelectronicsHubei UniversityWuhan430062P. R. China
| | - Mingrui Zhang
- Hubei Key Laboratory of Ferro & Piezoelectric Materials and DevicesSchool of MicroelectronicsHubei UniversityWuhan430062P. R. China
| | - Juan Xiong
- Hubei Key Laboratory of Ferro & Piezoelectric Materials and DevicesSchool of MicroelectronicsHubei UniversityWuhan430062P. R. China
| | - Haoshuang Gu
- Hubei Key Laboratory of Ferro & Piezoelectric Materials and DevicesSchool of MicroelectronicsHubei UniversityWuhan430062P. R. China
| | - Zhao Wang
- Hubei Key Laboratory of Ferro & Piezoelectric Materials and DevicesSchool of MicroelectronicsHubei UniversityWuhan430062P. R. China
| | - Yongming Hu
- Hubei Key Laboratory of Ferro & Piezoelectric Materials and DevicesSchool of MicroelectronicsHubei UniversityWuhan430062P. R. China
| | - Xianghui Zhang
- Hubei Key Laboratory of Ferro & Piezoelectric Materials and DevicesSchool of MicroelectronicsHubei UniversityWuhan430062P. R. China
| | - Yi Du
- Center of Quantum and Matter Science and School of PhysicsBeihang UniversityBeijing100191P. R. China
| | - Long Ren
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingInternational School of Materials Science and EngineeringWuhan University of TechnologyWuhan430070P. R. China
| |
Collapse
|
8
|
Masiero F, Sinibaldi E. Exact and Computationally Robust Solutions for Cylindrical Magnets Systems with Programmable Magnetization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301033. [PMID: 37460392 PMCID: PMC10477869 DOI: 10.1002/advs.202301033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Indexed: 09/06/2023]
Abstract
Magnetic systems based on permanent magnets are receiving growing attention, in particular for micro/millirobotics and biomedical applications. Their design landscape is expanded by the possibility to program magnetization, yet enabling analytical results, crucial for containing computational costs, are lacking. The dipole approximation is systematically used (and often strained), because exact and computationally robust solutions are to be unveiled even for common geometries such as cylindrical magnets, which are ubiquitously used in fundamental research and applications. In this study, exact solutions are disclosed for magnetic field and gradient of a cylindrical magnet with generic uniform magnetization, which can be robustly computed everywhere within and outside the magnet, and directly extend to magnets systems of arbitrary complexity. Based on them, exact and computationally robust solutions are unveiled for force and torque between coaxial magnets. The obtained analytical solutions overstep the dipole approximation, thus filling a long-standing gap, and offer strong computational gains versus numerical simulations (up to 106 , for the considered test-cases). Moreover, they bridge to a variety of applications, as illustrated through a compact magnets array that could be used to advance state-of-the-art biomedical tools, by creating, based on programmable magnetization patterns, circumferential and helical force traps for magnetoresponsive diagnostic/therapeutic agents.
Collapse
Affiliation(s)
- Federico Masiero
- Biorobotics InstituteScuola Superiore Sant'Annaviale Rinaldo Piaggio 34Pontedera56025Italy
- Department of Excellence in Robotics and AIScuola Superiore Sant'Annapiazza Martiri della Libertà 33Pisa56127Italy
| | | |
Collapse
|
9
|
Liu Y, Wang Y, Yang X, Huang W, Zhang Y, Zhang X, Wang X. Stiffness Variable Polymer for Soft Actuators with Sharp Stiffness Switch and Fast Response. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37201204 DOI: 10.1021/acsami.3c03880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Stiffness variable polymers are an essential family of materials that have aroused considerable attention in soft actuators. Although lots of strategies have been proposed to achieve variable stiffness, it remains a formidable challenge to achieve a polymer with a wide stiffness range and fast stiffness change. Herein, a series of variable stiffness polymers with a fast stiffness change and wide stiffness range were successfully synthesized, and the formulas were optimized via Pearson correlation tests. The rigid/soft stiffness ratio of the designed polymer samples can reach up to 1376-folds. Impressively, owing to the phase-changing side chains, the narrow endothermic peak can be observed with full width at half-maximum within 5 °C. Moreover, the shape memory properties of the shape fixity (Rf) and shape recovery ratio (Rr) values of the shape memory properties could reach up to 99.3 and 99.2%, respectively. Then, the obtained polymer was introduced into a kind of designed 3D printing soft actuator. The soft actuator can achieve sharp heating-cooling cycle of 19 s under a 1.2 A current with 4 °C water as coolant and can lift a 200 g weight at the actuating state. Moreover, the stiffness of the soft actuator can reach up to 718 mN/mm. The soft actuator exhibits an outstanding actuate behavior and stiffness switchable capability. We expect our design strategy and obtained variable stiffness polymers to be potentially applied in soft actuators and other devices.
Collapse
Affiliation(s)
- Yahao Liu
- College of Naval Architecture and Ocean Engineering, Naval University of Engineering, Wuhan 430022, China
- Staff Room of Chemistry and Material, Department of Basic Course, Naval University of Engineering, Wuhan 430022, China
| | - Yuansheng Wang
- College of Naval Architecture and Ocean Engineering, Naval University of Engineering, Wuhan 430022, China
| | - Xue Yang
- National Key Laboratory on Ship Vibration & Noise, Wuhan 430022, China
| | - Wei Huang
- College of Naval Architecture and Ocean Engineering, Naval University of Engineering, Wuhan 430022, China
- Staff Room of Chemistry and Material, Department of Basic Course, Naval University of Engineering, Wuhan 430022, China
| | - Yu Zhang
- Army Engineering University, Shijiazhuang Campus, Shijiazhuang 050003, China
| | - Xiao Zhang
- Engineering University of PAP, Xi'an 710086, China
| | - Xuan Wang
- Staff Room of Chemistry and Material, Department of Basic Course, Naval University of Engineering, Wuhan 430022, China
| |
Collapse
|
10
|
Agyapong JN, Van Durme B, Van Vlierberghe S, Henderson JH. Surface Functionalization of 4D Printed Substrates Using Polymeric and Metallic Wrinkles. Polymers (Basel) 2023; 15:polym15092117. [PMID: 37177262 PMCID: PMC10181229 DOI: 10.3390/polym15092117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Wrinkle topographies have been studied as simple, versatile, and in some cases biomimetic surface functionalization strategies. To fabricate surface wrinkles, one material phenomenon employed is the mechanical-instability-driven wrinkling of thin films, which occurs when a deforming substrate produces sufficient compressive strain to buckle a surface thin film. Although thin-film wrinkling has been studied on shape-changing functional materials, including shape-memory polymers (SMPs), work to date has been primarily limited to simple geometries, such as flat, uniaxially-contracting substrates. Thus, there is a need for a strategy that would allow deformation of complex substrates or 3D parts to generate wrinkles on surfaces throughout that complex substrate or part. Here, 4D printing of SMPs is combined with polymeric and metallic thin films to develop and study an approach for fiber-level topographic functionalization suitable for use in printing of arbitrarily complex shape-changing substrates or parts. The effect of nozzle temperature, substrate architecture, and film thickness on wrinkles has been characterized, as well as wrinkle topography on nuclear alignment using scanning electron microscopy, atomic force microscopy, and fluorescent imaging. As nozzle temperature increased, wrinkle wavelength increased while strain trapping and nuclear alignment decreased. Moreover, with increasing film thickness, the wavelength increased as well.
Collapse
Affiliation(s)
- Johnson N Agyapong
- The Bioinspired Institute, Syracuse University, Syracuse, NY 13244, USA
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA
| | - Bo Van Durme
- The Bioinspired Institute, Syracuse University, Syracuse, NY 13244, USA
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, 9000 Ghent, Belgium
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, 9000 Ghent, Belgium
| | - James H Henderson
- The Bioinspired Institute, Syracuse University, Syracuse, NY 13244, USA
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
11
|
Emerging 4D printing strategies for on-demand local actuation & micro printing of soft materials. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
G K, Kandasubramanian B. Exertions of Magnetic Polymer Composites Fabricated via 3D Printing. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Krishnaja G
- CIPET: Institute of Petrochemicals Technology (IPT), HIL Colony, Edayar Road, Pathalam, Eloor, Udyogamandal P.O., Kochi683501, India
| | - Balasubramanian Kandasubramanian
- Rapid Prototyping Laboratory, Department of Metallurgical and Materials Engineering, DIAT (DU), Ministry of Defence, Girinagar, Pune, 411025Maharashtra, India
| |
Collapse
|
13
|
Han S, Hu Z, Zhang W, Hu J, Yang L. Flexible segments regulating the gelation behaviours of aliphatic polycarbonate gels with excellent shape memory and self-healing properties. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Influence of Gamma Radiation on the Damping Property of Magnetorheological Elastomer. Polymers (Basel) 2022; 14:polym14183708. [PMID: 36145854 PMCID: PMC9504357 DOI: 10.3390/polym14183708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
Magnetorheological elastomer (MRE) is a kind of smart material, whose mechanical property can be controlled by the external magnetic field quickly and reversibly. The damping property of MRE is one of the most concerned properties when designing MRE based devices. In this work, the influence of gamma radiation on the damping property of MRE was investigated. Six different exposures of gamma radiation were applied to the MRE samples. The highest gamma radiation dose was up to 1 × 105 Gy(Si), which can cover most of the engineering application scenarios. The influence of gamma radiation on the damping-strain relation and the damping-magnetic-field relation were studied. The probable mechanisms were discussed in detail. It is found that the gamma radiation does not affect the variation trend of loss factor of MRE with increasing strain amplitude or magnetic flux density. But it affects the variation trend of the maximum change of strain-induced or magnetic-field-induced loss factor of MRE. Besides, with constant strain and constant magnetic flux density, the loss factor of MRE shows w-shape variation trend with increasing gamma radiation dose. It is considered to be resulted from the combined action of the intrinsic damping and the interfacial friction damping of MRE.
Collapse
|
15
|
Liu W, Wang A, Yang R, Wu H, Shao S, Chen J, Ma Y, Li Z, Wang Y, He X, Li J, Tan H, Fu Q. Water-Triggered Stiffening of Shape-Memory Polyurethanes Composed of Hard Backbone Dangling PEG Soft Segments. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201914. [PMID: 35502474 DOI: 10.1002/adma.202201914] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/19/2022] [Indexed: 02/05/2023]
Abstract
Shape-memory polymers (SMPs) induced by heat or water are commonly used candidates for biomedical applications. Shape recovery inevitably leads to a dramatic decrease of Young's modulus due to the enhanced flexibility of polymer chains at the transition temperature. Herein, the principle of phase-transition-induced stiffening of shape-memory metallic alloys (SMAs) is introduced to the design of molecular structures for shape-memory polyurethane (SMPUs), featuring all-hard segments composed of main chains that are attached with poly(ethylene glycol) (PEG) dangling side chains. Different from conventional SMPs, they achieve a soft-to-stiff transition when shape recovers. The stiffening process is driven by water-triggered segmental rearrangement due to the incompatibility between the hard segments and the soft PEG segments. Upon hydration, the extent of microphase separation is enhanced and the hard domains are transformed to a more continuous morphology to realize more effective stress transfer. Meanwhile, such segmental rearrangement facilitates the shape-recovery process in the hydrated state despite the final increased glass transition temperature (Tg ). This work represents a novel paradigm of simultaneously integrating balanced mechanics, shape-memory property, and biocompatibility for SMPUs as materials for minimally invasive surgery such as endoluminal stents.
Collapse
Affiliation(s)
- Wenkai Liu
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Med‐X Center of Materials Sichuan University Chengdu 610065 China
| | - Ao Wang
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Med‐X Center of Materials Sichuan University Chengdu 610065 China
| | - Ruibo Yang
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Med‐X Center of Materials Sichuan University Chengdu 610065 China
| | - Hecheng Wu
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Med‐X Center of Materials Sichuan University Chengdu 610065 China
| | - Shuren Shao
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Med‐X Center of Materials Sichuan University Chengdu 610065 China
| | - Jinlin Chen
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Med‐X Center of Materials Sichuan University Chengdu 610065 China
| | - Yan Ma
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Med‐X Center of Materials Sichuan University Chengdu 610065 China
| | - Zhen Li
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Med‐X Center of Materials Sichuan University Chengdu 610065 China
| | - Yanchao Wang
- Department of Neurosurgery West China Hospital Sichuan University Chengdu Sichuan 610000 China
| | - Xueling He
- Laboratory Animal Center of Sichuan University Chengdu 610041 China
| | - Jiehua Li
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Med‐X Center of Materials Sichuan University Chengdu 610065 China
| | - Hong Tan
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Med‐X Center of Materials Sichuan University Chengdu 610065 China
| | - Qiang Fu
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Med‐X Center of Materials Sichuan University Chengdu 610065 China
| |
Collapse
|
16
|
Haake A, Tutika R, Schloer GM, Bartlett MD, Markvicka EJ. On-Demand Programming of Liquid Metal-Composite Microstructures through Direct Ink Write 3D Printing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200182. [PMID: 35353948 DOI: 10.1002/adma.202200182] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Soft, elastically deformable composites with liquid metal (LM) droplets can enable new generations of soft electronics, robotics, and reconfigurable structures. However, techniques to control local composite microstructure, which ultimately governs material properties and performance, is lacking. Here a direct ink writing technique is developed to program the LM microstructure (i.e., shape, orientation, and connectivity) on demand throughout elastomer composites. In contrast to inks with rigid particles that have fixed shape and size, it is shown that emulsion inks with LM fillers enable in situ control of microstructure. This enables filaments, films, and 3D structures with unique LM microstructures that are generated on demand and locked in during printing. This includes smooth and discrete transitions from spherical to needle-like droplets, curvilinear microstructures, geometrically complex embedded inclusion patterns, and connected LM networks. The printed materials are soft (modulus < 200 kPa), highly deformable (>600 % strain), and can be made locally insulating or electrically conductive using a single ink by controlling the process conditions. These capabilities are demonstrated by embedding elongated LM droplets in a soft heat sink, which rapidly dissipates heat from high-power LEDs. These programmable microstructures can enable new composite paradigms for emerging technologies that demand mechanical compliance with multifunctional response.
Collapse
Affiliation(s)
- Aaron Haake
- Department of Mechanical & Materials Engineering, Smart Materials & Robotics Lab, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Ravi Tutika
- Department of Mechanical Engineering, Soft Materials and Structures Lab, Virginia Tech, Blacksburg, VA, 24060, USA
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, 24060, USA
| | - Gwyneth M Schloer
- Department of Mechanical Engineering, Soft Materials and Structures Lab, Virginia Tech, Blacksburg, VA, 24060, USA
| | - Michael D Bartlett
- Department of Mechanical Engineering, Soft Materials and Structures Lab, Virginia Tech, Blacksburg, VA, 24060, USA
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, 24060, USA
| | - Eric J Markvicka
- Department of Mechanical & Materials Engineering, Smart Materials & Robotics Lab, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Department of Electrical & Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| |
Collapse
|
17
|
Wang Y, Cui H, Esworthy T, Mei D, Wang Y, Zhang LG. Emerging 4D Printing Strategies for Next-Generation Tissue Regeneration and Medical Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109198. [PMID: 34951494 DOI: 10.1002/adma.202109198] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/17/2021] [Indexed: 06/14/2023]
Abstract
The rapid development of 3D printing has led to considerable progress in the field of biomedical engineering. Notably, 4D printing provides a potential strategy to achieve a time-dependent physical change within tissue scaffolds or replicate the dynamic biological behaviors of native tissues for smart tissue regeneration and the fabrication of medical devices. The fabricated stimulus-responsive structures can offer dynamic, reprogrammable deformation or actuation to mimic complex physical, biochemical, and mechanical processes of native tissues. Although there is notable progress made in the development of the 4D printing approach for various biomedical applications, its more broad-scale adoption for clinical use and tissue engineering purposes is complicated by a notable limitation of printable smart materials and the simplistic nature of achievable responses possible with current sources of stimulation. In this review, the recent progress made in the field of 4D printing by discussing the various printing mechanisms that are achieved with great emphasis on smart ink mechanisms of 4D actuation, construct structural design, and printing technologies, is highlighted. Recent 4D printing studies which focus on the applications of tissue/organ regeneration and medical devices are then summarized. Finally, the current challenges and future perspectives of 4D printing are also discussed.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Fluid Power and Mechatronics Systems, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Haitao Cui
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, 20052, USA
| | - Timothy Esworthy
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, 20052, USA
| | - Deqing Mei
- State Key Laboratory of Fluid Power and Mechatronics Systems, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yancheng Wang
- State Key Laboratory of Fluid Power and Mechatronics Systems, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Lijie Grace Zhang
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, 20052, USA
- Department of Electrical and Computer Engineering, The George Washington University, Washington, DC, 20052, USA
- Department of Biomedical Engineering, The George Washington University, Washington, DC, 20052, USA
- Department of Medicine, The George Washington University, Washington, DC, 20052, USA
| |
Collapse
|
18
|
Cestarollo L, Smolenski S, El-Ghazaly A. Nanoparticle-Based Magnetorheological Elastomers with Enhanced Mechanical Deflection for Haptic Displays. ACS APPLIED MATERIALS & INTERFACES 2022; 14:19002-19011. [PMID: 35420770 DOI: 10.1021/acsami.2c05471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Haptics allows tactile interactions between humans and digital interfaces. Magnetorheological elastomers (MREs) constitute a promising candidate material for creating the tactile interface of the future─one able to recreate 3D shapes that can be sensed with touch. Furthermore, an MRE formed by using nanoparticles, as opposed to previously used microparticles, is necessary to generate a variety of shapes involving sharp curvatures over small, micrometer-scale horizontal distances to pave the way for haptic displays with microtexture resolution. Here we fabricated both isotropic and anisotropic MREs with different concentrations (2-8 vol % nanoparticles) of soft, low-remanence ferromagnetic nanoparticles. When placed in a magnetic field gradient, isotropic MREs, nonintuitively, show higher deflection than anisotropic MREs, with the former achieving displacement on the order of a millimeter at just 100 mT. This enhanced performance in the isotropic case is explained based on the soft magnetic nature of the nanoparticles. We show that performance improves with magnetic content up to a composition of 6 vol %, where it plateaus. This behavior is attributed to the stiffness of the composite material increasing at a faster rate than the magnetization as the rigid magnetic nanoparticles are added to the elastomeric matrix. Moreover, 6 vol % microparticle-based isotropic and anisotropic MREs were fabricated and compared with the nanoparticle-based MREs. Anisotropic nanoparticle-based films show higher deflection when compared with their microparticle-based counterparts. The latter is only able to match the nanoparticle film deflection at higher applied fields of almost 300 mT. This performance difference between nanoparticle and microparticle-based films is attributed to the increased anisotropic film stiffness resulting from the larger micrometer-size particles. Finally, the optimally designed nanoparticle-based isotropic film was utilized to create a programmable and real-time reconfigurable braille-inspired interface.
Collapse
Affiliation(s)
- Ludovico Cestarollo
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Shane Smolenski
- Department of Electrical and Computer Engineering, Cornell University, Ithaca, New York 14853, United States
- Department of Physics, Bowdoin College, Brunswick, Maine 04011, United States
| | - Amal El-Ghazaly
- Department of Electrical and Computer Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
19
|
Shao Y, Dou H, Tao P, Jiang R, Fan Y, Jiang Y, Zhao J, Zhang Z, Yue T, Gorb SN, Ren L. Precise Controlling of Friction and Adhesion on Reprogrammable Shape Memory Micropillars. ACS APPLIED MATERIALS & INTERFACES 2022; 14:17995-18003. [PMID: 35389609 DOI: 10.1021/acsami.2c03589] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Microstructured surfaces with stimuli-responsive performances have aroused great attention in recent years, but it still remains a significant challenge to endow surfaces with precisely controlled morphological changes in microstructures, so as to get the precise control of regional properties (e.g., friction, adhesion). Herein, a kind of carbonyl iron particle-doped shape memory polyurethane micropillar with precisely controllable morphological changes is realized, upon remote near-infrared light (NIR) irradiation. Owing to the reversible transition of micropillars between bent and upright states, the micro-structured surface exhibits precisely controllable low-to-high friction transitions, together with the changes of friction coefficient ranging from ∼0.8 to ∼1.2. Hence, the changes of the surface friction even within an extremely small area can be precisely targeted, under local NIR laser irradiation. Moreover, the water droplet adhesion force of the surface can be reversibly switched between ∼160 and ∼760 μN, demonstrating the application potential in precisely controllable wettability. These features indicate that the smart stimuli-responsive micropillar arrays would be amenable to a variety of applications that require remote, selective, and on-demand responses, such as a refreshable Braille display system, micro-particle motion control, lab-on-a-chip, and microfluidics.
Collapse
Affiliation(s)
- Yanlong Shao
- Key Laboratory of Bionic Engineering, Ministry of Education, College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Haixu Dou
- Key Laboratory of Bionic Engineering, Ministry of Education, College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Peng Tao
- Key Laboratory of Bionic Engineering, Ministry of Education, College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Rujian Jiang
- Key Laboratory of Bionic Engineering, Ministry of Education, College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Yong Fan
- College of Chemistry, Jilin University, Changchun 130022, China
| | - Yue Jiang
- Key Laboratory of Bionic Engineering, Ministry of Education, College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Jie Zhao
- Key Laboratory of Bionic Engineering, Ministry of Education, College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Zhihui Zhang
- Key Laboratory of Bionic Engineering, Ministry of Education, College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Tailin Yue
- Key Laboratory of Bionic Engineering, Ministry of Education, College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Stanislav N Gorb
- Department of Functional Morphology and Biomechanics, Kiel University, Kiel 24118, Germany
| | - Luquan Ren
- Key Laboratory of Bionic Engineering, Ministry of Education, College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| |
Collapse
|
20
|
González-Jiménez A, Bernal-Ortega P, Salamanca FM, Valentin JL. Shape-Memory Composites Based on Ionic Elastomers. Polymers (Basel) 2022; 14:polym14061230. [PMID: 35335560 PMCID: PMC8953204 DOI: 10.3390/polym14061230] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 01/27/2023] Open
Abstract
Shape-memory polymers tend to present rigid behavior at ambient temperature, being unable to deform in this state. To obtain soft shape-memory elastomers, composites based on a commercial rubber crosslinked by both ionic and covalent bonds were developed, as these materials do not lose their elastomeric behavior below their transition (or activation) temperature (using ionic transition for such a purpose). The introduction of fillers, such as carbon black and multiwalled carbon nanotubes (MWCNTs), was studied and compared with the unfilled matrix. By adding contents above 10 phr of MWCNT, shape-memory properties were enhanced by 10%, achieving fixing and recovery ratios above 90% and a faster response. Moreover, by adding these fillers, the conductivity of the materials increased from ~10−11 to ~10−4 S·cm−1, allowing the possibility to activate the shape-memory effect with an electric current, based on the heating of the material by the Joule effect, achieving a fast and clean stimulus requiring only a current source of 50 V.
Collapse
Affiliation(s)
- Antonio González-Jiménez
- Materials Science and Engineering Area, Rey Juan Carlos University, C/Tulipán s/n, Móstoles, 28933 Madrid, Spain
- Correspondence: (A.G.-J.); (J.L.V.); Tel.: +34-912587539 (J.L.V.)
| | - Pilar Bernal-Ortega
- Department of Elastomer Technology and Engineering, University of Twente, Driener-Iolaan 5, 7522 NB Enschede, The Netherlands;
| | - Fernando M. Salamanca
- Instituto de Ciencia y Tecnología de Polímeros (CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain;
| | - Juan L. Valentin
- Instituto de Ciencia y Tecnología de Polímeros (CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain;
- Correspondence: (A.G.-J.); (J.L.V.); Tel.: +34-912587539 (J.L.V.)
| |
Collapse
|
21
|
Abstract
In conventional classification, soft robots feature mechanical compliance as the main distinguishing factor from traditional robots made of rigid materials. Recent advances in functional soft materials have facilitated the emergence of a new class of soft robots capable of tether-free actuation in response to external stimuli such as heat, light, solvent, or electric or magnetic field. Among the various types of stimuli-responsive materials, magnetic soft materials have shown remarkable progress in their design and fabrication, leading to the development of magnetic soft robots with unique advantages and potential for many important applications. However, the field of magnetic soft robots is still in its infancy and requires further advancements in terms of design principles, fabrication methods, control mechanisms, and sensing modalities. Successful future development of magnetic soft robots would require a comprehensive understanding of the fundamental principle of magnetic actuation, as well as the physical properties and behavior of magnetic soft materials. In this review, we discuss recent progress in the design and fabrication, modeling and simulation, and actuation and control of magnetic soft materials and robots. We then give a set of design guidelines for optimal actuation performance of magnetic soft materials. Lastly, we summarize potential biomedical applications of magnetic soft robots and provide our perspectives on next-generation magnetic soft robots.
Collapse
Affiliation(s)
- Yoonho Kim
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Xuanhe Zhao
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
22
|
Liu J, Xu X, Lei Y, Zhang M, Sheng Z, Wang H, Cao M, Zhang J, Hou X. Liquid Gating Meniscus-Shaped Deformable Magnetoelastic Membranes with Self-Driven Regulation of Gas/Liquid Release. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107327. [PMID: 34762328 DOI: 10.1002/adma.202107327] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Liquid gating membranes have been demonstrated to show unprecedented properties of dynamicity, stability, adaptivity, and stimulus-responsiveness. Most recently, smart liquid gating membranes have attracted increasing attention to bring some brand-new properties for real-world applications, and various environment-driven systems have been created. Here, a self-driven system of a smart liquid gating membrane is further developed by designing a new sytem based on a liquid gating magnetoelastic porous membrane with reversible meniscus-shaped deformations, and it is not subject to the complex gating liquid restriction of magnetorheological fluids. Compared with other systems, this magnetic-responsive self-driven system has the advantage that it provides a universal and convenient way to realize active regulation of gas/liquid release. Experiments and theoretical calculations demonstrate the stability, the nonfouling behavior, and the tunability of the system. In addition, this system can be used to perfectly open and close gas transport, and the gating pressure threshold for the liquid release can be reduced under the same conditions. Based on the above capabilities, combined with the fast and 3D contactless operation, it will be of benefit in fields ranging from visible gas/liquid mixture content monitoring and energy-saving multiphase separation, remote fluid release, and beyond.
Collapse
Affiliation(s)
- Jing Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xue Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yi Lei
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Jiujiang Research Institute, College of Physical Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Mengchuang Zhang
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Jiujiang Research Institute, College of Physical Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Zhizhi Sheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Suzhou Institute of Nano-Tech and Nano Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Huimeng Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Min Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jian Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xu Hou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Jiujiang Research Institute, College of Physical Science and Technology, Xiamen University, Xiamen, 361005, China
- Tan Kah Kee Innovation Laboratory, Xiamen, Fujian, 361102, China
| |
Collapse
|
23
|
Lovšin M, Brandl D, Glavan G, Belyaeva IA, Cmok L, Čoga L, Kalin M, Shamonin M, Drevenšek-Olenik I. Reconfigurable Surface Micropatterns Based on the Magnetic Field-Induced Shape Memory Effect in Magnetoactive Elastomers. Polymers (Basel) 2021; 13:polym13244422. [PMID: 34960973 PMCID: PMC8708412 DOI: 10.3390/polym13244422] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 11/20/2022] Open
Abstract
A surface relief grating with a period of 30 µm is embossed onto the surface of magnetoactive elastomer (MAE) samples in the presence of a moderate magnetic field of about 180 mT. The grating, which is represented as a set of parallel stripes with two different amplitude reflectivity coefficients, is detected via diffraction of a laser beam in the reflection configuration. Due to the magnetic-field-induced plasticity effect, the grating persists on the MAE surface for at least 90 h if the magnetic field remains present. When the magnetic field is removed, the diffraction efficiency vanishes in a few minutes. The described effect is much more pronounced in MAE samples with larger content of iron filler (80 wt%) than in the samples with lower content of iron filler (70 wt%). A simple theoretical model is proposed to describe the observed dependence of the diffraction efficiency on the applied magnetic field. Possible applications of MAEs as magnetically reconfigurable diffractive optical elements are discussed. It is proposed that the described experimental method can be used as a convenient tool for investigations of the dynamics of magnetically induced plasticity of MAEs on the micrometer scale.
Collapse
Affiliation(s)
- Matija Lovšin
- Department of Complex Matter, J. Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia; (M.L.); (L.C.)
| | - Dominik Brandl
- East Bavarian Centre for Intelligent Materials (EBACIM), Ostbayerische Technische Hochschule (OTH) Regensburg, Seybothstr. 2, 93053 Regensburg, Germany; (D.B.); (G.G.); (I.A.B.); (M.S.)
| | - Gašper Glavan
- East Bavarian Centre for Intelligent Materials (EBACIM), Ostbayerische Technische Hochschule (OTH) Regensburg, Seybothstr. 2, 93053 Regensburg, Germany; (D.B.); (G.G.); (I.A.B.); (M.S.)
| | - Inna A. Belyaeva
- East Bavarian Centre for Intelligent Materials (EBACIM), Ostbayerische Technische Hochschule (OTH) Regensburg, Seybothstr. 2, 93053 Regensburg, Germany; (D.B.); (G.G.); (I.A.B.); (M.S.)
| | - Luka Cmok
- Department of Complex Matter, J. Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia; (M.L.); (L.C.)
| | - Lucija Čoga
- Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, 1000 Ljubljana, Slovenia; (L.Č.); (M.K.)
| | - Mitjan Kalin
- Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, 1000 Ljubljana, Slovenia; (L.Č.); (M.K.)
| | - Mikhail Shamonin
- East Bavarian Centre for Intelligent Materials (EBACIM), Ostbayerische Technische Hochschule (OTH) Regensburg, Seybothstr. 2, 93053 Regensburg, Germany; (D.B.); (G.G.); (I.A.B.); (M.S.)
| | - Irena Drevenšek-Olenik
- Department of Complex Matter, J. Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia; (M.L.); (L.C.)
- Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia
- Correspondence:
| |
Collapse
|
24
|
Sheng Z, Ding Y, Li G, Fu C, Hou Y, Lyu J, Zhang K, Zhang X. Solid-Liquid Host-Guest Composites: The Marriage of Porous Solids and Functional Liquids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2104851. [PMID: 34623698 DOI: 10.1002/adma.202104851] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Composite materials can provide remarkable improvements over the individual constituents. Especially, with a liquid component introduced into a solid porous host, solid-liquid host-guest composites have recently come to the forefront with exceptional functions that promise them for a wealth of applications. Combining the unprecedented dynamic, transparent, omniphobic, self-healing, diffusive and adaptive nature of functional liquid with inherent solid host's property, solid-liquid host-guest composites can realize the ease of fabrication, long-term stability, and a broad spectrum of enhanced properties, which cannot be fully met by conventional solid-solid composites or liquid-liquid composites. This review presents the state-of-the-art progress in solid-liquid host-guest composites. Initially, the concept, classification, design strategy, as well as fabrication methods as a path forward to develop the composites are unraveled, and further it is elaborated on how the functionality of porous solid and functional liquid can be harnessed to create composites with a broad range of unique properties, especially, the optical, thermal, electric, mechanical, sorption, and separation properties. With these fascinating properties, a myriad of emerging applications such as optical devices, thermal management, electromagnetic-interference shielding, soft electronics, gas capture and release, and multiphase separations are touched upon, inspiring more frontier researches in materials science, interfacial chemistry, membrane science, engineering, and multidisciplinary. Finally, this review provides the perspective on the future directions of solid-liquid host-guest composites and assesses the challenges and opportunities ahead.
Collapse
Affiliation(s)
- Zhizhi Sheng
- Suzhou Institute of Nano-Tech and Nano Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Yi Ding
- Suzhou Institute of Nano-Tech and Nano Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Guangyong Li
- Suzhou Institute of Nano-Tech and Nano Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Chen Fu
- Suzhou Institute of Nano-Tech and Nano Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Yinglai Hou
- Suzhou Institute of Nano-Tech and Nano Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Jing Lyu
- Suzhou Institute of Nano-Tech and Nano Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Kun Zhang
- Suzhou Institute of Nano-Tech and Nano Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Xuetong Zhang
- Suzhou Institute of Nano-Tech and Nano Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
- Division of Surgery & Interventional Science, University College London, London, NW3 2PF, UK
| |
Collapse
|
25
|
Abstract
Magnetic soft materials (MSMs) and magnetic shape memory polymers (MSMPs) have been some of the most intensely investigated newly developed material types in the last decade, thanks to the great and versatile potential of their innovative characteristic behaviors such as remote and nearly heatless shape transformation in the case of MSMs. With regard to a number of properties such as shape recovery ratio, manufacturability, cost or programming potential, MSMs and MSMPs may exceed conventional shape memory materials such as shape memory alloys or shape memory polymers. Nevertheless, MSMs and MSMPs have not yet fully touched their scientific-industrial potential, basically due to the lack of detailed knowledge on various aspects of their constitutive response. Therefore, MSMs and MSMPs have been developed slowly but their importance will undoubtedly increase in the near future. This review emphasizes the development of MSMs and MSMPs with a specific focus on the role of the magnetic particles which affect the shape memory recovery and programming behavior of these materials. In addition, the synthesis and application of these materials are addressed.
Collapse
|
26
|
Levine DJ, Turner KT, Pikul JH. Materials with Electroprogrammable Stiffness. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007952. [PMID: 34245062 DOI: 10.1002/adma.202007952] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/19/2021] [Indexed: 05/18/2023]
Abstract
Stiffness is a mechanical property of vital importance to any material system and is typically considered a static quantity. Recent work, however, has shown that novel materials with programmable stiffness can enhance the performance and simplify the design of engineered systems, such as morphing wings, robotic grippers, and wearable exoskeletons. For many of these applications, the ability to program stiffness with electrical activation is advantageous because of the natural compatibility with electrical sensing, control, and power networks ubiquitous in autonomous machines and robots. The numerous applications for materials with electrically driven stiffness modulation has driven a rapid increase in the number of publications in this field. Here, a comprehensive review of the available materials that realize electroprogrammable stiffness is provided, showing that all current approaches can be categorized as using electrostatics or electrically activated phase changes, and summarizing the advantages, limitations, and applications of these materials. Finally, a perspective identifies state-of-the-art trends and an outlook of future opportunities for the development and use of materials with electroprogrammable stiffness.
Collapse
Affiliation(s)
- David J Levine
- Department of Mechanical Engineering & Applied Mechanics, 220 S. 33rd St., Philadelphia, PA, 19104, USA
| | - Kevin T Turner
- Department of Mechanical Engineering & Applied Mechanics, 220 S. 33rd St., Philadelphia, PA, 19104, USA
| | - James H Pikul
- Department of Mechanical Engineering & Applied Mechanics, 220 S. 33rd St., Philadelphia, PA, 19104, USA
| |
Collapse
|
27
|
Zhao X, Peng LM, Chen Y, Zha XJ, Li WD, Bai L, Ke K, Bao RY, Yang MB, Yang W. Phase change mediated mechanically transformative dynamic gel for intelligent control of versatile devices. MATERIALS HORIZONS 2021; 8:1230-1241. [PMID: 34821916 DOI: 10.1039/d0mh02069a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Traditional devices, including conventional rigid electronics and machines, as well as emerging wearable electronics and soft robotics, almost all have a single mechanical state for particular service purposes. Nonetheless, dynamic materials with interchangeable mechanical states, which enable more diverse and versatile applications, are urgently necessary for intelligent and adaptive application cases in the future electronic and robot fields. Here, we report a gel-like material composed of a crosslinking polymer network impregnated with a phase changing molten liquid, which undergoes an exceptional stiffness transition in response to a thermal stimulus. Vice versa, the material switches from a soft gel state to a rigid solid state with a dramatic stiffness change of 105 times (601 MPa versus 4.5 kPa) benefiting from the liquid-solid phase change of the crystalline polymer once cooled. Such reversibility of the phase and mechanical transition upon thermal stimuli enables the dynamic gel mechanical transformation, demonstrating potential applications in an adhesive thermal interface gasket (TIG) to facilitate thermal transport, a high-temperature warning sensor and an intelligent gripper. Overall, this dynamic gel with a tunable stiffness change paves a new way to design and fabricate adaptive smart materials toward intelligent control of versatile devices.
Collapse
Affiliation(s)
- Xing Zhao
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu, 610065, Sichuan, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Zhang F, Li S, Shen Z, Cheng X, Xue Z, Zhang H, Song H, Bai K, Yan D, Wang H, Zhang Y, Huang Y. Rapidly deployable and morphable 3D mesostructures with applications in multimodal biomedical devices. Proc Natl Acad Sci U S A 2021; 118:e2026414118. [PMID: 33836614 PMCID: PMC7980465 DOI: 10.1073/pnas.2026414118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Structures that significantly and rapidly change their shapes and sizes upon external stimuli have widespread applications in a diversity of areas. The ability to miniaturize these deployable and morphable structures is essential for applications in fields that require high-spatial resolution or minimal invasiveness, such as biomechanics sensing, surgery, and biopsy. Despite intensive studies on the actuation mechanisms and material/structure strategies, it remains challenging to realize deployable and morphable structures in high-performance inorganic materials at small scales (e.g., several millimeters, comparable to the feature size of many biological tissues). The difficulty in integrating actuation materials increases as the size scales down, and many types of actuation forces become too small compared to the structure rigidity at millimeter scales. Here, we present schemes of electromagnetic actuation and design strategies to overcome this challenge, by exploiting the mechanics-guided three-dimensional (3D) assembly to enable integration of current-carrying metallic or magnetic films into millimeter-scale structures that generate controlled Lorentz forces or magnetic forces under an external magnetic field. Tailored designs guided by quantitative modeling and developed scaling laws allow formation of low-rigidity 3D architectures that deform significantly, reversibly, and rapidly by remotely controlled electromagnetic actuation. Reconfigurable mesostructures with multiple stable states can be also achieved, in which distinct 3D configurations are maintained after removal of the magnetic field. Demonstration of a functional device that combines the deep and shallow sensing for simultaneous measurements of thermal conductivities in bilayer films suggests the promising potential of the proposed strategy toward multimodal sensing of biomedical signals.
Collapse
Affiliation(s)
- Fan Zhang
- Key Laboratory of Applied Mechanics of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Shupeng Li
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60201
| | - Zhangming Shen
- Key Laboratory of Applied Mechanics of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Xu Cheng
- Key Laboratory of Applied Mechanics of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Zhaoguo Xue
- Key Laboratory of Applied Mechanics of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Hang Zhang
- Key Laboratory of Applied Mechanics of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Honglie Song
- Key Laboratory of Applied Mechanics of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Ke Bai
- Key Laboratory of Applied Mechanics of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Dongjia Yan
- Key Laboratory of Applied Mechanics of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Heling Wang
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208;
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60201
| | - Yihui Zhang
- Key Laboratory of Applied Mechanics of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China;
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Yonggang Huang
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208;
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60201
| |
Collapse
|
29
|
Xia Y, He Y, Zhang F, Liu Y, Leng J. A Review of Shape Memory Polymers and Composites: Mechanisms, Materials, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2000713. [PMID: 32969090 DOI: 10.1002/adma.202000713] [Citation(s) in RCA: 293] [Impact Index Per Article: 73.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/18/2020] [Indexed: 05/23/2023]
Abstract
Over the past decades, interest in shape memory polymers (SMPs) has persisted, and immense efforts have been dedicated to developing SMPs and their multifunctional composites. As a class of stimuli-responsive polymers, SMPs can return to their initial shape from a programmed temporary shape under external stimuli, such as light, heat, magnetism, and electricity. The introduction of functional materials and nanostructures results in shape memory polymer composites (SMPCs) with large recoverable deformation, enhanced mechanical properties, and controllable remote actuation. Because of these unique features, SMPCs have a broad application prospect in many fields covering aerospace engineering, biomedical devices, flexible electronics, soft robotics, shape memory arrays, and 4D printing. Herein, a comprehensive analysis of the shape recovery mechanisms, multifunctionality, applications, and recent advances in SMPs and SMPCs is presented. Specifically, the combination of functional, reversible, multiple, and controllable shape recovery processes is discussed. Further, established products from such materials are highlighted. Finally, potential directions for the future advancement of SMPs are proposed.
Collapse
Affiliation(s)
- Yuliang Xia
- Center for Composite Materials and Structures, Harbin Institute of Technology (HIT), Harbin, 150080, P. R. China
| | - Yang He
- Center for Composite Materials and Structures, Harbin Institute of Technology (HIT), Harbin, 150080, P. R. China
| | - Fenghua Zhang
- Center for Composite Materials and Structures, Harbin Institute of Technology (HIT), Harbin, 150080, P. R. China
| | - Yanju Liu
- Department of Astronautical Science and Mechanics, Harbin Institute of Technology (HIT), Harbin, 150001, P. R. China
| | - Jinsong Leng
- Center for Composite Materials and Structures, Harbin Institute of Technology (HIT), Harbin, 150080, P. R. China
| |
Collapse
|
30
|
Cheng Z, Zhang D, Luo X, Lai H, Liu Y, Jiang L. Superwetting Shape Memory Microstructure: Smart Wetting Control and Practical Application. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2001718. [PMID: 33058318 DOI: 10.1002/adma.202001718] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/27/2020] [Indexed: 06/11/2023]
Abstract
Smart control of wettability on superwetting surfaces has aroused much attention in the past few years. Compared with traditional strategies such as adjusting the surface chemistry, regulating the surface microstructure is more difficult, though it can bring lots of new functions. Recently, it was found that, based on the shape memory effect of a shape memory polymer, the surface microstructure can be controlled more easily and precisely. Here, recent developments in the smart control of wettability on superwetting shape memory microstructures and corresponding applications are summarized. The primary concern is the superhydrophobic surfaces that have demonstrated numerous attractive functions, including controllable droplet storage, transportation, bouncing, capture/release, and reprogrammable gradient wetting, under variation of the surface microstructure. Finally, some achievements in wetting control on other superwetting surfaces (such as superomniphobic surfaces and superslippery surfaces) and perspectives on future research directions are also discussed.
Collapse
Affiliation(s)
- Zhongjun Cheng
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, PR China
| | - Dongjie Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, PR China
| | - Xin Luo
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, PR China
| | - Hua Lai
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, PR China
| | - Yuyan Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, PR China
| | - Lei Jiang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
31
|
Bender P, Leliaert J, Bersweiler M, Honecker D, Michels A. Unraveling Nanostructured Spin Textures in Bulk Magnets. SMALL SCIENCE 2021. [DOI: 10.1002/smsc.202000003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Philipp Bender
- Department of Physics and Materials Science University of Luxembourg 162A Avenue de la Faïencerie L-1511 Luxembourg Grand Duchy of Luxembourg
| | - Jonathan Leliaert
- Department of Solid State Sciences Ghent University Krijgslaan 281/S1 9000 Ghent Belgium
| | - Mathias Bersweiler
- Department of Physics and Materials Science University of Luxembourg 162A Avenue de la Faïencerie L-1511 Luxembourg Grand Duchy of Luxembourg
| | - Dirk Honecker
- Department of Physics and Materials Science University of Luxembourg 162A Avenue de la Faïencerie L-1511 Luxembourg Grand Duchy of Luxembourg
| | - Andreas Michels
- Department of Physics and Materials Science University of Luxembourg 162A Avenue de la Faïencerie L-1511 Luxembourg Grand Duchy of Luxembourg
| |
Collapse
|
32
|
Barron EJ, Peterson RS, Lazarus N, Bartlett MD. Mechanically Cloaked Multiphase Magnetic Elastomer Soft Composites for Wearable Wireless Power Transfer. ACS APPLIED MATERIALS & INTERFACES 2020; 12:50909-50917. [PMID: 33140643 DOI: 10.1021/acsami.0c15909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Wearable electronics allow for new and immersive experiences between technology and the human body, but conventional devices are made from rigid functional components that lack the necessary compliance to safely interact with human tissue. Recently, liquid inclusions have been incorporated into elastomer composites to produce functional materials with high extensibility and ultrasoft mechanical responses. While these materials have shown high thermal and electrical conductivity, there has been an absence of research into compliant magnetic materials through the incorporation of magnetic fluids. Compliant magnetic materials are important for applications in soft matter engineering including sensing, actuation, and power transfer for soft electronics and robotics. In this work, we establish a new class of highly functional soft materials with advanced magnetic and mechanical properties by dispersing magnetic colloidal suspensions as compliant fluid inclusions into soft elastomers. Significantly, the rigid magnetic particles are encapsulated by the fluid. This mechanically cloaks the solid particles and enables a fluid-like mechanical response while imparting high magnetic permeability to the composite. This microstructure reduces the modulus of the composite below that of the initial elastomer to <40 kPa while increasing the permeability by over 100% to greater than 2. We demonstrate the functionality of these materials through conformable magnetic backplanes, which enables a completely soft, coupled inductor system capable of transferring power up to 100% strain and wearable devices for wireless power transfer.
Collapse
Affiliation(s)
- Edward J Barron
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department of Mechanical Engineering, Soft Materials and Structures Lab, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Ray S Peterson
- Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Nathan Lazarus
- Sensors and Electron Devices Directorate, U.S. Army Research Laboratory, Adelphi, Maryland 20783, United States
| | - Michael D Bartlett
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department of Mechanical Engineering, Soft Materials and Structures Lab, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
33
|
Bica I, Anitas EM, Chirigiu L. Hybrid Magnetorheological Composites for Electric and Magnetic Field Sensors and Transducers. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2060. [PMID: 33086509 PMCID: PMC7603160 DOI: 10.3390/nano10102060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/08/2020] [Accepted: 10/14/2020] [Indexed: 11/29/2022]
Abstract
We present a simple, low-cost, and environmental-friendly method for the fabrication of hybrid magnetorheological composites (hMCs) based on cotton fibers soaked with a mixture of silicone oil (SO), carbonyl iron (CI) microparticles, and iron oxide microfibers (μF). The obtained hMCs, with various ratios (Φ) of SO and μF, are used as dielectric materials for manufacturing electrical devices. The equivalent electrical capacitance and resistance are investigated in the presence of an external magnetic field, with flux density B. Based on the recorded data, we obtain the variation of the relative dielectric constant (ϵr'), and electrical conductivity (σ), with Φ, and B. We show that, by increasing Φ, the distance between CI magnetic dipoles increases, and this leads to significant changes in the behaviour of ϵr' and σ in a magnetic field. The results are explained by developing a theoretical model that is based on the dipolar approximation. They indicate that the obtained hMCs can be used in the fabrication of magneto-active fibers for fabrication of electric/magnetic field sensors and transducers.
Collapse
Affiliation(s)
- Ioan Bica
- West University of Timisoara, V. Parvan Avenue 4, 300223 Timisoara, Romania;
| | - Eugen Mircea Anitas
- Joint Institute for Nuclear Research, 141980 Dubna, Russia
- Horia Hulubei, National Institute of Physics and Nuclear Engineering, 077125 Bucharest-Magurele, Romania
| | - Liviu Chirigiu
- University of Medicine and Pharmacy, 200396 Craiova, Romania;
| |
Collapse
|
34
|
Abstract
Michael Bartlett and Robert Style introduce the Soft Matter themed collection on liquid composites.
Collapse
Affiliation(s)
- Michael D Bartlett
- Materials Science and Engineering, Iowa State University of Science and Technology, Ames, IA 50011, USA.
| | | |
Collapse
|
35
|
Testa P, Chappuis B, Kistler S, Style RW, Heyderman LJ, Dufresne ER. Switchable adhesion of soft composites induced by a magnetic field. SOFT MATTER 2020; 16:5806-5811. [PMID: 32469030 DOI: 10.1039/d0sm00626b] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Switchable adhesives have the potential to improve the manufacturing and recycling of parts, and to enable new modes of motility for soft robots. Here, we demonstrate magnetically-switchable adhesion of a two-phase composite to non-magnetic objects. The composite's continuous phase is a silicone elastomer, and the dispersed phase is a magneto-rheological fluid. The composite is simple to prepare, and to mold into different shapes. When a magnetic field is applied, the magneto-rheological fluid develops a yield stress, which dramatically enhances the composite's adhesive properties. We demonstrate up to a nine-fold increase of the pull-off force of non-magnetic objects in the presence of a 250 mT field.
Collapse
Affiliation(s)
- Paolo Testa
- Laboratory for Mesoscopic Systems, Department of Materials, ETH Zürich, 8093 Zürich, Switzerland.
| | | | | | | | | | | |
Collapse
|
36
|
Daffé N, Zečević J, Trohidou KN, Sikora M, Rovezzi M, Carvallo C, Vasilakaki M, Neveu S, Meeldijk JD, Bouldi N, Gavrilov V, Guyodo Y, Choueikani F, Dupuis V, Taverna D, Sainctavit P, Juhin A. Bad neighbour, good neighbour: how magnetic dipole interactions between soft and hard ferrimagnetic nanoparticles affect macroscopic magnetic properties in ferrofluids. NANOSCALE 2020; 12:11222-11231. [PMID: 32412032 DOI: 10.1039/d0nr02023k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fluids responding to magnetic fields (ferrofluids) offer a scene with no equivalent in nature to explore long-range magnetic dipole interactions. Here, we studied the very original class of binary ferrofluids, embedding soft and hard ferrimagnetic nanoparticles. We used a combination of X-ray magnetic spectroscopy measurements supported by multi-scale experimental techniques and Monte-Carlo simulations to unveil the origin of the emergent macroscopic magnetic properties of the binary mixture. We found that the association of soft and hard magnetic nanoparticles in the fluid has a considerable influence on their inherent magnetic properties. While the ferrofluid remains in a single phase, magnetic interactions at the nanoscale between both types of particles induce a modification of their respective coercive fields. By connecting the microscopic properties of binary ferrofluids containing small particles, our findings lay the groundwork for the manipulation of magnetic interactions between particles at the nanometer scale in magnetic liquids.
Collapse
Affiliation(s)
- Niéli Daffé
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université, CNRS, MNHN, UMR7590, 4 place Jussieu, 75052 Paris Cedex 05, France. and Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin - BP48, 91192 Gif-sur-Yvette, France and Laboratoire de Physicochimie des Electrolytes et Nanosystèmes Interfaciaux (PHENIX), Sorbonne Université, CNRS, F-75005 Paris, France
| | - Jovana Zečević
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Kalliopi N Trohidou
- Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", 153 10 Aghia Paraskevi, Attiki, Greece
| | - Marcin Sikora
- AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, Al. Mickiewicza 30, 30-059 Krakow, Poland
| | - Mauro Rovezzi
- Université Grenoble Alpes, CNRS, Institut de Recherche pour le Développement, Irstea, Météo France, OSUG, FAME, 38000 Grenoble, France
| | - Claire Carvallo
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université, CNRS, MNHN, UMR7590, 4 place Jussieu, 75052 Paris Cedex 05, France.
| | - Marianna Vasilakaki
- Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", 153 10 Aghia Paraskevi, Attiki, Greece
| | - Sophie Neveu
- Laboratoire de Physicochimie des Electrolytes et Nanosystèmes Interfaciaux (PHENIX), Sorbonne Université, CNRS, F-75005 Paris, France
| | - Johannes D Meeldijk
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Nadejda Bouldi
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université, CNRS, MNHN, UMR7590, 4 place Jussieu, 75052 Paris Cedex 05, France. and Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin - BP48, 91192 Gif-sur-Yvette, France
| | - Véronica Gavrilov
- Laboratoire de Physicochimie des Electrolytes et Nanosystèmes Interfaciaux (PHENIX), Sorbonne Université, CNRS, F-75005 Paris, France
| | - Yohan Guyodo
- Université de Paris, Institut de physique du globe de Paris (IPGP), CNRS, F-75005 Paris, France
| | - Fadi Choueikani
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin - BP48, 91192 Gif-sur-Yvette, France
| | - Vincent Dupuis
- Laboratoire de Physicochimie des Electrolytes et Nanosystèmes Interfaciaux (PHENIX), Sorbonne Université, CNRS, F-75005 Paris, France
| | - Dario Taverna
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université, CNRS, MNHN, UMR7590, 4 place Jussieu, 75052 Paris Cedex 05, France.
| | - Philippe Sainctavit
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université, CNRS, MNHN, UMR7590, 4 place Jussieu, 75052 Paris Cedex 05, France. and Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin - BP48, 91192 Gif-sur-Yvette, France
| | - Amélie Juhin
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université, CNRS, MNHN, UMR7590, 4 place Jussieu, 75052 Paris Cedex 05, France.
| |
Collapse
|
37
|
Ding L, Wang Y, Sun C, Shu Q, Hu T, Xuan S, Gong X. Three-Dimensional Structured Dual-Mode Flexible Sensors for Highly Sensitive Tactile Perception and Noncontact Sensing. ACS APPLIED MATERIALS & INTERFACES 2020; 12:20955-20964. [PMID: 32290648 DOI: 10.1021/acsami.0c03996] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This work reports a three-dimensional (3D) structured multifunctional sensor by connecting a magnetowhisker with a superflexible patterned skin film. Composed of percolation networks of silver nanowires, the patterned skin film is integrated via a simple template manufacturing method without increasing the complexity and sacrificing the flexibility. The as-prepared 3D structured sensor can realize the multimodal detection of out-of-plane tactile stimuli and details of noncontact environmental obstacles in multiple directions. Here, the sensor's perception behaviors on compression, pulling, magnetic field, sound waves, airflow, water level, water flow, and backwash are presented. Furthermore, the 3D structured sensor obtains outstanding mechanical robustness and stability for 8000 cycles, excellent sensitivity (12 800% when the applied pulling displacement was 3.5 mm; 152% T-1 when the magnetic flux density variation was 40.6 mT), ultrahigh response time, and ultrahigh recovery time (∼5 ms), which may meet the industrial sensing requirement for artificial tactile electronics. Facile manufacturing processes and outstanding multimodal sensing characteristics make the 3D structured sensor to possess great potential to be implemented in the next-generation intelligent bionic equipment or systems.
Collapse
Affiliation(s)
- Li Ding
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China (USTC), Hefei 230027, P. R. China
| | - Yu Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China (USTC), Hefei 230027, P. R. China
| | - Chuanlin Sun
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China (USTC), Hefei 230027, P. R. China
| | - Quan Shu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China (USTC), Hefei 230027, P. R. China
| | - Tao Hu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China (USTC), Hefei 230027, P. R. China
| | - Shouhu Xuan
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China (USTC), Hefei 230027, P. R. China
| | - Xinglong Gong
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China (USTC), Hefei 230027, P. R. China
| |
Collapse
|
38
|
Gong X, Tan K, Deng Q, Shen S. Athermal Shape Memory Effect in Magnetoactive Elastomers. ACS APPLIED MATERIALS & INTERFACES 2020; 12:16930-16936. [PMID: 32181641 DOI: 10.1021/acsami.0c01453] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Shape memory materials (SMMs) are usually referred to as materials with the ability to recover the original shape via certain thermal stimulations, such as temperature increase. Such shape memory behaviors achieved thermally usually exhibit slow response due to the constraint of thermal conductivity, leaving a big challenge for situations with temperature and speed requirements. In this work, different from previous shape memory mechanisms, an athermal fast-response shape memory effect (SME) based on the manipulation of magnetization profiles is introduced both experimentally and theoretically. Through the new mechanism, the shape information of a hard magnetic-particle-embedded magnetoactive elastomer (H-MAE) can be accurately converted into the distribution of magnetic domains and recorded/memorized in the material. Then, upon the application of an external magnetic field, due to the interactions between magnetic domains and the magnetic field, the recorded shape information can be immediately displayed. To exploit this mechanism, the magnetic actuating properties are analyzed and a new way for information writing and repeatable reading is also realized.
Collapse
Affiliation(s)
- Xun Gong
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Kai Tan
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Qian Deng
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Shengping Shen
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| |
Collapse
|
39
|
Cao L, Yu D, Xia Z, Wan H, Liu C, Yin T, He Z. Ferromagnetic Liquid Metal Putty-Like Material with Transformed Shape and Reconfigurable Polarity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2000827. [PMID: 32134520 DOI: 10.1002/adma.202000827] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 05/15/2023]
Abstract
It is remarkably desirable and challenging to design reconfigurable ferromagnetic materials with high electrical conductivity. This has attracted great attention due to promising applications in many fields such as emerging flexible electronics and soft robotics. However, the shape and magnetic polarity of existing ferromagnetic materials with low conductivity are both hard to be reconfigured, and the magnetization of insulative ferrofluids is easily lost once the external magnetic field is removed. A novel reconfigurable ferromagnetic liquid metal (LM) putty-like material (FM-LMP) with high electrical conductivity and transformed shape, which is prepared through homogenously mixing neodymium-iron-boron microparticles into the gallium-based LM matrix, and turning this liquid-like suspension into the solid-like putty-like material by magnetization, is reported to achieve this. The induction magnetic field of FM-LMP is mainly attributed to the magnetic alignment of the dispersed ferromagnetic microparticles, which can be conveniently demagnetized by mechanical disordering and reversibly reconfigured through microparticle realignment by applying a weak magnetic field. FM-LMP with a low fraction of microparticles can be used as printable conductive ink for paper electronics, which are further exploited for applications including magnetic switching, flexible erasable magnetic recording paper, and self-sensing paper-based soft robotics using magnetic actuation.
Collapse
Affiliation(s)
- Lingxiao Cao
- Department of Vehicle Engineering, College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Dehai Yu
- Department of Vehicle Engineering, College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Zishuo Xia
- Department of Vehicle Engineering, College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Haoyu Wan
- Department of Vehicle Engineering, College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Chuanke Liu
- Department of Vehicle Engineering, College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Tao Yin
- Department of Vehicle Engineering, College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Zhizhu He
- Department of Vehicle Engineering, College of Engineering, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
40
|
Cai L, Marthelot J, Falcón C, Reis PM, Brun PT. Printing on liquid elastomers. SOFT MATTER 2020; 16:3137-3142. [PMID: 32159541 DOI: 10.1039/c9sm02452b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In recent years the research community has paid significant attention to geometrically engineered materials. These materials derive their unique properties from their structure rather than their chemistry alone. Despite their success in the laboratory, the assembly of such soft functional materials remains an outstanding challenge. Here, we propose a robust fluid-mediated route for the rapid fabrication of soft elastomers architected with liquid inclusions. Our approach consists of depositing water drops at the surface of an immiscible liquid elastomer bath. As the elastomer cures, the drops are encapsulated in the polymer and impart shape and function to the newly formed elastic matrix. Using the framework of fluid mechanics, we show how this type of composite material can be tailored.
Collapse
Affiliation(s)
- Lingzhi Cai
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08540, USA.
| | | | | | | | | |
Collapse
|
41
|
Li M, Ostrovsky-Snider NA, Sitti M, Omenetto FG. Cutting the Cord: Progress in Untethered Soft Robotics and Actuators. ACTA ACUST UNITED AC 2019. [DOI: 10.1557/adv.2019.439] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|